qla3xxx.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/dmapool.h>
  18. #include <linux/mempool.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/kthread.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/ip.h>
  25. #include <linux/in.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/if_ether.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/rtnetlink.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k5"
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. #define TIMED_OUT_MSG \
  43. "Timed out waiting for management port to get free before issuing command\n"
  44. MODULE_AUTHOR("QLogic Corporation");
  45. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  46. MODULE_LICENSE("GPL");
  47. MODULE_VERSION(DRV_VERSION);
  48. static const u32 default_msg
  49. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  50. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  51. static int debug = -1; /* defaults above */
  52. module_param(debug, int, 0);
  53. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  54. static int msi;
  55. module_param(msi, int, 0);
  56. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  57. static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  59. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  60. /* required last entry */
  61. {0,}
  62. };
  63. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  64. /*
  65. * These are the known PHY's which are used
  66. */
  67. enum PHY_DEVICE_TYPE {
  68. PHY_TYPE_UNKNOWN = 0,
  69. PHY_VITESSE_VSC8211,
  70. PHY_AGERE_ET1011C,
  71. MAX_PHY_DEV_TYPES
  72. };
  73. struct PHY_DEVICE_INFO {
  74. const enum PHY_DEVICE_TYPE phyDevice;
  75. const u32 phyIdOUI;
  76. const u16 phyIdModel;
  77. const char *name;
  78. };
  79. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  80. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  81. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  82. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  83. };
  84. /*
  85. * Caller must take hw_lock.
  86. */
  87. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  88. u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs =
  91. qdev->mem_map_registers;
  92. u32 value;
  93. unsigned int seconds = 3;
  94. do {
  95. writel((sem_mask | sem_bits),
  96. &port_regs->CommonRegs.semaphoreReg);
  97. value = readl(&port_regs->CommonRegs.semaphoreReg);
  98. if ((value & (sem_mask >> 16)) == sem_bits)
  99. return 0;
  100. ssleep(1);
  101. } while (--seconds);
  102. return -1;
  103. }
  104. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  105. {
  106. struct ql3xxx_port_registers __iomem *port_regs =
  107. qdev->mem_map_registers;
  108. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  109. readl(&port_regs->CommonRegs.semaphoreReg);
  110. }
  111. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  112. {
  113. struct ql3xxx_port_registers __iomem *port_regs =
  114. qdev->mem_map_registers;
  115. u32 value;
  116. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  117. value = readl(&port_regs->CommonRegs.semaphoreReg);
  118. return ((value & (sem_mask >> 16)) == sem_bits);
  119. }
  120. /*
  121. * Caller holds hw_lock.
  122. */
  123. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  124. {
  125. int i = 0;
  126. while (i < 10) {
  127. if (i)
  128. ssleep(1);
  129. if (ql_sem_lock(qdev,
  130. QL_DRVR_SEM_MASK,
  131. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  132. * 2) << 1)) {
  133. netdev_printk(KERN_DEBUG, qdev->ndev,
  134. "driver lock acquired\n");
  135. return 1;
  136. }
  137. }
  138. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  139. return 0;
  140. }
  141. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  142. {
  143. struct ql3xxx_port_registers __iomem *port_regs =
  144. qdev->mem_map_registers;
  145. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  146. &port_regs->CommonRegs.ispControlStatus);
  147. readl(&port_regs->CommonRegs.ispControlStatus);
  148. qdev->current_page = page;
  149. }
  150. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  151. {
  152. u32 value;
  153. unsigned long hw_flags;
  154. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  155. value = readl(reg);
  156. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  157. return value;
  158. }
  159. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  160. {
  161. return readl(reg);
  162. }
  163. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  164. {
  165. u32 value;
  166. unsigned long hw_flags;
  167. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  168. if (qdev->current_page != 0)
  169. ql_set_register_page(qdev, 0);
  170. value = readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return value;
  173. }
  174. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  175. {
  176. if (qdev->current_page != 0)
  177. ql_set_register_page(qdev, 0);
  178. return readl(reg);
  179. }
  180. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  181. u32 __iomem *reg, u32 value)
  182. {
  183. unsigned long hw_flags;
  184. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  185. writel(value, reg);
  186. readl(reg);
  187. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  188. }
  189. static void ql_write_common_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. writel(value, reg);
  193. readl(reg);
  194. }
  195. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  196. u32 __iomem *reg, u32 value)
  197. {
  198. writel(value, reg);
  199. readl(reg);
  200. udelay(1);
  201. }
  202. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  203. u32 __iomem *reg, u32 value)
  204. {
  205. if (qdev->current_page != 0)
  206. ql_set_register_page(qdev, 0);
  207. writel(value, reg);
  208. readl(reg);
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 1)
  217. ql_set_register_page(qdev, 1);
  218. writel(value, reg);
  219. readl(reg);
  220. }
  221. /*
  222. * Caller holds hw_lock. Only called during init.
  223. */
  224. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  225. u32 __iomem *reg, u32 value)
  226. {
  227. if (qdev->current_page != 2)
  228. ql_set_register_page(qdev, 2);
  229. writel(value, reg);
  230. readl(reg);
  231. }
  232. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  233. {
  234. struct ql3xxx_port_registers __iomem *port_regs =
  235. qdev->mem_map_registers;
  236. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  237. (ISP_IMR_ENABLE_INT << 16));
  238. }
  239. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  240. {
  241. struct ql3xxx_port_registers __iomem *port_regs =
  242. qdev->mem_map_registers;
  243. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  244. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  245. }
  246. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  247. struct ql_rcv_buf_cb *lrg_buf_cb)
  248. {
  249. dma_addr_t map;
  250. int err;
  251. lrg_buf_cb->next = NULL;
  252. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  253. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  254. } else {
  255. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  256. qdev->lrg_buf_free_tail = lrg_buf_cb;
  257. }
  258. if (!lrg_buf_cb->skb) {
  259. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  260. qdev->lrg_buffer_len);
  261. if (unlikely(!lrg_buf_cb->skb)) {
  262. netdev_err(qdev->ndev, "failed netdev_alloc_skb()\n");
  263. qdev->lrg_buf_skb_check++;
  264. } else {
  265. /*
  266. * We save some space to copy the ethhdr from first
  267. * buffer
  268. */
  269. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  270. map = pci_map_single(qdev->pdev,
  271. lrg_buf_cb->skb->data,
  272. qdev->lrg_buffer_len -
  273. QL_HEADER_SPACE,
  274. PCI_DMA_FROMDEVICE);
  275. err = pci_dma_mapping_error(qdev->pdev, map);
  276. if (err) {
  277. netdev_err(qdev->ndev,
  278. "PCI mapping failed with error: %d\n",
  279. err);
  280. dev_kfree_skb(lrg_buf_cb->skb);
  281. lrg_buf_cb->skb = NULL;
  282. qdev->lrg_buf_skb_check++;
  283. return;
  284. }
  285. lrg_buf_cb->buf_phy_addr_low =
  286. cpu_to_le32(LS_64BITS(map));
  287. lrg_buf_cb->buf_phy_addr_high =
  288. cpu_to_le32(MS_64BITS(map));
  289. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  290. dma_unmap_len_set(lrg_buf_cb, maplen,
  291. qdev->lrg_buffer_len -
  292. QL_HEADER_SPACE);
  293. }
  294. }
  295. qdev->lrg_buf_free_count++;
  296. }
  297. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  298. *qdev)
  299. {
  300. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  301. if (lrg_buf_cb != NULL) {
  302. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  303. if (qdev->lrg_buf_free_head == NULL)
  304. qdev->lrg_buf_free_tail = NULL;
  305. qdev->lrg_buf_free_count--;
  306. }
  307. return lrg_buf_cb;
  308. }
  309. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  310. static u32 dataBits = EEPROM_NO_DATA_BITS;
  311. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  312. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  313. unsigned short *value);
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_select(struct ql3_adapter *qdev)
  318. {
  319. struct ql3xxx_port_registers __iomem *port_regs =
  320. qdev->mem_map_registers;
  321. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  322. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  323. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  324. ql_write_nvram_reg(qdev, spir,
  325. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  326. }
  327. /*
  328. * Caller holds hw_lock.
  329. */
  330. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  331. {
  332. int i;
  333. u32 mask;
  334. u32 dataBit;
  335. u32 previousBit;
  336. struct ql3xxx_port_registers __iomem *port_regs =
  337. qdev->mem_map_registers;
  338. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  339. /* Clock in a zero, then do the start bit */
  340. ql_write_nvram_reg(qdev, spir,
  341. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  342. AUBURN_EEPROM_DO_1));
  343. ql_write_nvram_reg(qdev, spir,
  344. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  345. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  346. ql_write_nvram_reg(qdev, spir,
  347. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  348. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  349. mask = 1 << (FM93C56A_CMD_BITS - 1);
  350. /* Force the previous data bit to be different */
  351. previousBit = 0xffff;
  352. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  353. dataBit = (cmd & mask)
  354. ? AUBURN_EEPROM_DO_1
  355. : AUBURN_EEPROM_DO_0;
  356. if (previousBit != dataBit) {
  357. /* If the bit changed, change the DO state to match */
  358. ql_write_nvram_reg(qdev, spir,
  359. (ISP_NVRAM_MASK |
  360. qdev->eeprom_cmd_data | dataBit));
  361. previousBit = dataBit;
  362. }
  363. ql_write_nvram_reg(qdev, spir,
  364. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  365. dataBit | AUBURN_EEPROM_CLK_RISE));
  366. ql_write_nvram_reg(qdev, spir,
  367. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  368. dataBit | AUBURN_EEPROM_CLK_FALL));
  369. cmd = cmd << 1;
  370. }
  371. mask = 1 << (addrBits - 1);
  372. /* Force the previous data bit to be different */
  373. previousBit = 0xffff;
  374. for (i = 0; i < addrBits; i++) {
  375. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  376. : AUBURN_EEPROM_DO_0;
  377. if (previousBit != dataBit) {
  378. /*
  379. * If the bit changed, then change the DO state to
  380. * match
  381. */
  382. ql_write_nvram_reg(qdev, spir,
  383. (ISP_NVRAM_MASK |
  384. qdev->eeprom_cmd_data | dataBit));
  385. previousBit = dataBit;
  386. }
  387. ql_write_nvram_reg(qdev, spir,
  388. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  389. dataBit | AUBURN_EEPROM_CLK_RISE));
  390. ql_write_nvram_reg(qdev, spir,
  391. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  392. dataBit | AUBURN_EEPROM_CLK_FALL));
  393. eepromAddr = eepromAddr << 1;
  394. }
  395. }
  396. /*
  397. * Caller holds hw_lock.
  398. */
  399. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  400. {
  401. struct ql3xxx_port_registers __iomem *port_regs =
  402. qdev->mem_map_registers;
  403. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  404. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  405. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  406. }
  407. /*
  408. * Caller holds hw_lock.
