niu.c 231 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/pci.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/netdevice.h>
  11. #include <linux/ethtool.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/delay.h>
  15. #include <linux/bitops.h>
  16. #include <linux/mii.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/if_vlan.h>
  19. #include <linux/ip.h>
  20. #include <linux/in.h>
  21. #include <linux/ipv6.h>
  22. #include <linux/log2.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/crc32.h>
  25. #include <linux/list.h>
  26. #include <linux/slab.h>
  27. #include <linux/io.h>
  28. #include <linux/of_device.h>
  29. #include "niu.h"
  30. #define DRV_MODULE_NAME "niu"
  31. #define DRV_MODULE_VERSION "1.1"
  32. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef readq
  40. static u64 readq(void __iomem *reg)
  41. {
  42. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  43. }
  44. static void writeq(u64 val, void __iomem *reg)
  45. {
  46. writel(val & 0xffffffff, reg);
  47. writel(val >> 32, reg + 0x4UL);
  48. }
  49. #endif
  50. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  51. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  52. {}
  53. };
  54. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  55. #define NIU_TX_TIMEOUT (5 * HZ)
  56. #define nr64(reg) readq(np->regs + (reg))
  57. #define nw64(reg, val) writeq((val), np->regs + (reg))
  58. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  59. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  60. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  61. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  62. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  63. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  64. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  65. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  66. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  67. static int niu_debug;
  68. static int debug = -1;
  69. module_param(debug, int, 0);
  70. MODULE_PARM_DESC(debug, "NIU debug level");
  71. #define niu_lock_parent(np, flags) \
  72. spin_lock_irqsave(&np->parent->lock, flags)
  73. #define niu_unlock_parent(np, flags) \
  74. spin_unlock_irqrestore(&np->parent->lock, flags)
  75. static int serdes_init_10g_serdes(struct niu *np);
  76. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  77. u64 bits, int limit, int delay)
  78. {
  79. while (--limit >= 0) {
  80. u64 val = nr64_mac(reg);
  81. if (!(val & bits))
  82. break;
  83. udelay(delay);
  84. }
  85. if (limit < 0)
  86. return -ENODEV;
  87. return 0;
  88. }
  89. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  90. u64 bits, int limit, int delay,
  91. const char *reg_name)
  92. {
  93. int err;
  94. nw64_mac(reg, bits);
  95. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  96. if (err)
  97. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  98. (unsigned long long)bits, reg_name,
  99. (unsigned long long)nr64_mac(reg));
  100. return err;
  101. }
  102. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  103. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  104. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  105. })
  106. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  107. u64 bits, int limit, int delay)
  108. {
  109. while (--limit >= 0) {
  110. u64 val = nr64_ipp(reg);
  111. if (!(val & bits))
  112. break;
  113. udelay(delay);
  114. }
  115. if (limit < 0)
  116. return -ENODEV;
  117. return 0;
  118. }
  119. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  120. u64 bits, int limit, int delay,
  121. const char *reg_name)
  122. {
  123. int err;
  124. u64 val;
  125. val = nr64_ipp(reg);
  126. val |= bits;
  127. nw64_ipp(reg, val);
  128. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  129. if (err)
  130. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  131. (unsigned long long)bits, reg_name,
  132. (unsigned long long)nr64_ipp(reg));
  133. return err;
  134. }
  135. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  136. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  137. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  138. })
  139. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  140. u64 bits, int limit, int delay)
  141. {
  142. while (--limit >= 0) {
  143. u64 val = nr64(reg);
  144. if (!(val & bits))
  145. break;
  146. udelay(delay);
  147. }
  148. if (limit < 0)
  149. return -ENODEV;
  150. return 0;
  151. }
  152. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  155. })
  156. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay,
  158. const char *reg_name)
  159. {
  160. int err;
  161. nw64(reg, bits);
  162. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  163. if (err)
  164. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  165. (unsigned long long)bits, reg_name,
  166. (unsigned long long)nr64(reg));
  167. return err;
  168. }
  169. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  172. })
  173. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  174. {
  175. u64 val = (u64) lp->timer;
  176. if (on)
  177. val |= LDG_IMGMT_ARM;
  178. nw64(LDG_IMGMT(lp->ldg_num), val);
  179. }
  180. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  181. {
  182. unsigned long mask_reg, bits;
  183. u64 val;
  184. if (ldn < 0 || ldn > LDN_MAX)
  185. return -EINVAL;
  186. if (ldn < 64) {
  187. mask_reg = LD_IM0(ldn);
  188. bits = LD_IM0_MASK;
  189. } else {
  190. mask_reg = LD_IM1(ldn - 64);
  191. bits = LD_IM1_MASK;
  192. }
  193. val = nr64(mask_reg);
  194. if (on)
  195. val &= ~bits;
  196. else
  197. val |= bits;
  198. nw64(mask_reg, val);
  199. return 0;
  200. }
  201. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  202. {
  203. struct niu_parent *parent = np->parent;
  204. int i;
  205. for (i = 0; i <= LDN_MAX; i++) {
  206. int err;
  207. if (parent->ldg_map[i] != lp->ldg_num)
  208. continue;
  209. err = niu_ldn_irq_enable(np, i, on);
  210. if (err)
  211. return err;
  212. }
  213. return 0;
  214. }
  215. static int niu_enable_interrupts(struct niu *np, int on)
  216. {
  217. int i;
  218. for (i = 0; i < np->num_ldg; i++) {
  219. struct niu_ldg *lp = &np->ldg[i];
  220. int err;
  221. err = niu_enable_ldn_in_ldg(np, lp, on);
  222. if (err)
  223. return err;
  224. }
  225. for (i = 0; i < np->num_ldg; i++)
  226. niu_ldg_rearm(np, &np->ldg[i], on);
  227. return 0;
  228. }
  229. static u32 phy_encode(u32 type, int port)
  230. {
  231. return type << (port * 2);
  232. }
  233. static u32 phy_decode(u32 val, int port)
  234. {
  235. return (val >> (port * 2)) & PORT_TYPE_MASK;
  236. }
  237. static int mdio_wait(struct niu *np)
  238. {
  239. int limit = 1000;
  240. u64 val;
  241. while (--limit > 0) {
  242. val = nr64(MIF_FRAME_OUTPUT);
  243. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  244. return val & MIF_FRAME_OUTPUT_DATA;
  245. udelay(10);
  246. }
  247. return -ENODEV;
  248. }
  249. static int mdio_read(struct niu *np, int port, int dev, int reg)
  250. {
  251. int err;
  252. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  253. err = mdio_wait(np);
  254. if (err < 0)
  255. return err;
  256. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  257. return mdio_wait(np);
  258. }
  259. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  260. {
  261. int err;
  262. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  263. err = mdio_wait(np);
  264. if (err < 0)
  265. return err;
  266. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  267. err = mdio_wait(np);
  268. if (err < 0)
  269. return err;
  270. return 0;
  271. }
  272. static int mii_read(struct niu *np, int port, int reg)
  273. {
  274. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  275. return mdio_wait(np);
  276. }
  277. static int mii_write(struct niu *np, int port, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. return 0;
  285. }
  286. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  287. {
  288. int err;
  289. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  290. ESR2_TI_PLL_TX_CFG_L(channel),
  291. val & 0xffff);
  292. if (!err)
  293. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  294. ESR2_TI_PLL_TX_CFG_H(channel),
  295. val >> 16);
  296. return err;
  297. }
  298. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  299. {
  300. int err;
  301. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  302. ESR2_TI_PLL_RX_CFG_L(channel),
  303. val & 0xffff);
  304. if (!err)
  305. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  306. ESR2_TI_PLL_RX_CFG_H(channel),
  307. val >> 16);
  308. return err;
  309. }
  310. /* Mode is always 10G fiber. */
  311. static int serdes_init_niu_10g_fiber(struct niu *np)
  312. {
  313. struct niu_link_config *lp = &np->link_config;
  314. u32 tx_cfg, rx_cfg;
  315. unsigned long i;
  316. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  317. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  318. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  319. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  320. if (lp->loopback_mode == LOOPBACK_PHY) {
  321. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  322. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  323. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  324. tx_cfg |= PLL_TX_CFG_ENTEST;
  325. rx_cfg |= PLL_RX_CFG_ENTEST;
  326. }
  327. /* Initialize all 4 lanes of the SERDES. */
  328. for (i = 0; i < 4; i++) {
  329. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  330. if (err)
  331. return err;
  332. }
  333. for (i = 0; i < 4; i++) {
  334. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  335. if (err)
  336. return err;
  337. }
  338. return 0;
  339. }
  340. static int serdes_init_niu_1g_serdes(struct niu *np)
  341. {
  342. struct niu_link_config *lp = &np->link_config;
  343. u16 pll_cfg, pll_sts;
  344. int max_retry = 100;
  345. u64 uninitialized_var(sig), mask, val;
  346. u32 tx_cfg, rx_cfg;
  347. unsigned long i;
  348. int err;
  349. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  350. PLL_TX_CFG_RATE_HALF);
  351. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  352. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  353. PLL_RX_CFG_RATE_HALF);
  354. if (np->port == 0)
  355. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  356. if (lp->loopback_mode == LOOPBACK_PHY) {
  357. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  358. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  359. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  360. tx_cfg |= PLL_TX_CFG_ENTEST;
  361. rx_cfg |= PLL_RX_CFG_ENTEST;
  362. }
  363. /* Initialize PLL for 1G */
  364. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  365. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  366. ESR2_TI_PLL_CFG_L, pll_cfg);
  367. if (err) {
  368. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  369. np->port, __func__);
  370. return err;
  371. }
  372. pll_sts = PLL_CFG_ENPLL;
  373. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  374. ESR2_TI_PLL_STS_L, pll_sts);
  375. if (err) {
  376. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  377. np->port, __func__);
  378. return err;
  379. }
  380. udelay(200);
  381. /* Initialize all 4 lanes of the SERDES. */
  382. for (i = 0; i < 4; i++) {
  383. err = esr2_set_tx_cfg(np, i, tx_cfg);
  384. if (err)
  385. return err;
  386. }
  387. for (i = 0; i < 4; i++) {
  388. err = esr2_set_rx_cfg(np, i, rx_cfg);
  389. if (err)
  390. return err;
  391. }
  392. switch (np->port) {
  393. case 0:
  394. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  395. mask = val;
  396. break;
  397. case 1:
  398. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  399. mask = val;
  400. break;
  401. default:
  402. return -EINVAL;
  403. }
  404. while (max_retry--) {
  405. sig = nr64(ESR_INT_SIGNALS);
  406. if ((sig & mask) == val)
  407. break;
  408. mdelay(500);
  409. }
  410. if ((sig & mask) != val) {
  411. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  412. np->port, (int)(sig & mask), (int)val);
  413. return -ENODEV;
  414. }
  415. return 0;
  416. }
  417. static int serdes_init_niu_10g_serdes(struct niu *np)
  418. {
  419. struct niu_link_config *lp = &np->link_config;
  420. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  421. int max_retry = 100;
  422. u64 uninitialized_var(sig), mask, val;
  423. unsigned long i;
  424. int err;
  425. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  426. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  427. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  428. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  429. if (lp->loopback_mode == LOOPBACK_PHY) {
  430. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  431. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  432. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  433. tx_cfg |= PLL_TX_CFG_ENTEST;
  434. rx_cfg |= PLL_RX_CFG_ENTEST;
  435. }
  436. /* Initialize PLL for 10G */
  437. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  438. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  439. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  440. if (err) {
  441. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  442. np->port, __func__);
  443. return err;
  444. }
  445. pll_sts = PLL_CFG_ENPLL;
  446. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  447. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  448. if (err) {
  449. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  450. np->port, __func__);
  451. return err;
  452. }
  453. udelay(200);
  454. /* Initialize all 4 lanes of the SERDES. */
  455. for (i = 0; i < 4; i++) {
  456. err = esr2_set_tx_cfg(np, i, tx_cfg);
  457. if (err)
  458. return err;
  459. }
  460. for (i = 0; i < 4; i++) {
  461. err = esr2_set_rx_cfg(np, i, rx_cfg);
  462. if (err)
  463. return err;
  464. }
  465. /* check if serdes is ready */
  466. switch (np->port) {
  467. case 0:
  468. mask = ESR_INT_SIGNALS_P0_BITS;
  469. val = (ESR_INT_SRDY0_P0 |
  470. ESR_INT_DET0_P0 |
  471. ESR_INT_XSRDY_P0 |
  472. ESR_INT_XDP_P0_CH3 |
  473. ESR_INT_XDP_P0_CH2 |
  474. ESR_INT_XDP_P0_CH1 |
  475. ESR_INT_XDP_P0_CH0);
  476. break;
  477. case 1:
  478. mask = ESR_INT_SIGNALS_P1_BITS;
  479. val = (ESR_INT_SRDY0_P1 |
  480. ESR_INT_DET0_P1 |
  481. ESR_INT_XSRDY_P1 |
  482. ESR_INT_XDP_P1_CH3 |
  483. ESR_INT_XDP_P1_CH2 |
  484. ESR_INT_XDP_P1_CH1 |
  485. ESR_INT_XDP_P1_CH0);
  486. break;
  487. default:
  488. return -EINVAL;
  489. }
  490. while (max_retry--) {
  491. sig = nr64(ESR_INT_SIGNALS);
  492. if ((sig & mask) == val)
  493. break;
  494. mdelay(500);
  495. }
  496. if ((sig & mask) != val) {
  497. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  498. np->port, (int)(sig & mask), (int)val);
  499. /* 10G failed, try initializing at 1G */
  500. err = serdes_init_niu_1g_serdes(np);
  501. if (!err) {
  502. np->flags &= ~NIU_FLAGS_10G;
  503. np->mac_xcvr = MAC_XCVR_PCS;
  504. } else {
  505. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  506. np->port);
  507. return -ENODEV;
  508. }
  509. }
  510. return 0;
  511. }
  512. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  513. {
  514. int err;
  515. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  516. if (err >= 0) {
  517. *val = (err & 0xffff);
  518. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  519. ESR_RXTX_CTRL_H(chan));
  520. if (err >= 0)
  521. *val |= ((err & 0xffff) << 16);
  522. err = 0;
  523. }
  524. return err;
  525. }
  526. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  527. {
  528. int err;
  529. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  530. ESR_GLUE_CTRL0_L(chan));
  531. if (err >= 0) {
  532. *val = (err & 0xffff);
  533. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  534. ESR_GLUE_CTRL0_H(chan));
  535. if (err >= 0) {
  536. *val |= ((err & 0xffff) << 16);
  537. err = 0;
  538. }
  539. }
  540. return err;
  541. }
  542. static int esr_read_reset(struct niu *np, u32 *val)
  543. {
  544. int err;
  545. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  546. ESR_RXTX_RESET_CTRL_L);
  547. if (err >= 0) {
  548. *val = (err & 0xffff);
  549. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  550. ESR_RXTX_RESET_CTRL_H);
  551. if (err >= 0) {
  552. *val |= ((err & 0xffff) << 16);
  553. err = 0;
  554. }
  555. }
  556. return err;
  557. }
  558. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  559. {
  560. int err;
  561. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  562. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  563. if (!err)
  564. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  565. ESR_RXTX_CTRL_H(chan), (val >> 16));
  566. return err;
  567. }
  568. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  569. {
  570. int err;
  571. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  572. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  573. if (!err)
  574. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  575. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  576. return err;
  577. }
  578. static int esr_reset(struct niu *np)
  579. {
  580. u32 uninitialized_var(reset);
  581. int err;
  582. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  583. ESR_RXTX_RESET_CTRL_L, 0x0000);
  584. if (err)
  585. return err;
  586. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  587. ESR_RXTX_RESET_CTRL_H, 0xffff);
  588. if (err)
  589. return err;
  590. udelay(200);
  591. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  592. ESR_RXTX_RESET_CTRL_L, 0xffff);
  593. if (err)
  594. return err;
  595. udelay(200);
  596. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  597. ESR_RXTX_RESET_CTRL_H, 0x0000);
  598. if (err)
  599. return err;
  600. udelay(200);
  601. err = esr_read_reset(np, &reset);
  602. if (err)
  603. return err;
  604. if (reset != 0) {
  605. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  606. np->port, reset);
  607. return -ENODEV;
  608. }
  609. return 0;
  610. }
  611. static int serdes_init_10g(struct niu *np)
  612. {
  613. struct niu_link_config *lp = &np->link_config;
  614. unsigned long ctrl_reg, test_cfg_reg, i;
  615. u64 ctrl_val, test_cfg_val, sig, mask, val;
  616. int err;
  617. switch (np->port) {
  618. case 0:
  619. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  620. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  621. break;
  622. case 1:
  623. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  624. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  625. break;
  626. default:
  627. return -EINVAL;
  628. }
  629. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  630. ENET_SERDES_CTRL_SDET_1 |
  631. ENET_SERDES_CTRL_SDET_2 |
  632. ENET_SERDES_CTRL_SDET_3 |
  633. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  634. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  637. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  638. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  641. test_cfg_val = 0;
  642. if (lp->loopback_mode == LOOPBACK_PHY) {
  643. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  644. ENET_SERDES_TEST_MD_0_SHIFT) |
  645. (ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_1_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_2_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_3_SHIFT));
  651. }
  652. nw64(ctrl_reg, ctrl_val);
  653. nw64(test_cfg_reg, test_cfg_val);
  654. /* Initialize all 4 lanes of the SERDES. */
  655. for (i = 0; i < 4; i++) {
  656. u32 rxtx_ctrl, glue0;
  657. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  658. if (err)
  659. return err;
  660. err = esr_read_glue0(np, i, &glue0);
  661. if (err)
  662. return err;
  663. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  664. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  665. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  666. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  667. ESR_GLUE_CTRL0_THCNT |
  668. ESR_GLUE_CTRL0_BLTIME);
  669. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  670. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  671. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  672. (BLTIME_300_CYCLES <<
  673. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  674. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  675. if (err)
  676. return err;
  677. err = esr_write_glue0(np, i, glue0);
  678. if (err)
  679. return err;
  680. }
  681. err = esr_reset(np);
  682. if (err)
  683. return err;
  684. sig = nr64(ESR_INT_SIGNALS);
  685. switch (np->port) {
  686. case 0:
  687. mask = ESR_INT_SIGNALS_P0_BITS;
  688. val = (ESR_INT_SRDY0_P0 |
  689. ESR_INT_DET0_P0 |
  690. ESR_INT_XSRDY_P0 |
  691. ESR_INT_XDP_P0_CH3 |
  692. ESR_INT_XDP_P0_CH2 |
  693. ESR_INT_XDP_P0_CH1 |
  694. ESR_INT_XDP_P0_CH0);
  695. break;
  696. case 1:
  697. mask = ESR_INT_SIGNALS_P1_BITS;
  698. val = (ESR_INT_SRDY0_P1 |
  699. ESR_INT_DET0_P1 |
  700. ESR_INT_XSRDY_P1 |
  701. ESR_INT_XDP_P1_CH3 |
  702. ESR_INT_XDP_P1_CH2 |
  703. ESR_INT_XDP_P1_CH1 |
  704. ESR_INT_XDP_P1_CH0);
  705. break;
  706. default:
  707. return -EINVAL;
  708. }
  709. if ((sig & mask) != val) {
  710. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  711. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  712. return 0;
  713. }
  714. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  715. np->port, (int)(sig & mask), (int)val);
  716. return -ENODEV;
  717. }
  718. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  719. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  720. return 0;
  721. }
  722. static int serdes_init_1g(struct niu *np)
  723. {
  724. u64 val;
  725. val = nr64(ENET_SERDES_1_PLL_CFG);
  726. val &= ~ENET_SERDES_PLL_FBDIV2;
  727. switch (np->port) {
  728. case 0:
  729. val |= ENET_SERDES_PLL_HRATE0;
  730. break;
  731. case 1:
  732. val |= ENET_SERDES_PLL_HRATE1;
  733. break;
  734. case 2:
  735. val |= ENET_SERDES_PLL_HRATE2;
  736. break;
  737. case 3:
  738. val |= ENET_SERDES_PLL_HRATE3;
  739. break;
  740. default:
  741. return -EINVAL;
  742. }
  743. nw64(ENET_SERDES_1_PLL_CFG, val);
  744. return 0;
  745. }
  746. static int serdes_init_1g_serdes(struct niu *np)
  747. {
  748. struct niu_link_config *lp = &np->link_config;
  749. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  750. u64 ctrl_val, test_cfg_val, sig, mask, val;
  751. int err;
  752. u64 reset_val, val_rd;
  753. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  754. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  755. ENET_SERDES_PLL_FBDIV0;
  756. switch (np->port) {
  757. case 0:
  758. reset_val = ENET_SERDES_RESET_0;
  759. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  760. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  761. pll_cfg = ENET_SERDES_0_PLL_CFG;
  762. break;
  763. case 1:
  764. reset_val = ENET_SERDES_RESET_1;
  765. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  766. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  767. pll_cfg = ENET_SERDES_1_PLL_CFG;
  768. break;
  769. default:
  770. return -EINVAL;
  771. }
  772. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  773. ENET_SERDES_CTRL_SDET_1 |
  774. ENET_SERDES_CTRL_SDET_2 |
  775. ENET_SERDES_CTRL_SDET_3 |
  776. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  777. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  780. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  781. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  784. test_cfg_val = 0;
  785. if (lp->loopback_mode == LOOPBACK_PHY) {
  786. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  787. ENET_SERDES_TEST_MD_0_SHIFT) |
  788. (ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_1_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_2_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_3_SHIFT));
  794. }
  795. nw64(ENET_SERDES_RESET, reset_val);
  796. mdelay(20);
  797. val_rd = nr64(ENET_SERDES_RESET);
  798. val_rd &= ~reset_val;
  799. nw64(pll_cfg, val);
  800. nw64(ctrl_reg, ctrl_val);
  801. nw64(test_cfg_reg, test_cfg_val);
  802. nw64(ENET_SERDES_RESET, val_rd);
  803. mdelay(2000);
  804. /* Initialize all 4 lanes of the SERDES. */
  805. for (i = 0; i < 4; i++) {
  806. u32 rxtx_ctrl, glue0;
  807. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  808. if (err)
  809. return err;
  810. err = esr_read_glue0(np, i, &glue0);
  811. if (err)
  812. return err;
  813. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  814. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  815. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  816. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  817. ESR_GLUE_CTRL0_THCNT |
  818. ESR_GLUE_CTRL0_BLTIME);
  819. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  820. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  821. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  822. (BLTIME_300_CYCLES <<
  823. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  824. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  825. if (err)
  826. return err;
  827. err = esr_write_glue0(np, i, glue0);
  828. if (err)
  829. return err;
  830. }
  831. sig = nr64(ESR_INT_SIGNALS);
  832. switch (np->port) {
  833. case 0:
  834. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  835. mask = val;
  836. break;
  837. case 1:
  838. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  839. mask = val;
  840. break;
  841. default:
  842. return -EINVAL;
  843. }
  844. if ((sig & mask) != val) {
  845. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  846. np->port, (int)(sig & mask), (int)val);
  847. return -ENODEV;
  848. }
  849. return 0;
  850. }
  851. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  852. {
  853. struct niu_link_config *lp = &np->link_config;
  854. int link_up;
  855. u64 val;
  856. u16 current_speed;
  857. unsigned long flags;
  858. u8 current_duplex;
  859. link_up = 0;
  860. current_speed = SPEED_INVALID;
  861. current_duplex = DUPLEX_INVALID;
  862. spin_lock_irqsave(&np->lock, flags);
  863. val = nr64_pcs(PCS_MII_STAT);
  864. if (val & PCS_MII_STAT_LINK_STATUS) {
  865. link_up = 1;
  866. current_speed = SPEED_1000;
  867. current_duplex = DUPLEX_FULL;
  868. }
  869. lp->active_speed = current_speed;
  870. lp->active_duplex = current_duplex;
  871. spin_unlock_irqrestore(&np->lock, flags);
  872. *link_up_p = link_up;
  873. return 0;
  874. }
  875. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. unsigned long flags;
  878. struct niu_link_config *lp = &np->link_config;
  879. int link_up = 0;
  880. int link_ok = 1;
  881. u64 val, val2;
  882. u16 current_speed;
  883. u8 current_duplex;
  884. if (!(np->flags & NIU_FLAGS_10G))
  885. return link_status_1g_serdes(np, link_up_p);
  886. current_speed = SPEED_INVALID;
  887. current_duplex = DUPLEX_INVALID;
  888. spin_lock_irqsave(&np->lock, flags);
  889. val = nr64_xpcs(XPCS_STATUS(0));
  890. val2 = nr64_mac(XMAC_INTER2);
  891. if (val2 & 0x01000000)
  892. link_ok = 0;
  893. if ((val & 0x1000ULL) && link_ok) {
  894. link_up = 1;
  895. current_speed = SPEED_10000;
  896. current_duplex = DUPLEX_FULL;
  897. }
  898. lp->active_speed = current_speed;
  899. lp->active_duplex = current_duplex;
  900. spin_unlock_irqrestore(&np->lock, flags);
  901. *link_up_p = link_up;
  902. return 0;
  903. }
  904. static int link_status_mii(struct niu *np, int *link_up_p)
  905. {
  906. struct niu_link_config *lp = &np->link_config;
  907. int err;
  908. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  909. int supported, advertising, active_speed, active_duplex;
  910. err = mii_read(np, np->phy_addr, MII_BMCR);
  911. if (unlikely(err < 0))
  912. return err;
  913. bmcr = err;
  914. err = mii_read(np, np->phy_addr, MII_BMSR);
  915. if (unlikely(err < 0))
  916. return err;
  917. bmsr = err;
  918. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  919. if (unlikely(err < 0))
  920. return err;
  921. advert = err;
  922. err = mii_read(np, np->phy_addr, MII_LPA);
  923. if (unlikely(err < 0))
  924. return err;
  925. lpa = err;
  926. if (likely(bmsr & BMSR_ESTATEN)) {
  927. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  928. if (unlikely(err < 0))
  929. return err;
  930. estatus = err;
  931. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  932. if (unlikely(err < 0))
  933. return err;
  934. ctrl1000 = err;
  935. err = mii_read(np, np->phy_addr, MII_STAT1000);
  936. if (unlikely(err < 0))
  937. return err;
  938. stat1000 = err;
  939. } else
  940. estatus = ctrl1000 = stat1000 = 0;
  941. supported = 0;
  942. if (bmsr & BMSR_ANEGCAPABLE)
  943. supported |= SUPPORTED_Autoneg;
  944. if (bmsr & BMSR_10HALF)
  945. supported |= SUPPORTED_10baseT_Half;
  946. if (bmsr & BMSR_10FULL)
  947. supported |= SUPPORTED_10baseT_Full;
  948. if (bmsr & BMSR_100HALF)
  949. supported |= SUPPORTED_100baseT_Half;
  950. if (bmsr & BMSR_100FULL)
  951. supported |= SUPPORTED_100baseT_Full;
  952. if (estatus & ESTATUS_1000_THALF)
  953. supported |= SUPPORTED_1000baseT_Half;
  954. if (estatus & ESTATUS_1000_TFULL)
  955. supported |= SUPPORTED_1000baseT_Full;
  956. lp->supported = supported;
  957. advertising = 0;
  958. if (advert & ADVERTISE_10HALF)
  959. advertising |= ADVERTISED_10baseT_Half;
  960. if (advert & ADVERTISE_10FULL)
  961. advertising |= ADVERTISED_10baseT_Full;
  962. if (advert & ADVERTISE_100HALF)
  963. advertising |= ADVERTISED_100baseT_Half;
  964. if (advert & ADVERTISE_100FULL)
  965. advertising |= ADVERTISED_100baseT_Full;
  966. if (ctrl1000 & ADVERTISE_1000HALF)
  967. advertising |= ADVERTISED_1000baseT_Half;
  968. if (ctrl1000 & ADVERTISE_1000FULL)
  969. advertising |= ADVERTISED_1000baseT_Full;
  970. if (bmcr & BMCR_ANENABLE) {
  971. int neg, neg1000;
  972. lp->active_autoneg = 1;
  973. advertising |= ADVERTISED_Autoneg;
  974. neg = advert & lpa;
  975. neg1000 = (ctrl1000 << 2) & stat1000;
  976. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  977. active_speed = SPEED_1000;
  978. else if (neg & LPA_100)
  979. active_speed = SPEED_100;
  980. else if (neg & (LPA_10HALF | LPA_10FULL))
  981. active_speed = SPEED_10;
  982. else
  983. active_speed = SPEED_INVALID;
  984. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  985. active_duplex = DUPLEX_FULL;
  986. else if (active_speed != SPEED_INVALID)
  987. active_duplex = DUPLEX_HALF;
  988. else
  989. active_duplex = DUPLEX_INVALID;
  990. } else {
  991. lp->active_autoneg = 0;
  992. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  993. active_speed = SPEED_1000;
  994. else if (bmcr & BMCR_SPEED100)
  995. active_speed = SPEED_100;
  996. else
  997. active_speed = SPEED_10;
  998. if (bmcr & BMCR_FULLDPLX)
  999. active_duplex = DUPLEX_FULL;
  1000. else
  1001. active_duplex = DUPLEX_HALF;
  1002. }
  1003. lp->active_advertising = advertising;
  1004. lp->active_speed = active_speed;
  1005. lp->active_duplex = active_duplex;
  1006. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1007. return 0;
  1008. }
  1009. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1010. {
  1011. struct niu_link_config *lp = &np->link_config;
  1012. u16 current_speed, bmsr;
  1013. unsigned long flags;
  1014. u8 current_duplex;
  1015. int err, link_up;
  1016. link_up = 0;
  1017. current_speed = SPEED_INVALID;
  1018. current_duplex = DUPLEX_INVALID;
  1019. spin_lock_irqsave(&np->lock, flags);
  1020. err = -EINVAL;
  1021. err = mii_read(np, np->phy_addr, MII_BMSR);
  1022. if (err < 0)
  1023. goto out;
  1024. bmsr = err;
  1025. if (bmsr & BMSR_LSTATUS) {
  1026. u16 adv, lpa, common, estat;
  1027. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1028. if (err < 0)
  1029. goto out;
  1030. adv = err;
  1031. err = mii_read(np, np->phy_addr, MII_LPA);
  1032. if (err < 0)
  1033. goto out;
  1034. lpa = err;
  1035. common = adv & lpa;
  1036. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1037. if (err < 0)
  1038. goto out;
  1039. estat = err;
  1040. link_up = 1;
  1041. current_speed = SPEED_1000;
  1042. current_duplex = DUPLEX_FULL;
  1043. }
  1044. lp->active_speed = current_speed;
  1045. lp->active_duplex = current_duplex;
  1046. err = 0;
  1047. out:
  1048. spin_unlock_irqrestore(&np->lock, flags);
  1049. *link_up_p = link_up;
  1050. return err;
  1051. }
  1052. static int link_status_1g(struct niu *np, int *link_up_p)
  1053. {
  1054. struct niu_link_config *lp = &np->link_config;
  1055. unsigned long flags;
  1056. int err;
  1057. spin_lock_irqsave(&np->lock, flags);
  1058. err = link_status_mii(np, link_up_p);
  1059. lp->supported |= SUPPORTED_TP;
  1060. lp->active_advertising |= ADVERTISED_TP;
  1061. spin_unlock_irqrestore(&np->lock, flags);
  1062. return err;
  1063. }
  1064. static int bcm8704_reset(struct niu *np)
  1065. {
  1066. int err, limit;
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0 || err == 0xffff)
  1070. return err;
  1071. err |= BMCR_RESET;
  1072. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1073. MII_BMCR, err);
  1074. if (err)
  1075. return err;
  1076. limit = 1000;
  1077. while (--limit >= 0) {
  1078. err = mdio_read(np, np->phy_addr,
  1079. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1080. if (err < 0)
  1081. return err;
  1082. if (!(err & BMCR_RESET))
  1083. break;
  1084. }
  1085. if (limit < 0) {
  1086. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1087. np->port, (err & 0xffff));
  1088. return -ENODEV;
  1089. }
  1090. return 0;
  1091. }
  1092. /* When written, certain PHY registers need to be read back twice
  1093. * in order for the bits to settle properly.