  409. */
  410. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  411. {
  412. int i;
  413. u32 data = 0;
  414. u32 dataBit;
  415. struct ql3xxx_port_registers __iomem *port_regs =
  416. qdev->mem_map_registers;
  417. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  418. /* Read the data bits */
  419. /* The first bit is a dummy. Clock right over it. */
  420. for (i = 0; i < dataBits; i++) {
  421. ql_write_nvram_reg(qdev, spir,
  422. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  423. AUBURN_EEPROM_CLK_RISE);
  424. ql_write_nvram_reg(qdev, spir,
  425. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  426. AUBURN_EEPROM_CLK_FALL);
  427. dataBit = (ql_read_common_reg(qdev, spir) &
  428. AUBURN_EEPROM_DI_1) ? 1 : 0;
  429. data = (data << 1) | dataBit;
  430. }
  431. *value = (u16)data;
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void eeprom_readword(struct ql3_adapter *qdev,
  437. u32 eepromAddr, unsigned short *value)
  438. {
  439. fm93c56a_select(qdev);
  440. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  441. fm93c56a_datain(qdev, value);
  442. fm93c56a_deselect(qdev);
  443. }
  444. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  445. {
  446. __le16 *p = (__le16 *)ndev->dev_addr;
  447. p[0] = cpu_to_le16(addr[0]);
  448. p[1] = cpu_to_le16(addr[1]);
  449. p[2] = cpu_to_le16(addr[2]);
  450. }
  451. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  452. {
  453. u16 *pEEPROMData;
  454. u16 checksum = 0;
  455. u32 index;
  456. unsigned long hw_flags;
  457. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  458. pEEPROMData = (u16 *)&qdev->nvram_data;
  459. qdev->eeprom_cmd_data = 0;
  460. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  461. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  462. 2) << 10)) {
  463. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  464. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  465. return -1;
  466. }
  467. for (index = 0; index < EEPROM_SIZE; index++) {
  468. eeprom_readword(qdev, index, pEEPROMData);
  469. checksum += *pEEPROMData;
  470. pEEPROMData++;
  471. }
  472. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  473. if (checksum != 0) {
  474. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  475. checksum);
  476. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  477. return -1;
  478. }
  479. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  480. return checksum;
  481. }
  482. static const u32 PHYAddr[2] = {
  483. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  484. };
  485. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  486. {
  487. struct ql3xxx_port_registers __iomem *port_regs =
  488. qdev->mem_map_registers;
  489. u32 temp;
  490. int count = 1000;
  491. while (count) {
  492. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  493. if (!(temp & MAC_MII_STATUS_BSY))
  494. return 0;
  495. udelay(10);
  496. count--;
  497. }
  498. return -1;
  499. }
  500. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  501. {
  502. struct ql3xxx_port_registers __iomem *port_regs =
  503. qdev->mem_map_registers;
  504. u32 scanControl;
  505. if (qdev->numPorts > 1) {
  506. /* Auto scan will cycle through multiple ports */
  507. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  508. } else {
  509. scanControl = MAC_MII_CONTROL_SC;
  510. }
  511. /*
  512. * Scan register 1 of PHY/PETBI,
  513. * Set up to scan both devices
  514. * The autoscan starts from the first register, completes
  515. * the last one before rolling over to the first
  516. */
  517. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  518. PHYAddr[0] | MII_SCAN_REGISTER);
  519. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  520. (scanControl) |
  521. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  522. }
  523. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  524. {
  525. u8 ret;
  526. struct ql3xxx_port_registers __iomem *port_regs =
  527. qdev->mem_map_registers;
  528. /* See if scan mode is enabled before we turn it off */
  529. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  530. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  531. /* Scan is enabled */
  532. ret = 1;
  533. } else {
  534. /* Scan is disabled */
  535. ret = 0;
  536. }
  537. /*
  538. * When disabling scan mode you must first change the MII register
  539. * address
  540. */
  541. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  542. PHYAddr[0] | MII_SCAN_REGISTER);
  543. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  544. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  545. MAC_MII_CONTROL_RC) << 16));
  546. return ret;
  547. }
  548. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  549. u16 regAddr, u16 value, u32 phyAddr)
  550. {
  551. struct ql3xxx_port_registers __iomem *port_regs =
  552. qdev->mem_map_registers;
  553. u8 scanWasEnabled;
  554. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  555. if (ql_wait_for_mii_ready(qdev)) {
  556. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  557. return -1;
  558. }
  559. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  560. phyAddr | regAddr);
  561. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  562. /* Wait for write to complete 9/10/04 SJP */
  563. if (ql_wait_for_mii_ready(qdev)) {
  564. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  565. return -1;
  566. }
  567. if (scanWasEnabled)
  568. ql_mii_enable_scan_mode(qdev);
  569. return 0;
  570. }
  571. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  572. u16 *value, u32 phyAddr)
  573. {
  574. struct ql3xxx_port_registers __iomem *port_regs =
  575. qdev->mem_map_registers;
  576. u8 scanWasEnabled;
  577. u32 temp;
  578. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  579. if (ql_wait_for_mii_ready(qdev)) {
  580. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  581. return -1;
  582. }
  583. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  584. phyAddr | regAddr);
  585. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  586. (MAC_MII_CONTROL_RC << 16));
  587. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  588. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  589. /* Wait for the read to complete */
  590. if (ql_wait_for_mii_ready(qdev)) {
  591. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  592. return -1;
  593. }
  594. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  595. *value = (u16) temp;
  596. if (scanWasEnabled)
  597. ql_mii_enable_scan_mode(qdev);
  598. return 0;
  599. }
  600. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  601. {
  602. struct ql3xxx_port_registers __iomem *port_regs =
  603. qdev->mem_map_registers;
  604. ql_mii_disable_scan_mode(qdev);
  605. if (ql_wait_for_mii_ready(qdev)) {
  606. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  607. return -1;
  608. }
  609. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  610. qdev->PHYAddr | regAddr);
  611. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  612. /* Wait for write to complete. */
  613. if (ql_wait_for_mii_ready(qdev)) {
  614. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  615. return -1;
  616. }
  617. ql_mii_enable_scan_mode(qdev);
  618. return 0;
  619. }
  620. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  621. {
  622. u32 temp;
  623. struct ql3xxx_port_registers __iomem *port_regs =
  624. qdev->mem_map_registers;
  625. ql_mii_disable_scan_mode(qdev);
  626. if (ql_wait_for_mii_ready(qdev)) {
  627. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  628. return -1;
  629. }
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  631. qdev->PHYAddr | regAddr);
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16));
  634. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  635. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  636. /* Wait for the read to complete */
  637. if (ql_wait_for_mii_ready(qdev)) {
  638. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  639. return -1;
  640. }
  641. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  642. *value = (u16) temp;
  643. ql_mii_enable_scan_mode(qdev);
  644. return 0;
  645. }
  646. static void ql_petbi_reset(struct ql3_adapter *qdev)
  647. {
  648. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  649. }
  650. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  651. {
  652. u16 reg;
  653. /* Enable Auto-negotiation sense */
  654. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  655. reg |= PETBI_TBI_AUTO_SENSE;
  656. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  657. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  658. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  659. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  660. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  661. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  662. }
  663. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  664. {
  665. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  666. PHYAddr[qdev->mac_index]);
  667. }
  668. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  669. {
  670. u16 reg;
  671. /* Enable Auto-negotiation sense */
  672. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  673. PHYAddr[qdev->mac_index]);
  674. reg |= PETBI_TBI_AUTO_SENSE;
  675. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  676. PHYAddr[qdev->mac_index]);
  677. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  678. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  679. PHYAddr[qdev->mac_index]);
  680. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  681. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  682. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  683. PHYAddr[qdev->mac_index]);
  684. }
  685. static void ql_petbi_init(struct ql3_adapter *qdev)
  686. {
  687. ql_petbi_reset(qdev);
  688. ql_petbi_start_neg(qdev);
  689. }
  690. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  691. {
  692. ql_petbi_reset_ex(qdev);
  693. ql_petbi_start_neg_ex(qdev);
  694. }
  695. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  696. {
  697. u16 reg;
  698. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  699. return 0;
  700. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  701. }
  702. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  703. {
  704. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  705. /* power down device bit 11 = 1 */
  706. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  707. /* enable diagnostic mode bit 2 = 1 */
  708. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  709. /* 1000MB amplitude adjust (see Agere errata) */
  710. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  711. /* 1000MB amplitude adjust (see Agere errata) */
  712. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  713. /* 100MB amplitude adjust (see Agere errata) */
  714. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  715. /* 100MB amplitude adjust (see Agere errata) */
  716. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  717. /* 10MB amplitude adjust (see Agere errata) */
  718. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  719. /* 10MB amplitude adjust (see Agere errata) */
  720. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  721. /* point to hidden reg 0x2806 */
  722. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  723. /* Write new PHYAD w/bit 5 set */
  724. ql_mii_write_reg_ex(qdev, 0x11,
  725. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  726. /*
  727. * Disable diagnostic mode bit 2 = 0
  728. * Power up device bit 11 = 0
  729. * Link up (on) and activity (blink)
  730. */
  731. ql_mii_write_reg(qdev, 0x12, 0x840a);
  732. ql_mii_write_reg(qdev, 0x00, 0x1140);
  733. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  734. }
  735. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  736. u16 phyIdReg0, u16 phyIdReg1)
  737. {
  738. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  739. u32 oui;
  740. u16 model;
  741. int i;
  742. if (phyIdReg0 == 0xffff)
  743. return result;
  744. if (phyIdReg1 == 0xffff)
  745. return result;
  746. /* oui is split between two registers */
  747. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  748. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  749. /* Scan table for this PHY */
  750. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  751. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  752. (model == PHY_DEVICES[i].phyIdModel)) {
  753. netdev_info(qdev->ndev, "Phy: %s\n",
  754. PHY_DEVICES[i].name);
  755. result = PHY_DEVICES[i].phyDevice;
  756. break;
  757. }
  758. }
  759. return result;
  760. }
  761. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  762. {
  763. u16 reg;
  764. switch (qdev->phyType) {
  765. case PHY_AGERE_ET1011C: {
  766. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  767. return 0;
  768. reg = (reg >> 8) & 3;
  769. break;
  770. }
  771. default:
  772. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  773. return 0;
  774. reg = (((reg & 0x18) >> 3) & 3);
  775. }
  776. switch (reg) {
  777. case 2:
  778. return SPEED_1000;
  779. case 1:
  780. return SPEED_100;
  781. case 0:
  782. return SPEED_10;
  783. default:
  784. return -1;
  785. }
  786. }
  787. static int ql_is_full_dup(struct ql3_adapter *qdev)
  788. {
  789. u16 reg;
  790. switch (qdev->phyType) {
  791. case PHY_AGERE_ET1011C: {
  792. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  793. return 0;
  794. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  795. }
  796. case PHY_VITESSE_VSC8211:
  797. default: {
  798. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  799. return 0;
  800. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  801. }
  802. }
  803. }
  804. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  805. {
  806. u16 reg;
  807. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  808. return 0;
  809. return (reg & PHY_NEG_PAUSE) != 0;
  810. }
  811. static int PHY_Setup(struct ql3_adapter *qdev)
  812. {
  813. u16 reg1;
  814. u16 reg2;
  815. bool agereAddrChangeNeeded = false;
  816. u32 miiAddr = 0;
  817. int err;
  818. /* Determine the PHY we are using by reading the ID's */
  819. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  820. if (err != 0) {
  821. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  822. return err;
  823. }
  824. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  825. if (err != 0) {
  826. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  827. return err;
  828. }
  829. /* Check if we have a Agere PHY */
  830. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  831. /* Determine which MII address we should be using
  832. determined by the index of the card */
  833. if (qdev->mac_index == 0)
  834. miiAddr = MII_AGERE_ADDR_1;
  835. else
  836. miiAddr = MII_AGERE_ADDR_2;
  837. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  838. if (err != 0) {
  839. netdev_err(qdev->ndev,
  840. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  841. return err;
  842. }
  843. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  844. if (err != 0) {
  845. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  846. return err;
  847. }
  848. /* We need to remember to initialize the Agere PHY */
  849. agereAddrChangeNeeded = true;
  850. }
  851. /* Determine the particular PHY we have on board to apply
  852. PHY specific initializations */
  853. qdev->phyType = getPhyType(qdev, reg1, reg2);
  854. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  855. /* need this here so address gets changed */
  856. phyAgereSpecificInit(qdev, miiAddr);
  857. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  858. netdev_err(qdev->ndev, "PHY is unknown\n");
  859. return -EIO;
  860. }
  861. return 0;
  862. }
  863. /*
  864. * Caller holds hw_lock.
  865. */
  866. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  867. {
  868. struct ql3xxx_port_registers __iomem *port_regs =
  869. qdev->mem_map_registers;
  870. u32 value;
  871. if (enable)
  872. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  873. else
  874. value = (MAC_CONFIG_REG_PE << 16);
  875. if (qdev->mac_index)
  876. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  877. else
  878. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  879. }
  880. /*
  881. * Caller holds hw_lock.
  882. */
  883. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  884. {
  885. struct ql3xxx_port_registers __iomem *port_regs =
  886. qdev->mem_map_registers;
  887. u32 value;
  888. if (enable)
  889. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  890. else
  891. value = (MAC_CONFIG_REG_SR << 16);
  892. if (qdev->mac_index)
  893. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  894. else
  895. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  896. }
  897. /*
  898. * Caller holds hw_lock.
  899. */
  900. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  901. {
  902. struct ql3xxx_port_registers __iomem *port_regs =
  903. qdev->mem_map_registers;
  904. u32 value;
  905. if (enable)
  906. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  907. else
  908. value = (MAC_CONFIG_REG_GM << 16);
  909. if (qdev->mac_index)
  910. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  911. else
  912. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  913. }
  914. /*
  915. * Caller holds hw_lock.
  916. */
  917. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  918. {
  919. struct ql3xxx_port_registers __iomem *port_regs =
  920. qdev->mem_map_registers;
  921. u32 value;
  922. if (enable)
  923. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  924. else
  925. value = (MAC_CONFIG_REG_FD << 16);
  926. if (qdev->mac_index)
  927. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  928. else
  929. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  930. }
  931. /*
  932. * Caller holds hw_lock.
  933. */
  934. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  935. {
  936. struct ql3xxx_port_registers __iomem *port_regs =
  937. qdev->mem_map_registers;
  938. u32 value;
  939. if (enable)
  940. value =
  941. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  942. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  943. else
  944. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  945. if (qdev->mac_index)
  946. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  947. else
  948. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  949. }
  950. /*
  951. * Caller holds hw_lock.
  952. */
  953. static int ql_is_fiber(struct ql3_adapter *qdev)
  954. {
  955. struct ql3xxx_port_registers __iomem *port_regs =
  956. qdev->mem_map_registers;
  957. u32 bitToCheck = 0;
  958. u32 temp;
  959. switch (qdev->mac_index) {
  960. case 0:
  961. bitToCheck = PORT_STATUS_SM0;
  962. break;
  963. case 1:
  964. bitToCheck = PORT_STATUS_SM1;
  965. break;
  966. }
  967. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  968. return (temp & bitToCheck) != 0;
  969. }
  970. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  971. {
  972. u16 reg;
  973. ql_mii_read_reg(qdev, 0x00, &reg);
  974. return (reg & 0x1000) != 0;
  975. }
  976. /*
  977. * Caller holds hw_lock.
  978. */
  979. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  980. {
  981. struct ql3xxx_port_registers __iomem *port_regs =
  982. qdev->mem_map_registers;
  983. u32 bitToCheck = 0;
  984. u32 temp;
  985. switch (qdev->mac_index) {
  986. case 0:
  987. bitToCheck = PORT_STATUS_AC0;
  988. break;
  989. case 1:
  990. bitToCheck = PORT_STATUS_AC1;
  991. break;
  992. }
  993. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  994. if (temp & bitToCheck) {
  995. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  996. return 1;
  997. }
  998. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  999. return 0;
  1000. }
  1001. /*
  1002. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1003. */
  1004. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1005. {
  1006. if (ql_is_fiber(qdev))
  1007. return ql_is_petbi_neg_pause(qdev);
  1008. else
  1009. return ql_is_phy_neg_pause(qdev);
  1010. }
  1011. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1012. {
  1013. struct ql3xxx_port_registers __iomem *port_regs =
  1014. qdev->mem_map_registers;
  1015. u32 bitToCheck = 0;
  1016. u32 temp;
  1017. switch (qdev->mac_index) {
  1018. case 0:
  1019. bitToCheck = PORT_STATUS_AE0;
  1020. break;
  1021. case 1:
  1022. bitToCheck = PORT_STATUS_AE1;
  1023. break;
  1024. }
  1025. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1026. return (temp & bitToCheck) != 0;
  1027. }
  1028. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1029. {
  1030. if (ql_is_fiber(qdev))
  1031. return SPEED_1000;
  1032. else
  1033. return ql_phy_get_speed(qdev);
  1034. }
  1035. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1036. {
  1037. if (ql_is_fiber(qdev))
  1038. return 1;
  1039. else
  1040. return ql_is_full_dup(qdev);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1057. break;
  1058. }
  1059. temp =
  1060. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1061. return (temp & bitToCheck) != 0;
  1062. }
  1063. /*
  1064. * Caller holds hw_lock.