  1094. */
  1095. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1096. {
  1097. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1098. if (err < 0)
  1099. return err;
  1100. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1101. if (err < 0)
  1102. return err;
  1103. return 0;
  1104. }
  1105. static int bcm8706_init_user_dev3(struct niu *np)
  1106. {
  1107. int err;
  1108. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1109. BCM8704_USER_OPT_DIGITAL_CTRL);
  1110. if (err < 0)
  1111. return err;
  1112. err &= ~USER_ODIG_CTRL_GPIOS;
  1113. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1114. err |= USER_ODIG_CTRL_RESV2;
  1115. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1116. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1117. if (err)
  1118. return err;
  1119. mdelay(1000);
  1120. return 0;
  1121. }
  1122. static int bcm8704_init_user_dev3(struct niu *np)
  1123. {
  1124. int err;
  1125. err = mdio_write(np, np->phy_addr,
  1126. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1127. (USER_CONTROL_OPTXRST_LVL |
  1128. USER_CONTROL_OPBIASFLT_LVL |
  1129. USER_CONTROL_OBTMPFLT_LVL |
  1130. USER_CONTROL_OPPRFLT_LVL |
  1131. USER_CONTROL_OPTXFLT_LVL |
  1132. USER_CONTROL_OPRXLOS_LVL |
  1133. USER_CONTROL_OPRXFLT_LVL |
  1134. USER_CONTROL_OPTXON_LVL |
  1135. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1136. if (err)
  1137. return err;
  1138. err = mdio_write(np, np->phy_addr,
  1139. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1140. (USER_PMD_TX_CTL_XFP_CLKEN |
  1141. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1142. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1143. USER_PMD_TX_CTL_TSCK_LPWREN));
  1144. if (err)
  1145. return err;
  1146. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1147. if (err)
  1148. return err;
  1149. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1150. if (err)
  1151. return err;
  1152. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1153. BCM8704_USER_OPT_DIGITAL_CTRL);
  1154. if (err < 0)
  1155. return err;
  1156. err &= ~USER_ODIG_CTRL_GPIOS;
  1157. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1158. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1159. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1160. if (err)
  1161. return err;
  1162. mdelay(1000);
  1163. return 0;
  1164. }
  1165. static int mrvl88x2011_act_led(struct niu *np, int val)
  1166. {
  1167. int err;
  1168. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1169. MRVL88X2011_LED_8_TO_11_CTL);
  1170. if (err < 0)
  1171. return err;
  1172. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1173. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1174. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_8_TO_11_CTL, err);
  1176. }
  1177. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1178. {
  1179. int err;
  1180. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1181. MRVL88X2011_LED_BLINK_CTL);
  1182. if (err >= 0) {
  1183. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1184. err |= (rate << 4);
  1185. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1186. MRVL88X2011_LED_BLINK_CTL, err);
  1187. }
  1188. return err;
  1189. }
  1190. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1191. {
  1192. int err;
  1193. /* Set LED functions */
  1194. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1195. if (err)
  1196. return err;
  1197. /* led activity */
  1198. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1199. if (err)
  1200. return err;
  1201. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1202. MRVL88X2011_GENERAL_CTL);
  1203. if (err < 0)
  1204. return err;
  1205. err |= MRVL88X2011_ENA_XFPREFCLK;
  1206. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1207. MRVL88X2011_GENERAL_CTL, err);
  1208. if (err < 0)
  1209. return err;
  1210. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1211. MRVL88X2011_PMA_PMD_CTL_1);
  1212. if (err < 0)
  1213. return err;
  1214. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1215. err |= MRVL88X2011_LOOPBACK;
  1216. else
  1217. err &= ~MRVL88X2011_LOOPBACK;
  1218. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1219. MRVL88X2011_PMA_PMD_CTL_1, err);
  1220. if (err < 0)
  1221. return err;
  1222. /* Enable PMD */
  1223. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1224. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1225. }
  1226. static int xcvr_diag_bcm870x(struct niu *np)
  1227. {
  1228. u16 analog_stat0, tx_alarm_status;
  1229. int err = 0;
  1230. #if 1
  1231. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1232. MII_STAT1000);
  1233. if (err < 0)
  1234. return err;
  1235. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1237. if (err < 0)
  1238. return err;
  1239. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1240. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1241. MII_NWAYTEST);
  1242. if (err < 0)
  1243. return err;
  1244. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1245. #endif
  1246. /* XXX dig this out it might not be so useful XXX */
  1247. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1248. BCM8704_USER_ANALOG_STATUS0);
  1249. if (err < 0)
  1250. return err;
  1251. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1252. BCM8704_USER_ANALOG_STATUS0);
  1253. if (err < 0)
  1254. return err;
  1255. analog_stat0 = err;
  1256. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1257. BCM8704_USER_TX_ALARM_STATUS);
  1258. if (err < 0)
  1259. return err;
  1260. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1261. BCM8704_USER_TX_ALARM_STATUS);
  1262. if (err < 0)
  1263. return err;
  1264. tx_alarm_status = err;
  1265. if (analog_stat0 != 0x03fc) {
  1266. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1267. pr_info("Port %u cable not connected or bad cable\n",
  1268. np->port);
  1269. } else if (analog_stat0 == 0x639c) {
  1270. pr_info("Port %u optical module is bad or missing\n",
  1271. np->port);
  1272. }
  1273. }
  1274. return 0;
  1275. }
  1276. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1277. {
  1278. struct niu_link_config *lp = &np->link_config;
  1279. int err;
  1280. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1281. MII_BMCR);
  1282. if (err < 0)
  1283. return err;
  1284. err &= ~BMCR_LOOPBACK;
  1285. if (lp->loopback_mode == LOOPBACK_MAC)
  1286. err |= BMCR_LOOPBACK;
  1287. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1288. MII_BMCR, err);
  1289. if (err)
  1290. return err;
  1291. return 0;
  1292. }
  1293. static int xcvr_init_10g_bcm8706(struct niu *np)
  1294. {
  1295. int err = 0;
  1296. u64 val;
  1297. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1298. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1299. return err;
  1300. val = nr64_mac(XMAC_CONFIG);
  1301. val &= ~XMAC_CONFIG_LED_POLARITY;
  1302. val |= XMAC_CONFIG_FORCE_LED_ON;
  1303. nw64_mac(XMAC_CONFIG, val);
  1304. val = nr64(MIF_CONFIG);
  1305. val |= MIF_CONFIG_INDIRECT_MODE;
  1306. nw64(MIF_CONFIG, val);
  1307. err = bcm8704_reset(np);
  1308. if (err)
  1309. return err;
  1310. err = xcvr_10g_set_lb_bcm870x(np);
  1311. if (err)
  1312. return err;
  1313. err = bcm8706_init_user_dev3(np);
  1314. if (err)
  1315. return err;
  1316. err = xcvr_diag_bcm870x(np);
  1317. if (err)
  1318. return err;
  1319. return 0;
  1320. }
  1321. static int xcvr_init_10g_bcm8704(struct niu *np)
  1322. {
  1323. int err;
  1324. err = bcm8704_reset(np);
  1325. if (err)
  1326. return err;
  1327. err = bcm8704_init_user_dev3(np);
  1328. if (err)
  1329. return err;
  1330. err = xcvr_10g_set_lb_bcm870x(np);
  1331. if (err)
  1332. return err;
  1333. err = xcvr_diag_bcm870x(np);
  1334. if (err)
  1335. return err;
  1336. return 0;
  1337. }
  1338. static int xcvr_init_10g(struct niu *np)
  1339. {
  1340. int phy_id, err;
  1341. u64 val;
  1342. val = nr64_mac(XMAC_CONFIG);
  1343. val &= ~XMAC_CONFIG_LED_POLARITY;
  1344. val |= XMAC_CONFIG_FORCE_LED_ON;
  1345. nw64_mac(XMAC_CONFIG, val);
  1346. /* XXX shared resource, lock parent XXX */
  1347. val = nr64(MIF_CONFIG);
  1348. val |= MIF_CONFIG_INDIRECT_MODE;
  1349. nw64(MIF_CONFIG, val);
  1350. phy_id = phy_decode(np->parent->port_phy, np->port);
  1351. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1352. /* handle different phy types */
  1353. switch (phy_id & NIU_PHY_ID_MASK) {
  1354. case NIU_PHY_ID_MRVL88X2011:
  1355. err = xcvr_init_10g_mrvl88x2011(np);
  1356. break;
  1357. default: /* bcom 8704 */
  1358. err = xcvr_init_10g_bcm8704(np);
  1359. break;
  1360. }
  1361. return 0;
  1362. }
  1363. static int mii_reset(struct niu *np)
  1364. {
  1365. int limit, err;
  1366. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1367. if (err)
  1368. return err;
  1369. limit = 1000;
  1370. while (--limit >= 0) {
  1371. udelay(500);
  1372. err = mii_read(np, np->phy_addr, MII_BMCR);
  1373. if (err < 0)
  1374. return err;
  1375. if (!(err & BMCR_RESET))
  1376. break;
  1377. }
  1378. if (limit < 0) {
  1379. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1380. np->port, err);
  1381. return -ENODEV;
  1382. }
  1383. return 0;
  1384. }
  1385. static int xcvr_init_1g_rgmii(struct niu *np)
  1386. {
  1387. int err;
  1388. u64 val;
  1389. u16 bmcr, bmsr, estat;
  1390. val = nr64(MIF_CONFIG);
  1391. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1392. nw64(MIF_CONFIG, val);
  1393. err = mii_reset(np);
  1394. if (err)
  1395. return err;
  1396. err = mii_read(np, np->phy_addr, MII_BMSR);
  1397. if (err < 0)
  1398. return err;
  1399. bmsr = err;
  1400. estat = 0;
  1401. if (bmsr & BMSR_ESTATEN) {
  1402. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1403. if (err < 0)
  1404. return err;
  1405. estat = err;
  1406. }
  1407. bmcr = 0;
  1408. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1409. if (err)
  1410. return err;
  1411. if (bmsr & BMSR_ESTATEN) {
  1412. u16 ctrl1000 = 0;
  1413. if (estat & ESTATUS_1000_TFULL)
  1414. ctrl1000 |= ADVERTISE_1000FULL;
  1415. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1416. if (err)
  1417. return err;
  1418. }
  1419. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1420. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1421. if (err)
  1422. return err;
  1423. err = mii_read(np, np->phy_addr, MII_BMCR);
  1424. if (err < 0)
  1425. return err;
  1426. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1427. err = mii_read(np, np->phy_addr, MII_BMSR);
  1428. if (err < 0)
  1429. return err;
  1430. return 0;
  1431. }
  1432. static int mii_init_common(struct niu *np)
  1433. {
  1434. struct niu_link_config *lp = &np->link_config;
  1435. u16 bmcr, bmsr, adv, estat;
  1436. int err;
  1437. err = mii_reset(np);
  1438. if (err)
  1439. return err;
  1440. err = mii_read(np, np->phy_addr, MII_BMSR);
  1441. if (err < 0)
  1442. return err;
  1443. bmsr = err;
  1444. estat = 0;
  1445. if (bmsr & BMSR_ESTATEN) {
  1446. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1447. if (err < 0)
  1448. return err;
  1449. estat = err;
  1450. }
  1451. bmcr = 0;
  1452. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1453. if (err)
  1454. return err;
  1455. if (lp->loopback_mode == LOOPBACK_MAC) {
  1456. bmcr |= BMCR_LOOPBACK;
  1457. if (lp->active_speed == SPEED_1000)
  1458. bmcr |= BMCR_SPEED1000;
  1459. if (lp->active_duplex == DUPLEX_FULL)
  1460. bmcr |= BMCR_FULLDPLX;
  1461. }
  1462. if (lp->loopback_mode == LOOPBACK_PHY) {
  1463. u16 aux;
  1464. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1465. BCM5464R_AUX_CTL_WRITE_1);
  1466. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1467. if (err)
  1468. return err;
  1469. }
  1470. if (lp->autoneg) {
  1471. u16 ctrl1000;
  1472. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1473. if ((bmsr & BMSR_10HALF) &&
  1474. (lp->advertising & ADVERTISED_10baseT_Half))
  1475. adv |= ADVERTISE_10HALF;
  1476. if ((bmsr & BMSR_10FULL) &&
  1477. (lp->advertising & ADVERTISED_10baseT_Full))
  1478. adv |= ADVERTISE_10FULL;
  1479. if ((bmsr & BMSR_100HALF) &&
  1480. (lp->advertising & ADVERTISED_100baseT_Half))
  1481. adv |= ADVERTISE_100HALF;
  1482. if ((bmsr & BMSR_100FULL) &&
  1483. (lp->advertising & ADVERTISED_100baseT_Full))
  1484. adv |= ADVERTISE_100FULL;
  1485. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1486. if (err)
  1487. return err;
  1488. if (likely(bmsr & BMSR_ESTATEN)) {
  1489. ctrl1000 = 0;
  1490. if ((estat & ESTATUS_1000_THALF) &&
  1491. (lp->advertising & ADVERTISED_1000baseT_Half))
  1492. ctrl1000 |= ADVERTISE_1000HALF;
  1493. if ((estat & ESTATUS_1000_TFULL) &&
  1494. (lp->advertising & ADVERTISED_1000baseT_Full))
  1495. ctrl1000 |= ADVERTISE_1000FULL;
  1496. err = mii_write(np, np->phy_addr,
  1497. MII_CTRL1000, ctrl1000);
  1498. if (err)
  1499. return err;
  1500. }
  1501. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1502. } else {
  1503. /* !lp->autoneg */
  1504. int fulldpx;
  1505. if (lp->duplex == DUPLEX_FULL) {
  1506. bmcr |= BMCR_FULLDPLX;
  1507. fulldpx = 1;
  1508. } else if (lp->duplex == DUPLEX_HALF)
  1509. fulldpx = 0;
  1510. else
  1511. return -EINVAL;
  1512. if (lp->speed == SPEED_1000) {
  1513. /* if X-full requested while not supported, or
  1514. X-half requested while not supported... */
  1515. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1516. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1517. return -EINVAL;
  1518. bmcr |= BMCR_SPEED1000;
  1519. } else if (lp->speed == SPEED_100) {
  1520. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1521. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1522. return -EINVAL;
  1523. bmcr |= BMCR_SPEED100;
  1524. } else if (lp->speed == SPEED_10) {
  1525. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1526. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1527. return -EINVAL;
  1528. } else
  1529. return -EINVAL;
  1530. }
  1531. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1532. if (err)
  1533. return err;
  1534. #if 0
  1535. err = mii_read(np, np->phy_addr, MII_BMCR);
  1536. if (err < 0)
  1537. return err;
  1538. bmcr = err;
  1539. err = mii_read(np, np->phy_addr, MII_BMSR);
  1540. if (err < 0)
  1541. return err;
  1542. bmsr = err;
  1543. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1544. np->port, bmcr, bmsr);
  1545. #endif
  1546. return 0;
  1547. }
  1548. static int xcvr_init_1g(struct niu *np)
  1549. {
  1550. u64 val;
  1551. /* XXX shared resource, lock parent XXX */
  1552. val = nr64(MIF_CONFIG);
  1553. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1554. nw64(MIF_CONFIG, val);
  1555. return mii_init_common(np);
  1556. }
  1557. static int niu_xcvr_init(struct niu *np)
  1558. {
  1559. const struct niu_phy_ops *ops = np->phy_ops;
  1560. int err;
  1561. err = 0;
  1562. if (ops->xcvr_init)
  1563. err = ops->xcvr_init(np);
  1564. return err;
  1565. }
  1566. static int niu_serdes_init(struct niu *np)
  1567. {
  1568. const struct niu_phy_ops *ops = np->phy_ops;
  1569. int err;
  1570. err = 0;
  1571. if (ops->serdes_init)
  1572. err = ops->serdes_init(np);
  1573. return err;
  1574. }
  1575. static void niu_init_xif(struct niu *);
  1576. static void niu_handle_led(struct niu *, int status);
  1577. static int niu_link_status_common(struct niu *np, int link_up)
  1578. {
  1579. struct niu_link_config *lp = &np->link_config;
  1580. struct net_device *dev = np->dev;
  1581. unsigned long flags;
  1582. if (!netif_carrier_ok(dev) && link_up) {
  1583. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1584. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1585. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1586. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1587. "10Mbit/sec",
  1588. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1589. spin_lock_irqsave(&np->lock, flags);
  1590. niu_init_xif(np);
  1591. niu_handle_led(np, 1);
  1592. spin_unlock_irqrestore(&np->lock, flags);
  1593. netif_carrier_on(dev);
  1594. } else if (netif_carrier_ok(dev) && !link_up) {
  1595. netif_warn(np, link, dev, "Link is down\n");
  1596. spin_lock_irqsave(&np->lock, flags);
  1597. niu_handle_led(np, 0);
  1598. spin_unlock_irqrestore(&np->lock, flags);
  1599. netif_carrier_off(dev);
  1600. }
  1601. return 0;
  1602. }
  1603. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1604. {
  1605. int err, link_up, pma_status, pcs_status;
  1606. link_up = 0;
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1608. MRVL88X2011_10G_PMD_STATUS_2);
  1609. if (err < 0)
  1610. goto out;
  1611. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1612. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1613. MRVL88X2011_PMA_PMD_STATUS_1);
  1614. if (err < 0)
  1615. goto out;
  1616. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1617. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1618. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1619. MRVL88X2011_PMA_PMD_STATUS_1);
  1620. if (err < 0)
  1621. goto out;
  1622. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1623. MRVL88X2011_PMA_PMD_STATUS_1);
  1624. if (err < 0)
  1625. goto out;
  1626. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1627. /* Check XGXS Register : 4.0018.[0-3,12] */
  1628. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1629. MRVL88X2011_10G_XGXS_LANE_STAT);
  1630. if (err < 0)
  1631. goto out;
  1632. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1633. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1634. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1635. 0x800))
  1636. link_up = (pma_status && pcs_status) ? 1 : 0;
  1637. np->link_config.active_speed = SPEED_10000;
  1638. np->link_config.active_duplex = DUPLEX_FULL;
  1639. err = 0;
  1640. out:
  1641. mrvl88x2011_act_led(np, (link_up ?