  1065. */
  1066. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1067. {
  1068. struct ql3xxx_port_registers __iomem *port_regs =
  1069. qdev->mem_map_registers;
  1070. switch (qdev->mac_index) {
  1071. case 0:
  1072. ql_write_common_reg(qdev,
  1073. &port_regs->CommonRegs.ispControlStatus,
  1074. (ISP_CONTROL_LINK_DN_0) |
  1075. (ISP_CONTROL_LINK_DN_0 << 16));
  1076. break;
  1077. case 1:
  1078. ql_write_common_reg(qdev,
  1079. &port_regs->CommonRegs.ispControlStatus,
  1080. (ISP_CONTROL_LINK_DN_1) |
  1081. (ISP_CONTROL_LINK_DN_1 << 16));
  1082. break;
  1083. default:
  1084. return 1;
  1085. }
  1086. return 0;
  1087. }
  1088. /*
  1089. * Caller holds hw_lock.
  1090. */
  1091. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1092. {
  1093. struct ql3xxx_port_registers __iomem *port_regs =
  1094. qdev->mem_map_registers;
  1095. u32 bitToCheck = 0;
  1096. u32 temp;
  1097. switch (qdev->mac_index) {
  1098. case 0:
  1099. bitToCheck = PORT_STATUS_F1_ENABLED;
  1100. break;
  1101. case 1:
  1102. bitToCheck = PORT_STATUS_F3_ENABLED;
  1103. break;
  1104. default:
  1105. break;
  1106. }
  1107. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1108. if (temp & bitToCheck) {
  1109. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1110. "not link master\n");
  1111. return 0;
  1112. }
  1113. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1114. return 1;
  1115. }
  1116. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1117. {
  1118. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1119. PHYAddr[qdev->mac_index]);
  1120. }
  1121. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1122. {
  1123. u16 reg;
  1124. u16 portConfiguration;
  1125. if (qdev->phyType == PHY_AGERE_ET1011C)
  1126. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1127. /* turn off external loopback */
  1128. if (qdev->mac_index == 0)
  1129. portConfiguration =
  1130. qdev->nvram_data.macCfg_port0.portConfiguration;
  1131. else
  1132. portConfiguration =
  1133. qdev->nvram_data.macCfg_port1.portConfiguration;
  1134. /* Some HBA's in the field are set to 0 and they need to
  1135. be reinterpreted with a default value */
  1136. if (portConfiguration == 0)
  1137. portConfiguration = PORT_CONFIG_DEFAULT;
  1138. /* Set the 1000 advertisements */
  1139. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1140. PHYAddr[qdev->mac_index]);
  1141. reg &= ~PHY_GIG_ALL_PARAMS;
  1142. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1143. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1144. reg |= PHY_GIG_ADV_1000F;
  1145. else
  1146. reg |= PHY_GIG_ADV_1000H;
  1147. }
  1148. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1149. PHYAddr[qdev->mac_index]);
  1150. /* Set the 10/100 & pause negotiation advertisements */
  1151. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1152. PHYAddr[qdev->mac_index]);
  1153. reg &= ~PHY_NEG_ALL_PARAMS;
  1154. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1155. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1156. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1157. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1158. reg |= PHY_NEG_ADV_100F;
  1159. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1160. reg |= PHY_NEG_ADV_10F;
  1161. }
  1162. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1163. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1164. reg |= PHY_NEG_ADV_100H;
  1165. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1166. reg |= PHY_NEG_ADV_10H;
  1167. }
  1168. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1169. reg |= 1;
  1170. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1171. PHYAddr[qdev->mac_index]);
  1172. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1173. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1174. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1175. PHYAddr[qdev->mac_index]);
  1176. }
  1177. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1178. {
  1179. ql_phy_reset_ex(qdev);
  1180. PHY_Setup(qdev);
  1181. ql_phy_start_neg_ex(qdev);
  1182. }
  1183. /*
  1184. * Caller holds hw_lock.
  1185. */
  1186. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1187. {
  1188. struct ql3xxx_port_registers __iomem *port_regs =
  1189. qdev->mem_map_registers;
  1190. u32 bitToCheck = 0;
  1191. u32 temp, linkState;
  1192. switch (qdev->mac_index) {
  1193. case 0:
  1194. bitToCheck = PORT_STATUS_UP0;
  1195. break;
  1196. case 1:
  1197. bitToCheck = PORT_STATUS_UP1;
  1198. break;
  1199. }
  1200. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1201. if (temp & bitToCheck)
  1202. linkState = LS_UP;
  1203. else
  1204. linkState = LS_DOWN;
  1205. return linkState;
  1206. }
  1207. static int ql_port_start(struct ql3_adapter *qdev)
  1208. {
  1209. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1210. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1211. 2) << 7)) {
  1212. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1213. return -1;
  1214. }
  1215. if (ql_is_fiber(qdev)) {
  1216. ql_petbi_init(qdev);
  1217. } else {
  1218. /* Copper port */
  1219. ql_phy_init_ex(qdev);
  1220. }
  1221. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1222. return 0;
  1223. }
  1224. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1225. {
  1226. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1227. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1228. 2) << 7))
  1229. return -1;
  1230. if (!ql_auto_neg_error(qdev)) {
  1231. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1232. /* configure the MAC */
  1233. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1234. "Configuring link\n");
  1235. ql_mac_cfg_soft_reset(qdev, 1);
  1236. ql_mac_cfg_gig(qdev,
  1237. (ql_get_link_speed
  1238. (qdev) ==
  1239. SPEED_1000));
  1240. ql_mac_cfg_full_dup(qdev,
  1241. ql_is_link_full_dup
  1242. (qdev));
  1243. ql_mac_cfg_pause(qdev,
  1244. ql_is_neg_pause
  1245. (qdev));
  1246. ql_mac_cfg_soft_reset(qdev, 0);
  1247. /* enable the MAC */
  1248. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1249. "Enabling mac\n");
  1250. ql_mac_enable(qdev, 1);
  1251. }
  1252. qdev->port_link_state = LS_UP;
  1253. netif_start_queue(qdev->ndev);
  1254. netif_carrier_on(qdev->ndev);
  1255. netif_info(qdev, link, qdev->ndev,
  1256. "Link is up at %d Mbps, %s duplex\n",
  1257. ql_get_link_speed(qdev),
  1258. ql_is_link_full_dup(qdev) ? "full" : "half");
  1259. } else { /* Remote error detected */
  1260. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1261. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1262. "Remote error detected. Calling ql_port_start()\n");
  1263. /*
  1264. * ql_port_start() is shared code and needs
  1265. * to lock the PHY on it's own.
  1266. */
  1267. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1268. if (ql_port_start(qdev)) /* Restart port */
  1269. return -1;
  1270. return 0;
  1271. }
  1272. }
  1273. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1274. return 0;
  1275. }
  1276. static void ql_link_state_machine_work(struct work_struct *work)
  1277. {
  1278. struct ql3_adapter *qdev =
  1279. container_of(work, struct ql3_adapter, link_state_work.work);
  1280. u32 curr_link_state;
  1281. unsigned long hw_flags;
  1282. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1283. curr_link_state = ql_get_link_state(qdev);
  1284. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1285. netif_info(qdev, link, qdev->ndev,
  1286. "Reset in progress, skip processing link state\n");
  1287. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1288. /* Restart timer on 2 second interval. */
  1289. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1290. return;
  1291. }
  1292. switch (qdev->port_link_state) {
  1293. default:
  1294. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1295. ql_port_start(qdev);
  1296. qdev->port_link_state = LS_DOWN;
  1297. /* Fall Through */
  1298. case LS_DOWN:
  1299. if (curr_link_state == LS_UP) {
  1300. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1301. if (ql_is_auto_neg_complete(qdev))
  1302. ql_finish_auto_neg(qdev);
  1303. if (qdev->port_link_state == LS_UP)
  1304. ql_link_down_detect_clear(qdev);
  1305. qdev->port_link_state = LS_UP;
  1306. }
  1307. break;
  1308. case LS_UP:
  1309. /*
  1310. * See if the link is currently down or went down and came
  1311. * back up
  1312. */
  1313. if (curr_link_state == LS_DOWN) {
  1314. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1315. qdev->port_link_state = LS_DOWN;
  1316. }
  1317. if (ql_link_down_detect(qdev))
  1318. qdev->port_link_state = LS_DOWN;
  1319. break;
  1320. }
  1321. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1322. /* Restart timer on 2 second interval. */
  1323. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1324. }
  1325. /*
  1326. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1327. */
  1328. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1329. {
  1330. if (ql_this_adapter_controls_port(qdev))
  1331. set_bit(QL_LINK_MASTER, &qdev->flags);
  1332. else
  1333. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1334. }
  1335. /*
  1336. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1337. */
  1338. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1339. {
  1340. ql_mii_enable_scan_mode(qdev);
  1341. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1342. if (ql_this_adapter_controls_port(qdev))
  1343. ql_petbi_init_ex(qdev);
  1344. } else {
  1345. if (ql_this_adapter_controls_port(qdev))
  1346. ql_phy_init_ex(qdev);
  1347. }
  1348. }
  1349. /*
  1350. * MII_Setup needs to be called before taking the PHY out of reset
  1351. * so that the management interface clock speed can be set properly.
  1352. * It would be better if we had a way to disable MDC until after the
  1353. * PHY is out of reset, but we don't have that capability.
  1354. */
  1355. static int ql_mii_setup(struct ql3_adapter *qdev)
  1356. {
  1357. u32 reg;
  1358. struct ql3xxx_port_registers __iomem *port_regs =
  1359. qdev->mem_map_registers;
  1360. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1361. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1362. 2) << 7))
  1363. return -1;
  1364. if (qdev->device_id == QL3032_DEVICE_ID)
  1365. ql_write_page0_reg(qdev,
  1366. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1367. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1368. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1369. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1370. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1371. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1372. return 0;
  1373. }
  1374. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1375. SUPPORTED_FIBRE | \
  1376. SUPPORTED_Autoneg)
  1377. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1378. SUPPORTED_10baseT_Full | \
  1379. SUPPORTED_100baseT_Half | \
  1380. SUPPORTED_100baseT_Full | \
  1381. SUPPORTED_1000baseT_Half | \
  1382. SUPPORTED_1000baseT_Full | \
  1383. SUPPORTED_Autoneg | \
  1384. SUPPORTED_TP); \
  1385. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1386. {
  1387. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1388. return SUPPORTED_OPTICAL_MODES;
  1389. return SUPPORTED_TP_MODES;
  1390. }
  1391. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1392. {
  1393. int status;
  1394. unsigned long hw_flags;
  1395. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1396. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1397. (QL_RESOURCE_BITS_BASE_CODE |
  1398. (qdev->mac_index) * 2) << 7)) {
  1399. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1400. return 0;
  1401. }
  1402. status = ql_is_auto_cfg(qdev);
  1403. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1404. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1405. return status;
  1406. }
  1407. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1408. {
  1409. u32 status;
  1410. unsigned long hw_flags;
  1411. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1412. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1413. (QL_RESOURCE_BITS_BASE_CODE |
  1414. (qdev->mac_index) * 2) << 7)) {
  1415. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1416. return 0;
  1417. }
  1418. status = ql_get_link_speed(qdev);
  1419. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1420. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1421. return status;
  1422. }
  1423. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1424. {
  1425. int status;
  1426. unsigned long hw_flags;
  1427. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1428. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1429. (QL_RESOURCE_BITS_BASE_CODE |
  1430. (qdev->mac_index) * 2) << 7)) {
  1431. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1432. return 0;
  1433. }
  1434. status = ql_is_link_full_dup(qdev);
  1435. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1436. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1437. return status;
  1438. }
  1439. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1440. {
  1441. struct ql3_adapter *qdev = netdev_priv(ndev);
  1442. ecmd->transceiver = XCVR_INTERNAL;
  1443. ecmd->supported = ql_supported_modes(qdev);
  1444. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1445. ecmd->port = PORT_FIBRE;
  1446. } else {
  1447. ecmd->port = PORT_TP;
  1448. ecmd->phy_address = qdev->PHYAddr;
  1449. }
  1450. ecmd->advertising = ql_supported_modes(qdev);
  1451. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1452. ecmd->speed = ql_get_speed(qdev);
  1453. ecmd->duplex = ql_get_full_dup(qdev);
  1454. return 0;
  1455. }
  1456. static void ql_get_drvinfo(struct net_device *ndev,
  1457. struct ethtool_drvinfo *drvinfo)
  1458. {
  1459. struct ql3_adapter *qdev = netdev_priv(ndev);
  1460. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1461. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1462. strncpy(drvinfo->fw_version, "N/A", 32);
  1463. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1464. drvinfo->regdump_len = 0;
  1465. drvinfo->eedump_len = 0;
  1466. }
  1467. static u32 ql_get_msglevel(struct net_device *ndev)
  1468. {
  1469. struct ql3_adapter *qdev = netdev_priv(ndev);
  1470. return qdev->msg_enable;
  1471. }
  1472. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1473. {
  1474. struct ql3_adapter *qdev = netdev_priv(ndev);
  1475. qdev->msg_enable = value;
  1476. }
  1477. static void ql_get_pauseparam(struct net_device *ndev,
  1478. struct ethtool_pauseparam *pause)
  1479. {
  1480. struct ql3_adapter *qdev = netdev_priv(ndev);
  1481. struct ql3xxx_port_registers __iomem *port_regs =
  1482. qdev->mem_map_registers;
  1483. u32 reg;
  1484. if (qdev->mac_index == 0)
  1485. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1486. else
  1487. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1488. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1489. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1490. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1491. }
  1492. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1493. .get_settings = ql_get_settings,
  1494. .get_drvinfo = ql_get_drvinfo,
  1495. .get_link = ethtool_op_get_link,
  1496. .get_msglevel = ql_get_msglevel,
  1497. .set_msglevel = ql_set_msglevel,
  1498. .get_pauseparam = ql_get_pauseparam,
  1499. };
  1500. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1501. {
  1502. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1503. dma_addr_t map;
  1504. int err;
  1505. while (lrg_buf_cb) {
  1506. if (!lrg_buf_cb->skb) {
  1507. lrg_buf_cb->skb =
  1508. netdev_alloc_skb(qdev->ndev,
  1509. qdev->lrg_buffer_len);
  1510. if (unlikely(!lrg_buf_cb->skb)) {
  1511. netdev_printk(KERN_DEBUG, qdev->ndev,
  1512. "Failed netdev_alloc_skb()\n");
  1513. break;
  1514. } else {
  1515. /*
  1516. * We save some space to copy the ethhdr from
  1517. * first buffer
  1518. */
  1519. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1520. map = pci_map_single(qdev->pdev,
  1521. lrg_buf_cb->skb->data,
  1522. qdev->lrg_buffer_len -
  1523. QL_HEADER_SPACE,
  1524. PCI_DMA_FROMDEVICE);
  1525. err = pci_dma_mapping_error(qdev->pdev, map);
  1526. if (err) {
  1527. netdev_err(qdev->ndev,
  1528. "PCI mapping failed with error: %d\n",
  1529. err);
  1530. dev_kfree_skb(lrg_buf_cb->skb);
  1531. lrg_buf_cb->skb = NULL;
  1532. break;
  1533. }
  1534. lrg_buf_cb->buf_phy_addr_low =
  1535. cpu_to_le32(LS_64BITS(map));
  1536. lrg_buf_cb->buf_phy_addr_high =
  1537. cpu_to_le32(MS_64BITS(map));
  1538. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1539. dma_unmap_len_set(lrg_buf_cb, maplen,
  1540. qdev->lrg_buffer_len -
  1541. QL_HEADER_SPACE);
  1542. --qdev->lrg_buf_skb_check;
  1543. if (!qdev->lrg_buf_skb_check)
  1544. return 1;
  1545. }
  1546. }
  1547. lrg_buf_cb = lrg_buf_cb->next;
  1548. }
  1549. return 0;
  1550. }
  1551. /*
  1552. * Caller holds hw_lock.