  1642. MRVL88X2011_LED_CTL_PCS_ACT :
  1643. MRVL88X2011_LED_CTL_OFF));
  1644. *link_up_p = link_up;
  1645. return err;
  1646. }
  1647. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1648. {
  1649. int err, link_up;
  1650. link_up = 0;
  1651. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1652. BCM8704_PMD_RCV_SIGDET);
  1653. if (err < 0 || err == 0xffff)
  1654. goto out;
  1655. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1656. err = 0;
  1657. goto out;
  1658. }
  1659. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1660. BCM8704_PCS_10G_R_STATUS);
  1661. if (err < 0)
  1662. goto out;
  1663. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1664. err = 0;
  1665. goto out;
  1666. }
  1667. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1668. BCM8704_PHYXS_XGXS_LANE_STAT);
  1669. if (err < 0)
  1670. goto out;
  1671. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1672. PHYXS_XGXS_LANE_STAT_MAGIC |
  1673. PHYXS_XGXS_LANE_STAT_PATTEST |
  1674. PHYXS_XGXS_LANE_STAT_LANE3 |
  1675. PHYXS_XGXS_LANE_STAT_LANE2 |
  1676. PHYXS_XGXS_LANE_STAT_LANE1 |
  1677. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1678. err = 0;
  1679. np->link_config.active_speed = SPEED_INVALID;
  1680. np->link_config.active_duplex = DUPLEX_INVALID;
  1681. goto out;
  1682. }
  1683. link_up = 1;
  1684. np->link_config.active_speed = SPEED_10000;
  1685. np->link_config.active_duplex = DUPLEX_FULL;
  1686. err = 0;
  1687. out:
  1688. *link_up_p = link_up;
  1689. return err;
  1690. }
  1691. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1692. {
  1693. int err, link_up;
  1694. link_up = 0;
  1695. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1696. BCM8704_PMD_RCV_SIGDET);
  1697. if (err < 0)
  1698. goto out;
  1699. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1700. err = 0;
  1701. goto out;
  1702. }
  1703. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1704. BCM8704_PCS_10G_R_STATUS);
  1705. if (err < 0)
  1706. goto out;
  1707. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1708. err = 0;
  1709. goto out;
  1710. }
  1711. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1712. BCM8704_PHYXS_XGXS_LANE_STAT);
  1713. if (err < 0)
  1714. goto out;
  1715. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1716. PHYXS_XGXS_LANE_STAT_MAGIC |
  1717. PHYXS_XGXS_LANE_STAT_LANE3 |
  1718. PHYXS_XGXS_LANE_STAT_LANE2 |
  1719. PHYXS_XGXS_LANE_STAT_LANE1 |
  1720. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1721. err = 0;
  1722. goto out;
  1723. }
  1724. link_up = 1;
  1725. np->link_config.active_speed = SPEED_10000;
  1726. np->link_config.active_duplex = DUPLEX_FULL;
  1727. err = 0;
  1728. out:
  1729. *link_up_p = link_up;
  1730. return err;
  1731. }
  1732. static int link_status_10g(struct niu *np, int *link_up_p)
  1733. {
  1734. unsigned long flags;
  1735. int err = -EINVAL;
  1736. spin_lock_irqsave(&np->lock, flags);
  1737. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1738. int phy_id;
  1739. phy_id = phy_decode(np->parent->port_phy, np->port);
  1740. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1741. /* handle different phy types */
  1742. switch (phy_id & NIU_PHY_ID_MASK) {
  1743. case NIU_PHY_ID_MRVL88X2011:
  1744. err = link_status_10g_mrvl(np, link_up_p);
  1745. break;
  1746. default: /* bcom 8704 */
  1747. err = link_status_10g_bcom(np, link_up_p);
  1748. break;
  1749. }
  1750. }
  1751. spin_unlock_irqrestore(&np->lock, flags);
  1752. return err;
  1753. }
  1754. static int niu_10g_phy_present(struct niu *np)
  1755. {
  1756. u64 sig, mask, val;
  1757. sig = nr64(ESR_INT_SIGNALS);
  1758. switch (np->port) {
  1759. case 0:
  1760. mask = ESR_INT_SIGNALS_P0_BITS;
  1761. val = (ESR_INT_SRDY0_P0 |
  1762. ESR_INT_DET0_P0 |
  1763. ESR_INT_XSRDY_P0 |
  1764. ESR_INT_XDP_P0_CH3 |
  1765. ESR_INT_XDP_P0_CH2 |
  1766. ESR_INT_XDP_P0_CH1 |
  1767. ESR_INT_XDP_P0_CH0);
  1768. break;
  1769. case 1:
  1770. mask = ESR_INT_SIGNALS_P1_BITS;
  1771. val = (ESR_INT_SRDY0_P1 |
  1772. ESR_INT_DET0_P1 |
  1773. ESR_INT_XSRDY_P1 |
  1774. ESR_INT_XDP_P1_CH3 |
  1775. ESR_INT_XDP_P1_CH2 |
  1776. ESR_INT_XDP_P1_CH1 |
  1777. ESR_INT_XDP_P1_CH0);
  1778. break;
  1779. default:
  1780. return 0;
  1781. }
  1782. if ((sig & mask) != val)
  1783. return 0;
  1784. return 1;
  1785. }
  1786. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1787. {
  1788. unsigned long flags;
  1789. int err = 0;
  1790. int phy_present;
  1791. int phy_present_prev;
  1792. spin_lock_irqsave(&np->lock, flags);
  1793. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1794. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1795. 1 : 0;
  1796. phy_present = niu_10g_phy_present(np);
  1797. if (phy_present != phy_present_prev) {
  1798. /* state change */
  1799. if (phy_present) {
  1800. /* A NEM was just plugged in */
  1801. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. if (np->phy_ops->xcvr_init)
  1803. err = np->phy_ops->xcvr_init(np);
  1804. if (err) {
  1805. err = mdio_read(np, np->phy_addr,
  1806. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1807. if (err == 0xffff) {
  1808. /* No mdio, back-to-back XAUI */
  1809. goto out;
  1810. }
  1811. /* debounce */
  1812. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1813. }
  1814. } else {
  1815. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1816. *link_up_p = 0;
  1817. netif_warn(np, link, np->dev,
  1818. "Hotplug PHY Removed\n");
  1819. }
  1820. }
  1821. out:
  1822. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1823. err = link_status_10g_bcm8706(np, link_up_p);
  1824. if (err == 0xffff) {
  1825. /* No mdio, back-to-back XAUI: it is C10NEM */
  1826. *link_up_p = 1;
  1827. np->link_config.active_speed = SPEED_10000;
  1828. np->link_config.active_duplex = DUPLEX_FULL;
  1829. }
  1830. }
  1831. }
  1832. spin_unlock_irqrestore(&np->lock, flags);
  1833. return 0;
  1834. }
  1835. static int niu_link_status(struct niu *np, int *link_up_p)
  1836. {
  1837. const struct niu_phy_ops *ops = np->phy_ops;
  1838. int err;
  1839. err = 0;
  1840. if (ops->link_status)
  1841. err = ops->link_status(np, link_up_p);
  1842. return err;
  1843. }
  1844. static void niu_timer(unsigned long __opaque)
  1845. {
  1846. struct niu *np = (struct niu *) __opaque;
  1847. unsigned long off;
  1848. int err, link_up;
  1849. err = niu_link_status(np, &link_up);
  1850. if (!err)
  1851. niu_link_status_common(np, link_up);
  1852. if (netif_carrier_ok(np->dev))
  1853. off = 5 * HZ;
  1854. else
  1855. off = 1 * HZ;
  1856. np->timer.expires = jiffies + off;
  1857. add_timer(&np->timer);
  1858. }
  1859. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1860. .serdes_init = serdes_init_10g_serdes,
  1861. .link_status = link_status_10g_serdes,
  1862. };
  1863. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1864. .serdes_init = serdes_init_niu_10g_serdes,
  1865. .link_status = link_status_10g_serdes,
  1866. };
  1867. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1868. .serdes_init = serdes_init_niu_1g_serdes,
  1869. .link_status = link_status_1g_serdes,
  1870. };
  1871. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1872. .xcvr_init = xcvr_init_1g_rgmii,
  1873. .link_status = link_status_1g_rgmii,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1876. .serdes_init = serdes_init_niu_10g_fiber,
  1877. .xcvr_init = xcvr_init_10g,
  1878. .link_status = link_status_10g,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1881. .serdes_init = serdes_init_10g,
  1882. .xcvr_init = xcvr_init_10g,
  1883. .link_status = link_status_10g,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1886. .serdes_init = serdes_init_10g,
  1887. .xcvr_init = xcvr_init_10g_bcm8706,
  1888. .link_status = link_status_10g_hotplug,
  1889. };
  1890. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1891. .serdes_init = serdes_init_niu_10g_fiber,
  1892. .xcvr_init = xcvr_init_10g_bcm8706,
  1893. .link_status = link_status_10g_hotplug,
  1894. };
  1895. static const struct niu_phy_ops phy_ops_10g_copper = {
  1896. .serdes_init = serdes_init_10g,
  1897. .link_status = link_status_10g, /* XXX */
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1900. .serdes_init = serdes_init_1g,
  1901. .xcvr_init = xcvr_init_1g,
  1902. .link_status = link_status_1g,
  1903. };
  1904. static const struct niu_phy_ops phy_ops_1g_copper = {
  1905. .xcvr_init = xcvr_init_1g,
  1906. .link_status = link_status_1g,
  1907. };
  1908. struct niu_phy_template {
  1909. const struct niu_phy_ops *ops;
  1910. u32 phy_addr_base;
  1911. };
  1912. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1913. .ops = &phy_ops_10g_fiber_niu,
  1914. .phy_addr_base = 16,
  1915. };
  1916. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1917. .ops = &phy_ops_10g_serdes_niu,
  1918. .phy_addr_base = 0,
  1919. };
  1920. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1921. .ops = &phy_ops_1g_serdes_niu,
  1922. .phy_addr_base = 0,
  1923. };
  1924. static const struct niu_phy_template phy_template_10g_fiber = {
  1925. .ops = &phy_ops_10g_fiber,
  1926. .phy_addr_base = 8,
  1927. };
  1928. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1929. .ops = &phy_ops_10g_fiber_hotplug,
  1930. .phy_addr_base = 8,
  1931. };
  1932. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1933. .ops = &phy_ops_niu_10g_hotplug,
  1934. .phy_addr_base = 8,
  1935. };
  1936. static const struct niu_phy_template phy_template_10g_copper = {
  1937. .ops = &phy_ops_10g_copper,
  1938. .phy_addr_base = 10,
  1939. };
  1940. static const struct niu_phy_template phy_template_1g_fiber = {
  1941. .ops = &phy_ops_1g_fiber,
  1942. .phy_addr_base = 0,
  1943. };
  1944. static const struct niu_phy_template phy_template_1g_copper = {
  1945. .ops = &phy_ops_1g_copper,
  1946. .phy_addr_base = 0,
  1947. };
  1948. static const struct niu_phy_template phy_template_1g_rgmii = {
  1949. .ops = &phy_ops_1g_rgmii,
  1950. .phy_addr_base = 0,
  1951. };
  1952. static const struct niu_phy_template phy_template_10g_serdes = {
  1953. .ops = &phy_ops_10g_serdes,
  1954. .phy_addr_base = 0,
  1955. };
  1956. static int niu_atca_port_num[4] = {
  1957. 0, 0, 11, 10
  1958. };
  1959. static int serdes_init_10g_serdes(struct niu *np)
  1960. {
  1961. struct niu_link_config *lp = &np->link_config;
  1962. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1963. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1964. u64 reset_val;
  1965. switch (np->port) {
  1966. case 0:
  1967. reset_val = ENET_SERDES_RESET_0;
  1968. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1969. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1970. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1971. break;
  1972. case 1:
  1973. reset_val = ENET_SERDES_RESET_1;
  1974. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1975. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1976. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1977. break;
  1978. default:
  1979. return -EINVAL;
  1980. }
  1981. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1982. ENET_SERDES_CTRL_SDET_1 |
  1983. ENET_SERDES_CTRL_SDET_2 |
  1984. ENET_SERDES_CTRL_SDET_3 |
  1985. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1986. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1987. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1988. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1989. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1990. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1991. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1992. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1993. test_cfg_val = 0;
  1994. if (lp->loopback_mode == LOOPBACK_PHY) {
  1995. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1996. ENET_SERDES_TEST_MD_0_SHIFT) |
  1997. (ENET_TEST_MD_PAD_LOOPBACK <<
  1998. ENET_SERDES_TEST_MD_1_SHIFT) |
  1999. (ENET_TEST_MD_PAD_LOOPBACK <<
  2000. ENET_SERDES_TEST_MD_2_SHIFT) |
  2001. (ENET_TEST_MD_PAD_LOOPBACK <<
  2002. ENET_SERDES_TEST_MD_3_SHIFT));
  2003. }
  2004. esr_reset(np);
  2005. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2006. nw64(ctrl_reg, ctrl_val);
  2007. nw64(test_cfg_reg, test_cfg_val);
  2008. /* Initialize all 4 lanes of the SERDES. */
  2009. for (i = 0; i < 4; i++) {
  2010. u32 rxtx_ctrl, glue0;
  2011. int err;
  2012. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2013. if (err)
  2014. return err;
  2015. err = esr_read_glue0(np, i, &glue0);
  2016. if (err)
  2017. return err;
  2018. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2019. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2020. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2021. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2022. ESR_GLUE_CTRL0_THCNT |
  2023. ESR_GLUE_CTRL0_BLTIME);
  2024. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2025. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2026. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2027. (BLTIME_300_CYCLES <<
  2028. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2029. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2030. if (err)
  2031. return err;
  2032. err = esr_write_glue0(np, i, glue0);
  2033. if (err)
  2034. return err;
  2035. }
  2036. sig = nr64(ESR_INT_SIGNALS);
  2037. switch (np->port) {
  2038. case 0:
  2039. mask = ESR_INT_SIGNALS_P0_BITS;
  2040. val = (ESR_INT_SRDY0_P0 |
  2041. ESR_INT_DET0_P0 |
  2042. ESR_INT_XSRDY_P0 |
  2043. ESR_INT_XDP_P0_CH3 |
  2044. ESR_INT_XDP_P0_CH2 |
  2045. ESR_INT_XDP_P0_CH1 |
  2046. ESR_INT_XDP_P0_CH0);
  2047. break;
  2048. case 1:
  2049. mask = ESR_INT_SIGNALS_P1_BITS;
  2050. val = (ESR_INT_SRDY0_P1 |
  2051. ESR_INT_DET0_P1 |
  2052. ESR_INT_XSRDY_P1 |
  2053. ESR_INT_XDP_P1_CH3 |
  2054. ESR_INT_XDP_P1_CH2 |
  2055. ESR_INT_XDP_P1_CH1 |
  2056. ESR_INT_XDP_P1_CH0);
  2057. break;
  2058. default:
  2059. return -EINVAL;
  2060. }
  2061. if ((sig & mask) != val) {
  2062. int err;
  2063. err = serdes_init_1g_serdes(np);
  2064. if (!err) {
  2065. np->flags &= ~NIU_FLAGS_10G;
  2066. np->mac_xcvr = MAC_XCVR_PCS;
  2067. } else {
  2068. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2069. np->port);
  2070. return -ENODEV;
  2071. }
  2072. }
  2073. return 0;
  2074. }
  2075. static int niu_determine_phy_disposition(struct niu *np)
  2076. {
  2077. struct niu_parent *parent = np->parent;
  2078. u8 plat_type = parent->plat_type;
  2079. const struct niu_phy_template *tp;
  2080. u32 phy_addr_off = 0;
  2081. if (plat_type == PLAT_TYPE_NIU) {
  2082. switch (np->flags &
  2083. (NIU_FLAGS_10G |
  2084. NIU_FLAGS_FIBER |
  2085. NIU_FLAGS_XCVR_SERDES)) {
  2086. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2087. /* 10G Serdes */
  2088. tp = &phy_template_niu_10g_serdes;
  2089. break;
  2090. case NIU_FLAGS_XCVR_SERDES:
  2091. /* 1G Serdes */
  2092. tp = &phy_template_niu_1g_serdes;
  2093. break;
  2094. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2095. /* 10G Fiber */
  2096. default:
  2097. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2098. tp = &phy_template_niu_10g_hotplug;
  2099. if (np->port == 0)
  2100. phy_addr_off = 8;
  2101. if (np->port == 1)
  2102. phy_addr_off = 12;
  2103. } else {
  2104. tp = &phy_template_niu_10g_fiber;
  2105. phy_addr_off += np->port;
  2106. }
  2107. break;
  2108. }
  2109. } else {
  2110. switch (np->flags &
  2111. (NIU_FLAGS_10G |
  2112. NIU_FLAGS_FIBER |
  2113. NIU_FLAGS_XCVR_SERDES)) {
  2114. case 0:
  2115. /* 1G copper */
  2116. tp = &phy_template_1g_copper;
  2117. if (plat_type == PLAT_TYPE_VF_P0)
  2118. phy_addr_off = 10;
  2119. else if (plat_type == PLAT_TYPE_VF_P1)
  2120. phy_addr_off = 26;
  2121. phy_addr_off += (np->port ^ 0x3);
  2122. break;
  2123. case NIU_FLAGS_10G:
  2124. /* 10G copper */
  2125. tp = &phy_template_10g_copper;
  2126. break;
  2127. case NIU_FLAGS_FIBER:
  2128. /* 1G fiber */
  2129. tp = &phy_template_1g_fiber;
  2130. break;
  2131. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2132. /* 10G fiber */
  2133. tp = &phy_template_10g_fiber;
  2134. if (plat_type == PLAT_TYPE_VF_P0 ||
  2135. plat_type == PLAT_TYPE_VF_P1)
  2136. phy_addr_off = 8;
  2137. phy_addr_off += np->port;
  2138. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2139. tp = &phy_template_10g_fiber_hotplug;
  2140. if (np->port == 0)
  2141. phy_addr_off = 8;
  2142. if (np->port == 1)
  2143. phy_addr_off = 12;
  2144. }
  2145. break;
  2146. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2147. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2148. case NIU_FLAGS_XCVR_SERDES:
  2149. switch(np->port) {
  2150. case 0:
  2151. case 1:
  2152. tp = &phy_template_10g_serdes;
  2153. break;
  2154. case 2:
  2155. case 3:
  2156. tp = &phy_template_1g_rgmii;
  2157. break;
  2158. default:
  2159. return -EINVAL;
  2160. break;
  2161. }
  2162. phy_addr_off = niu_atca_port_num[np->port];
  2163. break;
  2164. default:
  2165. return -EINVAL;
  2166. }
  2167. }
  2168. np->phy_ops = tp->ops;
  2169. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2170. return 0;
  2171. }
  2172. static int niu_init_link(struct niu *np)
  2173. {
  2174. struct niu_parent *parent = np->parent;
  2175. int err, ignore;
  2176. if (parent->plat_type == PLAT_TYPE_NIU) {
  2177. err = niu_xcvr_init(np);
  2178. if (err)
  2179. return err;
  2180. msleep(200);
  2181. }
  2182. err = niu_serdes_init(np);
  2183. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2184. return err;
  2185. msleep(200);
  2186. err = niu_xcvr_init(np);
  2187. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2188. niu_link_status(np, &ignore);
  2189. return 0;
  2190. }
  2191. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2192. {
  2193. u16 reg0 = addr[4] << 8 | addr[5];
  2194. u16 reg1 = addr[2] << 8 | addr[3];
  2195. u16 reg2 = addr[0] << 8 | addr[1];
  2196. if (np->flags & NIU_FLAGS_XMAC) {
  2197. nw64_mac(XMAC_ADDR0, reg0);
  2198. nw64_mac(XMAC_ADDR1, reg1);
  2199. nw64_mac(XMAC_ADDR2, reg2);
  2200. } else {
  2201. nw64_mac(BMAC_ADDR0, reg0);
  2202. nw64_mac(BMAC_ADDR1, reg1);
  2203. nw64_mac(BMAC_ADDR2, reg2);
  2204. }
  2205. }
  2206. static int niu_num_alt_addr(struct niu *np)
  2207. {
  2208. if (np->flags & NIU_FLAGS_XMAC)
  2209. return XMAC_NUM_ALT_ADDR;
  2210. else
  2211. return BMAC_NUM_ALT_ADDR;
  2212. }
  2213. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2214. {
  2215. u16 reg0 = addr[4] << 8 | addr[5];
  2216. u16 reg1 = addr[2] << 8 | addr[3];
  2217. u16 reg2 = addr[0] << 8 | addr[1];
  2218. if (index >= niu_num_alt_addr(np))
  2219. return -EINVAL;
  2220. if (np->flags & NIU_FLAGS_XMAC) {
  2221. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2222. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2223. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2224. } else {
  2225. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2226. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2227. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2228. }
  2229. return 0;
  2230. }
  2231. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2232. {
  2233. unsigned long reg;
  2234. u64 val, mask;
  2235. if (index >= niu_num_alt_addr(np))
  2236. return -EINVAL;
  2237. if (np->flags & NIU_FLAGS_XMAC) {
  2238. reg = XMAC_ADDR_CMPEN;
  2239. mask = 1 << index;
  2240. } else {
  2241. reg = BMAC_ADDR_CMPEN;
  2242. mask = 1 << (index + 1);
  2243. }
  2244. val = nr64_mac(reg);
  2245. if (on)
  2246. val |= mask;
  2247. else
  2248. val &= ~mask;
  2249. nw64_mac(reg, val);
  2250. return 0;
  2251. }
  2252. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2253. int num, int mac_pref)
  2254. {
  2255. u64 val = nr64_mac(reg);
  2256. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2257. val |= num;
  2258. if (mac_pref)
  2259. val |= HOST_INFO_MPR;
  2260. nw64_mac(reg, val);
  2261. }
  2262. static int __set_rdc_table_num(struct niu *np,
  2263. int xmac_index, int bmac_index,
  2264. int rdc_table_num, int mac_pref)
  2265. {
  2266. unsigned long reg;
  2267. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2268. return -EINVAL;
  2269. if (np->flags & NIU_FLAGS_XMAC)
  2270. reg = XMAC_HOST_INFO(xmac_index);
  2271. else
  2272. reg = BMAC_HOST_INFO(bmac_index);
  2273. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2274. return 0;
  2275. }
  2276. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2277. int mac_pref)
  2278. {
  2279. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2280. }
  2281. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2282. int mac_pref)
  2283. {
  2284. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2285. }
  2286. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2287. int table_num, int mac_pref)
  2288. {
  2289. if (idx >= niu_num_alt_addr(np))
  2290. return -EINVAL;
  2291. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2292. }
  2293. static u64 vlan_entry_set_parity(u64 reg_val)
  2294. {
  2295. u64 port01_mask;
  2296. u64 port23_mask;
  2297. port01_mask = 0x00ff;
  2298. port23_mask = 0xff00;
  2299. if (hweight64(reg_val & port01_mask) & 1)
  2300. reg_val |= ENET_VLAN_TBL_PARITY0;
  2301. else
  2302. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2303. if (hweight64(reg_val & port23_mask) & 1)
  2304. reg_val |= ENET_VLAN_TBL_PARITY1;
  2305. else
  2306. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2307. return reg_val;
  2308. }
  2309. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2310. int port, int vpr, int rdc_table)
  2311. {
  2312. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2313. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2314. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2315. ENET_VLAN_TBL_SHIFT(port));
  2316. if (vpr)
  2317. reg_val |= (ENET_VLAN_TBL_VPR <<
  2318. ENET_VLAN_TBL_SHIFT(port));
  2319. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2320. reg_val = vlan_entry_set_parity(reg_val);
  2321. nw64(ENET_VLAN_TBL(index), reg_val);
  2322. }
  2323. static void vlan_tbl_clear(struct niu *np)
  2324. {
  2325. int i;
  2326. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2327. nw64(ENET_VLAN_TBL(i), 0);
  2328. }
  2329. static int tcam_wait_bit(struct niu *np, u64 bit)
  2330. {
  2331. int limit = 1000;
  2332. while (--limit > 0) {
  2333. if (nr64(TCAM_CTL) & bit)
  2334. break;
  2335. udelay(1);
  2336. }
  2337. if (limit <= 0)
  2338. return -ENODEV;
  2339. return 0;
  2340. }
  2341. static int tcam_flush(struct niu *np, int index)
  2342. {
  2343. nw64(TCAM_KEY_0, 0x00);
  2344. nw64(TCAM_KEY_MASK_0, 0xff);
  2345. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2346. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2347. }
  2348. #if 0
  2349. static int tcam_read(struct niu *np, int index,
  2350. u64 *key, u64 *mask)
  2351. {
  2352. int err;
  2353. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2354. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2355. if (!err) {
  2356. key[0] = nr64(TCAM_KEY_0);
  2357. key[1] = nr64(TCAM_KEY_1);
  2358. key[2] = nr64(TCAM_KEY_2);
  2359. key[3] = nr64(TCAM_KEY_3);
  2360. mask[0] = nr64(TCAM_KEY_MASK_0);
  2361. mask[1] = nr64(TCAM_KEY_MASK_1);
  2362. mask[2] = nr64(TCAM_KEY_MASK_2);
  2363. mask[3] = nr64(TCAM_KEY_MASK_3);
  2364. }
  2365. return err;
  2366. }
  2367. #endif
  2368. static int tcam_write(struct niu *np, int index,
  2369. u64 *key, u64 *mask)
  2370. {
  2371. nw64(TCAM_KEY_0, key[0]);
  2372. nw64(TCAM_KEY_1, key[1]);
  2373. nw64(TCAM_KEY_2, key[2]);
  2374. nw64(TCAM_KEY_3, key[3]);
  2375. nw64(TCAM_KEY_MASK_0, mask[0]);
  2376. nw64(TCAM_KEY_MASK_1, mask[1]);
  2377. nw64(TCAM_KEY_MASK_2, mask[2]);
  2378. nw64(TCAM_KEY_MASK_3, mask[3]);
  2379. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2380. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2381. }
  2382. #if 0
  2383. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2384. {
  2385. int err;
  2386. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2387. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2388. if (!err)
  2389. *data = nr64(TCAM_KEY_1);
  2390. return err;
  2391. }
  2392. #endif
  2393. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2394. {
  2395. nw64(TCAM_KEY_1, assoc_data);
  2396. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2397. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2398. }
  2399. static void tcam_enable(struct niu *np, int on)
  2400. {
  2401. u64 val = nr64(FFLP_CFG_1);
  2402. if (on)
  2403. val &= ~FFLP_CFG_1_TCAM_DIS;
  2404. else
  2405. val |= FFLP_CFG_1_TCAM_DIS;
  2406. nw64(FFLP_CFG_1, val);
  2407. }
  2408. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2409. {
  2410. u64 val = nr64(FFLP_CFG_1);
  2411. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2412. FFLP_CFG_1_CAMLAT |
  2413. FFLP_CFG_1_CAMRATIO);
  2414. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2415. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2416. nw64(FFLP_CFG_1, val);
  2417. val = nr64(FFLP_CFG_1);
  2418. val |= FFLP_CFG_1_FFLPINITDONE;
  2419. nw64(FFLP_CFG_1, val);
  2420. }
  2421. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2422. int on)
  2423. {
  2424. unsigned long reg;
  2425. u64 val;
  2426. if (class < CLASS_CODE_ETHERTYPE1 ||
  2427. class > CLASS_CODE_ETHERTYPE2)
  2428. return -EINVAL;
  2429. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2430. val = nr64(reg);
  2431. if (on)
  2432. val |= L2_CLS_VLD;
  2433. else
  2434. val &= ~L2_CLS_VLD;
  2435. nw64(reg, val);
  2436. return 0;
  2437. }
  2438. #if 0
  2439. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2440. u64 ether_type)
  2441. {
  2442. unsigned long reg;
  2443. u64 val;
  2444. if (class < CLASS_CODE_ETHERTYPE1 ||
  2445. class > CLASS_CODE_ETHERTYPE2 ||
  2446. (ether_type & ~(u64)0xffff) != 0)
  2447. return -EINVAL;
  2448. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2449. val = nr64(reg);
  2450. val &= ~L2_CLS_ETYPE;
  2451. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2452. nw64(reg, val);
  2453. return 0;
  2454. }
  2455. #endif
  2456. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2457. int on)
  2458. {
  2459. unsigned long reg;
  2460. u64 val;
  2461. if (class < CLASS_CODE_USER_PROG1 ||
  2462. class > CLASS_CODE_USER_PROG4)
  2463. return -EINVAL;
  2464. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2465. val = nr64(reg);
  2466. if (on)
  2467. val |= L3_CLS_VALID;
  2468. else
  2469. val &= ~L3_CLS_VALID;
  2470. nw64(reg, val);
  2471. return 0;
  2472. }
  2473. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2474. int ipv6, u64 protocol_id,
  2475. u64 tos_mask, u64 tos_val)
  2476. {
  2477. unsigned long reg;
  2478. u64 val;
  2479. if (class < CLASS_CODE_USER_PROG1 ||
  2480. class > CLASS_CODE_USER_PROG4 ||
  2481. (protocol_id & ~(u64)0xff) != 0 ||
  2482. (tos_mask & ~(u64)0xff) != 0 ||
  2483. (tos_val & ~(u64)0xff) != 0)
  2484. return -EINVAL;
  2485. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2486. val = nr64(reg);
  2487. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2488. L3_CLS_TOSMASK | L3_CLS_TOS);
  2489. if (ipv6)
  2490. val |= L3_CLS_IPVER;
  2491. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2492. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2493. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2494. nw64(reg, val);
  2495. return 0;
  2496. }
  2497. static int tcam_early_init(struct niu *np)
  2498. {
  2499. unsigned long i;
  2500. int err;
  2501. tcam_enable(np, 0);
  2502. tcam_set_lat_and_ratio(np,
  2503. DEFAULT_TCAM_LATENCY,
  2504. DEFAULT_TCAM_ACCESS_RATIO);
  2505. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2506. err = tcam_user_eth_class_enable(np, i, 0);
  2507. if (err)
  2508. return err;
  2509. }
  2510. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2511. err = tcam_user_ip_class_enable(np, i, 0);
  2512. if (err)
  2513. return err;
  2514. }
  2515. return 0;
  2516. }
  2517. static int tcam_flush_all(struct niu *np)
  2518. {
  2519. unsigned long i;
  2520. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2521. int err = tcam_flush(np, i);
  2522. if (err)
  2523. return err;
  2524. }
  2525. return 0;
  2526. }