  1553. */
  1554. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1555. {
  1556. struct ql3xxx_port_registers __iomem *port_regs =
  1557. qdev->mem_map_registers;
  1558. if (qdev->small_buf_release_cnt >= 16) {
  1559. while (qdev->small_buf_release_cnt >= 16) {
  1560. qdev->small_buf_q_producer_index++;
  1561. if (qdev->small_buf_q_producer_index ==
  1562. NUM_SBUFQ_ENTRIES)
  1563. qdev->small_buf_q_producer_index = 0;
  1564. qdev->small_buf_release_cnt -= 8;
  1565. }
  1566. wmb();
  1567. writel(qdev->small_buf_q_producer_index,
  1568. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1569. }
  1570. }
  1571. /*
  1572. * Caller holds hw_lock.
  1573. */
  1574. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1575. {
  1576. struct bufq_addr_element *lrg_buf_q_ele;
  1577. int i;
  1578. struct ql_rcv_buf_cb *lrg_buf_cb;
  1579. struct ql3xxx_port_registers __iomem *port_regs =
  1580. qdev->mem_map_registers;
  1581. if ((qdev->lrg_buf_free_count >= 8) &&
  1582. (qdev->lrg_buf_release_cnt >= 16)) {
  1583. if (qdev->lrg_buf_skb_check)
  1584. if (!ql_populate_free_queue(qdev))
  1585. return;
  1586. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1587. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1588. (qdev->lrg_buf_free_count >= 8)) {
  1589. for (i = 0; i < 8; i++) {
  1590. lrg_buf_cb =
  1591. ql_get_from_lrg_buf_free_list(qdev);
  1592. lrg_buf_q_ele->addr_high =
  1593. lrg_buf_cb->buf_phy_addr_high;
  1594. lrg_buf_q_ele->addr_low =
  1595. lrg_buf_cb->buf_phy_addr_low;
  1596. lrg_buf_q_ele++;
  1597. qdev->lrg_buf_release_cnt--;
  1598. }
  1599. qdev->lrg_buf_q_producer_index++;
  1600. if (qdev->lrg_buf_q_producer_index ==
  1601. qdev->num_lbufq_entries)
  1602. qdev->lrg_buf_q_producer_index = 0;
  1603. if (qdev->lrg_buf_q_producer_index ==
  1604. (qdev->num_lbufq_entries - 1)) {
  1605. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1606. }
  1607. }
  1608. wmb();
  1609. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1610. writel(qdev->lrg_buf_q_producer_index,
  1611. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1612. }
  1613. }
  1614. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1615. struct ob_mac_iocb_rsp *mac_rsp)
  1616. {
  1617. struct ql_tx_buf_cb *tx_cb;
  1618. int i;
  1619. int retval = 0;
  1620. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1621. netdev_warn(qdev->ndev,
  1622. "Frame too short but it was padded and sent\n");
  1623. }
  1624. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1625. /* Check the transmit response flags for any errors */
  1626. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1627. netdev_err(qdev->ndev,
  1628. "Frame too short to be legal, frame not sent\n");
  1629. qdev->ndev->stats.tx_errors++;
  1630. retval = -EIO;
  1631. goto frame_not_sent;
  1632. }
  1633. if (tx_cb->seg_count == 0) {
  1634. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1635. mac_rsp->transaction_id);
  1636. qdev->ndev->stats.tx_errors++;
  1637. retval = -EIO;
  1638. goto invalid_seg_count;
  1639. }
  1640. pci_unmap_single(qdev->pdev,
  1641. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1642. dma_unmap_len(&tx_cb->map[0], maplen),
  1643. PCI_DMA_TODEVICE);
  1644. tx_cb->seg_count--;
  1645. if (tx_cb->seg_count) {
  1646. for (i = 1; i < tx_cb->seg_count; i++) {
  1647. pci_unmap_page(qdev->pdev,
  1648. dma_unmap_addr(&tx_cb->map[i],
  1649. mapaddr),
  1650. dma_unmap_len(&tx_cb->map[i], maplen),
  1651. PCI_DMA_TODEVICE);
  1652. }
  1653. }
  1654. qdev->ndev->stats.tx_packets++;
  1655. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1656. frame_not_sent:
  1657. dev_kfree_skb_irq(tx_cb->skb);
  1658. tx_cb->skb = NULL;
  1659. invalid_seg_count:
  1660. atomic_inc(&qdev->tx_count);
  1661. }
  1662. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1663. {
  1664. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1665. qdev->small_buf_index = 0;
  1666. qdev->small_buf_release_cnt++;
  1667. }
  1668. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1669. {
  1670. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1671. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1672. qdev->lrg_buf_release_cnt++;
  1673. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1674. qdev->lrg_buf_index = 0;
  1675. return lrg_buf_cb;
  1676. }
  1677. /*
  1678. * The difference between 3022 and 3032 for inbound completions:
  1679. * 3022 uses two buffers per completion. The first buffer contains
  1680. * (some) header info, the second the remainder of the headers plus
  1681. * the data. For this chip we reserve some space at the top of the
  1682. * receive buffer so that the header info in buffer one can be
  1683. * prepended to the buffer two. Buffer two is the sent up while
  1684. * buffer one is returned to the hardware to be reused.
  1685. * 3032 receives all of it's data and headers in one buffer for a
  1686. * simpler process. 3032 also supports checksum verification as
  1687. * can be seen in ql_process_macip_rx_intr().
  1688. */
  1689. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1690. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1691. {
  1692. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1693. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1694. struct sk_buff *skb;
  1695. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1696. /*
  1697. * Get the inbound address list (small buffer).
  1698. */
  1699. ql_get_sbuf(qdev);
  1700. if (qdev->device_id == QL3022_DEVICE_ID)
  1701. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1702. /* start of second buffer */
  1703. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1704. skb = lrg_buf_cb2->skb;
  1705. qdev->ndev->stats.rx_packets++;
  1706. qdev->ndev->stats.rx_bytes += length;
  1707. skb_put(skb, length);
  1708. pci_unmap_single(qdev->pdev,
  1709. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1710. dma_unmap_len(lrg_buf_cb2, maplen),
  1711. PCI_DMA_FROMDEVICE);
  1712. prefetch(skb->data);
  1713. skb_checksum_none_assert(skb);
  1714. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1715. netif_receive_skb(skb);
  1716. lrg_buf_cb2->skb = NULL;
  1717. if (qdev->device_id == QL3022_DEVICE_ID)
  1718. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1719. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1720. }
  1721. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1722. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1723. {
  1724. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1725. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1726. struct sk_buff *skb1 = NULL, *skb2;
  1727. struct net_device *ndev = qdev->ndev;
  1728. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1729. u16 size = 0;
  1730. /*
  1731. * Get the inbound address list (small buffer).
  1732. */
  1733. ql_get_sbuf(qdev);
  1734. if (qdev->device_id == QL3022_DEVICE_ID) {
  1735. /* start of first buffer on 3022 */
  1736. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1737. skb1 = lrg_buf_cb1->skb;
  1738. size = ETH_HLEN;
  1739. if (*((u16 *) skb1->data) != 0xFFFF)
  1740. size += VLAN_ETH_HLEN - ETH_HLEN;
  1741. }
  1742. /* start of second buffer */
  1743. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1744. skb2 = lrg_buf_cb2->skb;
  1745. skb_put(skb2, length); /* Just the second buffer length here. */
  1746. pci_unmap_single(qdev->pdev,
  1747. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1748. dma_unmap_len(lrg_buf_cb2, maplen),
  1749. PCI_DMA_FROMDEVICE);
  1750. prefetch(skb2->data);
  1751. skb_checksum_none_assert(skb2);
  1752. if (qdev->device_id == QL3022_DEVICE_ID) {
  1753. /*
  1754. * Copy the ethhdr from first buffer to second. This
  1755. * is necessary for 3022 IP completions.
  1756. */
  1757. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1758. skb_push(skb2, size), size);
  1759. } else {
  1760. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1761. if (checksum &
  1762. (IB_IP_IOCB_RSP_3032_ICE |
  1763. IB_IP_IOCB_RSP_3032_CE)) {
  1764. netdev_err(ndev,
  1765. "%s: Bad checksum for this %s packet, checksum = %x\n",
  1766. __func__,
  1767. ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
  1768. "TCP" : "UDP"), checksum);
  1769. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1770. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1771. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1772. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1773. }
  1774. }
  1775. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1776. netif_receive_skb(skb2);
  1777. ndev->stats.rx_packets++;
  1778. ndev->stats.rx_bytes += length;
  1779. lrg_buf_cb2->skb = NULL;
  1780. if (qdev->device_id == QL3022_DEVICE_ID)
  1781. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1782. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1783. }
  1784. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1785. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1786. {
  1787. struct net_rsp_iocb *net_rsp;
  1788. struct net_device *ndev = qdev->ndev;
  1789. int work_done = 0;
  1790. /* While there are entries in the completion queue. */
  1791. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1792. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1793. net_rsp = qdev->rsp_current;
  1794. rmb();
  1795. /*
  1796. * Fix 4032 chip's undocumented "feature" where bit-8 is set
  1797. * if the inbound completion is for a VLAN.
  1798. */
  1799. if (qdev->device_id == QL3032_DEVICE_ID)
  1800. net_rsp->opcode &= 0x7f;
  1801. switch (net_rsp->opcode) {
  1802. case OPCODE_OB_MAC_IOCB_FN0:
  1803. case OPCODE_OB_MAC_IOCB_FN2:
  1804. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1805. net_rsp);
  1806. (*tx_cleaned)++;
  1807. break;
  1808. case OPCODE_IB_MAC_IOCB:
  1809. case OPCODE_IB_3032_MAC_IOCB:
  1810. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1811. net_rsp);
  1812. (*rx_cleaned)++;
  1813. break;
  1814. case OPCODE_IB_IP_IOCB:
  1815. case OPCODE_IB_3032_IP_IOCB:
  1816. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1817. net_rsp);
  1818. (*rx_cleaned)++;
  1819. break;
  1820. default: {
  1821. u32 *tmp = (u32 *)net_rsp;
  1822. netdev_err(ndev,
  1823. "Hit default case, not handled!\n"
  1824. " dropping the packet, opcode = %x\n"
  1825. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1826. net_rsp->opcode,
  1827. (unsigned long int)tmp[0],
  1828. (unsigned long int)tmp[1],
  1829. (unsigned long int)tmp[2],
  1830. (unsigned long int)tmp[3]);
  1831. }
  1832. }
  1833. qdev->rsp_consumer_index++;
  1834. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1835. qdev->rsp_consumer_index = 0;
  1836. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1837. } else {
  1838. qdev->rsp_current++;
  1839. }
  1840. work_done = *tx_cleaned + *rx_cleaned;
  1841. }
  1842. return work_done;
  1843. }
  1844. static int ql_poll(struct napi_struct *napi, int budget)
  1845. {
  1846. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1847. int rx_cleaned = 0, tx_cleaned = 0;
  1848. unsigned long hw_flags;
  1849. struct ql3xxx_port_registers __iomem *port_regs =
  1850. qdev->mem_map_registers;
  1851. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1852. if (tx_cleaned + rx_cleaned != budget) {
  1853. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1854. __napi_complete(napi);
  1855. ql_update_small_bufq_prod_index(qdev);
  1856. ql_update_lrg_bufq_prod_index(qdev);
  1857. writel(qdev->rsp_consumer_index,
  1858. &port_regs->CommonRegs.rspQConsumerIndex);
  1859. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1860. ql_enable_interrupts(qdev);
  1861. }
  1862. return tx_cleaned + rx_cleaned;
  1863. }
  1864. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1865. {
  1866. struct net_device *ndev = dev_id;
  1867. struct ql3_adapter *qdev = netdev_priv(ndev);
  1868. struct ql3xxx_port_registers __iomem *port_regs =
  1869. qdev->mem_map_registers;
  1870. u32 value;
  1871. int handled = 1;
  1872. u32 var;
  1873. value = ql_read_common_reg_l(qdev,
  1874. &port_regs->CommonRegs.ispControlStatus);
  1875. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1876. spin_lock(&qdev->adapter_lock);
  1877. netif_stop_queue(qdev->ndev);
  1878. netif_carrier_off(qdev->ndev);
  1879. ql_disable_interrupts(qdev);
  1880. qdev->port_link_state = LS_DOWN;
  1881. set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
  1882. if (value & ISP_CONTROL_FE) {
  1883. /*
  1884. * Chip Fatal Error.
  1885. */
  1886. var =
  1887. ql_read_page0_reg_l(qdev,
  1888. &port_regs->PortFatalErrStatus);
  1889. netdev_warn(ndev,
  1890. "Resetting chip. PortFatalErrStatus register = 0x%x\n",
  1891. var);
  1892. set_bit(QL_RESET_START, &qdev->flags) ;
  1893. } else {
  1894. /*
  1895. * Soft Reset Requested.
  1896. */
  1897. set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
  1898. netdev_err(ndev,
  1899. "Another function issued a reset to the chip. ISR value = %x\n",
  1900. value);
  1901. }
  1902. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1903. spin_unlock(&qdev->adapter_lock);
  1904. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1905. ql_disable_interrupts(qdev);
  1906. if (likely(napi_schedule_prep(&qdev->napi)))
  1907. __napi_schedule(&qdev->napi);
  1908. } else
  1909. return IRQ_NONE;
  1910. return IRQ_RETVAL(handled);
  1911. }
  1912. /*
  1913. * Get the total number of segments needed for the given number of fragments.
  1914. * This is necessary because outbound address lists (OAL) will be used when
  1915. * more than two frags are given. Each address list has 5 addr/len pairs.
  1916. * The 5th pair in each OAL is used to point to the next OAL if more frags
  1917. * are coming. That is why the frags:segment count ratio is not linear.
  1918. */
  1919. static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
  1920. {
  1921. if (qdev->device_id == QL3022_DEVICE_ID)
  1922. return 1;
  1923. if (frags <= 2)
  1924. return frags + 1;
  1925. else if (frags <= 6)
  1926. return frags + 2;
  1927. else if (frags <= 10)
  1928. return frags + 3;
  1929. else if (frags <= 14)
  1930. return frags + 4;
  1931. else if (frags <= 18)
  1932. return frags + 5;
  1933. return -1;
  1934. }
  1935. static void ql_hw_csum_setup(const struct sk_buff *skb,
  1936. struct ob_mac_iocb_req *mac_iocb_ptr)
  1937. {
  1938. const struct iphdr *ip = ip_hdr(skb);
  1939. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  1940. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1941. if (ip->protocol == IPPROTO_TCP) {
  1942. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1943. OB_3032MAC_IOCB_REQ_IC;
  1944. } else {
  1945. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1946. OB_3032MAC_IOCB_REQ_IC;
  1947. }
  1948. }
  1949. /*
  1950. * Map the buffers for this transmit.
  1951. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1952. */
  1953. static int ql_send_map(struct ql3_adapter *qdev,
  1954. struct ob_mac_iocb_req *mac_iocb_ptr,
  1955. struct ql_tx_buf_cb *tx_cb,
  1956. struct sk_buff *skb)
  1957. {
  1958. struct oal *oal;
  1959. struct oal_entry *oal_entry;
  1960. int len = skb_headlen(skb);
  1961. dma_addr_t map;
  1962. int err;
  1963. int completed_segs, i;
  1964. int seg_cnt, seg = 0;
  1965. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1966. seg_cnt = tx_cb->seg_count;
  1967. /*
  1968. * Map the skb buffer first.
  1969. */
  1970. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1971. err = pci_dma_mapping_error(qdev->pdev, map);
  1972. if (err) {
  1973. netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
  1974. err);
  1975. return NETDEV_TX_BUSY;
  1976. }
  1977. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1978. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1979. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1980. oal_entry->len = cpu_to_le32(len);
  1981. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1982. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1983. seg++;
  1984. if (seg_cnt == 1) {
  1985. /* Terminate the last segment. */
  1986. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  1987. return NETDEV_TX_OK;
  1988. }
  1989. oal = tx_cb->oal;
  1990. for (completed_segs = 0;
  1991. completed_segs < frag_cnt;
  1992. completed_segs++, seg++) {
  1993. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1994. oal_entry++;
  1995. /*
  1996. * Check for continuation requirements.
  1997. * It's strange but necessary.
  1998. * Continuation entry points to outbound address list.
  1999. */
  2000. if ((seg == 2 && seg_cnt > 3) ||
  2001. (seg == 7 && seg_cnt > 8) ||
  2002. (seg == 12 && seg_cnt > 13) ||
  2003. (seg == 17 && seg_cnt > 18)) {
  2004. map = pci_map_single(qdev->pdev, oal,
  2005. sizeof(struct oal),
  2006. PCI_DMA_TODEVICE);
  2007. err = pci_dma_mapping_error(qdev->pdev, map);
  2008. if (err) {
  2009. netdev_err(qdev->ndev,
  2010. "PCI mapping outbound address list with error: %d\n",
  2011. err);
  2012. goto map_error;
  2013. }
  2014. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2015. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2016. oal_entry->len = cpu_to_le32(sizeof(struct oal) |
  2017. OAL_CONT_ENTRY);
  2018. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2019. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2020. sizeof(struct oal));
  2021. oal_entry = (struct oal_entry *)oal;
  2022. oal++;
  2023. seg++;
  2024. }
  2025. map = pci_map_page(qdev->pdev, frag->page,
  2026. frag->page_offset, frag->size,
  2027. PCI_DMA_TODEVICE);
  2028. err = pci_dma_mapping_error(qdev->pdev, map);
  2029. if (err) {
  2030. netdev_err(qdev->ndev,
  2031. "PCI mapping frags failed with error: %d\n",
  2032. err);
  2033. goto map_error;
  2034. }
  2035. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2036. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2037. oal_entry->len = cpu_to_le32(frag->size);
  2038. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2039. dma_unmap_len_set(&tx_cb->map[seg], maplen, frag->size);
  2040. }
  2041. /* Terminate the last segment. */
  2042. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2043. return NETDEV_TX_OK;
  2044. map_error:
  2045. /* A PCI mapping failed and now we will need to back out
  2046. * We need to traverse through the oal's and associated pages which
  2047. * have been mapped and now we must unmap them to clean up properly
  2048. */
  2049. seg = 1;
  2050. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2051. oal = tx_cb->oal;
  2052. for (i = 0; i < completed_segs; i++, seg++) {
  2053. oal_entry++;
  2054. /*
  2055. * Check for continuation requirements.
  2056. * It's strange but necessary.
  2057. */
  2058. if ((seg == 2 && seg_cnt > 3) ||
  2059. (seg == 7 && seg_cnt > 8) ||
  2060. (seg == 12 && seg_cnt > 13) ||
  2061. (seg == 17 && seg_cnt > 18)) {
  2062. pci_unmap_single(qdev->pdev,
  2063. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2064. dma_unmap_len(&tx_cb->map[seg], maplen),
  2065. PCI_DMA_TODEVICE);
  2066. oal++;
  2067. seg++;
  2068. }
  2069. pci_unmap_page(qdev->pdev,
  2070. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2071. dma_unmap_len(&tx_cb->map[seg], maplen),
  2072. PCI_DMA_TODEVICE);
  2073. }
  2074. pci_unmap_single(qdev->pdev,
  2075. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2076. dma_unmap_addr(&tx_cb->map[0], maplen),
  2077. PCI_DMA_TODEVICE);
  2078. return NETDEV_TX_BUSY;
  2079. }
  2080. /*
  2081. * The difference between 3022 and 3032 sends:
  2082. * 3022 only supports a simple single segment transmission.
  2083. * 3032 supports checksumming and scatter/gather lists (fragments).
  2084. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2085. * in the IOCB plus a chain of outbound address lists (OAL) that
  2086. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2087. * will be used to point to an OAL when more ALP entries are required.
  2088. * The IOCB is always the top of the chain followed by one or more
  2089. * OALs (when necessary).
  2090. */
  2091. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2092. struct net_device *ndev)
  2093. {
  2094. struct ql3_adapter *qdev = netdev_priv(ndev);
  2095. struct ql3xxx_port_registers __iomem *port_regs =
  2096. qdev->mem_map_registers;
  2097. struct ql_tx_buf_cb *tx_cb;
  2098. u32 tot_len = skb->len;
  2099. struct ob_mac_iocb_req *mac_iocb_ptr;
  2100. if (unlikely(atomic_read(&qdev->tx_count) < 2))
  2101. return NETDEV_TX_BUSY;
  2102. tx_cb = &qdev->tx_buf[qdev->req_producer_index];
  2103. tx_cb->seg_count = ql_get_seg_count(qdev,
  2104. skb_shinfo(skb)->nr_frags);
  2105. if (tx_cb->seg_count == -1) {
  2106. netdev_err(ndev, "%s: invalid segment count!\n", __func__);
  2107. return NETDEV_TX_OK;
  2108. }
  2109. mac_iocb_ptr = tx_cb->queue_entry;
  2110. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2111. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2112. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2113. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2114. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2115. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2116. tx_cb->skb = skb;
  2117. if (qdev->device_id == QL3032_DEVICE_ID &&
  2118. skb->ip_summed == CHECKSUM_PARTIAL)
  2119. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2120. if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
  2121. netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
  2122. return NETDEV_TX_BUSY;
  2123. }
  2124. wmb();
  2125. qdev->req_producer_index++;
  2126. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2127. qdev->req_producer_index = 0;
  2128. wmb();
  2129. ql_write_common_reg_l(qdev,
  2130. &port_regs->CommonRegs.reqQProducerIndex,
  2131. qdev->req_producer_index);
  2132. netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
  2133. "tx queued, slot %d, len %d\n",
  2134. qdev->req_producer_index, skb->len);
  2135. atomic_dec(&qdev->tx_count);
  2136. return NETDEV_TX_OK;
  2137. }
  2138. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2139. {
  2140. qdev->req_q_size =
  2141. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2142. qdev->req_q_virt_addr =
  2143. pci_alloc_consistent(qdev->pdev,
  2144. (size_t) qdev->req_q_size,
  2145. &qdev->req_q_phy_addr);
  2146. if ((qdev->req_q_virt_addr == NULL) ||
  2147. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2148. netdev_err(qdev->ndev, "reqQ failed\n");
  2149. return -ENOMEM;
  2150. }
  2151. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2152. qdev->rsp_q_virt_addr =
  2153. pci_alloc_consistent(qdev->pdev,
  2154. (size_t) qdev->rsp_q_size,
  2155. &qdev->rsp_q_phy_addr);
  2156. if ((qdev->rsp_q_virt_addr == NULL) ||
  2157. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2158. netdev_err(qdev->ndev, "rspQ allocation failed\n");
  2159. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2160. qdev->req_q_virt_addr,
  2161. qdev->req_q_phy_addr);
  2162. return -ENOMEM;
  2163. }
  2164. set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2165. return 0;
  2166. }
  2167. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2168. {
  2169. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
  2170. netdev_info(qdev->ndev, "Already done\n");
  2171. return;
  2172. }
  2173. pci_free_consistent(qdev->pdev,
  2174. qdev->req_q_size,
  2175. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2176. qdev->req_q_virt_addr = NULL;
  2177. pci_free_consistent(qdev->pdev,
  2178. qdev->rsp_q_size,
  2179. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2180. qdev->rsp_q_virt_addr = NULL;
  2181. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2182. }
  2183. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2184. {
  2185. /* Create Large Buffer Queue */
  2186. qdev->lrg_buf_q_size =
  2187. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2188. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2189. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2190. else
  2191. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2192. qdev->lrg_buf =
  2193. kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),
  2194. GFP_KERNEL);
  2195. if (qdev->lrg_buf == NULL) {
  2196. netdev_err(qdev->ndev, "qdev->lrg_buf alloc failed\n");
  2197. return -ENOMEM;
  2198. }
  2199. qdev->lrg_buf_q_alloc_virt_addr =
  2200. pci_alloc_consistent(qdev->pdev,
  2201. qdev->lrg_buf_q_alloc_size,
  2202. &qdev->lrg_buf_q_alloc_phy_addr);
  2203. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2204. netdev_err(qdev->ndev, "lBufQ failed\n");
  2205. return -ENOMEM;
  2206. }
  2207. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2208. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2209. /* Create Small Buffer Queue */
  2210. qdev->small_buf_q_size =
  2211. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2212. if (qdev->small_buf_q_size < PAGE_SIZE)
  2213. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2214. else
  2215. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2216. qdev->small_buf_q_alloc_virt_addr =
  2217. pci_alloc_consistent(qdev->pdev,
  2218. qdev->small_buf_q_alloc_size,
  2219. &qdev->small_buf_q_alloc_phy_addr);
  2220. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2221. netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
  2222. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2223. qdev->lrg_buf_q_alloc_virt_addr,
  2224. qdev->lrg_buf_q_alloc_phy_addr);
  2225. return -ENOMEM;
  2226. }
  2227. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2228. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2229. set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2230. return 0;
  2231. }
  2232. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2233. {
  2234. if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
  2235. netdev_info(qdev->ndev, "Already done\n");
  2236. return;
  2237. }
  2238. kfree(qdev->lrg_buf);
  2239. pci_free_consistent(qdev->pdev,
  2240. qdev->lrg_buf_q_alloc_size,
  2241. qdev->lrg_buf_q_alloc_virt_addr,
  2242. qdev->lrg_buf_q_alloc_phy_addr);
  2243. qdev->lrg_buf_q_virt_addr = NULL;
  2244. pci_free_consistent(qdev->pdev,
  2245. qdev->small_buf_q_alloc_size,
  2246. qdev->small_buf_q_alloc_virt_addr,
  2247. qdev->small_buf_q_alloc_phy_addr);
  2248. qdev->small_buf_q_virt_addr = NULL;
  2249. clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2250. }
  2251. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2252. {
  2253. int i;
  2254. struct bufq_addr_element *small_buf_q_entry;
  2255. /* Currently we allocate on one of memory and use it for smallbuffers */
  2256. qdev->small_buf_total_size =
  2257. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2258. QL_SMALL_BUFFER_SIZE);
  2259. qdev->small_buf_virt_addr =
  2260. pci_alloc_consistent(qdev->pdev,
  2261. qdev->small_buf_total_size,
  2262. &qdev->small_buf_phy_addr);