  2527. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2528. {
  2529. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2530. }
  2531. #if 0
  2532. static int hash_read(struct niu *np, unsigned long partition,
  2533. unsigned long index, unsigned long num_entries,
  2534. u64 *data)
  2535. {
  2536. u64 val = hash_addr_regval(index, num_entries);
  2537. unsigned long i;
  2538. if (partition >= FCRAM_NUM_PARTITIONS ||
  2539. index + num_entries > FCRAM_SIZE)
  2540. return -EINVAL;
  2541. nw64(HASH_TBL_ADDR(partition), val);
  2542. for (i = 0; i < num_entries; i++)
  2543. data[i] = nr64(HASH_TBL_DATA(partition));
  2544. return 0;
  2545. }
  2546. #endif
  2547. static int hash_write(struct niu *np, unsigned long partition,
  2548. unsigned long index, unsigned long num_entries,
  2549. u64 *data)
  2550. {
  2551. u64 val = hash_addr_regval(index, num_entries);
  2552. unsigned long i;
  2553. if (partition >= FCRAM_NUM_PARTITIONS ||
  2554. index + (num_entries * 8) > FCRAM_SIZE)
  2555. return -EINVAL;
  2556. nw64(HASH_TBL_ADDR(partition), val);
  2557. for (i = 0; i < num_entries; i++)
  2558. nw64(HASH_TBL_DATA(partition), data[i]);
  2559. return 0;
  2560. }
  2561. static void fflp_reset(struct niu *np)
  2562. {
  2563. u64 val;
  2564. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2565. udelay(10);
  2566. nw64(FFLP_CFG_1, 0);
  2567. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2568. nw64(FFLP_CFG_1, val);
  2569. }
  2570. static void fflp_set_timings(struct niu *np)
  2571. {
  2572. u64 val = nr64(FFLP_CFG_1);
  2573. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2574. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2575. nw64(FFLP_CFG_1, val);
  2576. val = nr64(FFLP_CFG_1);
  2577. val |= FFLP_CFG_1_FFLPINITDONE;
  2578. nw64(FFLP_CFG_1, val);
  2579. val = nr64(FCRAM_REF_TMR);
  2580. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2581. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2582. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2583. nw64(FCRAM_REF_TMR, val);
  2584. }
  2585. static int fflp_set_partition(struct niu *np, u64 partition,
  2586. u64 mask, u64 base, int enable)
  2587. {
  2588. unsigned long reg;
  2589. u64 val;
  2590. if (partition >= FCRAM_NUM_PARTITIONS ||
  2591. (mask & ~(u64)0x1f) != 0 ||
  2592. (base & ~(u64)0x1f) != 0)
  2593. return -EINVAL;
  2594. reg = FLW_PRT_SEL(partition);
  2595. val = nr64(reg);
  2596. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2597. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2598. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2599. if (enable)
  2600. val |= FLW_PRT_SEL_EXT;
  2601. nw64(reg, val);
  2602. return 0;
  2603. }
  2604. static int fflp_disable_all_partitions(struct niu *np)
  2605. {
  2606. unsigned long i;
  2607. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2608. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2609. if (err)
  2610. return err;
  2611. }
  2612. return 0;
  2613. }
  2614. static void fflp_llcsnap_enable(struct niu *np, int on)
  2615. {
  2616. u64 val = nr64(FFLP_CFG_1);
  2617. if (on)
  2618. val |= FFLP_CFG_1_LLCSNAP;
  2619. else
  2620. val &= ~FFLP_CFG_1_LLCSNAP;
  2621. nw64(FFLP_CFG_1, val);
  2622. }
  2623. static void fflp_errors_enable(struct niu *np, int on)
  2624. {
  2625. u64 val = nr64(FFLP_CFG_1);
  2626. if (on)
  2627. val &= ~FFLP_CFG_1_ERRORDIS;
  2628. else
  2629. val |= FFLP_CFG_1_ERRORDIS;
  2630. nw64(FFLP_CFG_1, val);
  2631. }
  2632. static int fflp_hash_clear(struct niu *np)
  2633. {
  2634. struct fcram_hash_ipv4 ent;
  2635. unsigned long i;
  2636. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2637. memset(&ent, 0, sizeof(ent));
  2638. ent.header = HASH_HEADER_EXT;
  2639. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2640. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2641. if (err)
  2642. return err;
  2643. }
  2644. return 0;
  2645. }
  2646. static int fflp_early_init(struct niu *np)
  2647. {
  2648. struct niu_parent *parent;
  2649. unsigned long flags;
  2650. int err;
  2651. niu_lock_parent(np, flags);
  2652. parent = np->parent;
  2653. err = 0;
  2654. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2655. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2656. fflp_reset(np);
  2657. fflp_set_timings(np);
  2658. err = fflp_disable_all_partitions(np);
  2659. if (err) {
  2660. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2661. "fflp_disable_all_partitions failed, err=%d\n",
  2662. err);
  2663. goto out;
  2664. }
  2665. }
  2666. err = tcam_early_init(np);
  2667. if (err) {
  2668. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2669. "tcam_early_init failed, err=%d\n", err);
  2670. goto out;
  2671. }
  2672. fflp_llcsnap_enable(np, 1);
  2673. fflp_errors_enable(np, 0);
  2674. nw64(H1POLY, 0);
  2675. nw64(H2POLY, 0);
  2676. err = tcam_flush_all(np);
  2677. if (err) {
  2678. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2679. "tcam_flush_all failed, err=%d\n", err);
  2680. goto out;
  2681. }
  2682. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2683. err = fflp_hash_clear(np);
  2684. if (err) {
  2685. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2686. "fflp_hash_clear failed, err=%d\n",
  2687. err);
  2688. goto out;
  2689. }
  2690. }
  2691. vlan_tbl_clear(np);
  2692. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2693. }
  2694. out:
  2695. niu_unlock_parent(np, flags);
  2696. return err;
  2697. }
  2698. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2699. {
  2700. if (class_code < CLASS_CODE_USER_PROG1 ||
  2701. class_code > CLASS_CODE_SCTP_IPV6)
  2702. return -EINVAL;
  2703. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2704. return 0;
  2705. }
  2706. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2707. {
  2708. if (class_code < CLASS_CODE_USER_PROG1 ||
  2709. class_code > CLASS_CODE_SCTP_IPV6)
  2710. return -EINVAL;
  2711. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2712. return 0;
  2713. }
  2714. /* Entries for the ports are interleaved in the TCAM */
  2715. static u16 tcam_get_index(struct niu *np, u16 idx)
  2716. {
  2717. /* One entry reserved for IP fragment rule */
  2718. if (idx >= (np->clas.tcam_sz - 1))
  2719. idx = 0;
  2720. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2721. }
  2722. static u16 tcam_get_size(struct niu *np)
  2723. {
  2724. /* One entry reserved for IP fragment rule */
  2725. return np->clas.tcam_sz - 1;
  2726. }
  2727. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2728. {
  2729. /* One entry reserved for IP fragment rule */
  2730. return np->clas.tcam_valid_entries - 1;
  2731. }
  2732. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2733. u32 offset, u32 size)
  2734. {
  2735. int i = skb_shinfo(skb)->nr_frags;
  2736. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2737. frag->page = page;
  2738. frag->page_offset = offset;
  2739. frag->size = size;
  2740. skb->len += size;
  2741. skb->data_len += size;
  2742. skb->truesize += size;
  2743. skb_shinfo(skb)->nr_frags = i + 1;
  2744. }
  2745. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2746. {
  2747. a >>= PAGE_SHIFT;
  2748. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2749. return a & (MAX_RBR_RING_SIZE - 1);
  2750. }
  2751. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2752. struct page ***link)
  2753. {
  2754. unsigned int h = niu_hash_rxaddr(rp, addr);
  2755. struct page *p, **pp;
  2756. addr &= PAGE_MASK;
  2757. pp = &rp->rxhash[h];
  2758. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2759. if (p->index == addr) {
  2760. *link = pp;
  2761. goto found;
  2762. }
  2763. }
  2764. BUG();
  2765. found:
  2766. return p;
  2767. }
  2768. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2769. {
  2770. unsigned int h = niu_hash_rxaddr(rp, base);
  2771. page->index = base;
  2772. page->mapping = (struct address_space *) rp->rxhash[h];
  2773. rp->rxhash[h] = page;
  2774. }
  2775. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2776. gfp_t mask, int start_index)
  2777. {
  2778. struct page *page;
  2779. u64 addr;
  2780. int i;
  2781. page = alloc_page(mask);
  2782. if (!page)
  2783. return -ENOMEM;
  2784. addr = np->ops->map_page(np->device, page, 0,
  2785. PAGE_SIZE, DMA_FROM_DEVICE);
  2786. niu_hash_page(rp, page, addr);
  2787. if (rp->rbr_blocks_per_page > 1)
  2788. atomic_add(rp->rbr_blocks_per_page - 1,
  2789. &compound_head(page)->_count);
  2790. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2791. __le32 *rbr = &rp->rbr[start_index + i];
  2792. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2793. addr += rp->rbr_block_size;
  2794. }
  2795. return 0;
  2796. }
  2797. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2798. {
  2799. int index = rp->rbr_index;
  2800. rp->rbr_pending++;
  2801. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2802. int err = niu_rbr_add_page(np, rp, mask, index);
  2803. if (unlikely(err)) {
  2804. rp->rbr_pending--;
  2805. return;
  2806. }
  2807. rp->rbr_index += rp->rbr_blocks_per_page;
  2808. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2809. if (rp->rbr_index == rp->rbr_table_size)
  2810. rp->rbr_index = 0;
  2811. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2812. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2813. rp->rbr_pending = 0;
  2814. }
  2815. }
  2816. }
  2817. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2818. {
  2819. unsigned int index = rp->rcr_index;
  2820. int num_rcr = 0;
  2821. rp->rx_dropped++;
  2822. while (1) {
  2823. struct page *page, **link;
  2824. u64 addr, val;
  2825. u32 rcr_size;
  2826. num_rcr++;
  2827. val = le64_to_cpup(&rp->rcr[index]);
  2828. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2829. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2830. page = niu_find_rxpage(rp, addr, &link);
  2831. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2832. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2833. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2834. *link = (struct page *) page->mapping;
  2835. np->ops->unmap_page(np->device, page->index,
  2836. PAGE_SIZE, DMA_FROM_DEVICE);
  2837. page->index = 0;
  2838. page->mapping = NULL;
  2839. __free_page(page);
  2840. rp->rbr_refill_pending++;
  2841. }
  2842. index = NEXT_RCR(rp, index);
  2843. if (!(val & RCR_ENTRY_MULTI))
  2844. break;
  2845. }
  2846. rp->rcr_index = index;
  2847. return num_rcr;
  2848. }
  2849. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2850. struct rx_ring_info *rp)
  2851. {
  2852. unsigned int index = rp->rcr_index;
  2853. struct rx_pkt_hdr1 *rh;
  2854. struct sk_buff *skb;
  2855. int len, num_rcr;
  2856. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2857. if (unlikely(!skb))
  2858. return niu_rx_pkt_ignore(np, rp);
  2859. num_rcr = 0;
  2860. while (1) {
  2861. struct page *page, **link;
  2862. u32 rcr_size, append_size;
  2863. u64 addr, val, off;
  2864. num_rcr++;
  2865. val = le64_to_cpup(&rp->rcr[index]);
  2866. len = (val & RCR_ENTRY_L2_LEN) >>
  2867. RCR_ENTRY_L2_LEN_SHIFT;
  2868. len -= ETH_FCS_LEN;
  2869. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2870. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2871. page = niu_find_rxpage(rp, addr, &link);
  2872. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2873. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2874. off = addr & ~PAGE_MASK;
  2875. append_size = rcr_size;
  2876. if (num_rcr == 1) {
  2877. int ptype;
  2878. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2879. if ((ptype == RCR_PKT_TYPE_TCP ||
  2880. ptype == RCR_PKT_TYPE_UDP) &&
  2881. !(val & (RCR_ENTRY_NOPORT |
  2882. RCR_ENTRY_ERROR)))
  2883. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2884. else
  2885. skb_checksum_none_assert(skb);
  2886. } else if (!(val & RCR_ENTRY_MULTI))
  2887. append_size = len - skb->len;
  2888. niu_rx_skb_append(skb, page, off, append_size);
  2889. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2890. *link = (struct page *) page->mapping;
  2891. np->ops->unmap_page(np->device, page->index,
  2892. PAGE_SIZE, DMA_FROM_DEVICE);
  2893. page->index = 0;
  2894. page->mapping = NULL;
  2895. rp->rbr_refill_pending++;
  2896. } else
  2897. get_page(page);
  2898. index = NEXT_RCR(rp, index);
  2899. if (!(val & RCR_ENTRY_MULTI))
  2900. break;
  2901. }
  2902. rp->rcr_index = index;
  2903. len += sizeof(*rh);
  2904. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2905. __pskb_pull_tail(skb, len);
  2906. rh = (struct rx_pkt_hdr1 *) skb->data;
  2907. if (np->dev->features & NETIF_F_RXHASH)
  2908. skb->rxhash = ((u32)rh->hashval2_0 << 24 |
  2909. (u32)rh->hashval2_1 << 16 |
  2910. (u32)rh->hashval1_1 << 8 |
  2911. (u32)rh->hashval1_2 << 0);
  2912. skb_pull(skb, sizeof(*rh));
  2913. rp->rx_packets++;
  2914. rp->rx_bytes += skb->len;
  2915. skb->protocol = eth_type_trans(skb, np->dev);
  2916. skb_record_rx_queue(skb, rp->rx_channel);
  2917. napi_gro_receive(napi, skb);
  2918. return num_rcr;
  2919. }
  2920. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2921. {
  2922. int blocks_per_page = rp->rbr_blocks_per_page;
  2923. int err, index = rp->rbr_index;
  2924. err = 0;
  2925. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2926. err = niu_rbr_add_page(np, rp, mask, index);
  2927. if (err)
  2928. break;
  2929. index += blocks_per_page;
  2930. }
  2931. rp->rbr_index = index;
  2932. return err;
  2933. }
  2934. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2935. {
  2936. int i;
  2937. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2938. struct page *page;
  2939. page = rp->rxhash[i];
  2940. while (page) {
  2941. struct page *next = (struct page *) page->mapping;
  2942. u64 base = page->index;
  2943. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2944. DMA_FROM_DEVICE);
  2945. page->index = 0;
  2946. page->mapping = NULL;
  2947. __free_page(page);
  2948. page = next;
  2949. }
  2950. }
  2951. for (i = 0; i < rp->rbr_table_size; i++)
  2952. rp->rbr[i] = cpu_to_le32(0);
  2953. rp->rbr_index = 0;
  2954. }
  2955. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2956. {
  2957. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2958. struct sk_buff *skb = tb->skb;
  2959. struct tx_pkt_hdr *tp;
  2960. u64 tx_flags;
  2961. int i, len;
  2962. tp = (struct tx_pkt_hdr *) skb->data;
  2963. tx_flags = le64_to_cpup(&tp->flags);
  2964. rp->tx_packets++;
  2965. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2966. ((tx_flags & TXHDR_PAD) / 2));
  2967. len = skb_headlen(skb);
  2968. np->ops->unmap_single(np->device, tb->mapping,
  2969. len, DMA_TO_DEVICE);
  2970. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2971. rp->mark_pending--;
  2972. tb->skb = NULL;
  2973. do {
  2974. idx = NEXT_TX(rp, idx);
  2975. len -= MAX_TX_DESC_LEN;
  2976. } while (len > 0);
  2977. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2978. tb = &rp->tx_buffs[idx];
  2979. BUG_ON(tb->skb != NULL);
  2980. np->ops->unmap_page(np->device, tb->mapping,
  2981. skb_shinfo(skb)->frags[i].size,
  2982. DMA_TO_DEVICE);
  2983. idx = NEXT_TX(rp, idx);
  2984. }
  2985. dev_kfree_skb(skb);
  2986. return idx;
  2987. }
  2988. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2989. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2990. {
  2991. struct netdev_queue *txq;
  2992. u16 pkt_cnt, tmp;
  2993. int cons, index;
  2994. u64 cs;
  2995. index = (rp - np->tx_rings);
  2996. txq = netdev_get_tx_queue(np->dev, index);
  2997. cs = rp->tx_cs;
  2998. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2999. goto out;
  3000. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3001. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3002. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3003. rp->last_pkt_cnt = tmp;
  3004. cons = rp->cons;
  3005. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  3006. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  3007. while (pkt_cnt--)
  3008. cons = release_tx_packet(np, rp, cons);
  3009. rp->cons = cons;
  3010. smp_mb();
  3011. out:
  3012. if (unlikely(netif_tx_queue_stopped(txq) &&
  3013. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3014. __netif_tx_lock(txq, smp_processor_id());
  3015. if (netif_tx_queue_stopped(txq) &&
  3016. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3017. netif_tx_wake_queue(txq);
  3018. __netif_tx_unlock(txq);
  3019. }
  3020. }
  3021. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3022. struct rx_ring_info *rp,
  3023. const int limit)
  3024. {
  3025. /* This elaborate scheme is needed for reading the RX discard
  3026. * counters, as they are only 16-bit and can overflow quickly,
  3027. * and because the overflow indication bit is not usable as
  3028. * the counter value does not wrap, but remains at max value
  3029. * 0xFFFF.
  3030. *
  3031. * In theory and in practice counters can be lost in between
  3032. * reading nr64() and clearing the counter nw64(). For this
  3033. * reason, the number of counter clearings nw64() is
  3034. * limited/reduced though the limit parameter.
  3035. */
  3036. int rx_channel = rp->rx_channel;
  3037. u32 misc, wred;
  3038. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3039. * following discard events: IPP (Input Port Process),
  3040. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3041. * Block Ring) prefetch buffer is empty.
  3042. */
  3043. misc = nr64(RXMISC(rx_channel));
  3044. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3045. nw64(RXMISC(rx_channel), 0);
  3046. rp->rx_errors += misc & RXMISC_COUNT;
  3047. if (unlikely(misc & RXMISC_OFLOW))
  3048. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3049. rx_channel);
  3050. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3051. "rx-%d: MISC drop=%u over=%u\n",
  3052. rx_channel, misc, misc-limit);
  3053. }
  3054. /* WRED (Weighted Random Early Discard) by hardware */
  3055. wred = nr64(RED_DIS_CNT(rx_channel));
  3056. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3057. nw64(RED_DIS_CNT(rx_channel), 0);
  3058. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3059. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3060. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3061. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3062. "rx-%d: WRED drop=%u over=%u\n",
  3063. rx_channel, wred, wred-limit);
  3064. }
  3065. }
  3066. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3067. struct rx_ring_info *rp, int budget)
  3068. {
  3069. int qlen, rcr_done = 0, work_done = 0;
  3070. struct rxdma_mailbox *mbox = rp->mbox;
  3071. u64 stat;
  3072. #if 1
  3073. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3074. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3075. #else
  3076. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3077. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3078. #endif
  3079. mbox->rx_dma_ctl_stat = 0;
  3080. mbox->rcrstat_a = 0;
  3081. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3082. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3083. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3084. rcr_done = work_done = 0;
  3085. qlen = min(qlen, budget);
  3086. while (work_done < qlen) {
  3087. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3088. work_done++;
  3089. }
  3090. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3091. unsigned int i;
  3092. for (i = 0; i < rp->rbr_refill_pending; i++)
  3093. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3094. rp->rbr_refill_pending = 0;
  3095. }
  3096. stat = (RX_DMA_CTL_STAT_MEX |
  3097. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3098. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3099. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3100. /* Only sync discards stats when qlen indicate potential for drops */
  3101. if (qlen > 10)
  3102. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3103. return work_done;
  3104. }
  3105. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3106. {
  3107. u64 v0 = lp->v0;
  3108. u32 tx_vec = (v0 >> 32);
  3109. u32 rx_vec = (v0 & 0xffffffff);
  3110. int i, work_done = 0;
  3111. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3112. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3113. for (i = 0; i < np->num_tx_rings; i++) {
  3114. struct tx_ring_info *rp = &np->tx_rings[i];
  3115. if (tx_vec & (1 << rp->tx_channel))
  3116. niu_tx_work(np, rp);
  3117. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3118. }
  3119. for (i = 0; i < np->num_rx_rings; i++) {
  3120. struct rx_ring_info *rp = &np->rx_rings[i];
  3121. if (rx_vec & (1 << rp->rx_channel)) {
  3122. int this_work_done;
  3123. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3124. budget);
  3125. budget -= this_work_done;
  3126. work_done += this_work_done;
  3127. }
  3128. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3129. }
  3130. return work_done;
  3131. }
  3132. static int niu_poll(struct napi_struct *napi, int budget)
  3133. {
  3134. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3135. struct niu *np = lp->np;
  3136. int work_done;
  3137. work_done = niu_poll_core(np, lp, budget);
  3138. if (work_done < budget) {
  3139. napi_complete(napi);
  3140. niu_ldg_rearm(np, lp, 1);
  3141. }
  3142. return work_done;
  3143. }
  3144. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3145. u64 stat)
  3146. {
  3147. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3148. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3149. pr_cont("RBR_TMOUT ");
  3150. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3151. pr_cont("RSP_CNT ");
  3152. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3153. pr_cont("BYTE_EN_BUS ");
  3154. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3155. pr_cont("RSP_DAT ");
  3156. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3157. pr_cont("RCR_ACK ");
  3158. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3159. pr_cont("RCR_SHA_PAR ");
  3160. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3161. pr_cont("RBR_PRE_PAR ");
  3162. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3163. pr_cont("CONFIG ");
  3164. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3165. pr_cont("RCRINCON ");
  3166. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3167. pr_cont("RCRFULL ");
  3168. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3169. pr_cont("RBRFULL ");
  3170. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3171. pr_cont("RBRLOGPAGE ");
  3172. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3173. pr_cont("CFIGLOGPAGE ");
  3174. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3175. pr_cont("DC_FIDO ");
  3176. pr_cont(")\n");
  3177. }
  3178. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3179. {
  3180. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3181. int err = 0;
  3182. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3183. RX_DMA_CTL_STAT_PORT_FATAL))
  3184. err = -EINVAL;
  3185. if (err) {
  3186. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3187. rp->rx_channel,
  3188. (unsigned long long) stat);
  3189. niu_log_rxchan_errors(np, rp, stat);
  3190. }
  3191. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3192. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3193. return err;
  3194. }
  3195. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3196. u64 cs)
  3197. {
  3198. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3199. if (cs & TX_CS_MBOX_ERR)
  3200. pr_cont("MBOX ");
  3201. if (cs & TX_CS_PKT_SIZE_ERR)
  3202. pr_cont("PKT_SIZE ");
  3203. if (cs & TX_CS_TX_RING_OFLOW)
  3204. pr_cont("TX_RING_OFLOW ");
  3205. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3206. pr_cont("PREF_BUF_PAR ");
  3207. if (cs & TX_CS_NACK_PREF)
  3208. pr_cont("NACK_PREF ");
  3209. if (cs & TX_CS_NACK_PKT_RD)
  3210. pr_cont("NACK_PKT_RD ");
  3211. if (cs & TX_CS_CONF_PART_ERR)
  3212. pr_cont("CONF_PART ");
  3213. if (cs & TX_CS_PKT_PRT_ERR)
  3214. pr_cont("PKT_PTR ");
  3215. pr_cont(")\n");
  3216. }
  3217. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3218. {
  3219. u64 cs, logh, logl;
  3220. cs = nr64(TX_CS(rp->tx_channel));
  3221. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3222. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3223. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3224. rp->tx_channel,
  3225. (unsigned long long)cs,
  3226. (unsigned long long)logh,
  3227. (unsigned long long)logl);
  3228. niu_log_txchan_errors(np, rp, cs);
  3229. return -ENODEV;
  3230. }
  3231. static int niu_mif_interrupt(struct niu *np)
  3232. {
  3233. u64 mif_status = nr64(MIF_STATUS);
  3234. int phy_mdint = 0;
  3235. if (np->flags & NIU_FLAGS_XMAC) {
  3236. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3237. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3238. phy_mdint = 1;
  3239. }
  3240. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3241. (unsigned long long)mif_status, phy_mdint);
  3242. return -ENODEV;
  3243. }
  3244. static void niu_xmac_interrupt(struct niu *np)
  3245. {
  3246. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3247. u64 val;
  3248. val = nr64_mac(XTXMAC_STATUS);
  3249. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3250. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3251. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3252. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3253. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3254. mp->tx_fifo_errors++;
  3255. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3256. mp->tx_overflow_errors++;
  3257. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3258. mp->tx_max_pkt_size_errors++;
  3259. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3260. mp->tx_underflow_errors++;
  3261. val = nr64_mac(XRXMAC_STATUS);
  3262. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3263. mp->rx_local_faults++;
  3264. if (val & XRXMAC_STATUS_RFLT_DET)
  3265. mp->rx_remote_faults++;
  3266. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3267. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3268. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3269. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3270. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3271. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3272. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3273. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3274. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3275. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3276. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3277. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3278. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3279. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3280. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3281. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3282. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3283. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3284. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3285. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3286. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3287. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3288. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3289. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3290. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3291. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3292. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3293. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3294. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3295. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3296. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3297. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3298. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3299. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3300. if (val & XRXMAC_STATUS_RXUFLOW)
  3301. mp->rx_underflows++;
  3302. if (val & XRXMAC_STATUS_RXOFLOW)
  3303. mp->rx_overflows++;
  3304. val = nr64_mac(XMAC_FC_STAT);
  3305. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3306. mp->pause_off_state++;
  3307. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3308. mp->pause_on_state++;