  2263. if (qdev->small_buf_virt_addr == NULL) {
  2264. netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
  2265. return -ENOMEM;
  2266. }
  2267. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2268. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2269. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2270. /* Initialize the small buffer queue. */
  2271. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2272. small_buf_q_entry->addr_high =
  2273. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2274. small_buf_q_entry->addr_low =
  2275. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2276. (i * QL_SMALL_BUFFER_SIZE));
  2277. small_buf_q_entry++;
  2278. }
  2279. qdev->small_buf_index = 0;
  2280. set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
  2281. return 0;
  2282. }
  2283. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2284. {
  2285. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
  2286. netdev_info(qdev->ndev, "Already done\n");
  2287. return;
  2288. }
  2289. if (qdev->small_buf_virt_addr != NULL) {
  2290. pci_free_consistent(qdev->pdev,
  2291. qdev->small_buf_total_size,
  2292. qdev->small_buf_virt_addr,
  2293. qdev->small_buf_phy_addr);
  2294. qdev->small_buf_virt_addr = NULL;
  2295. }
  2296. }
  2297. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2298. {
  2299. int i = 0;
  2300. struct ql_rcv_buf_cb *lrg_buf_cb;
  2301. for (i = 0; i < qdev->num_large_buffers; i++) {
  2302. lrg_buf_cb = &qdev->lrg_buf[i];
  2303. if (lrg_buf_cb->skb) {
  2304. dev_kfree_skb(lrg_buf_cb->skb);
  2305. pci_unmap_single(qdev->pdev,
  2306. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2307. dma_unmap_len(lrg_buf_cb, maplen),
  2308. PCI_DMA_FROMDEVICE);
  2309. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2310. } else {
  2311. break;
  2312. }
  2313. }
  2314. }
  2315. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2316. {
  2317. int i;
  2318. struct ql_rcv_buf_cb *lrg_buf_cb;
  2319. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2320. for (i = 0; i < qdev->num_large_buffers; i++) {
  2321. lrg_buf_cb = &qdev->lrg_buf[i];
  2322. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2323. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2324. buf_addr_ele++;
  2325. }
  2326. qdev->lrg_buf_index = 0;
  2327. qdev->lrg_buf_skb_check = 0;
  2328. }
  2329. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2330. {
  2331. int i;
  2332. struct ql_rcv_buf_cb *lrg_buf_cb;
  2333. struct sk_buff *skb;
  2334. dma_addr_t map;
  2335. int err;
  2336. for (i = 0; i < qdev->num_large_buffers; i++) {
  2337. skb = netdev_alloc_skb(qdev->ndev,
  2338. qdev->lrg_buffer_len);
  2339. if (unlikely(!skb)) {
  2340. /* Better luck next round */
  2341. netdev_err(qdev->ndev,
  2342. "large buff alloc failed for %d bytes at index %d\n",
  2343. qdev->lrg_buffer_len * 2, i);
  2344. ql_free_large_buffers(qdev);
  2345. return -ENOMEM;
  2346. } else {
  2347. lrg_buf_cb = &qdev->lrg_buf[i];
  2348. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2349. lrg_buf_cb->index = i;
  2350. lrg_buf_cb->skb = skb;
  2351. /*
  2352. * We save some space to copy the ethhdr from first
  2353. * buffer
  2354. */
  2355. skb_reserve(skb, QL_HEADER_SPACE);
  2356. map = pci_map_single(qdev->pdev,
  2357. skb->data,
  2358. qdev->lrg_buffer_len -
  2359. QL_HEADER_SPACE,
  2360. PCI_DMA_FROMDEVICE);
  2361. err = pci_dma_mapping_error(qdev->pdev, map);
  2362. if (err) {
  2363. netdev_err(qdev->ndev,
  2364. "PCI mapping failed with error: %d\n",
  2365. err);
  2366. ql_free_large_buffers(qdev);
  2367. return -ENOMEM;
  2368. }
  2369. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2370. dma_unmap_len_set(lrg_buf_cb, maplen,
  2371. qdev->lrg_buffer_len -
  2372. QL_HEADER_SPACE);
  2373. lrg_buf_cb->buf_phy_addr_low =
  2374. cpu_to_le32(LS_64BITS(map));
  2375. lrg_buf_cb->buf_phy_addr_high =
  2376. cpu_to_le32(MS_64BITS(map));
  2377. }
  2378. }
  2379. return 0;
  2380. }
  2381. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2382. {
  2383. struct ql_tx_buf_cb *tx_cb;
  2384. int i;
  2385. tx_cb = &qdev->tx_buf[0];
  2386. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2387. kfree(tx_cb->oal);
  2388. tx_cb->oal = NULL;
  2389. tx_cb++;
  2390. }
  2391. }
  2392. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2393. {
  2394. struct ql_tx_buf_cb *tx_cb;
  2395. int i;
  2396. struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
  2397. /* Create free list of transmit buffers */
  2398. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2399. tx_cb = &qdev->tx_buf[i];
  2400. tx_cb->skb = NULL;
  2401. tx_cb->queue_entry = req_q_curr;
  2402. req_q_curr++;
  2403. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2404. if (tx_cb->oal == NULL)
  2405. return -1;
  2406. }
  2407. return 0;
  2408. }
  2409. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2410. {
  2411. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2412. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2413. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2414. } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2415. /*
  2416. * Bigger buffers, so less of them.
  2417. */
  2418. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2419. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2420. } else {
  2421. netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
  2422. qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
  2423. return -ENOMEM;
  2424. }
  2425. qdev->num_large_buffers =
  2426. qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2427. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2428. qdev->max_frame_size =
  2429. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2430. /*
  2431. * First allocate a page of shared memory and use it for shadow
  2432. * locations of Network Request Queue Consumer Address Register and
  2433. * Network Completion Queue Producer Index Register
  2434. */
  2435. qdev->shadow_reg_virt_addr =
  2436. pci_alloc_consistent(qdev->pdev,
  2437. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2438. if (qdev->shadow_reg_virt_addr != NULL) {
  2439. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2440. qdev->req_consumer_index_phy_addr_high =
  2441. MS_64BITS(qdev->shadow_reg_phy_addr);
  2442. qdev->req_consumer_index_phy_addr_low =
  2443. LS_64BITS(qdev->shadow_reg_phy_addr);
  2444. qdev->prsp_producer_index =
  2445. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2446. qdev->rsp_producer_index_phy_addr_high =
  2447. qdev->req_consumer_index_phy_addr_high;
  2448. qdev->rsp_producer_index_phy_addr_low =
  2449. qdev->req_consumer_index_phy_addr_low + 8;
  2450. } else {
  2451. netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
  2452. return -ENOMEM;
  2453. }
  2454. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2455. netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
  2456. goto err_req_rsp;
  2457. }
  2458. if (ql_alloc_buffer_queues(qdev) != 0) {
  2459. netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
  2460. goto err_buffer_queues;
  2461. }
  2462. if (ql_alloc_small_buffers(qdev) != 0) {
  2463. netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
  2464. goto err_small_buffers;
  2465. }
  2466. if (ql_alloc_large_buffers(qdev) != 0) {
  2467. netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
  2468. goto err_small_buffers;
  2469. }
  2470. /* Initialize the large buffer queue. */
  2471. ql_init_large_buffers(qdev);
  2472. if (ql_create_send_free_list(qdev))
  2473. goto err_free_list;
  2474. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2475. return 0;
  2476. err_free_list:
  2477. ql_free_send_free_list(qdev);
  2478. err_small_buffers:
  2479. ql_free_buffer_queues(qdev);
  2480. err_buffer_queues:
  2481. ql_free_net_req_rsp_queues(qdev);
  2482. err_req_rsp:
  2483. pci_free_consistent(qdev->pdev,
  2484. PAGE_SIZE,
  2485. qdev->shadow_reg_virt_addr,
  2486. qdev->shadow_reg_phy_addr);
  2487. return -ENOMEM;
  2488. }
  2489. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2490. {
  2491. ql_free_send_free_list(qdev);
  2492. ql_free_large_buffers(qdev);
  2493. ql_free_small_buffers(qdev);
  2494. ql_free_buffer_queues(qdev);
  2495. ql_free_net_req_rsp_queues(qdev);
  2496. if (qdev->shadow_reg_virt_addr != NULL) {
  2497. pci_free_consistent(qdev->pdev,
  2498. PAGE_SIZE,
  2499. qdev->shadow_reg_virt_addr,
  2500. qdev->shadow_reg_phy_addr);
  2501. qdev->shadow_reg_virt_addr = NULL;
  2502. }
  2503. }
  2504. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2505. {
  2506. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2507. (void __iomem *)qdev->mem_map_registers;
  2508. if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2509. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2510. 2) << 4))
  2511. return -1;
  2512. ql_write_page2_reg(qdev,
  2513. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2514. ql_write_page2_reg(qdev,
  2515. &local_ram->maxBufletCount,
  2516. qdev->nvram_data.bufletCount);
  2517. ql_write_page2_reg(qdev,
  2518. &local_ram->freeBufletThresholdLow,
  2519. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2520. (qdev->nvram_data.tcpWindowThreshold0));
  2521. ql_write_page2_reg(qdev,
  2522. &local_ram->freeBufletThresholdHigh,
  2523. qdev->nvram_data.tcpWindowThreshold50);
  2524. ql_write_page2_reg(qdev,
  2525. &local_ram->ipHashTableBase,
  2526. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2527. qdev->nvram_data.ipHashTableBaseLo);
  2528. ql_write_page2_reg(qdev,
  2529. &local_ram->ipHashTableCount,
  2530. qdev->nvram_data.ipHashTableSize);
  2531. ql_write_page2_reg(qdev,
  2532. &local_ram->tcpHashTableBase,
  2533. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2534. qdev->nvram_data.tcpHashTableBaseLo);
  2535. ql_write_page2_reg(qdev,
  2536. &local_ram->tcpHashTableCount,
  2537. qdev->nvram_data.tcpHashTableSize);
  2538. ql_write_page2_reg(qdev,
  2539. &local_ram->ncbBase,
  2540. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2541. qdev->nvram_data.ncbTableBaseLo);
  2542. ql_write_page2_reg(qdev,
  2543. &local_ram->maxNcbCount,
  2544. qdev->nvram_data.ncbTableSize);
  2545. ql_write_page2_reg(qdev,
  2546. &local_ram->drbBase,
  2547. (qdev->nvram_data.drbTableBaseHi << 16) |
  2548. qdev->nvram_data.drbTableBaseLo);
  2549. ql_write_page2_reg(qdev,
  2550. &local_ram->maxDrbCount,
  2551. qdev->nvram_data.drbTableSize);
  2552. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2553. return 0;
  2554. }
  2555. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2556. {
  2557. u32 value;
  2558. struct ql3xxx_port_registers __iomem *port_regs =
  2559. qdev->mem_map_registers;
  2560. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  2561. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2562. (void __iomem *)port_regs;
  2563. u32 delay = 10;
  2564. int status = 0;
  2565. unsigned long hw_flags = 0;
  2566. if (ql_mii_setup(qdev))
  2567. return -1;
  2568. /* Bring out PHY out of reset */
  2569. ql_write_common_reg(qdev, spir,
  2570. (ISP_SERIAL_PORT_IF_WE |
  2571. (ISP_SERIAL_PORT_IF_WE << 16)));
  2572. /* Give the PHY time to come out of reset. */
  2573. mdelay(100);
  2574. qdev->port_link_state = LS_DOWN;
  2575. netif_carrier_off(qdev->ndev);
  2576. /* V2 chip fix for ARS-39168. */
  2577. ql_write_common_reg(qdev, spir,
  2578. (ISP_SERIAL_PORT_IF_SDE |
  2579. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2580. /* Request Queue Registers */
  2581. *((u32 *)(qdev->preq_consumer_index)) = 0;
  2582. atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
  2583. qdev->req_producer_index = 0;
  2584. ql_write_page1_reg(qdev,
  2585. &hmem_regs->reqConsumerIndexAddrHigh,
  2586. qdev->req_consumer_index_phy_addr_high);
  2587. ql_write_page1_reg(qdev,
  2588. &hmem_regs->reqConsumerIndexAddrLow,
  2589. qdev->req_consumer_index_phy_addr_low);
  2590. ql_write_page1_reg(qdev,
  2591. &hmem_regs->reqBaseAddrHigh,
  2592. MS_64BITS(qdev->req_q_phy_addr));
  2593. ql_write_page1_reg(qdev,
  2594. &hmem_regs->reqBaseAddrLow,
  2595. LS_64BITS(qdev->req_q_phy_addr));
  2596. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2597. /* Response Queue Registers */
  2598. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2599. qdev->rsp_consumer_index = 0;
  2600. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2601. ql_write_page1_reg(qdev,
  2602. &hmem_regs->rspProducerIndexAddrHigh,
  2603. qdev->rsp_producer_index_phy_addr_high);
  2604. ql_write_page1_reg(qdev,
  2605. &hmem_regs->rspProducerIndexAddrLow,
  2606. qdev->rsp_producer_index_phy_addr_low);
  2607. ql_write_page1_reg(qdev,
  2608. &hmem_regs->rspBaseAddrHigh,
  2609. MS_64BITS(qdev->rsp_q_phy_addr));
  2610. ql_write_page1_reg(qdev,
  2611. &hmem_regs->rspBaseAddrLow,
  2612. LS_64BITS(qdev->rsp_q_phy_addr));
  2613. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2614. /* Large Buffer Queue */
  2615. ql_write_page1_reg(qdev,
  2616. &hmem_regs->rxLargeQBaseAddrHigh,
  2617. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2618. ql_write_page1_reg(qdev,
  2619. &hmem_regs->rxLargeQBaseAddrLow,
  2620. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2621. ql_write_page1_reg(qdev,
  2622. &hmem_regs->rxLargeQLength,
  2623. qdev->num_lbufq_entries);
  2624. ql_write_page1_reg(qdev,
  2625. &hmem_regs->rxLargeBufferLength,
  2626. qdev->lrg_buffer_len);
  2627. /* Small Buffer Queue */
  2628. ql_write_page1_reg(qdev,
  2629. &hmem_regs->rxSmallQBaseAddrHigh,
  2630. MS_64BITS(qdev->small_buf_q_phy_addr));
  2631. ql_write_page1_reg(qdev,
  2632. &hmem_regs->rxSmallQBaseAddrLow,
  2633. LS_64BITS(qdev->small_buf_q_phy_addr));
  2634. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2635. ql_write_page1_reg(qdev,
  2636. &hmem_regs->rxSmallBufferLength,
  2637. QL_SMALL_BUFFER_SIZE);
  2638. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2639. qdev->small_buf_release_cnt = 8;
  2640. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2641. qdev->lrg_buf_release_cnt = 8;
  2642. qdev->lrg_buf_next_free =
  2643. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2644. qdev->small_buf_index = 0;
  2645. qdev->lrg_buf_index = 0;
  2646. qdev->lrg_buf_free_count = 0;
  2647. qdev->lrg_buf_free_head = NULL;
  2648. qdev->lrg_buf_free_tail = NULL;
  2649. ql_write_common_reg(qdev,
  2650. &port_regs->CommonRegs.