  3309. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3310. mp->pause_received++;
  3311. }
  3312. static void niu_bmac_interrupt(struct niu *np)
  3313. {
  3314. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3315. u64 val;
  3316. val = nr64_mac(BTXMAC_STATUS);
  3317. if (val & BTXMAC_STATUS_UNDERRUN)
  3318. mp->tx_underflow_errors++;
  3319. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3320. mp->tx_max_pkt_size_errors++;
  3321. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3322. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3323. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3324. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3325. val = nr64_mac(BRXMAC_STATUS);
  3326. if (val & BRXMAC_STATUS_OVERFLOW)
  3327. mp->rx_overflows++;
  3328. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3329. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3330. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3331. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3332. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3333. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3334. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3335. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3336. val = nr64_mac(BMAC_CTRL_STATUS);
  3337. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3338. mp->pause_off_state++;
  3339. if (val & BMAC_CTRL_STATUS_PAUSE)
  3340. mp->pause_on_state++;
  3341. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3342. mp->pause_received++;
  3343. }
  3344. static int niu_mac_interrupt(struct niu *np)
  3345. {
  3346. if (np->flags & NIU_FLAGS_XMAC)
  3347. niu_xmac_interrupt(np);
  3348. else
  3349. niu_bmac_interrupt(np);
  3350. return 0;
  3351. }
  3352. static void niu_log_device_error(struct niu *np, u64 stat)
  3353. {
  3354. netdev_err(np->dev, "Core device errors ( ");
  3355. if (stat & SYS_ERR_MASK_META2)
  3356. pr_cont("META2 ");
  3357. if (stat & SYS_ERR_MASK_META1)
  3358. pr_cont("META1 ");
  3359. if (stat & SYS_ERR_MASK_PEU)
  3360. pr_cont("PEU ");
  3361. if (stat & SYS_ERR_MASK_TXC)
  3362. pr_cont("TXC ");
  3363. if (stat & SYS_ERR_MASK_RDMC)
  3364. pr_cont("RDMC ");
  3365. if (stat & SYS_ERR_MASK_TDMC)
  3366. pr_cont("TDMC ");
  3367. if (stat & SYS_ERR_MASK_ZCP)
  3368. pr_cont("ZCP ");
  3369. if (stat & SYS_ERR_MASK_FFLP)
  3370. pr_cont("FFLP ");
  3371. if (stat & SYS_ERR_MASK_IPP)
  3372. pr_cont("IPP ");
  3373. if (stat & SYS_ERR_MASK_MAC)
  3374. pr_cont("MAC ");
  3375. if (stat & SYS_ERR_MASK_SMX)
  3376. pr_cont("SMX ");
  3377. pr_cont(")\n");
  3378. }
  3379. static int niu_device_error(struct niu *np)
  3380. {
  3381. u64 stat = nr64(SYS_ERR_STAT);
  3382. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3383. (unsigned long long)stat);
  3384. niu_log_device_error(np, stat);
  3385. return -ENODEV;
  3386. }
  3387. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3388. u64 v0, u64 v1, u64 v2)
  3389. {
  3390. int i, err = 0;
  3391. lp->v0 = v0;
  3392. lp->v1 = v1;
  3393. lp->v2 = v2;
  3394. if (v1 & 0x00000000ffffffffULL) {
  3395. u32 rx_vec = (v1 & 0xffffffff);
  3396. for (i = 0; i < np->num_rx_rings; i++) {
  3397. struct rx_ring_info *rp = &np->rx_rings[i];
  3398. if (rx_vec & (1 << rp->rx_channel)) {
  3399. int r = niu_rx_error(np, rp);
  3400. if (r) {
  3401. err = r;
  3402. } else {
  3403. if (!v0)
  3404. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3405. RX_DMA_CTL_STAT_MEX);
  3406. }
  3407. }
  3408. }
  3409. }
  3410. if (v1 & 0x7fffffff00000000ULL) {
  3411. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3412. for (i = 0; i < np->num_tx_rings; i++) {
  3413. struct tx_ring_info *rp = &np->tx_rings[i];
  3414. if (tx_vec & (1 << rp->tx_channel)) {
  3415. int r = niu_tx_error(np, rp);
  3416. if (r)
  3417. err = r;
  3418. }
  3419. }
  3420. }
  3421. if ((v0 | v1) & 0x8000000000000000ULL) {
  3422. int r = niu_mif_interrupt(np);
  3423. if (r)
  3424. err = r;
  3425. }
  3426. if (v2) {
  3427. if (v2 & 0x01ef) {
  3428. int r = niu_mac_interrupt(np);
  3429. if (r)
  3430. err = r;
  3431. }
  3432. if (v2 & 0x0210) {
  3433. int r = niu_device_error(np);
  3434. if (r)
  3435. err = r;
  3436. }
  3437. }
  3438. if (err)
  3439. niu_enable_interrupts(np, 0);
  3440. return err;
  3441. }
  3442. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3443. int ldn)
  3444. {
  3445. struct rxdma_mailbox *mbox = rp->mbox;
  3446. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3447. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3448. RX_DMA_CTL_STAT_RCRTO);
  3449. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3450. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3451. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3452. }
  3453. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3454. int ldn)
  3455. {
  3456. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3457. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3458. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3459. }
  3460. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3461. {
  3462. struct niu_parent *parent = np->parent;
  3463. u32 rx_vec, tx_vec;
  3464. int i;
  3465. tx_vec = (v0 >> 32);
  3466. rx_vec = (v0 & 0xffffffff);
  3467. for (i = 0; i < np->num_rx_rings; i++) {
  3468. struct rx_ring_info *rp = &np->rx_rings[i];
  3469. int ldn = LDN_RXDMA(rp->rx_channel);
  3470. if (parent->ldg_map[ldn] != ldg)
  3471. continue;
  3472. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3473. if (rx_vec & (1 << rp->rx_channel))
  3474. niu_rxchan_intr(np, rp, ldn);
  3475. }
  3476. for (i = 0; i < np->num_tx_rings; i++) {
  3477. struct tx_ring_info *rp = &np->tx_rings[i];
  3478. int ldn = LDN_TXDMA(rp->tx_channel);
  3479. if (parent->ldg_map[ldn] != ldg)
  3480. continue;
  3481. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3482. if (tx_vec & (1 << rp->tx_channel))
  3483. niu_txchan_intr(np, rp, ldn);
  3484. }
  3485. }
  3486. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3487. u64 v0, u64 v1, u64 v2)
  3488. {
  3489. if (likely(napi_schedule_prep(&lp->napi))) {
  3490. lp->v0 = v0;
  3491. lp->v1 = v1;
  3492. lp->v2 = v2;
  3493. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3494. __napi_schedule(&lp->napi);
  3495. }
  3496. }
  3497. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3498. {
  3499. struct niu_ldg *lp = dev_id;
  3500. struct niu *np = lp->np;
  3501. int ldg = lp->ldg_num;
  3502. unsigned long flags;
  3503. u64 v0, v1, v2;
  3504. if (netif_msg_intr(np))
  3505. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3506. __func__, lp, ldg);
  3507. spin_lock_irqsave(&np->lock, flags);
  3508. v0 = nr64(LDSV0(ldg));
  3509. v1 = nr64(LDSV1(ldg));
  3510. v2 = nr64(LDSV2(ldg));
  3511. if (netif_msg_intr(np))
  3512. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3513. (unsigned long long) v0,
  3514. (unsigned long long) v1,
  3515. (unsigned long long) v2);
  3516. if (unlikely(!v0 && !v1 && !v2)) {
  3517. spin_unlock_irqrestore(&np->lock, flags);
  3518. return IRQ_NONE;
  3519. }
  3520. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3521. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3522. if (err)
  3523. goto out;
  3524. }
  3525. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3526. niu_schedule_napi(np, lp, v0, v1, v2);
  3527. else
  3528. niu_ldg_rearm(np, lp, 1);
  3529. out:
  3530. spin_unlock_irqrestore(&np->lock, flags);
  3531. return IRQ_HANDLED;
  3532. }
  3533. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3534. {
  3535. if (rp->mbox) {
  3536. np->ops->free_coherent(np->device,
  3537. sizeof(struct rxdma_mailbox),
  3538. rp->mbox, rp->mbox_dma);
  3539. rp->mbox = NULL;
  3540. }
  3541. if (rp->rcr) {
  3542. np->ops->free_coherent(np->device,
  3543. MAX_RCR_RING_SIZE * sizeof(__le64),
  3544. rp->rcr, rp->rcr_dma);
  3545. rp->rcr = NULL;
  3546. rp->rcr_table_size = 0;
  3547. rp->rcr_index = 0;
  3548. }
  3549. if (rp->rbr) {
  3550. niu_rbr_free(np, rp);
  3551. np->ops->free_coherent(np->device,
  3552. MAX_RBR_RING_SIZE * sizeof(__le32),
  3553. rp->rbr, rp->rbr_dma);
  3554. rp->rbr = NULL;
  3555. rp->rbr_table_size = 0;
  3556. rp->rbr_index = 0;
  3557. }
  3558. kfree(rp->rxhash);
  3559. rp->rxhash = NULL;
  3560. }
  3561. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3562. {
  3563. if (rp->mbox) {
  3564. np->ops->free_coherent(np->device,
  3565. sizeof(struct txdma_mailbox),
  3566. rp->mbox, rp->mbox_dma);
  3567. rp->mbox = NULL;
  3568. }
  3569. if (rp->descr) {
  3570. int i;
  3571. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3572. if (rp->tx_buffs[i].skb)
  3573. (void) release_tx_packet(np, rp, i);
  3574. }
  3575. np->ops->free_coherent(np->device,
  3576. MAX_TX_RING_SIZE * sizeof(__le64),
  3577. rp->descr, rp->descr_dma);
  3578. rp->descr = NULL;
  3579. rp->pending = 0;
  3580. rp->prod = 0;
  3581. rp->cons = 0;
  3582. rp->wrap_bit = 0;
  3583. }
  3584. }
  3585. static void niu_free_channels(struct niu *np)
  3586. {
  3587. int i;
  3588. if (np->rx_rings) {
  3589. for (i = 0; i < np->num_rx_rings; i++) {
  3590. struct rx_ring_info *rp = &np->rx_rings[i];
  3591. niu_free_rx_ring_info(np, rp);
  3592. }
  3593. kfree(np->rx_rings);
  3594. np->rx_rings = NULL;
  3595. np->num_rx_rings = 0;
  3596. }
  3597. if (np->tx_rings) {
  3598. for (i = 0; i < np->num_tx_rings; i++) {
  3599. struct tx_ring_info *rp = &np->tx_rings[i];
  3600. niu_free_tx_ring_info(np, rp);
  3601. }
  3602. kfree(np->tx_rings);
  3603. np->tx_rings = NULL;
  3604. np->num_tx_rings = 0;
  3605. }
  3606. }
  3607. static int niu_alloc_rx_ring_info(struct niu *np,
  3608. struct rx_ring_info *rp)
  3609. {
  3610. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3611. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3612. GFP_KERNEL);
  3613. if (!rp->rxhash)
  3614. return -ENOMEM;
  3615. rp->mbox = np->ops->alloc_coherent(np->device,
  3616. sizeof(struct rxdma_mailbox),
  3617. &rp->mbox_dma, GFP_KERNEL);
  3618. if (!rp->mbox)
  3619. return -ENOMEM;
  3620. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3621. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3622. rp->mbox);
  3623. return -EINVAL;
  3624. }
  3625. rp->rcr = np->ops->alloc_coherent(np->device,
  3626. MAX_RCR_RING_SIZE * sizeof(__le64),
  3627. &rp->rcr_dma, GFP_KERNEL);
  3628. if (!rp->rcr)
  3629. return -ENOMEM;
  3630. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3631. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3632. rp->rcr);
  3633. return -EINVAL;
  3634. }
  3635. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3636. rp->rcr_index = 0;
  3637. rp->rbr = np->ops->alloc_coherent(np->device,
  3638. MAX_RBR_RING_SIZE * sizeof(__le32),
  3639. &rp->rbr_dma, GFP_KERNEL);
  3640. if (!rp->rbr)
  3641. return -ENOMEM;
  3642. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3643. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3644. rp->rbr);
  3645. return -EINVAL;
  3646. }
  3647. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3648. rp->rbr_index = 0;
  3649. rp->rbr_pending = 0;
  3650. return 0;
  3651. }
  3652. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3653. {
  3654. int mtu = np->dev->mtu;
  3655. /* These values are recommended by the HW designers for fair
  3656. * utilization of DRR amongst the rings.
  3657. */
  3658. rp->max_burst = mtu + 32;
  3659. if (rp->max_burst > 4096)
  3660. rp->max_burst = 4096;
  3661. }
  3662. static int niu_alloc_tx_ring_info(struct niu *np,
  3663. struct tx_ring_info *rp)
  3664. {
  3665. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3666. rp->mbox = np->ops->alloc_coherent(np->device,
  3667. sizeof(struct txdma_mailbox),
  3668. &rp->mbox_dma, GFP_KERNEL);
  3669. if (!rp->mbox)
  3670. return -ENOMEM;
  3671. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3672. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3673. rp->mbox);
  3674. return -EINVAL;
  3675. }
  3676. rp->descr = np->ops->alloc_coherent(np->device,
  3677. MAX_TX_RING_SIZE * sizeof(__le64),
  3678. &rp->descr_dma, GFP_KERNEL);
  3679. if (!rp->descr)
  3680. return -ENOMEM;
  3681. if ((unsigned long)rp->descr & (64UL - 1)) {
  3682. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3683. rp->descr);
  3684. return -EINVAL;
  3685. }
  3686. rp->pending = MAX_TX_RING_SIZE;
  3687. rp->prod = 0;
  3688. rp->cons = 0;
  3689. rp->wrap_bit = 0;
  3690. /* XXX make these configurable... XXX */
  3691. rp->mark_freq = rp->pending / 4;
  3692. niu_set_max_burst(np, rp);
  3693. return 0;
  3694. }
  3695. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3696. {
  3697. u16 bss;
  3698. bss = min(PAGE_SHIFT, 15);
  3699. rp->rbr_block_size = 1 << bss;
  3700. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3701. rp->rbr_sizes[0] = 256;
  3702. rp->rbr_sizes[1] = 1024;
  3703. if (np->dev->mtu > ETH_DATA_LEN) {
  3704. switch (PAGE_SIZE) {
  3705. case 4 * 1024:
  3706. rp->rbr_sizes[2] = 4096;
  3707. break;
  3708. default:
  3709. rp->rbr_sizes[2] = 8192;
  3710. break;
  3711. }
  3712. } else {
  3713. rp->rbr_sizes[2] = 2048;
  3714. }
  3715. rp->rbr_sizes[3] = rp->rbr_block_size;
  3716. }
  3717. static int niu_alloc_channels(struct niu *np)
  3718. {
  3719. struct niu_parent *parent = np->parent;
  3720. int first_rx_channel, first_tx_channel;
  3721. int num_rx_rings, num_tx_rings;
  3722. struct rx_ring_info *rx_rings;
  3723. struct tx_ring_info *tx_rings;
  3724. int i, port, err;
  3725. port = np->port;
  3726. first_rx_channel = first_tx_channel = 0;
  3727. for (i = 0; i < port; i++) {
  3728. first_rx_channel += parent->rxchan_per_port[i];
  3729. first_tx_channel += parent->txchan_per_port[i];
  3730. }
  3731. num_rx_rings = parent->rxchan_per_port[port];
  3732. num_tx_rings = parent->txchan_per_port[port];
  3733. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3734. GFP_KERNEL);
  3735. err = -ENOMEM;
  3736. if (!rx_rings)
  3737. goto out_err;
  3738. np->num_rx_rings = num_rx_rings;
  3739. smp_wmb();
  3740. np->rx_rings = rx_rings;
  3741. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3742. for (i = 0; i < np->num_rx_rings; i++) {
  3743. struct rx_ring_info *rp = &np->rx_rings[i];
  3744. rp->np = np;
  3745. rp->rx_channel = first_rx_channel + i;
  3746. err = niu_alloc_rx_ring_info(np, rp);
  3747. if (err)
  3748. goto out_err;
  3749. niu_size_rbr(np, rp);
  3750. /* XXX better defaults, configurable, etc... XXX */
  3751. rp->nonsyn_window = 64;
  3752. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3753. rp->syn_window = 64;
  3754. rp->syn_threshold = rp->rcr_table_size - 64;
  3755. rp->rcr_pkt_threshold = 16;
  3756. rp->rcr_timeout = 8;
  3757. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3758. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3759. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3760. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3761. if (err)
  3762. return err;
  3763. }
  3764. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3765. GFP_KERNEL);
  3766. err = -ENOMEM;
  3767. if (!tx_rings)
  3768. goto out_err;
  3769. np->num_tx_rings = num_tx_rings;
  3770. smp_wmb();
  3771. np->tx_rings = tx_rings;
  3772. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3773. for (i = 0; i < np->num_tx_rings; i++) {
  3774. struct tx_ring_info *rp = &np->tx_rings[i];
  3775. rp->np = np;
  3776. rp->tx_channel = first_tx_channel + i;
  3777. err = niu_alloc_tx_ring_info(np, rp);
  3778. if (err)
  3779. goto out_err;
  3780. }
  3781. return 0;
  3782. out_err:
  3783. niu_free_channels(np);
  3784. return err;
  3785. }
  3786. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3787. {
  3788. int limit = 1000;
  3789. while (--limit > 0) {
  3790. u64 val = nr64(TX_CS(channel));
  3791. if (val & TX_CS_SNG_STATE)
  3792. return 0;
  3793. }
  3794. return -ENODEV;
  3795. }
  3796. static int niu_tx_channel_stop(struct niu *np, int channel)
  3797. {
  3798. u64 val = nr64(TX_CS(channel));
  3799. val |= TX_CS_STOP_N_GO;
  3800. nw64(TX_CS(channel), val);
  3801. return niu_tx_cs_sng_poll(np, channel);
  3802. }
  3803. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3804. {
  3805. int limit = 1000;
  3806. while (--limit > 0) {
  3807. u64 val = nr64(TX_CS(channel));
  3808. if (!(val & TX_CS_RST))
  3809. return 0;
  3810. }
  3811. return -ENODEV;
  3812. }
  3813. static int niu_tx_channel_reset(struct niu *np, int channel)
  3814. {
  3815. u64 val = nr64(TX_CS(channel));
  3816. int err;
  3817. val |= TX_CS_RST;
  3818. nw64(TX_CS(channel), val);
  3819. err = niu_tx_cs_reset_poll(np, channel);
  3820. if (!err)
  3821. nw64(TX_RING_KICK(channel), 0);
  3822. return err;
  3823. }
  3824. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3825. {
  3826. u64 val;
  3827. nw64(TX_LOG_MASK1(channel), 0);
  3828. nw64(TX_LOG_VAL1(channel), 0);
  3829. nw64(TX_LOG_MASK2(channel), 0);
  3830. nw64(TX_LOG_VAL2(channel), 0);
  3831. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3832. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3833. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3834. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3835. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3836. nw64(TX_LOG_PAGE_VLD(channel), val);
  3837. /* XXX TXDMA 32bit mode? XXX */
  3838. return 0;
  3839. }
  3840. static void niu_txc_enable_port(struct niu *np, int on)
  3841. {
  3842. unsigned long flags;
  3843. u64 val, mask;
  3844. niu_lock_parent(np, flags);
  3845. val = nr64(TXC_CONTROL);
  3846. mask = (u64)1 << np->port;
  3847. if (on) {
  3848. val |= TXC_CONTROL_ENABLE | mask;
  3849. } else {
  3850. val &= ~mask;
  3851. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3852. val &= ~TXC_CONTROL_ENABLE;
  3853. }
  3854. nw64(TXC_CONTROL, val);
  3855. niu_unlock_parent(np, flags);
  3856. }
  3857. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3858. {
  3859. unsigned long flags;
  3860. u64 val;
  3861. niu_lock_parent(np, flags);
  3862. val = nr64(TXC_INT_MASK);
  3863. val &= ~TXC_INT_MASK_VAL(np->port);
  3864. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3865. niu_unlock_parent(np, flags);
  3866. }
  3867. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3868. {
  3869. u64 val = 0;
  3870. if (on) {
  3871. int i;
  3872. for (i = 0; i < np->num_tx_rings; i++)
  3873. val |= (1 << np->tx_rings[i].tx_channel);
  3874. }
  3875. nw64(TXC_PORT_DMA(np->port), val);
  3876. }
  3877. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3878. {
  3879. int err, channel = rp->tx_channel;
  3880. u64 val, ring_len;
  3881. err = niu_tx_channel_stop(np, channel);
  3882. if (err)
  3883. return err;
  3884. err = niu_tx_channel_reset(np, channel);
  3885. if (err)
  3886. return err;
  3887. err = niu_tx_channel_lpage_init(np, channel);
  3888. if (err)
  3889. return err;
  3890. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3891. nw64(TX_ENT_MSK(channel), 0);
  3892. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3893. TX_RNG_CFIG_STADDR)) {
  3894. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3895. channel, (unsigned long long)rp->descr_dma);
  3896. return -EINVAL;
  3897. }
  3898. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3899. * blocks. rp->pending is the number of TX descriptors in
  3900. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3901. * to get the proper value the chip wants.
  3902. */
  3903. ring_len = (rp->pending / 8);
  3904. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3905. rp->descr_dma);
  3906. nw64(TX_RNG_CFIG(channel), val);
  3907. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3908. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3909. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3910. channel, (unsigned long long)rp->mbox_dma);
  3911. return -EINVAL;
  3912. }
  3913. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3914. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3915. nw64(TX_CS(channel), 0);
  3916. rp->last_pkt_cnt = 0;
  3917. return 0;
  3918. }
  3919. static void niu_init_rdc_groups(struct niu *np)
  3920. {
  3921. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3922. int i, first_table_num = tp->first_table_num;
  3923. for (i = 0; i < tp->num_tables; i++) {
  3924. struct rdc_table *tbl = &tp->tables[i];
  3925. int this_table = first_table_num + i;
  3926. int slot;
  3927. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3928. nw64(RDC_TBL(this_table, slot),
  3929. tbl->rxdma_channel[slot]);
  3930. }
  3931. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3932. }
  3933. static void niu_init_drr_weight(struct niu *np)
  3934. {
  3935. int type = phy_decode(np->parent->port_phy, np->port);
  3936. u64 val;
  3937. switch (type) {
  3938. case PORT_TYPE_10G:
  3939. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3940. break;
  3941. case PORT_TYPE_1G:
  3942. default:
  3943. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3944. break;
  3945. }
  3946. nw64(PT_DRR_WT(np->port), val);
  3947. }
  3948. static int niu_init_hostinfo(struct niu *np)
  3949. {
  3950. struct niu_parent *parent = np->parent;
  3951. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3952. int i, err, num_alt = niu_num_alt_addr(np);
  3953. int first_rdc_table = tp->first_table_num;
  3954. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3955. if (err)
  3956. return err;
  3957. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3958. if (err)
  3959. return err;
  3960. for (i = 0; i < num_alt; i++) {
  3961. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3962. if (err)
  3963. return err;
  3964. }
  3965. return 0;
  3966. }
  3967. static int niu_rx_channel_reset(struct niu *np, int channel)
  3968. {
  3969. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3970. RXDMA_CFIG1_RST, 1000, 10,
  3971. "RXDMA_CFIG1");
  3972. }
  3973. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3974. {
  3975. u64 val;
  3976. nw64(RX_LOG_MASK1(channel), 0);
  3977. nw64(RX_LOG_VAL1(channel), 0);
  3978. nw64(RX_LOG_MASK2(channel), 0);
  3979. nw64(RX_LOG_VAL2(channel), 0);
  3980. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3981. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3982. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3983. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3984. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3985. nw64(RX_LOG_PAGE_VLD(channel), val);
  3986. return 0;
  3987. }
  3988. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3989. {
  3990. u64 val;
  3991. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3992. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3993. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3994. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3995. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3996. }
  3997. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3998. {
  3999. u64 val = 0;
  4000. *ret = 0;
  4001. switch (rp->rbr_block_size) {
  4002. case 4 * 1024:
  4003. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4004. break;
  4005. case 8 * 1024:
  4006. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4007. break;
  4008. case 16 * 1024:
  4009. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4010. break;
  4011. case 32 * 1024:
  4012. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4013. break;
  4014. default:
  4015. return -EINVAL;
  4016. }
  4017. val |= RBR_CFIG_B_VLD2;
  4018. switch (rp->rbr_sizes[2]) {
  4019. case 2 * 1024:
  4020. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4021. break;
  4022. case 4 * 1024:
  4023. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4024. break;
  4025. case 8 * 1024:
  4026. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4027. break;
  4028. case 16 * 1024:
  4029. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4030. break;
  4031. default:
  4032. return -EINVAL;
  4033. }
  4034. val |= RBR_CFIG_B_VLD1;
  4035. switch (rp->rbr_sizes[1]) {
  4036. case 1 * 1024:
  4037. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4038. break;
  4039. case 2 * 1024:
  4040. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4041. break;
  4042. case 4 * 1024:
  4043. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4044. break;
  4045. case 8 * 1024:
  4046. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4047. break;
  4048. default:
  4049. return -EINVAL;
  4050. }
  4051. val |= RBR_CFIG_B_VLD0;
  4052. switch (rp->rbr_sizes[0]) {
  4053. case 256:
  4054. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4055. break;
  4056. case 512:
  4057. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4058. break;
  4059. case 1 * 1024:
  4060. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4061. break;
  4062. case 2 * 1024:
  4063. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4064. break;
  4065. default:
  4066. return -EINVAL;
  4067. }
  4068. *ret = val;
  4069. return 0;
  4070. }
  4071. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4072. {
  4073. u64 val = nr64(RXDMA_CFIG1(channel));
  4074. int limit;
  4075. if (on)
  4076. val |= RXDMA_CFIG1_EN;
  4077. else
  4078. val &= ~RXDMA_CFIG1_EN;
  4079. nw64(RXDMA_CFIG1(channel), val);
  4080. limit = 1000;
  4081. while (--limit > 0) {
  4082. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4083. break;
  4084. udelay(10);
  4085. }
  4086. if (limit <= 0)
  4087. return -ENODEV;
  4088. return 0;
  4089. }
  4090. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4091. {
  4092. int err, channel = rp->rx_channel;
  4093. u64 val;
  4094. err = niu_rx_channel_reset(np, channel);
  4095. if (err)
  4096. return err;
  4097. err = niu_rx_channel_lpage_init(np, channel);
  4098. if (err)
  4099. return err;
  4100. niu_rx_channel_wred_init(np, rp);
  4101. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4102. nw64(RX_DMA_CTL_STAT(channel),
  4103. (RX_DMA_CTL_STAT_MEX |
  4104. RX_DMA_CTL_STAT_RCRTHRES |
  4105. RX_DMA_CTL_STAT_RCRTO |
  4106. RX_DMA_CTL_STAT_RBR_EMPTY));
  4107. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4108. nw64(RXDMA_CFIG2(channel),
  4109. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4110. RXDMA_CFIG2_FULL_HDR));
  4111. nw64(RBR_CFIG_A(channel),
  4112. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4113. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4114. err = niu_compute_rbr_cfig_b(rp, &val);
  4115. if (err)
  4116. return err;
  4117. nw64(RBR_CFIG_B(channel), val);
  4118. nw64(RCRCFIG_A(channel),
  4119. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4120. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4121. nw64(RCRCFIG_B(channel),
  4122. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4123. RCRCFIG_B_ENTOUT |
  4124. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4125. err = niu_enable_rx_channel(np, channel, 1);
  4126. if (err)
  4127. return err;
  4128. nw64(RBR_KICK(channel), rp->rbr_index);
  4129. val = nr64(RX_DMA_CTL_STAT(channel));
  4130. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4131. nw64(RX_DMA_CTL_STAT(channel), val);
  4132. return 0;
  4133. }
  4134. static int niu_init_rx_channels(struct niu *np)
  4135. {
  4136. unsigned long flags;
  4137. u64 seed = jiffies_64;
  4138. int err, i;
  4139. niu_lock_parent(np, flags);
  4140. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4141. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4142. niu_unlock_parent(np, flags);
  4143. /* XXX RXDMA 32bit mode? XXX */
  4144. niu_init_rdc_groups(np);
  4145. niu_init_drr_weight(np);
  4146. err = niu_init_hostinfo(np);
  4147. if (err)
  4148. return err;
  4149. for (i = 0; i < np->num_rx_rings; i++) {
  4150. struct rx_ring_info *rp = &np->rx_rings[i];
  4151. err = niu_init_one_rx_channel(np, rp);
  4152. if (err)
  4153. return err;
  4154. }
  4155. return 0;
  4156. }
  4157. static int niu_set_ip_frag_rule(struct niu *np)
  4158. {
  4159. struct niu_parent *parent = np->parent;
  4160. struct niu_classifier *cp = &np->clas;
  4161. struct niu_tcam_entry *tp;
  4162. int index, err;
  4163. index = cp->tcam_top;
  4164. tp = &parent->tcam[index];
  4165. /* Note that the noport bit is the same in both ipv4 and
  4166. * ipv6 format TCAM entries.
  4167. */
  4168. memset(tp, 0, sizeof(*tp));
  4169. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4170. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4171. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4172. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4173. err = tcam_write(np, index, tp->key, tp->key_mask);
  4174. if (err)
  4175. return err;
  4176. err = tcam_assoc_write(np, index, tp->assoc_data);
  4177. if (err)
  4178. return err;
  4179. tp->valid = 1;
  4180. cp->tcam_valid_entries++;
  4181. return 0;
  4182. }
  4183. static int niu_init_classifier_hw(struct niu *np)
  4184. {
  4185. struct niu_parent *parent = np->parent;
  4186. struct niu_classifier *cp = &np->clas;
  4187. int i, err;
  4188. nw64(H1POLY, cp->h1_init);
  4189. nw64(H2POLY, cp->h2_init);
  4190. err = niu_init_hostinfo(np);
  4191. if (err)
  4192. return err;
  4193. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4194. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4195. vlan_tbl_write(np, i, np->port,
  4196. vp->vlan_pref, vp->rdc_num);
  4197. }
  4198. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4199. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4200. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4201. ap->rdc_num, ap->mac_pref);
  4202. if (err)
  4203. return err;
  4204. }
  4205. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4206. int index = i - CLASS_CODE_USER_PROG1;
  4207. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4208. if (err)
  4209. return err;
  4210. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4211. if (err)
  4212. return err;
  4213. }
  4214. err = niu_set_ip_frag_rule(np);
  4215. if (err)
  4216. return err;
  4217. tcam_enable(np, 1);
  4218. return 0;
  4219. }
  4220. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4221. {
  4222. nw64(ZCP_RAM_DATA0, data[0]);
  4223. nw64(ZCP_RAM_DATA1, data[1]);
  4224. nw64(ZCP_RAM_DATA2, data[2]);
  4225. nw64(ZCP_RAM_DATA3, data[3]);
  4226. nw64(ZCP_RAM_DATA4, data[4]);
  4227. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4228. nw64(ZCP_RAM_ACC,
  4229. (ZCP_RAM_ACC_WRITE |
  4230. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4231. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4232. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4233. 1000, 100);
  4234. }
  4235. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4236. {
  4237. int err;
  4238. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4239. 1000, 100);
  4240. if (err) {
  4241. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4242. (unsigned long long)nr64(ZCP_RAM_ACC));
  4243. return err;
  4244. }
  4245. nw64(ZCP_RAM_ACC,
  4246. (ZCP_RAM_ACC_READ |
  4247. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4248. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4249. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4250. 1000, 100);
  4251. if (err) {
  4252. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4253. (unsigned long long)nr64(ZCP_RAM_ACC));
  4254. return err;
  4255. }
  4256. data[0] = nr64(ZCP_RAM_DATA0);
  4257. data[1] = nr64(ZCP_RAM_DATA1);
  4258. data[2] = nr64(ZCP_RAM_DATA2);
  4259. data[3] = nr64(ZCP_RAM_DATA3);
  4260. data[4] = nr64(ZCP_RAM_DATA4);
  4261. return 0;
  4262. }
  4263. static void niu_zcp_cfifo_reset(struct niu *np)
  4264. {
  4265. u64 val = nr64(RESET_CFIFO);
  4266. val |= RESET_CFIFO_RST(np->port);
  4267. nw64(RESET_CFIFO, val);
  4268. udelay(10);
  4269. val &= ~RESET_CFIFO_RST(np->port);
  4270. nw64(RESET_CFIFO, val);
  4271. }
  4272. static int niu_init_zcp(struct niu *np)
  4273. {
  4274. u64 data[5], rbuf[5];
  4275. int i, max, err;
  4276. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4277. if (np->port == 0 || np->port == 1)
  4278. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4279. else
  4280. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4281. } else
  4282. max = NIU_CFIFO_ENTRIES;
  4283. data[0] = 0;
  4284. data[1] = 0;
  4285. data[2] = 0;
  4286. data[3] = 0;
  4287. data[4] = 0;
  4288. for (i = 0; i < max; i++) {
  4289. err = niu_zcp_write(np, i, data);
  4290. if (err)
  4291. return err;
  4292. err = niu_zcp_read(np, i, rbuf);
  4293. if (err)
  4294. return err;
  4295. }
  4296. niu_zcp_cfifo_reset(np);
  4297. nw64(CFIFO_ECC(np->port), 0);
  4298. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4299. (void) nr64(ZCP_INT_STAT);
  4300. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4301. return 0;
  4302. }
  4303. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4304. {
  4305. u64 val = nr64_ipp(IPP_CFIG);
  4306. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4307. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4308. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4309. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4310. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4311. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4312. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4313. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4314. }
  4315. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4316. {
  4317. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4318. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4319. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4320. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4321. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4322. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4323. }
  4324. static int niu_ipp_reset(struct niu *np)
  4325. {
  4326. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4327. 1000, 100, "IPP_CFIG");
  4328. }
  4329. static int niu_init_ipp(struct niu *np)
  4330. {
  4331. u64 data[5], rbuf[5], val;
  4332. int i, max, err;
  4333. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4334. if (np->port == 0 || np->port == 1)
  4335. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4336. else
  4337. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4338. } else
  4339. max = NIU_DFIFO_ENTRIES;
  4340. data[0] = 0;
  4341. data[1] = 0;
  4342. data[2] = 0;
  4343. data[3] = 0;
  4344. data[4] = 0;
  4345. for (i = 0; i < max; i++) {
  4346. niu_ipp_write(np, i, data);
  4347. niu_ipp_read(np, i, rbuf);
  4348. }
  4349. (void) nr64_ipp(IPP_INT_STAT);
  4350. (void) nr64_ipp(IPP_INT_STAT);
  4351. err = niu_ipp_reset(np);
  4352. if (err)
  4353. return err;
  4354. (void) nr64_ipp(IPP_PKT_DIS);
  4355. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4356. (void) nr64_ipp(IPP_ECC);
  4357. (void) nr64_ipp(IPP_INT_STAT);
  4358. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4359. val = nr64_ipp(IPP_CFIG);
  4360. val &= ~IPP_CFIG_IP_MAX_PKT;
  4361. val |= (IPP_CFIG_IPP_ENABLE |
  4362. IPP_CFIG_DFIFO_ECC_EN |
  4363. IPP_CFIG_DROP_BAD_CRC |
  4364. IPP_CFIG_CKSUM_EN |
  4365. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4366. nw64_ipp(IPP_CFIG, val);
  4367. return 0;
  4368. }
  4369. static void niu_handle_led(struct niu *np, int status)
  4370. {
  4371. u64 val;
  4372. val = nr64_mac(XMAC_CONFIG);
  4373. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4374. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4375. if (status) {
  4376. val |= XMAC_CONFIG_LED_POLARITY;
  4377. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4378. } else {
  4379. val |= XMAC_CONFIG_FORCE_LED_ON;
  4380. val &= ~XMAC_CONFIG_LED_POLARITY;
  4381. }
  4382. }
  4383. nw64_mac(XMAC_CONFIG, val);
  4384. }
  4385. static void niu_init_xif_xmac(struct niu *np)
  4386. {
  4387. struct niu_link_config *lp = &np->link_config;
  4388. u64 val;
  4389. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4390. val = nr64(MIF_CONFIG);
  4391. val |= MIF_CONFIG_ATCA_GE;
  4392. nw64(MIF_CONFIG, val);
  4393. }
  4394. val = nr64_mac(XMAC_CONFIG);
  4395. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4396. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4397. if (lp->loopback_mode == LOOPBACK_MAC) {
  4398. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4399. val |= XMAC_CONFIG_LOOPBACK;
  4400. } else {
  4401. val &= ~XMAC_CONFIG_LOOPBACK;
  4402. }
  4403. if (np->flags & NIU_FLAGS_10G) {
  4404. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4405. } else {
  4406. val |= XMAC_CONFIG_LFS_DISABLE;
  4407. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4408. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4409. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4410. else
  4411. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4412. }
  4413. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4414. if (lp->active_speed == SPEED_100)
  4415. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4416. else
  4417. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4418. nw64_mac(XMAC_CONFIG, val);
  4419. val = nr64_mac(XMAC_CONFIG);
  4420. val &= ~XMAC_CONFIG_MODE_MASK;
  4421. if (np->flags & NIU_FLAGS_10G) {
  4422. val |= XMAC_CONFIG_MODE_XGMII;
  4423. } else {
  4424. if (lp->active_speed == SPEED_1000)
  4425. val |= XMAC_CONFIG_MODE_GMII;
  4426. else
  4427. val |= XMAC_CONFIG_MODE_MII;
  4428. }
  4429. nw64_mac(XMAC_CONFIG, val);
  4430. }
  4431. static void niu_init_xif_bmac(struct niu *np)
  4432. {
  4433. struct niu_link_config *lp = &np->link_config;
  4434. u64 val;
  4435. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4436. if (lp->loopback_mode == LOOPBACK_MAC)
  4437. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4438. else
  4439. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4440. if (lp->active_speed == SPEED_1000)
  4441. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4442. else
  4443. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4444. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4445. BMAC_XIF_CONFIG_LED_POLARITY);
  4446. if (!(np->flags & NIU_FLAGS_10G) &&
  4447. !(np->flags & NIU_FLAGS_FIBER) &&
  4448. lp->active_speed == SPEED_100)
  4449. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4450. else
  4451. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4452. nw64_mac(BMAC_XIF_CONFIG, val);
  4453. }
  4454. static void niu_init_xif(struct niu *np)
  4455. {
  4456. if (np->flags & NIU_FLAGS_XMAC)
  4457. niu_init_xif_xmac(np);
  4458. else
  4459. niu_init_xif_bmac(np);
  4460. }
  4461. static void niu_pcs_mii_reset(struct niu *np)
  4462. {
  4463. int limit = 1000;
  4464. u64 val = nr64_pcs(PCS_MII_CTL);
  4465. val |= PCS_MII_CTL_RST;
  4466. nw64_pcs(PCS_MII_CTL, val);
  4467. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4468. udelay(100);
  4469. val = nr64_pcs(PCS_MII_CTL);
  4470. }
  4471. }
  4472. static void niu_xpcs_reset(struct niu *np)
  4473. {
  4474. int limit = 1000;
  4475. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4476. val |= XPCS_CONTROL1_RESET;
  4477. nw64_xpcs(XPCS_CONTROL1, val);
  4478. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4479. udelay(100);
  4480. val = nr64_xpcs(XPCS_CONTROL1);
  4481. }
  4482. }
  4483. static int niu_init_pcs(struct niu *np)
  4484. {
  4485. struct niu_link_config *lp = &np->link_config;
  4486. u64 val;
  4487. switch (np->flags & (NIU_FLAGS_10G |
  4488. NIU_FLAGS_FIBER |
  4489. NIU_FLAGS_XCVR_SERDES)) {
  4490. case NIU_FLAGS_FIBER:
  4491. /* 1G fiber */
  4492. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4493. nw64_pcs(PCS_DPATH_MODE, 0);
  4494. niu_pcs_mii_reset(np);
  4495. break;
  4496. case NIU_FLAGS_10G:
  4497. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4498. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4499. /* 10G SERDES */
  4500. if (!(np->flags & NIU_FLAGS_XMAC))
  4501. return -EINVAL;
  4502. /* 10G copper or fiber */
  4503. val = nr64_mac(XMAC_CONFIG);
  4504. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4505. nw64_mac(XMAC_CONFIG, val);
  4506. niu_xpcs_reset(np);
  4507. val = nr64_xpcs(XPCS_CONTROL1);
  4508. if (lp->loopback_mode == LOOPBACK_PHY)
  4509. val |= XPCS_CONTROL1_LOOPBACK;
  4510. else
  4511. val &= ~XPCS_CONTROL1_LOOPBACK;
  4512. nw64_xpcs(XPCS_CONTROL1, val);
  4513. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4514. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4515. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4516. break;
  4517. case NIU_FLAGS_XCVR_SERDES:
  4518. /* 1G SERDES */
  4519. niu_pcs_mii_reset(np);
  4520. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4521. nw64_pcs(PCS_DPATH_MODE, 0);
  4522. break;
  4523. case 0:
  4524. /* 1G copper */
  4525. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4526. /* 1G RGMII FIBER */
  4527. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4528. niu_pcs_mii_reset(np);
  4529. break;
  4530. default:
  4531. return -EINVAL;
  4532. }
  4533. return 0;
  4534. }
  4535. static int niu_reset_tx_xmac(struct niu *np)
  4536. {
  4537. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4538. (XTXMAC_SW_RST_REG_RS |
  4539. XTXMAC_SW_RST_SOFT_RST),
  4540. 1000, 100, "XTXMAC_SW_RST");
  4541. }
  4542. static int niu_reset_tx_bmac(struct niu *np)
  4543. {
  4544. int limit;
  4545. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4546. limit = 1000;
  4547. while (--limit >= 0) {
  4548. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4549. break;
  4550. udelay(100);
  4551. }
  4552. if (limit < 0) {
  4553. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4554. np->port,
  4555. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4556. return -ENODEV;
  4557. }
  4558. return 0;
  4559. }
  4560. static int niu_reset_tx_mac(struct niu *np)
  4561. {
  4562. if (np->flags & NIU_FLAGS_XMAC)
  4563. return niu_reset_tx_xmac(np);
  4564. else
  4565. return niu_reset_tx_bmac(np);
  4566. }
  4567. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4568. {
  4569. u64 val;
  4570. val = nr64_mac(XMAC_MIN);
  4571. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4572. XMAC_MIN_RX_MIN_PKT_SIZE);
  4573. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4574. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4575. nw64_mac(XMAC_MIN, val);
  4576. nw64_mac(XMAC_MAX, max);
  4577. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4578. val = nr64_mac(XMAC_IPG);
  4579. if (np->flags & NIU_FLAGS_10G) {
  4580. val &= ~XMAC_IPG_IPG_XGMII;
  4581. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4582. } else {
  4583. val &= ~XMAC_IPG_IPG_MII_GMII;
  4584. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4585. }
  4586. nw64_mac(XMAC_IPG, val);
  4587. val = nr64_mac(XMAC_CONFIG);
  4588. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4589. XMAC_CONFIG_STRETCH_MODE |
  4590. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4591. XMAC_CONFIG_TX_ENABLE);
  4592. nw64_mac(XMAC_CONFIG, val);
  4593. nw64_mac(TXMAC_FRM_CNT, 0);
  4594. nw64_mac(TXMAC_BYTE_CNT, 0);
  4595. }
  4596. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4597. {
  4598. u64 val;
  4599. nw64_mac(BMAC_MIN_FRAME, min);
  4600. nw64_mac(BMAC_MAX_FRAME, max);
  4601. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4602. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4603. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4604. val = nr64_mac(BTXMAC_CONFIG);
  4605. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4606. BTXMAC_CONFIG_ENABLE);
  4607. nw64_mac(BTXMAC_CONFIG, val);
  4608. }
  4609. static void niu_init_tx_mac(struct niu *np)
  4610. {
  4611. u64 min, max;
  4612. min = 64;
  4613. if (np->dev->mtu > ETH_DATA_LEN)
  4614. max = 9216;
  4615. else
  4616. max = 1522;
  4617. /* The XMAC_MIN register only accepts values for TX min which
  4618. * have the low 3 bits cleared.
  4619. */
  4620. BUG_ON(min & 0x7);
  4621. if (np->flags & NIU_FLAGS_XMAC)
  4622. niu_init_tx_xmac(np, min, max);
  4623. else
  4624. niu_init_tx_bmac(np, min, max);
  4625. }
  4626. static int niu_reset_rx_xmac(struct niu *np)
  4627. {
  4628. int limit;
  4629. nw64_mac(XRXMAC_SW_RST,
  4630. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4631. limit = 1000;
  4632. while (--limit >= 0) {
  4633. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4634. XRXMAC_SW_RST_SOFT_RST)))
  4635. break;
  4636. udelay(100);
  4637. }
  4638. if (limit < 0) {
  4639. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4640. np->port,
  4641. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4642. return -ENODEV;
  4643. }
  4644. return 0;
  4645. }
  4646. static int niu_reset_rx_bmac(struct niu *np)
  4647. {
  4648. int limit;
  4649. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4650. limit = 1000;
  4651. while (--limit >= 0) {
  4652. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4653. break;
  4654. udelay(100);
  4655. }
  4656. if (limit < 0) {
  4657. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4658. np->port,
  4659. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4660. return -ENODEV;
  4661. }
  4662. return 0;
  4663. }
  4664. static int niu_reset_rx_mac(struct niu *np)
  4665. {
  4666. if (np->flags & NIU_FLAGS_XMAC)
  4667. return niu_reset_rx_xmac(np);
  4668. else
  4669. return niu_reset_rx_bmac(np);
  4670. }
  4671. static void niu_init_rx_xmac(struct niu *np)
  4672. {
  4673. struct niu_parent *parent = np->parent;
  4674. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4675. int first_rdc_table = tp->first_table_num;
  4676. unsigned long i;
  4677. u64 val;
  4678. nw64_mac(XMAC_ADD_FILT0, 0);
  4679. nw64_mac(XMAC_ADD_FILT1, 0);
  4680. nw64_mac(XMAC_ADD_FILT2, 0);
  4681. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4682. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4683. for (i = 0; i < MAC_NUM_HASH; i++)
  4684. nw64_mac(XMAC_HASH_TBL(i), 0);
  4685. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4686. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4687. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4688. val = nr64_mac(XMAC_CONFIG);
  4689. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4690. XMAC_CONFIG_PROMISCUOUS |
  4691. XMAC_CONFIG_PROMISC_GROUP |
  4692. XMAC_CONFIG_ERR_CHK_DIS |
  4693. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4694. XMAC_CONFIG_RESERVED_MULTICAST |
  4695. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4696. XMAC_CONFIG_ADDR_FILTER_EN |
  4697. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4698. XMAC_CONFIG_STRIP_CRC |
  4699. XMAC_CONFIG_PASS_FLOW_CTRL |
  4700. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4701. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4702. nw64_mac(XMAC_CONFIG, val);
  4703. nw64_mac(RXMAC_BT_CNT, 0);
  4704. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4705. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4706. nw64_mac(RXMAC_FRAG_CNT, 0);
  4707. nw64_mac(RXMAC_HIST_CNT1, 0);
  4708. nw64_mac(RXMAC_HIST_CNT2, 0);
  4709. nw64_mac(RXMAC_HIST_CNT3, 0);
  4710. nw64_mac(RXMAC_HIST_CNT4, 0);
  4711. nw64_mac(RXMAC_HIST_CNT5, 0);
  4712. nw64_mac(RXMAC_HIST_CNT6, 0);
  4713. nw64_mac(RXMAC_HIST_CNT7, 0);
  4714. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4715. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4716. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4717. nw64_mac(LINK_FAULT_CNT, 0);
  4718. }
  4719. static void niu_init_rx_bmac(struct niu *np)
  4720. {
  4721. struct niu_parent *parent = np->parent;
  4722. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4723. int first_rdc_table = tp->first_table_num;
  4724. unsigned long i;
  4725. u64 val;
  4726. nw64_mac(BMAC_ADD_FILT0, 0);
  4727. nw64_mac(BMAC_ADD_FILT1, 0);
  4728. nw64_mac(BMAC_ADD_FILT2, 0);
  4729. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4730. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4731. for (i = 0; i < MAC_NUM_HASH; i++)
  4732. nw64_mac(BMAC_HASH_TBL(i), 0);
  4733. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4734. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4735. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4736. val = nr64_mac(BRXMAC_CONFIG);
  4737. val &= ~(BRXMAC_CONFIG_ENABLE |
  4738. BRXMAC_CONFIG_STRIP_PAD |
  4739. BRXMAC_CONFIG_STRIP_FCS |
  4740. BRXMAC_CONFIG_PROMISC |
  4741. BRXMAC_CONFIG_PROMISC_GRP |
  4742. BRXMAC_CONFIG_ADDR_FILT_EN |
  4743. BRXMAC_CONFIG_DISCARD_DIS);
  4744. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4745. nw64_mac(BRXMAC_CONFIG, val);
  4746. val = nr64_mac(BMAC_ADDR_CMPEN);
  4747. val |= BMAC_ADDR_CMPEN_EN0;
  4748. nw64_mac(BMAC_ADDR_CMPEN, val);
  4749. }
  4750. static void niu_init_rx_mac(struct niu *np)
  4751. {
  4752. niu_set_primary_mac(np, np->dev->dev_addr);
  4753. if (np->flags & NIU_FLAGS_XMAC)
  4754. niu_init_rx_xmac(np);
  4755. else
  4756. niu_init_rx_bmac(np);
  4757. }
  4758. static void niu_enable_tx_xmac(struct niu *np, int on)
  4759. {
  4760. u64 val = nr64_mac(XMAC_CONFIG);
  4761. if (on)
  4762. val |= XMAC_CONFIG_TX_ENABLE;
  4763. else
  4764. val &= ~XMAC_CONFIG_TX_ENABLE;
  4765. nw64_mac(XMAC_CONFIG, val);
  4766. }
  4767. static void niu_enable_tx_bmac(struct niu *np, int on)
  4768. {
  4769. u64 val = nr64_mac(BTXMAC_CONFIG);
  4770. if (on)
  4771. val |= BTXMAC_CONFIG_ENABLE;
  4772. else
  4773. val &= ~BTXMAC_CONFIG_ENABLE;
  4774. nw64_mac(BTXMAC_CONFIG, val);
  4775. }
  4776. static void niu_enable_tx_mac(struct niu *np, int on)
  4777. {
  4778. if (np->flags & NIU_FLAGS_XMAC)
  4779. niu_enable_tx_xmac(np, on);
  4780. else
  4781. niu_enable_tx_bmac(np, on);
  4782. }
  4783. static void niu_enable_rx_xmac(struct niu *np, int on)
  4784. {
  4785. u64 val = nr64_mac(XMAC_CONFIG);
  4786. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4787. XMAC_CONFIG_PROMISCUOUS);
  4788. if (np->flags & NIU_FLAGS_MCAST)
  4789. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4790. if (np->flags & NIU_FLAGS_PROMISC)
  4791. val |= XMAC_CONFIG_PROMISCUOUS;
  4792. if (on)
  4793. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4794. else
  4795. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4796. nw64_mac(XMAC_CONFIG, val);
  4797. }
  4798. static void niu_enable_rx_bmac(struct niu *np, int on)
  4799. {
  4800. u64 val = nr64_mac(BRXMAC_CONFIG);
  4801. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4802. BRXMAC_CONFIG_PROMISC);
  4803. if (np->flags & NIU_FLAGS_MCAST)
  4804. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4805. if (np->flags & NIU_FLAGS_PROMISC)
  4806. val |= BRXMAC_CONFIG_PROMISC;
  4807. if (on)
  4808. val |= BRXMAC_CONFIG_ENABLE;
  4809. else
  4810. val &= ~BRXMAC_CONFIG_ENABLE;
  4811. nw64_mac(BRXMAC_CONFIG, val);
  4812. }
  4813. static void niu_enable_rx_mac(struct niu *np, int on)
  4814. {
  4815. if (np->flags & NIU_FLAGS_XMAC)
  4816. niu_enable_rx_xmac(np, on);
  4817. else
  4818. niu_enable_rx_bmac(np, on);
  4819. }
  4820. static int niu_init_mac(struct niu *np)
  4821. {
  4822. int err;
  4823. niu_init_xif(np);
  4824. err = niu_init_pcs(np);
  4825. if (err)
  4826. return err;
  4827. err = niu_reset_tx_mac(np);
  4828. if (err)
  4829. return err;
  4830. niu_init_tx_mac(np);
  4831. err = niu_reset_rx_mac(np);
  4832. if (err)
  4833. return err;
  4834. niu_init_rx_mac(np);
  4835. /* This looks hookey but the RX MAC reset we just did will
  4836. * undo some of the state we setup in niu_init_tx_mac() so we
  4837. * have to call it again. In particular, the RX MAC reset will
  4838. * set the XMAC_MAX register back to it's default value.