  2651. rxSmallQProducerIndex,
  2652. qdev->small_buf_q_producer_index);
  2653. ql_write_common_reg(qdev,
  2654. &port_regs->CommonRegs.
  2655. rxLargeQProducerIndex,
  2656. qdev->lrg_buf_q_producer_index);
  2657. /*
  2658. * Find out if the chip has already been initialized. If it has, then
  2659. * we skip some of the initialization.
  2660. */
  2661. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2662. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2663. if ((value & PORT_STATUS_IC) == 0) {
  2664. /* Chip has not been configured yet, so let it rip. */
  2665. if (ql_init_misc_registers(qdev)) {
  2666. status = -1;
  2667. goto out;
  2668. }
  2669. value = qdev->nvram_data.tcpMaxWindowSize;
  2670. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2671. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2672. if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2673. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2674. * 2) << 13)) {
  2675. status = -1;
  2676. goto out;
  2677. }
  2678. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2679. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2680. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2681. 16) | (INTERNAL_CHIP_SD |
  2682. INTERNAL_CHIP_WE)));
  2683. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2684. }
  2685. if (qdev->mac_index)
  2686. ql_write_page0_reg(qdev,
  2687. &port_regs->mac1MaxFrameLengthReg,
  2688. qdev->max_frame_size);
  2689. else
  2690. ql_write_page0_reg(qdev,
  2691. &port_regs->mac0MaxFrameLengthReg,
  2692. qdev->max_frame_size);
  2693. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2694. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2695. 2) << 7)) {
  2696. status = -1;
  2697. goto out;
  2698. }
  2699. PHY_Setup(qdev);
  2700. ql_init_scan_mode(qdev);
  2701. ql_get_phy_owner(qdev);
  2702. /* Load the MAC Configuration */
  2703. /* Program lower 32 bits of the MAC address */
  2704. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2705. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2706. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2707. ((qdev->ndev->dev_addr[2] << 24)
  2708. | (qdev->ndev->dev_addr[3] << 16)
  2709. | (qdev->ndev->dev_addr[4] << 8)
  2710. | qdev->ndev->dev_addr[5]));
  2711. /* Program top 16 bits of the MAC address */
  2712. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2713. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2714. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2715. ((qdev->ndev->dev_addr[0] << 8)
  2716. | qdev->ndev->dev_addr[1]));
  2717. /* Enable Primary MAC */
  2718. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2719. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2720. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2721. /* Clear Primary and Secondary IP addresses */
  2722. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2723. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2724. (qdev->mac_index << 2)));
  2725. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2726. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2727. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2728. ((qdev->mac_index << 2) + 1)));
  2729. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2730. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2731. /* Indicate Configuration Complete */
  2732. ql_write_page0_reg(qdev,
  2733. &port_regs->portControl,
  2734. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2735. do {
  2736. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2737. if (value & PORT_STATUS_IC)
  2738. break;
  2739. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2740. msleep(500);
  2741. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2742. } while (--delay);
  2743. if (delay == 0) {
  2744. netdev_err(qdev->ndev, "Hw Initialization timeout\n");
  2745. status = -1;
  2746. goto out;
  2747. }
  2748. /* Enable Ethernet Function */
  2749. if (qdev->device_id == QL3032_DEVICE_ID) {
  2750. value =
  2751. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2752. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2753. QL3032_PORT_CONTROL_ET);
  2754. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2755. ((value << 16) | value));
  2756. } else {
  2757. value =
  2758. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2759. PORT_CONTROL_HH);
  2760. ql_write_page0_reg(qdev, &port_regs->portControl,
  2761. ((value << 16) | value));
  2762. }
  2763. out:
  2764. return status;
  2765. }
  2766. /*
  2767. * Caller holds hw_lock.
  2768. */
  2769. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2770. {
  2771. struct ql3xxx_port_registers __iomem *port_regs =
  2772. qdev->mem_map_registers;
  2773. int status = 0;
  2774. u16 value;
  2775. int max_wait_time;
  2776. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2777. clear_bit(QL_RESET_DONE, &qdev->flags);
  2778. /*
  2779. * Issue soft reset to chip.
  2780. */
  2781. netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
  2782. ql_write_common_reg(qdev,
  2783. &port_regs->CommonRegs.ispControlStatus,
  2784. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2785. /* Wait 3 seconds for reset to complete. */
  2786. netdev_printk(KERN_DEBUG, qdev->ndev,
  2787. "Wait 10 milliseconds for reset to complete\n");
  2788. /* Wait until the firmware tells us the Soft Reset is done */
  2789. max_wait_time = 5;
  2790. do {
  2791. value =
  2792. ql_read_common_reg(qdev,
  2793. &port_regs->CommonRegs.ispControlStatus);
  2794. if ((value & ISP_CONTROL_SR) == 0)
  2795. break;
  2796. ssleep(1);
  2797. } while ((--max_wait_time));
  2798. /*
  2799. * Also, make sure that the Network Reset Interrupt bit has been
  2800. * cleared after the soft reset has taken place.
  2801. */
  2802. value =
  2803. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2804. if (value & ISP_CONTROL_RI) {
  2805. netdev_printk(KERN_DEBUG, qdev->ndev,
  2806. "clearing RI after reset\n");
  2807. ql_write_common_reg(qdev,
  2808. &port_regs->CommonRegs.
  2809. ispControlStatus,
  2810. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2811. }
  2812. if (max_wait_time == 0) {
  2813. /* Issue Force Soft Reset */
  2814. ql_write_common_reg(qdev,
  2815. &port_regs->CommonRegs.
  2816. ispControlStatus,
  2817. ((ISP_CONTROL_FSR << 16) |
  2818. ISP_CONTROL_FSR));
  2819. /*
  2820. * Wait until the firmware tells us the Force Soft Reset is
  2821. * done
  2822. */
  2823. max_wait_time = 5;
  2824. do {
  2825. value = ql_read_common_reg(qdev,
  2826. &port_regs->CommonRegs.
  2827. ispControlStatus);
  2828. if ((value & ISP_CONTROL_FSR) == 0)
  2829. break;
  2830. ssleep(1);
  2831. } while ((--max_wait_time));
  2832. }
  2833. if (max_wait_time == 0)
  2834. status = 1;
  2835. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2836. set_bit(QL_RESET_DONE, &qdev->flags);
  2837. return status;
  2838. }
  2839. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2840. {
  2841. struct ql3xxx_port_registers __iomem *port_regs =
  2842. qdev->mem_map_registers;
  2843. u32 value, port_status;
  2844. u8 func_number;
  2845. /* Get the function number */
  2846. value =
  2847. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2848. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2849. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2850. switch (value & ISP_CONTROL_FN_MASK) {
  2851. case ISP_CONTROL_FN0_NET:
  2852. qdev->mac_index = 0;
  2853. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2854. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2855. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2856. if (port_status & PORT_STATUS_SM0)
  2857. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2858. else
  2859. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2860. break;
  2861. case ISP_CONTROL_FN1_NET:
  2862. qdev->mac_index = 1;
  2863. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2864. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2865. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2866. if (port_status & PORT_STATUS_SM1)
  2867. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2868. else
  2869. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2870. break;
  2871. case ISP_CONTROL_FN0_SCSI:
  2872. case ISP_CONTROL_FN1_SCSI:
  2873. default:
  2874. netdev_printk(KERN_DEBUG, qdev->ndev,
  2875. "Invalid function number, ispControlStatus = 0x%x\n",
  2876. value);
  2877. break;
  2878. }
  2879. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  2880. }
  2881. static void ql_display_dev_info(struct net_device *ndev)
  2882. {
  2883. struct ql3_adapter *qdev = netdev_priv(ndev);
  2884. struct pci_dev *pdev = qdev->pdev;
  2885. netdev_info(ndev,
  2886. "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
  2887. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2888. qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
  2889. qdev->pci_slot);
  2890. netdev_info(ndev, "%s Interface\n",
  2891. test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
  2892. /*
  2893. * Print PCI bus width/type.
  2894. */
  2895. netdev_info(ndev, "Bus interface is %s %s\n",
  2896. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2897. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2898. netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
  2899. qdev->mem_map_registers);
  2900. netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
  2901. netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
  2902. }
  2903. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2904. {
  2905. struct net_device *ndev = qdev->ndev;
  2906. int retval = 0;
  2907. netif_stop_queue(ndev);
  2908. netif_carrier_off(ndev);
  2909. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2910. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2911. ql_disable_interrupts(qdev);
  2912. free_irq(qdev->pdev->irq, ndev);
  2913. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2914. netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
  2915. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2916. pci_disable_msi(qdev->pdev);
  2917. }
  2918. del_timer_sync(&qdev->adapter_timer);
  2919. napi_disable(&qdev->napi);
  2920. if (do_reset) {
  2921. int soft_reset;
  2922. unsigned long hw_flags;
  2923. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2924. if (ql_wait_for_drvr_lock(qdev)) {
  2925. soft_reset = ql_adapter_reset(qdev);
  2926. if (soft_reset) {
  2927. netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
  2928. qdev->index);
  2929. }
  2930. netdev_err(ndev,
  2931. "Releasing driver lock via chip reset\n");
  2932. } else {
  2933. netdev_err(ndev,
  2934. "Could not acquire driver lock to do reset!\n");
  2935. retval = -1;
  2936. }
  2937. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2938. }
  2939. ql_free_mem_resources(qdev);
  2940. return retval;
  2941. }
  2942. static int ql_adapter_up(struct ql3_adapter *qdev)
  2943. {
  2944. struct net_device *ndev = qdev->ndev;
  2945. int err;
  2946. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  2947. unsigned long hw_flags;
  2948. if (ql_alloc_mem_resources(qdev)) {
  2949. netdev_err(ndev, "Unable to allocate buffers\n");
  2950. return -ENOMEM;
  2951. }
  2952. if (qdev->msi) {
  2953. if (pci_enable_msi(qdev->pdev)) {
  2954. netdev_err(ndev,
  2955. "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
  2956. qdev->msi = 0;
  2957. } else {
  2958. netdev_info(ndev, "MSI Enabled...\n");
  2959. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2960. irq_flags &= ~IRQF_SHARED;
  2961. }
  2962. }
  2963. err = request_irq(qdev->pdev->irq, ql3xxx_isr,
  2964. irq_flags, ndev->name, ndev);
  2965. if (err) {
  2966. netdev_err(ndev,
  2967. "Failed to reserve interrupt %d - already in use\n",
  2968. qdev->pdev->irq);
  2969. goto err_irq;
  2970. }
  2971. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2972. err = ql_wait_for_drvr_lock(qdev);
  2973. if (err) {
  2974. err = ql_adapter_initialize(qdev);
  2975. if (err) {
  2976. netdev_err(ndev, "Unable to initialize adapter\n");
  2977. goto err_init;
  2978. }
  2979. netdev_err(ndev, "Releasing driver lock\n");
  2980. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2981. } else {
  2982. netdev_err(ndev, "Could not acquire driver lock\n");
  2983. goto err_lock;
  2984. }
  2985. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2986. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2987. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2988. napi_enable(&qdev->napi);
  2989. ql_enable_interrupts(qdev);
  2990. return 0;
  2991. err_init:
  2992. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2993. err_lock:
  2994. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2995. free_irq(qdev->pdev->irq, ndev);
  2996. err_irq:
  2997. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2998. netdev_info(ndev, "calling pci_disable_msi()\n");
  2999. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  3000. pci_disable_msi(qdev->pdev);
  3001. }
  3002. return err;
  3003. }
  3004. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3005. {
  3006. if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
  3007. netdev_err(qdev->ndev,
  3008. "Driver up/down cycle failed, closing device\n");
  3009. rtnl_lock();
  3010. dev_close(qdev->ndev);
  3011. rtnl_unlock();
  3012. return -1;
  3013. }
  3014. return 0;
  3015. }
  3016. static int ql3xxx_close(struct net_device *ndev)
  3017. {
  3018. struct ql3_adapter *qdev = netdev_priv(ndev);
  3019. /*
  3020. * Wait for device to recover from a reset.