  4839. */
  4840. niu_init_tx_mac(np);
  4841. niu_enable_tx_mac(np, 1);
  4842. niu_enable_rx_mac(np, 1);
  4843. return 0;
  4844. }
  4845. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4846. {
  4847. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4848. }
  4849. static void niu_stop_tx_channels(struct niu *np)
  4850. {
  4851. int i;
  4852. for (i = 0; i < np->num_tx_rings; i++) {
  4853. struct tx_ring_info *rp = &np->tx_rings[i];
  4854. niu_stop_one_tx_channel(np, rp);
  4855. }
  4856. }
  4857. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4858. {
  4859. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4860. }
  4861. static void niu_reset_tx_channels(struct niu *np)
  4862. {
  4863. int i;
  4864. for (i = 0; i < np->num_tx_rings; i++) {
  4865. struct tx_ring_info *rp = &np->tx_rings[i];
  4866. niu_reset_one_tx_channel(np, rp);
  4867. }
  4868. }
  4869. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4870. {
  4871. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4872. }
  4873. static void niu_stop_rx_channels(struct niu *np)
  4874. {
  4875. int i;
  4876. for (i = 0; i < np->num_rx_rings; i++) {
  4877. struct rx_ring_info *rp = &np->rx_rings[i];
  4878. niu_stop_one_rx_channel(np, rp);
  4879. }
  4880. }
  4881. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4882. {
  4883. int channel = rp->rx_channel;
  4884. (void) niu_rx_channel_reset(np, channel);
  4885. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4886. nw64(RX_DMA_CTL_STAT(channel), 0);
  4887. (void) niu_enable_rx_channel(np, channel, 0);
  4888. }
  4889. static void niu_reset_rx_channels(struct niu *np)
  4890. {
  4891. int i;
  4892. for (i = 0; i < np->num_rx_rings; i++) {
  4893. struct rx_ring_info *rp = &np->rx_rings[i];
  4894. niu_reset_one_rx_channel(np, rp);
  4895. }
  4896. }
  4897. static void niu_disable_ipp(struct niu *np)
  4898. {
  4899. u64 rd, wr, val;
  4900. int limit;
  4901. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4902. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4903. limit = 100;
  4904. while (--limit >= 0 && (rd != wr)) {
  4905. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4906. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4907. }
  4908. if (limit < 0 &&
  4909. (rd != 0 && wr != 1)) {
  4910. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4911. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4912. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4913. }
  4914. val = nr64_ipp(IPP_CFIG);
  4915. val &= ~(IPP_CFIG_IPP_ENABLE |
  4916. IPP_CFIG_DFIFO_ECC_EN |
  4917. IPP_CFIG_DROP_BAD_CRC |
  4918. IPP_CFIG_CKSUM_EN);
  4919. nw64_ipp(IPP_CFIG, val);
  4920. (void) niu_ipp_reset(np);
  4921. }
  4922. static int niu_init_hw(struct niu *np)
  4923. {
  4924. int i, err;
  4925. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4926. niu_txc_enable_port(np, 1);
  4927. niu_txc_port_dma_enable(np, 1);
  4928. niu_txc_set_imask(np, 0);
  4929. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4930. for (i = 0; i < np->num_tx_rings; i++) {
  4931. struct tx_ring_info *rp = &np->tx_rings[i];
  4932. err = niu_init_one_tx_channel(np, rp);
  4933. if (err)
  4934. return err;
  4935. }
  4936. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4937. err = niu_init_rx_channels(np);
  4938. if (err)
  4939. goto out_uninit_tx_channels;
  4940. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4941. err = niu_init_classifier_hw(np);
  4942. if (err)
  4943. goto out_uninit_rx_channels;
  4944. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4945. err = niu_init_zcp(np);
  4946. if (err)
  4947. goto out_uninit_rx_channels;
  4948. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4949. err = niu_init_ipp(np);
  4950. if (err)
  4951. goto out_uninit_rx_channels;
  4952. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4953. err = niu_init_mac(np);
  4954. if (err)
  4955. goto out_uninit_ipp;
  4956. return 0;
  4957. out_uninit_ipp:
  4958. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4959. niu_disable_ipp(np);
  4960. out_uninit_rx_channels:
  4961. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4962. niu_stop_rx_channels(np);
  4963. niu_reset_rx_channels(np);
  4964. out_uninit_tx_channels:
  4965. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4966. niu_stop_tx_channels(np);
  4967. niu_reset_tx_channels(np);
  4968. return err;
  4969. }
  4970. static void niu_stop_hw(struct niu *np)
  4971. {
  4972. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4973. niu_enable_interrupts(np, 0);
  4974. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4975. niu_enable_rx_mac(np, 0);
  4976. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4977. niu_disable_ipp(np);
  4978. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4979. niu_stop_tx_channels(np);
  4980. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4981. niu_stop_rx_channels(np);
  4982. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4983. niu_reset_tx_channels(np);
  4984. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4985. niu_reset_rx_channels(np);
  4986. }
  4987. static void niu_set_irq_name(struct niu *np)
  4988. {
  4989. int port = np->port;
  4990. int i, j = 1;
  4991. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4992. if (port == 0) {
  4993. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4994. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4995. j = 3;
  4996. }
  4997. for (i = 0; i < np->num_ldg - j; i++) {
  4998. if (i < np->num_rx_rings)
  4999. sprintf(np->irq_name[i+j], "%s-rx-%d",
  5000. np->dev->name, i);
  5001. else if (i < np->num_tx_rings + np->num_rx_rings)
  5002. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5003. i - np->num_rx_rings);
  5004. }
  5005. }
  5006. static int niu_request_irq(struct niu *np)
  5007. {
  5008. int i, j, err;
  5009. niu_set_irq_name(np);
  5010. err = 0;
  5011. for (i = 0; i < np->num_ldg; i++) {
  5012. struct niu_ldg *lp = &np->ldg[i];
  5013. err = request_irq(lp->irq, niu_interrupt,
  5014. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5015. np->irq_name[i], lp);
  5016. if (err)
  5017. goto out_free_irqs;
  5018. }
  5019. return 0;
  5020. out_free_irqs:
  5021. for (j = 0; j < i; j++) {
  5022. struct niu_ldg *lp = &np->ldg[j];
  5023. free_irq(lp->irq, lp);
  5024. }
  5025. return err;
  5026. }
  5027. static void niu_free_irq(struct niu *np)
  5028. {
  5029. int i;
  5030. for (i = 0; i < np->num_ldg; i++) {
  5031. struct niu_ldg *lp = &np->ldg[i];
  5032. free_irq(lp->irq, lp);
  5033. }
  5034. }
  5035. static void niu_enable_napi(struct niu *np)
  5036. {
  5037. int i;
  5038. for (i = 0; i < np->num_ldg; i++)
  5039. napi_enable(&np->ldg[i].napi);
  5040. }
  5041. static void niu_disable_napi(struct niu *np)
  5042. {
  5043. int i;
  5044. for (i = 0; i < np->num_ldg; i++)
  5045. napi_disable(&np->ldg[i].napi);
  5046. }
  5047. static int niu_open(struct net_device *dev)
  5048. {
  5049. struct niu *np = netdev_priv(dev);
  5050. int err;
  5051. netif_carrier_off(dev);
  5052. err = niu_alloc_channels(np);
  5053. if (err)
  5054. goto out_err;
  5055. err = niu_enable_interrupts(np, 0);
  5056. if (err)
  5057. goto out_free_channels;
  5058. err = niu_request_irq(np);
  5059. if (err)
  5060. goto out_free_channels;
  5061. niu_enable_napi(np);
  5062. spin_lock_irq(&np->lock);
  5063. err = niu_init_hw(np);
  5064. if (!err) {
  5065. init_timer(&np->timer);
  5066. np->timer.expires = jiffies + HZ;
  5067. np->timer.data = (unsigned long) np;
  5068. np->timer.function = niu_timer;
  5069. err = niu_enable_interrupts(np, 1);
  5070. if (err)
  5071. niu_stop_hw(np);
  5072. }
  5073. spin_unlock_irq(&np->lock);
  5074. if (err) {
  5075. niu_disable_napi(np);
  5076. goto out_free_irq;
  5077. }
  5078. netif_tx_start_all_queues(dev);
  5079. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5080. netif_carrier_on(dev);
  5081. add_timer(&np->timer);
  5082. return 0;
  5083. out_free_irq:
  5084. niu_free_irq(np);
  5085. out_free_channels:
  5086. niu_free_channels(np);
  5087. out_err:
  5088. return err;
  5089. }
  5090. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5091. {
  5092. cancel_work_sync(&np->reset_task);
  5093. niu_disable_napi(np);
  5094. netif_tx_stop_all_queues(dev);
  5095. del_timer_sync(&np->timer);
  5096. spin_lock_irq(&np->lock);
  5097. niu_stop_hw(np);
  5098. spin_unlock_irq(&np->lock);
  5099. }
  5100. static int niu_close(struct net_device *dev)
  5101. {
  5102. struct niu *np = netdev_priv(dev);
  5103. niu_full_shutdown(np, dev);
  5104. niu_free_irq(np);
  5105. niu_free_channels(np);
  5106. niu_handle_led(np, 0);
  5107. return 0;
  5108. }
  5109. static void niu_sync_xmac_stats(struct niu *np)
  5110. {
  5111. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5112. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5113. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5114. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5115. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5116. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5117. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5118. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5119. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5120. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5121. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5122. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5123. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5124. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5125. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5126. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5127. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5128. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5129. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5130. }
  5131. static void niu_sync_bmac_stats(struct niu *np)
  5132. {
  5133. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5134. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5135. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5136. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5137. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5138. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5139. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5140. }
  5141. static void niu_sync_mac_stats(struct niu *np)
  5142. {
  5143. if (np->flags & NIU_FLAGS_XMAC)
  5144. niu_sync_xmac_stats(np);
  5145. else
  5146. niu_sync_bmac_stats(np);
  5147. }
  5148. static void niu_get_rx_stats(struct niu *np)
  5149. {
  5150. unsigned long pkts, dropped, errors, bytes;
  5151. struct rx_ring_info *rx_rings;
  5152. int i;
  5153. pkts = dropped = errors = bytes = 0;
  5154. rx_rings = ACCESS_ONCE(np->rx_rings);
  5155. if (!rx_rings)
  5156. goto no_rings;
  5157. for (i = 0; i < np->num_rx_rings; i++) {
  5158. struct rx_ring_info *rp = &rx_rings[i];
  5159. niu_sync_rx_discard_stats(np, rp, 0);
  5160. pkts += rp->rx_packets;
  5161. bytes += rp->rx_bytes;
  5162. dropped += rp->rx_dropped;
  5163. errors += rp->rx_errors;
  5164. }
  5165. no_rings:
  5166. np->dev->stats.rx_packets = pkts;
  5167. np->dev->stats.rx_bytes = bytes;
  5168. np->dev->stats.rx_dropped = dropped;
  5169. np->dev->stats.rx_errors = errors;
  5170. }
  5171. static void niu_get_tx_stats(struct niu *np)
  5172. {
  5173. unsigned long pkts, errors, bytes;
  5174. struct tx_ring_info *tx_rings;
  5175. int i;
  5176. pkts = errors = bytes = 0;
  5177. tx_rings = ACCESS_ONCE(np->tx_rings);
  5178. if (!tx_rings)
  5179. goto no_rings;
  5180. for (i = 0; i < np->num_tx_rings; i++) {
  5181. struct tx_ring_info *rp = &tx_rings[i];
  5182. pkts += rp->tx_packets;
  5183. bytes += rp->tx_bytes;
  5184. errors += rp->tx_errors;
  5185. }
  5186. no_rings:
  5187. np->dev->stats.tx_packets = pkts;
  5188. np->dev->stats.tx_bytes = bytes;
  5189. np->dev->stats.tx_errors = errors;
  5190. }
  5191. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5192. {
  5193. struct niu *np = netdev_priv(dev);
  5194. if (netif_running(dev)) {
  5195. niu_get_rx_stats(np);
  5196. niu_get_tx_stats(np);
  5197. }
  5198. return &dev->stats;
  5199. }
  5200. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5201. {
  5202. int i;
  5203. for (i = 0; i < 16; i++)
  5204. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5205. }
  5206. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5207. {
  5208. int i;
  5209. for (i = 0; i < 16; i++)
  5210. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5211. }
  5212. static void niu_load_hash(struct niu *np, u16 *hash)
  5213. {
  5214. if (np->flags & NIU_FLAGS_XMAC)
  5215. niu_load_hash_xmac(np, hash);
  5216. else
  5217. niu_load_hash_bmac(np, hash);
  5218. }
  5219. static void niu_set_rx_mode(struct net_device *dev)
  5220. {
  5221. struct niu *np = netdev_priv(dev);
  5222. int i, alt_cnt, err;
  5223. struct netdev_hw_addr *ha;
  5224. unsigned long flags;
  5225. u16 hash[16] = { 0, };
  5226. spin_lock_irqsave(&np->lock, flags);
  5227. niu_enable_rx_mac(np, 0);
  5228. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5229. if (dev->flags & IFF_PROMISC)
  5230. np->flags |= NIU_FLAGS_PROMISC;
  5231. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5232. np->flags |= NIU_FLAGS_MCAST;
  5233. alt_cnt = netdev_uc_count(dev);
  5234. if (alt_cnt > niu_num_alt_addr(np)) {
  5235. alt_cnt = 0;
  5236. np->flags |= NIU_FLAGS_PROMISC;
  5237. }
  5238. if (alt_cnt) {
  5239. int index = 0;
  5240. netdev_for_each_uc_addr(ha, dev) {
  5241. err = niu_set_alt_mac(np, index, ha->addr);
  5242. if (err)
  5243. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5244. err, index);
  5245. err = niu_enable_alt_mac(np, index, 1);
  5246. if (err)
  5247. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5248. err, index);
  5249. index++;
  5250. }
  5251. } else {
  5252. int alt_start;
  5253. if (np->flags & NIU_FLAGS_XMAC)
  5254. alt_start = 0;
  5255. else
  5256. alt_start = 1;
  5257. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5258. err = niu_enable_alt_mac(np, i, 0);
  5259. if (err)
  5260. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5261. err, i);
  5262. }
  5263. }
  5264. if (dev->flags & IFF_ALLMULTI) {
  5265. for (i = 0; i < 16; i++)
  5266. hash[i] = 0xffff;
  5267. } else if (!netdev_mc_empty(dev)) {
  5268. netdev_for_each_mc_addr(ha, dev) {
  5269. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5270. crc >>= 24;
  5271. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5272. }
  5273. }
  5274. if (np->flags & NIU_FLAGS_MCAST)
  5275. niu_load_hash(np, hash);
  5276. niu_enable_rx_mac(np, 1);
  5277. spin_unlock_irqrestore(&np->lock, flags);
  5278. }
  5279. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5280. {
  5281. struct niu *np = netdev_priv(dev);
  5282. struct sockaddr *addr = p;
  5283. unsigned long flags;
  5284. if (!is_valid_ether_addr(addr->sa_data))
  5285. return -EINVAL;
  5286. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5287. if (!netif_running(dev))
  5288. return 0;
  5289. spin_lock_irqsave(&np->lock, flags);
  5290. niu_enable_rx_mac(np, 0);
  5291. niu_set_primary_mac(np, dev->dev_addr);
  5292. niu_enable_rx_mac(np, 1);
  5293. spin_unlock_irqrestore(&np->lock, flags);
  5294. return 0;
  5295. }
  5296. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5297. {
  5298. return -EOPNOTSUPP;
  5299. }
  5300. static void niu_netif_stop(struct niu *np)
  5301. {
  5302. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5303. niu_disable_napi(np);
  5304. netif_tx_disable(np->dev);
  5305. }
  5306. static void niu_netif_start(struct niu *np)
  5307. {
  5308. /* NOTE: unconditional netif_wake_queue is only appropriate
  5309. * so long as all callers are assured to have free tx slots
  5310. * (such as after niu_init_hw).
  5311. */
  5312. netif_tx_wake_all_queues(np->dev);
  5313. niu_enable_napi(np);
  5314. niu_enable_interrupts(np, 1);
  5315. }
  5316. static void niu_reset_buffers(struct niu *np)
  5317. {
  5318. int i, j, k, err;
  5319. if (np->rx_rings) {
  5320. for (i = 0; i < np->num_rx_rings; i++) {
  5321. struct rx_ring_info *rp = &np->rx_rings[i];
  5322. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5323. struct page *page;
  5324. page = rp->rxhash[j];
  5325. while (page) {
  5326. struct page *next =
  5327. (struct page *) page->mapping;
  5328. u64 base = page->index;
  5329. base = base >> RBR_DESCR_ADDR_SHIFT;
  5330. rp->rbr[k++] = cpu_to_le32(base);
  5331. page = next;
  5332. }
  5333. }
  5334. for (; k < MAX_RBR_RING_SIZE; k++) {
  5335. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5336. if (unlikely(err))
  5337. break;
  5338. }
  5339. rp->rbr_index = rp->rbr_table_size - 1;
  5340. rp->rcr_index = 0;
  5341. rp->rbr_pending = 0;
  5342. rp->rbr_refill_pending = 0;
  5343. }
  5344. }
  5345. if (np->tx_rings) {
  5346. for (i = 0; i < np->num_tx_rings; i++) {
  5347. struct tx_ring_info *rp = &np->tx_rings[i];
  5348. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5349. if (rp->tx_buffs[j].skb)
  5350. (void) release_tx_packet(np, rp, j);
  5351. }
  5352. rp->pending = MAX_TX_RING_SIZE;
  5353. rp->prod = 0;
  5354. rp->cons = 0;
  5355. rp->wrap_bit = 0;
  5356. }
  5357. }
  5358. }
  5359. static void niu_reset_task(struct work_struct *work)
  5360. {
  5361. struct niu *np = container_of(work, struct niu, reset_task);
  5362. unsigned long flags;
  5363. int err;
  5364. spin_lock_irqsave(&np->lock, flags);
  5365. if (!netif_running(np->dev)) {
  5366. spin_unlock_irqrestore(&np->lock, flags);
  5367. return;
  5368. }
  5369. spin_unlock_irqrestore(&np->lock, flags);
  5370. del_timer_sync(&np->timer);
  5371. niu_netif_stop(np);
  5372. spin_lock_irqsave(&np->lock, flags);
  5373. niu_stop_hw(np);
  5374. spin_unlock_irqrestore(&np->lock, flags);
  5375. niu_reset_buffers(np);
  5376. spin_lock_irqsave(&np->lock, flags);
  5377. err = niu_init_hw(np);
  5378. if (!err) {
  5379. np->timer.expires = jiffies + HZ;
  5380. add_timer(&np->timer);
  5381. niu_netif_start(np);
  5382. }
  5383. spin_unlock_irqrestore(&np->lock, flags);
  5384. }
  5385. static void niu_tx_timeout(struct net_device *dev)
  5386. {
  5387. struct niu *np = netdev_priv(dev);
  5388. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5389. dev->name);
  5390. schedule_work(&np->reset_task);
  5391. }
  5392. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5393. u64 mapping, u64 len, u64 mark,
  5394. u64 n_frags)
  5395. {
  5396. __le64 *desc = &rp->descr[index];
  5397. *desc = cpu_to_le64(mark |
  5398. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5399. (len << TX_DESC_TR_LEN_SHIFT) |
  5400. (mapping & TX_DESC_SAD));
  5401. }
  5402. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5403. u64 pad_bytes, u64 len)
  5404. {
  5405. u16 eth_proto, eth_proto_inner;
  5406. u64 csum_bits, l3off, ihl, ret;
  5407. u8 ip_proto;
  5408. int ipv6;
  5409. eth_proto = be16_to_cpu(ehdr->h_proto);
  5410. eth_proto_inner = eth_proto;
  5411. if (eth_proto == ETH_P_8021Q) {
  5412. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5413. __be16 val = vp->h_vlan_encapsulated_proto;
  5414. eth_proto_inner = be16_to_cpu(val);
  5415. }
  5416. ipv6 = ihl = 0;
  5417. switch (skb->protocol) {
  5418. case cpu_to_be16(ETH_P_IP):
  5419. ip_proto = ip_hdr(skb)->protocol;
  5420. ihl = ip_hdr(skb)->ihl;
  5421. break;
  5422. case cpu_to_be16(ETH_P_IPV6):
  5423. ip_proto = ipv6_hdr(skb)->nexthdr;
  5424. ihl = (40 >> 2);
  5425. ipv6 = 1;
  5426. break;
  5427. default:
  5428. ip_proto = ihl = 0;
  5429. break;
  5430. }
  5431. csum_bits = TXHDR_CSUM_NONE;
  5432. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5433. u64 start, stuff;
  5434. csum_bits = (ip_proto == IPPROTO_TCP ?
  5435. TXHDR_CSUM_TCP :
  5436. (ip_proto == IPPROTO_UDP ?