  3021. * (Rarely happens, but possible.)
  3022. */
  3023. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3024. msleep(50);
  3025. ql_adapter_down(qdev, QL_DO_RESET);
  3026. return 0;
  3027. }
  3028. static int ql3xxx_open(struct net_device *ndev)
  3029. {
  3030. struct ql3_adapter *qdev = netdev_priv(ndev);
  3031. return ql_adapter_up(qdev);
  3032. }
  3033. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3034. {
  3035. struct ql3_adapter *qdev = netdev_priv(ndev);
  3036. struct ql3xxx_port_registers __iomem *port_regs =
  3037. qdev->mem_map_registers;
  3038. struct sockaddr *addr = p;
  3039. unsigned long hw_flags;
  3040. if (netif_running(ndev))
  3041. return -EBUSY;
  3042. if (!is_valid_ether_addr(addr->sa_data))
  3043. return -EADDRNOTAVAIL;
  3044. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3045. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3046. /* Program lower 32 bits of the MAC address */
  3047. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3048. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3049. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3050. ((ndev->dev_addr[2] << 24) | (ndev->
  3051. dev_addr[3] << 16) |
  3052. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3053. /* Program top 16 bits of the MAC address */
  3054. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3055. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3056. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3057. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3058. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3059. return 0;
  3060. }
  3061. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3062. {
  3063. struct ql3_adapter *qdev = netdev_priv(ndev);
  3064. netdev_err(ndev, "Resetting...\n");
  3065. /*
  3066. * Stop the queues, we've got a problem.
  3067. */
  3068. netif_stop_queue(ndev);
  3069. /*
  3070. * Wake up the worker to process this event.
  3071. */
  3072. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3073. }
  3074. static void ql_reset_work(struct work_struct *work)
  3075. {
  3076. struct ql3_adapter *qdev =
  3077. container_of(work, struct ql3_adapter, reset_work.work);
  3078. struct net_device *ndev = qdev->ndev;
  3079. u32 value;
  3080. struct ql_tx_buf_cb *tx_cb;
  3081. int max_wait_time, i;
  3082. struct ql3xxx_port_registers __iomem *port_regs =
  3083. qdev->mem_map_registers;
  3084. unsigned long hw_flags;
  3085. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
  3086. clear_bit(QL_LINK_MASTER, &qdev->flags);
  3087. /*
  3088. * Loop through the active list and return the skb.
  3089. */
  3090. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3091. int j;
  3092. tx_cb = &qdev->tx_buf[i];
  3093. if (tx_cb->skb) {
  3094. netdev_printk(KERN_DEBUG, ndev,
  3095. "Freeing lost SKB\n");
  3096. pci_unmap_single(qdev->pdev,
  3097. dma_unmap_addr(&tx_cb->map[0],
  3098. mapaddr),
  3099. dma_unmap_len(&tx_cb->map[0], maplen),
  3100. PCI_DMA_TODEVICE);
  3101. for (j = 1; j < tx_cb->seg_count; j++) {
  3102. pci_unmap_page(qdev->pdev,
  3103. dma_unmap_addr(&tx_cb->map[j],
  3104. mapaddr),
  3105. dma_unmap_len(&tx_cb->map[j],
  3106. maplen),
  3107. PCI_DMA_TODEVICE);
  3108. }
  3109. dev_kfree_skb(tx_cb->skb);
  3110. tx_cb->skb = NULL;
  3111. }
  3112. }
  3113. netdev_err(ndev, "Clearing NRI after reset\n");
  3114. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3115. ql_write_common_reg(qdev,
  3116. &port_regs->CommonRegs.
  3117. ispControlStatus,
  3118. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3119. /*
  3120. * Wait the for Soft Reset to Complete.
  3121. */
  3122. max_wait_time = 10;
  3123. do {
  3124. value = ql_read_common_reg(qdev,
  3125. &port_regs->CommonRegs.
  3126. ispControlStatus);
  3127. if ((value & ISP_CONTROL_SR) == 0) {
  3128. netdev_printk(KERN_DEBUG, ndev,
  3129. "reset completed\n");
  3130. break;
  3131. }
  3132. if (value & ISP_CONTROL_RI) {
  3133. netdev_printk(KERN_DEBUG, ndev,
  3134. "clearing NRI after reset\n");
  3135. ql_write_common_reg(qdev,
  3136. &port_regs->
  3137. CommonRegs.
  3138. ispControlStatus,
  3139. ((ISP_CONTROL_RI <<
  3140. 16) | ISP_CONTROL_RI));
  3141. }
  3142. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3143. ssleep(1);
  3144. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3145. } while (--max_wait_time);
  3146. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3147. if (value & ISP_CONTROL_SR) {
  3148. /*
  3149. * Set the reset flags and clear the board again.
  3150. * Nothing else to do...
  3151. */
  3152. netdev_err(ndev,
  3153. "Timed out waiting for reset to complete\n");
  3154. netdev_err(ndev, "Do a reset\n");
  3155. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3156. clear_bit(QL_RESET_START, &qdev->flags);
  3157. ql_cycle_adapter(qdev, QL_DO_RESET);
  3158. return;
  3159. }
  3160. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3161. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3162. clear_bit(QL_RESET_START, &qdev->flags);
  3163. ql_cycle_adapter(qdev, QL_NO_RESET);
  3164. }
  3165. }
  3166. static void ql_tx_timeout_work(struct work_struct *work)
  3167. {
  3168. struct ql3_adapter *qdev =
  3169. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3170. ql_cycle_adapter(qdev, QL_DO_RESET);
  3171. }
  3172. static void ql_get_board_info(struct ql3_adapter *qdev)
  3173. {
  3174. struct ql3xxx_port_registers __iomem *port_regs =
  3175. qdev->mem_map_registers;
  3176. u32 value;
  3177. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3178. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3179. if (value & PORT_STATUS_64)
  3180. qdev->pci_width = 64;
  3181. else
  3182. qdev->pci_width = 32;
  3183. if (value & PORT_STATUS_X)
  3184. qdev->pci_x = 1;
  3185. else
  3186. qdev->pci_x = 0;
  3187. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3188. }
  3189. static void ql3xxx_timer(unsigned long ptr)
  3190. {
  3191. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3192. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3193. }
  3194. static const struct net_device_ops ql3xxx_netdev_ops = {
  3195. .ndo_open = ql3xxx_open,
  3196. .ndo_start_xmit = ql3xxx_send,
  3197. .ndo_stop = ql3xxx_close,
  3198. .ndo_set_multicast_list = NULL, /* not allowed on NIC side */
  3199. .ndo_change_mtu = eth_change_mtu,
  3200. .ndo_validate_addr = eth_validate_addr,
  3201. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3202. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3203. };
  3204. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3205. const struct pci_device_id *pci_entry)
  3206. {
  3207. struct net_device *ndev = NULL;
  3208. struct ql3_adapter *qdev = NULL;
  3209. static int cards_found;
  3210. int uninitialized_var(pci_using_dac), err;
  3211. err = pci_enable_device(pdev);
  3212. if (err) {
  3213. pr_err("%s cannot enable PCI device\n", pci_name(pdev));
  3214. goto err_out;
  3215. }
  3216. err = pci_request_regions(pdev, DRV_NAME);
  3217. if (err) {
  3218. pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
  3219. goto err_out_disable_pdev;
  3220. }
  3221. pci_set_master(pdev);
  3222. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3223. pci_using_dac = 1;
  3224. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3225. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3226. pci_using_dac = 0;
  3227. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3228. }
  3229. if (err) {
  3230. pr_err("%s no usable DMA configuration\n", pci_name(pdev));
  3231. goto err_out_free_regions;
  3232. }
  3233. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3234. if (!ndev) {
  3235. pr_err("%s could not alloc etherdev\n", pci_name(pdev));
  3236. err = -ENOMEM;
  3237. goto err_out_free_regions;
  3238. }
  3239. SET_NETDEV_DEV(ndev, &pdev->dev);
  3240. pci_set_drvdata(pdev, ndev);
  3241. qdev = netdev_priv(ndev);
  3242. qdev->index = cards_found;
  3243. qdev->ndev = ndev;
  3244. qdev->pdev = pdev;
  3245. qdev->device_id = pci_entry->device;
  3246. qdev->port_link_state = LS_DOWN;
  3247. if (msi)
  3248. qdev->msi = 1;
  3249. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3250. if (pci_using_dac)
  3251. ndev->features |= NETIF_F_HIGHDMA;
  3252. if (qdev->device_id == QL3032_DEVICE_ID)
  3253. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3254. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3255. if (!qdev->mem_map_registers) {
  3256. pr_err("%s: cannot map device registers\n", pci_name(pdev));
  3257. err = -EIO;
  3258. goto err_out_free_ndev;
  3259. }
  3260. spin_lock_init(&qdev->adapter_lock);
  3261. spin_lock_init(&qdev->hw_lock);
  3262. /* Set driver entry points */
  3263. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3264. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3265. ndev->watchdog_timeo = 5 * HZ;
  3266. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3267. ndev->irq = pdev->irq;
  3268. /* make sure the EEPROM is good */
  3269. if (ql_get_nvram_params(qdev)) {
  3270. pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
  3271. __func__, qdev->index);
  3272. err = -EIO;
  3273. goto err_out_iounmap;
  3274. }
  3275. ql_set_mac_info(qdev);
  3276. /* Validate and set parameters */
  3277. if (qdev->mac_index) {
  3278. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3279. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3280. } else {
  3281. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3282. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3283. }
  3284. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3285. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3286. /* Record PCI bus information. */
  3287. ql_get_board_info(qdev);
  3288. /*
  3289. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3290. * jumbo frames.
  3291. */
  3292. if (qdev->pci_x)
  3293. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3294. err = register_netdev(ndev);
  3295. if (err) {
  3296. pr_err("%s: cannot register net device\n", pci_name(pdev));
  3297. goto err_out_iounmap;
  3298. }
  3299. /* we're going to reset, so assume we have no link for now */
  3300. netif_carrier_off(ndev);
  3301. netif_stop_queue(ndev);
  3302. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3303. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3304. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3305. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3306. init_timer(&qdev->adapter_timer);
  3307. qdev->adapter_timer.function = ql3xxx_timer;
  3308. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3309. qdev->adapter_timer.data = (unsigned long)qdev;
  3310. if (!cards_found) {
  3311. pr_alert("%s\n", DRV_STRING);
  3312. pr_alert("Driver name: %s, Version: %s\n",
  3313. DRV_NAME, DRV_VERSION);
  3314. }
  3315. ql_display_dev_info(ndev);
  3316. cards_found++;
  3317. return 0;
  3318. err_out_iounmap:
  3319. iounmap(qdev->mem_map_registers);
  3320. err_out_free_ndev:
  3321. free_netdev(ndev);
  3322. err_out_free_regions:
  3323. pci_release_regions(pdev);
  3324. err_out_disable_pdev:
  3325. pci_disable_device(pdev);
  3326. pci_set_drvdata(pdev, NULL);
  3327. err_out:
  3328. return err;
  3329. }
  3330. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3331. {
  3332. struct net_device *ndev = pci_get_drvdata(pdev);
  3333. struct ql3_adapter *qdev = netdev_priv(ndev);
  3334. unregister_netdev(ndev);
  3335. ql_disable_interrupts(qdev);
  3336. if (qdev->workqueue) {
  3337. cancel_delayed_work(&qdev->reset_work);
  3338. cancel_delayed_work(&qdev->tx_timeout_work);
  3339. destroy_workqueue(qdev->workqueue);
  3340. qdev->workqueue = NULL;
  3341. }
  3342. iounmap(qdev->mem_map_registers);
  3343. pci_release_regions(pdev);
  3344. pci_set_drvdata(pdev, NULL);
  3345. free_netdev(ndev);
  3346. }
  3347. static struct pci_driver ql3xxx_driver = {
  3348. .name = DRV_NAME,
  3349. .id_table = ql3xxx_pci_tbl,
  3350. .probe = ql3xxx_probe,
  3351. .remove = __devexit_p(ql3xxx_remove),
  3352. };
  3353. static int __init ql3xxx_init_module(void)
  3354. {
  3355. return pci_register_driver(&ql3xxx_driver);
  3356. }
  3357. static void __exit ql3xxx_exit(void)
  3358. {
  3359. pci_unregister_driver(&ql3xxx_driver);
  3360. }
  3361. module_init(ql3xxx_init_module);
  3362. module_exit(ql3xxx_exit);