  5437. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5438. start = skb_checksum_start_offset(skb) -
  5439. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5440. stuff = start + skb->csum_offset;
  5441. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5442. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5443. }
  5444. l3off = skb_network_offset(skb) -
  5445. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5446. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5447. (len << TXHDR_LEN_SHIFT) |
  5448. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5449. (ihl << TXHDR_IHL_SHIFT) |
  5450. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5451. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5452. (ipv6 ? TXHDR_IP_VER : 0) |
  5453. csum_bits);
  5454. return ret;
  5455. }
  5456. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5457. struct net_device *dev)
  5458. {
  5459. struct niu *np = netdev_priv(dev);
  5460. unsigned long align, headroom;
  5461. struct netdev_queue *txq;
  5462. struct tx_ring_info *rp;
  5463. struct tx_pkt_hdr *tp;
  5464. unsigned int len, nfg;
  5465. struct ethhdr *ehdr;
  5466. int prod, i, tlen;
  5467. u64 mapping, mrk;
  5468. i = skb_get_queue_mapping(skb);
  5469. rp = &np->tx_rings[i];
  5470. txq = netdev_get_tx_queue(dev, i);
  5471. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5472. netif_tx_stop_queue(txq);
  5473. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5474. rp->tx_errors++;
  5475. return NETDEV_TX_BUSY;
  5476. }
  5477. if (skb->len < ETH_ZLEN) {
  5478. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5479. if (skb_pad(skb, pad_bytes))
  5480. goto out;
  5481. skb_put(skb, pad_bytes);
  5482. }
  5483. len = sizeof(struct tx_pkt_hdr) + 15;
  5484. if (skb_headroom(skb) < len) {
  5485. struct sk_buff *skb_new;
  5486. skb_new = skb_realloc_headroom(skb, len);
  5487. if (!skb_new) {
  5488. rp->tx_errors++;
  5489. goto out_drop;
  5490. }
  5491. kfree_skb(skb);
  5492. skb = skb_new;
  5493. } else
  5494. skb_orphan(skb);
  5495. align = ((unsigned long) skb->data & (16 - 1));
  5496. headroom = align + sizeof(struct tx_pkt_hdr);
  5497. ehdr = (struct ethhdr *) skb->data;
  5498. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5499. len = skb->len - sizeof(struct tx_pkt_hdr);
  5500. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5501. tp->resv = 0;
  5502. len = skb_headlen(skb);
  5503. mapping = np->ops->map_single(np->device, skb->data,
  5504. len, DMA_TO_DEVICE);
  5505. prod = rp->prod;
  5506. rp->tx_buffs[prod].skb = skb;
  5507. rp->tx_buffs[prod].mapping = mapping;
  5508. mrk = TX_DESC_SOP;
  5509. if (++rp->mark_counter == rp->mark_freq) {
  5510. rp->mark_counter = 0;
  5511. mrk |= TX_DESC_MARK;
  5512. rp->mark_pending++;
  5513. }
  5514. tlen = len;
  5515. nfg = skb_shinfo(skb)->nr_frags;
  5516. while (tlen > 0) {
  5517. tlen -= MAX_TX_DESC_LEN;
  5518. nfg++;
  5519. }
  5520. while (len > 0) {
  5521. unsigned int this_len = len;
  5522. if (this_len > MAX_TX_DESC_LEN)
  5523. this_len = MAX_TX_DESC_LEN;
  5524. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5525. mrk = nfg = 0;
  5526. prod = NEXT_TX(rp, prod);
  5527. mapping += this_len;
  5528. len -= this_len;
  5529. }
  5530. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5531. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5532. len = frag->size;
  5533. mapping = np->ops->map_page(np->device, frag->page,
  5534. frag->page_offset, len,
  5535. DMA_TO_DEVICE);
  5536. rp->tx_buffs[prod].skb = NULL;
  5537. rp->tx_buffs[prod].mapping = mapping;
  5538. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5539. prod = NEXT_TX(rp, prod);
  5540. }
  5541. if (prod < rp->prod)
  5542. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5543. rp->prod = prod;
  5544. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5545. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5546. netif_tx_stop_queue(txq);
  5547. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5548. netif_tx_wake_queue(txq);
  5549. }
  5550. out:
  5551. return NETDEV_TX_OK;
  5552. out_drop:
  5553. rp->tx_errors++;
  5554. kfree_skb(skb);
  5555. goto out;
  5556. }
  5557. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5558. {
  5559. struct niu *np = netdev_priv(dev);
  5560. int err, orig_jumbo, new_jumbo;
  5561. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5562. return -EINVAL;
  5563. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5564. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5565. dev->mtu = new_mtu;
  5566. if (!netif_running(dev) ||
  5567. (orig_jumbo == new_jumbo))
  5568. return 0;
  5569. niu_full_shutdown(np, dev);
  5570. niu_free_channels(np);
  5571. niu_enable_napi(np);
  5572. err = niu_alloc_channels(np);
  5573. if (err)
  5574. return err;
  5575. spin_lock_irq(&np->lock);
  5576. err = niu_init_hw(np);
  5577. if (!err) {
  5578. init_timer(&np->timer);
  5579. np->timer.expires = jiffies + HZ;
  5580. np->timer.data = (unsigned long) np;
  5581. np->timer.function = niu_timer;
  5582. err = niu_enable_interrupts(np, 1);
  5583. if (err)
  5584. niu_stop_hw(np);
  5585. }
  5586. spin_unlock_irq(&np->lock);
  5587. if (!err) {
  5588. netif_tx_start_all_queues(dev);
  5589. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5590. netif_carrier_on(dev);
  5591. add_timer(&np->timer);
  5592. }
  5593. return err;
  5594. }
  5595. static void niu_get_drvinfo(struct net_device *dev,
  5596. struct ethtool_drvinfo *info)
  5597. {
  5598. struct niu *np = netdev_priv(dev);
  5599. struct niu_vpd *vpd = &np->vpd;
  5600. strcpy(info->driver, DRV_MODULE_NAME);
  5601. strcpy(info->version, DRV_MODULE_VERSION);
  5602. sprintf(info->fw_version, "%d.%d",
  5603. vpd->fcode_major, vpd->fcode_minor);
  5604. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5605. strcpy(info->bus_info, pci_name(np->pdev));
  5606. }
  5607. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5608. {
  5609. struct niu *np = netdev_priv(dev);
  5610. struct niu_link_config *lp;
  5611. lp = &np->link_config;
  5612. memset(cmd, 0, sizeof(*cmd));
  5613. cmd->phy_address = np->phy_addr;
  5614. cmd->supported = lp->supported;
  5615. cmd->advertising = lp->active_advertising;
  5616. cmd->autoneg = lp->active_autoneg;
  5617. cmd->speed = lp->active_speed;
  5618. cmd->duplex = lp->active_duplex;
  5619. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5620. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5621. XCVR_EXTERNAL : XCVR_INTERNAL;
  5622. return 0;
  5623. }
  5624. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5625. {
  5626. struct niu *np = netdev_priv(dev);
  5627. struct niu_link_config *lp = &np->link_config;
  5628. lp->advertising = cmd->advertising;
  5629. lp->speed = cmd->speed;
  5630. lp->duplex = cmd->duplex;
  5631. lp->autoneg = cmd->autoneg;
  5632. return niu_init_link(np);
  5633. }
  5634. static u32 niu_get_msglevel(struct net_device *dev)
  5635. {
  5636. struct niu *np = netdev_priv(dev);
  5637. return np->msg_enable;
  5638. }
  5639. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5640. {
  5641. struct niu *np = netdev_priv(dev);
  5642. np->msg_enable = value;
  5643. }
  5644. static int niu_nway_reset(struct net_device *dev)
  5645. {
  5646. struct niu *np = netdev_priv(dev);
  5647. if (np->link_config.autoneg)
  5648. return niu_init_link(np);
  5649. return 0;
  5650. }
  5651. static int niu_get_eeprom_len(struct net_device *dev)
  5652. {
  5653. struct niu *np = netdev_priv(dev);
  5654. return np->eeprom_len;
  5655. }
  5656. static int niu_get_eeprom(struct net_device *dev,
  5657. struct ethtool_eeprom *eeprom, u8 *data)
  5658. {
  5659. struct niu *np = netdev_priv(dev);
  5660. u32 offset, len, val;
  5661. offset = eeprom->offset;
  5662. len = eeprom->len;
  5663. if (offset + len < offset)
  5664. return -EINVAL;
  5665. if (offset >= np->eeprom_len)
  5666. return -EINVAL;
  5667. if (offset + len > np->eeprom_len)
  5668. len = eeprom->len = np->eeprom_len - offset;
  5669. if (offset & 3) {
  5670. u32 b_offset, b_count;
  5671. b_offset = offset & 3;
  5672. b_count = 4 - b_offset;
  5673. if (b_count > len)
  5674. b_count = len;
  5675. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5676. memcpy(data, ((char *)&val) + b_offset, b_count);
  5677. data += b_count;
  5678. len -= b_count;
  5679. offset += b_count;
  5680. }
  5681. while (len >= 4) {
  5682. val = nr64(ESPC_NCR(offset / 4));
  5683. memcpy(data, &val, 4);
  5684. data += 4;
  5685. len -= 4;
  5686. offset += 4;
  5687. }
  5688. if (len) {
  5689. val = nr64(ESPC_NCR(offset / 4));
  5690. memcpy(data, &val, len);
  5691. }
  5692. return 0;
  5693. }
  5694. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5695. {
  5696. switch (flow_type) {
  5697. case TCP_V4_FLOW:
  5698. case TCP_V6_FLOW:
  5699. *pid = IPPROTO_TCP;
  5700. break;
  5701. case UDP_V4_FLOW:
  5702. case UDP_V6_FLOW:
  5703. *pid = IPPROTO_UDP;
  5704. break;
  5705. case SCTP_V4_FLOW:
  5706. case SCTP_V6_FLOW:
  5707. *pid = IPPROTO_SCTP;
  5708. break;
  5709. case AH_V4_FLOW:
  5710. case AH_V6_FLOW:
  5711. *pid = IPPROTO_AH;
  5712. break;
  5713. case ESP_V4_FLOW:
  5714. case ESP_V6_FLOW:
  5715. *pid = IPPROTO_ESP;
  5716. break;
  5717. default:
  5718. *pid = 0;
  5719. break;
  5720. }
  5721. }
  5722. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5723. {
  5724. switch (class) {
  5725. case CLASS_CODE_TCP_IPV4:
  5726. *flow_type = TCP_V4_FLOW;
  5727. break;
  5728. case CLASS_CODE_UDP_IPV4:
  5729. *flow_type = UDP_V4_FLOW;
  5730. break;
  5731. case CLASS_CODE_AH_ESP_IPV4:
  5732. *flow_type = AH_V4_FLOW;
  5733. break;
  5734. case CLASS_CODE_SCTP_IPV4:
  5735. *flow_type = SCTP_V4_FLOW;
  5736. break;
  5737. case CLASS_CODE_TCP_IPV6:
  5738. *flow_type = TCP_V6_FLOW;
  5739. break;
  5740. case CLASS_CODE_UDP_IPV6:
  5741. *flow_type = UDP_V6_FLOW;
  5742. break;
  5743. case CLASS_CODE_AH_ESP_IPV6:
  5744. *flow_type = AH_V6_FLOW;
  5745. break;
  5746. case CLASS_CODE_SCTP_IPV6:
  5747. *flow_type = SCTP_V6_FLOW;
  5748. break;
  5749. case CLASS_CODE_USER_PROG1:
  5750. case CLASS_CODE_USER_PROG2:
  5751. case CLASS_CODE_USER_PROG3:
  5752. case CLASS_CODE_USER_PROG4:
  5753. *flow_type = IP_USER_FLOW;
  5754. break;
  5755. default:
  5756. return 0;
  5757. }
  5758. return 1;
  5759. }
  5760. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5761. {
  5762. switch (flow_type) {
  5763. case TCP_V4_FLOW:
  5764. *class = CLASS_CODE_TCP_IPV4;
  5765. break;
  5766. case UDP_V4_FLOW:
  5767. *class = CLASS_CODE_UDP_IPV4;
  5768. break;
  5769. case AH_V4_FLOW:
  5770. case ESP_V4_FLOW:
  5771. *class = CLASS_CODE_AH_ESP_IPV4;
  5772. break;
  5773. case SCTP_V4_FLOW:
  5774. *class = CLASS_CODE_SCTP_IPV4;
  5775. break;
  5776. case TCP_V6_FLOW:
  5777. *class = CLASS_CODE_TCP_IPV6;
  5778. break;
  5779. case UDP_V6_FLOW:
  5780. *class = CLASS_CODE_UDP_IPV6;
  5781. break;
  5782. case AH_V6_FLOW:
  5783. case ESP_V6_FLOW:
  5784. *class = CLASS_CODE_AH_ESP_IPV6;
  5785. break;
  5786. case SCTP_V6_FLOW:
  5787. *class = CLASS_CODE_SCTP_IPV6;
  5788. break;
  5789. default:
  5790. return 0;
  5791. }
  5792. return 1;
  5793. }
  5794. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5795. {
  5796. u64 ethflow = 0;
  5797. if (flow_key & FLOW_KEY_L2DA)
  5798. ethflow |= RXH_L2DA;
  5799. if (flow_key & FLOW_KEY_VLAN)
  5800. ethflow |= RXH_VLAN;
  5801. if (flow_key & FLOW_KEY_IPSA)
  5802. ethflow |= RXH_IP_SRC;
  5803. if (flow_key & FLOW_KEY_IPDA)
  5804. ethflow |= RXH_IP_DST;
  5805. if (flow_key & FLOW_KEY_PROTO)
  5806. ethflow |= RXH_L3_PROTO;
  5807. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5808. ethflow |= RXH_L4_B_0_1;
  5809. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5810. ethflow |= RXH_L4_B_2_3;
  5811. return ethflow;
  5812. }
  5813. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5814. {
  5815. u64 key = 0;
  5816. if (ethflow & RXH_L2DA)
  5817. key |= FLOW_KEY_L2DA;
  5818. if (ethflow & RXH_VLAN)
  5819. key |= FLOW_KEY_VLAN;
  5820. if (ethflow & RXH_IP_SRC)
  5821. key |= FLOW_KEY_IPSA;
  5822. if (ethflow & RXH_IP_DST)
  5823. key |= FLOW_KEY_IPDA;
  5824. if (ethflow & RXH_L3_PROTO)
  5825. key |= FLOW_KEY_PROTO;
  5826. if (ethflow & RXH_L4_B_0_1)
  5827. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5828. if (ethflow & RXH_L4_B_2_3)
  5829. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5830. *flow_key = key;
  5831. return 1;
  5832. }
  5833. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5834. {
  5835. u64 class;
  5836. nfc->data = 0;
  5837. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5838. return -EINVAL;
  5839. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5840. TCAM_KEY_DISC)
  5841. nfc->data = RXH_DISCARD;
  5842. else
  5843. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5844. CLASS_CODE_USER_PROG1]);
  5845. return 0;
  5846. }
  5847. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5848. struct ethtool_rx_flow_spec *fsp)
  5849. {
  5850. u32 tmp;
  5851. u16 prt;
  5852. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5853. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5854. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5855. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5856. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5857. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5858. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5859. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5860. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5861. TCAM_V4KEY2_TOS_SHIFT;
  5862. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5863. TCAM_V4KEY2_TOS_SHIFT;
  5864. switch (fsp->flow_type) {
  5865. case TCP_V4_FLOW:
  5866. case UDP_V4_FLOW:
  5867. case SCTP_V4_FLOW:
  5868. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5869. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5870. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5871. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5872. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5873. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5874. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5875. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5876. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5877. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5878. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5879. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5880. break;
  5881. case AH_V4_FLOW:
  5882. case ESP_V4_FLOW:
  5883. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5884. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5885. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5886. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5887. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5888. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5889. break;
  5890. case IP_USER_FLOW:
  5891. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5892. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5893. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5894. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5895. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5896. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5897. fsp->h_u.usr_ip4_spec.proto =
  5898. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5899. TCAM_V4KEY2_PROTO_SHIFT;
  5900. fsp->m_u.usr_ip4_spec.proto =
  5901. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5902. TCAM_V4KEY2_PROTO_SHIFT;
  5903. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5904. break;
  5905. default:
  5906. break;
  5907. }
  5908. }
  5909. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5910. struct ethtool_rxnfc *nfc)
  5911. {
  5912. struct niu_parent *parent = np->parent;
  5913. struct niu_tcam_entry *tp;
  5914. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5915. u16 idx;
  5916. u64 class;
  5917. int ret = 0;
  5918. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5919. tp = &parent->tcam[idx];
  5920. if (!tp->valid) {
  5921. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5922. parent->index, (u16)nfc->fs.location, idx);
  5923. return -EINVAL;
  5924. }
  5925. /* fill the flow spec entry */
  5926. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5927. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5928. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5929. if (ret < 0) {
  5930. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5931. parent->index);
  5932. ret = -EINVAL;
  5933. goto out;
  5934. }
  5935. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5936. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5937. TCAM_V4KEY2_PROTO_SHIFT;
  5938. if (proto == IPPROTO_ESP) {
  5939. if (fsp->flow_type == AH_V4_FLOW)
  5940. fsp->flow_type = ESP_V4_FLOW;
  5941. else
  5942. fsp->flow_type = ESP_V6_FLOW;
  5943. }
  5944. }
  5945. switch (fsp->flow_type) {
  5946. case TCP_V4_FLOW:
  5947. case UDP_V4_FLOW:
  5948. case SCTP_V4_FLOW:
  5949. case AH_V4_FLOW:
  5950. case ESP_V4_FLOW:
  5951. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5952. break;
  5953. case TCP_V6_FLOW:
  5954. case UDP_V6_FLOW:
  5955. case SCTP_V6_FLOW:
  5956. case AH_V6_FLOW:
  5957. case ESP_V6_FLOW:
  5958. /* Not yet implemented */
  5959. ret = -EINVAL;
  5960. break;
  5961. case IP_USER_FLOW:
  5962. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5963. break;
  5964. default:
  5965. ret = -EINVAL;
  5966. break;
  5967. }
  5968. if (ret < 0)
  5969. goto out;
  5970. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5971. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5972. else
  5973. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5974. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5975. /* put the tcam size here */
  5976. nfc->data = tcam_get_size(np);
  5977. out:
  5978. return ret;
  5979. }
  5980. static int niu_get_ethtool_tcam_all(struct niu *np,
  5981. struct ethtool_rxnfc *nfc,
  5982. u32 *rule_locs)
  5983. {
  5984. struct niu_parent *parent = np->parent;
  5985. struct niu_tcam_entry *tp;
  5986. int i, idx, cnt;
  5987. unsigned long flags;
  5988. int ret = 0;
  5989. /* put the tcam size here */
  5990. nfc->data = tcam_get_size(np);
  5991. niu_lock_parent(np, flags);
  5992. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5993. idx = tcam_get_index(np, i);
  5994. tp = &parent->tcam[idx];
  5995. if (!tp->valid)
  5996. continue;
  5997. if (cnt == nfc->rule_cnt) {
  5998. ret = -EMSGSIZE;
  5999. break;
  6000. }
  6001. rule_locs[cnt] = i;
  6002. cnt++;
  6003. }
  6004. niu_unlock_parent(np, flags);
  6005. return ret;
  6006. }
  6007. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6008. void *rule_locs)
  6009. {
  6010. struct niu *np = netdev_priv(dev);
  6011. int ret = 0;
  6012. switch (cmd->cmd) {
  6013. case ETHTOOL_GRXFH:
  6014. ret = niu_get_hash_opts(np, cmd);
  6015. break;
  6016. case ETHTOOL_GRXRINGS:
  6017. cmd->data = np->num_rx_rings;
  6018. break;
  6019. case ETHTOOL_GRXCLSRLCNT:
  6020. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6021. break;
  6022. case ETHTOOL_GRXCLSRULE:
  6023. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6024. break;
  6025. case ETHTOOL_GRXCLSRLALL:
  6026. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6027. break;
  6028. default:
  6029. ret = -EINVAL;
  6030. break;
  6031. }
  6032. return ret;
  6033. }
  6034. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6035. {
  6036. u64 class;
  6037. u64 flow_key = 0;
  6038. unsigned long flags;
  6039. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6040. return -EINVAL;
  6041. if (class < CLASS_CODE_USER_PROG1 ||
  6042. class > CLASS_CODE_SCTP_IPV6)
  6043. return -EINVAL;
  6044. if (nfc->data & RXH_DISCARD) {
  6045. niu_lock_parent(np, flags);
  6046. flow_key = np->parent->tcam_key[class -
  6047. CLASS_CODE_USER_PROG1];
  6048. flow_key |= TCAM_KEY_DISC;
  6049. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6050. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6051. niu_unlock_parent(np, flags);
  6052. return 0;
  6053. } else {
  6054. /* Discard was set before, but is not set now */
  6055. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6056. TCAM_KEY_DISC) {
  6057. niu_lock_parent(np, flags);
  6058. flow_key = np->parent->tcam_key[class -
  6059. CLASS_CODE_USER_PROG1];
  6060. flow_key &= ~TCAM_KEY_DISC;
  6061. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6062. flow_key);
  6063. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6064. flow_key;
  6065. niu_unlock_parent(np, flags);
  6066. }
  6067. }
  6068. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6069. return -EINVAL;
  6070. niu_lock_parent(np, flags);
  6071. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6072. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6073. niu_unlock_parent(np, flags);
  6074. return 0;
  6075. }
  6076. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6077. struct niu_tcam_entry *tp,
  6078. int l2_rdc_tab, u64 class)
  6079. {
  6080. u8 pid = 0;
  6081. u32 sip, dip, sipm, dipm, spi, spim;
  6082. u16 sport, dport, spm, dpm;
  6083. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6084. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6085. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6086. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6087. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6088. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6089. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6090. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6091. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6092. tp->key[3] |= dip;
  6093. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6094. tp->key_mask[3] |= dipm;
  6095. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6096. TCAM_V4KEY2_TOS_SHIFT);
  6097. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6098. TCAM_V4KEY2_TOS_SHIFT);
  6099. switch (fsp->flow_type) {
  6100. case TCP_V4_FLOW:
  6101. case UDP_V4_FLOW:
  6102. case SCTP_V4_FLOW:
  6103. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6104. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6105. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6106. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6107. tp->key[2] |= (((u64)sport << 16) | dport);
  6108. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6109. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6110. break;
  6111. case AH_V4_FLOW:
  6112. case ESP_V4_FLOW:
  6113. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6114. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6115. tp->key[2] |= spi;
  6116. tp->key_mask[2] |= spim;
  6117. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6118. break;
  6119. case IP_USER_FLOW:
  6120. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6121. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6122. tp->key[2] |= spi;
  6123. tp->key_mask[2] |= spim;
  6124. pid = fsp->h_u.usr_ip4_spec.proto;
  6125. break;
  6126. default:
  6127. break;
  6128. }
  6129. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6130. if (pid) {
  6131. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6132. }
  6133. }
  6134. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6135. struct ethtool_rxnfc *nfc)
  6136. {
  6137. struct niu_parent *parent = np->parent;
  6138. struct niu_tcam_entry *tp;
  6139. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6140. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6141. int l2_rdc_table = rdc_table->first_table_num;
  6142. u16 idx;
  6143. u64 class;
  6144. unsigned long flags;
  6145. int err, ret;
  6146. ret = 0;
  6147. idx = nfc->fs.location;
  6148. if (idx >= tcam_get_size(np))
  6149. return -EINVAL;
  6150. if (fsp->flow_type == IP_USER_FLOW) {
  6151. int i;
  6152. int add_usr_cls = 0;
  6153. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6154. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6155. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6156. return -EINVAL;
  6157. niu_lock_parent(np, flags);
  6158. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6159. if (parent->l3_cls[i]) {
  6160. if (uspec->proto == parent->l3_cls_pid[i]) {
  6161. class = parent->l3_cls[i];
  6162. parent->l3_cls_refcnt[i]++;
  6163. add_usr_cls = 1;
  6164. break;
  6165. }
  6166. } else {
  6167. /* Program new user IP class */
  6168. switch (i) {
  6169. case 0:
  6170. class = CLASS_CODE_USER_PROG1;
  6171. break;
  6172. case 1:
  6173. class = CLASS_CODE_USER_PROG2;
  6174. break;
  6175. case 2:
  6176. class = CLASS_CODE_USER_PROG3;
  6177. break;
  6178. case 3:
  6179. class = CLASS_CODE_USER_PROG4;
  6180. break;
  6181. default:
  6182. break;
  6183. }
  6184. ret = tcam_user_ip_class_set(np, class, 0,
  6185. uspec->proto,
  6186. uspec->tos,
  6187. umask->tos);
  6188. if (ret)
  6189. goto out;
  6190. ret = tcam_user_ip_class_enable(np, class, 1);
  6191. if (ret)
  6192. goto out;
  6193. parent->l3_cls[i] = class;
  6194. parent->l3_cls_pid[i] = uspec->proto;
  6195. parent->l3_cls_refcnt[i]++;
  6196. add_usr_cls = 1;
  6197. break;
  6198. }
  6199. }
  6200. if (!add_usr_cls) {
  6201. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6202. parent->index, __func__, uspec->proto);
  6203. ret = -EINVAL;
  6204. goto out;
  6205. }
  6206. niu_unlock_parent(np, flags);
  6207. } else {
  6208. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6209. return -EINVAL;
  6210. }
  6211. }
  6212. niu_lock_parent(np, flags);
  6213. idx = tcam_get_index(np, idx);
  6214. tp = &parent->tcam[idx];
  6215. memset(tp, 0, sizeof(*tp));
  6216. /* fill in the tcam key and mask */
  6217. switch (fsp->flow_type) {
  6218. case TCP_V4_FLOW:
  6219. case UDP_V4_FLOW:
  6220. case SCTP_V4_FLOW:
  6221. case AH_V4_FLOW:
  6222. case ESP_V4_FLOW:
  6223. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6224. break;
  6225. case TCP_V6_FLOW:
  6226. case UDP_V6_FLOW:
  6227. case SCTP_V6_FLOW:
  6228. case AH_V6_FLOW:
  6229. case ESP_V6_FLOW:
  6230. /* Not yet implemented */
  6231. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6232. parent->index, __func__, fsp->flow_type);
  6233. ret = -EINVAL;
  6234. goto out;
  6235. case IP_USER_FLOW:
  6236. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6237. break;
  6238. default:
  6239. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6240. parent->index, __func__, fsp->flow_type);
  6241. ret = -EINVAL;
  6242. goto out;
  6243. }
  6244. /* fill in the assoc data */
  6245. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6246. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6247. } else {
  6248. if (fsp->ring_cookie >= np->num_rx_rings) {
  6249. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6250. parent->index, __func__,
  6251. (long long)fsp->ring_cookie);
  6252. ret = -EINVAL;
  6253. goto out;
  6254. }
  6255. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6256. (fsp->ring_cookie <<
  6257. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6258. }
  6259. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6260. if (err) {
  6261. ret = -EINVAL;
  6262. goto out;
  6263. }
  6264. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6265. if (err) {
  6266. ret = -EINVAL;
  6267. goto out;
  6268. }
  6269. /* validate the entry */
  6270. tp->valid = 1;
  6271. np->clas.tcam_valid_entries++;
  6272. out:
  6273. niu_unlock_parent(np, flags);
  6274. return ret;
  6275. }
  6276. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6277. {
  6278. struct niu_parent *parent = np->parent;
  6279. struct niu_tcam_entry *tp;
  6280. u16 idx;
  6281. unsigned long flags;
  6282. u64 class;
  6283. int ret = 0;
  6284. if (loc >= tcam_get_size(np))
  6285. return -EINVAL;
  6286. niu_lock_parent(np, flags);
  6287. idx = tcam_get_index(np, loc);
  6288. tp = &parent->tcam[idx];
  6289. /* if the entry is of a user defined class, then update*/
  6290. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6291. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6292. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6293. int i;
  6294. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6295. if (parent->l3_cls[i] == class) {
  6296. parent->l3_cls_refcnt[i]--;
  6297. if (!parent->l3_cls_refcnt[i]) {
  6298. /* disable class */
  6299. ret = tcam_user_ip_class_enable(np,
  6300. class,
  6301. 0);
  6302. if (ret)
  6303. goto out;
  6304. parent->l3_cls[i] = 0;
  6305. parent->l3_cls_pid[i] = 0;
  6306. }
  6307. break;
  6308. }
  6309. }
  6310. if (i == NIU_L3_PROG_CLS) {
  6311. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6312. parent->index, __func__,
  6313. (unsigned long long)class);
  6314. ret = -EINVAL;
  6315. goto out;
  6316. }
  6317. }
  6318. ret = tcam_flush(np, idx);
  6319. if (ret)
  6320. goto out;
  6321. /* invalidate the entry */
  6322. tp->valid = 0;
  6323. np->clas.tcam_valid_entries--;
  6324. out:
  6325. niu_unlock_parent(np, flags);
  6326. return ret;
  6327. }
  6328. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6329. {
  6330. struct niu *np = netdev_priv(dev);
  6331. int ret = 0;
  6332. switch (cmd->cmd) {
  6333. case ETHTOOL_SRXFH:
  6334. ret = niu_set_hash_opts(np, cmd);
  6335. break;
  6336. case ETHTOOL_SRXCLSRLINS:
  6337. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6338. break;
  6339. case ETHTOOL_SRXCLSRLDEL:
  6340. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6341. break;
  6342. default:
  6343. ret = -EINVAL;
  6344. break;
  6345. }
  6346. return ret;
  6347. }
  6348. static const struct {
  6349. const char string[ETH_GSTRING_LEN];
  6350. } niu_xmac_stat_keys[] = {
  6351. { "tx_frames" },
  6352. { "tx_bytes" },
  6353. { "tx_fifo_errors" },
  6354. { "tx_overflow_errors" },
  6355. { "tx_max_pkt_size_errors" },
  6356. { "tx_underflow_errors" },
  6357. { "rx_local_faults" },
  6358. { "rx_remote_faults" },
  6359. { "rx_link_faults" },
  6360. { "rx_align_errors" },
  6361. { "rx_frags" },
  6362. { "rx_mcasts" },
  6363. { "rx_bcasts" },
  6364. { "rx_hist_cnt1" },
  6365. { "rx_hist_cnt2" },
  6366. { "rx_hist_cnt3" },
  6367. { "rx_hist_cnt4" },
  6368. { "rx_hist_cnt5" },
  6369. { "rx_hist_cnt6" },
  6370. { "rx_hist_cnt7" },
  6371. { "rx_octets" },
  6372. { "rx_code_violations" },
  6373. { "rx_len_errors" },
  6374. { "rx_crc_errors" },
  6375. { "rx_underflows" },
  6376. { "rx_overflows" },
  6377. { "pause_off_state" },
  6378. { "pause_on_state" },
  6379. { "pause_received" },
  6380. };
  6381. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6382. static const struct {
  6383. const char string[ETH_GSTRING_LEN];
  6384. } niu_bmac_stat_keys[] = {
  6385. { "tx_underflow_errors" },
  6386. { "tx_max_pkt_size_errors" },
  6387. { "tx_bytes" },
  6388. { "tx_frames" },
  6389. { "rx_overflows" },
  6390. { "rx_frames" },
  6391. { "rx_align_errors" },
  6392. { "rx_crc_errors" },
  6393. { "rx_len_errors" },
  6394. { "pause_off_state" },
  6395. { "pause_on_state" },
  6396. { "pause_received" },
  6397. };
  6398. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6399. static const struct {
  6400. const char string[ETH_GSTRING_LEN];
  6401. } niu_rxchan_stat_keys[] = {
  6402. { "rx_channel" },
  6403. { "rx_packets" },
  6404. { "rx_bytes" },
  6405. { "rx_dropped" },
  6406. { "rx_errors" },
  6407. };
  6408. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6409. static const struct {
  6410. const char string[ETH_GSTRING_LEN];
  6411. } niu_txchan_stat_keys[] = {
  6412. { "tx_channel" },
  6413. { "tx_packets" },
  6414. { "tx_bytes" },
  6415. { "tx_errors" },
  6416. };
  6417. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6418. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6419. {
  6420. struct niu *np = netdev_priv(dev);
  6421. int i;
  6422. if (stringset != ETH_SS_STATS)
  6423. return;
  6424. if (np->flags & NIU_FLAGS_XMAC) {
  6425. memcpy(data, niu_xmac_stat_keys,
  6426. sizeof(niu_xmac_stat_keys));
  6427. data += sizeof(niu_xmac_stat_keys);
  6428. } else {
  6429. memcpy(data, niu_bmac_stat_keys,
  6430. sizeof(niu_bmac_stat_keys));
  6431. data += sizeof(niu_bmac_stat_keys);
  6432. }
  6433. for (i = 0; i < np->num_rx_rings; i++) {
  6434. memcpy(data, niu_rxchan_stat_keys,
  6435. sizeof(niu_rxchan_stat_keys));
  6436. data += sizeof(niu_rxchan_stat_keys);
  6437. }
  6438. for (i = 0; i < np->num_tx_rings; i++) {
  6439. memcpy(data, niu_txchan_stat_keys,
  6440. sizeof(niu_txchan_stat_keys));
  6441. data += sizeof(niu_txchan_stat_keys);
  6442. }
  6443. }
  6444. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6445. {
  6446. struct niu *np = netdev_priv(dev);
  6447. if (stringset != ETH_SS_STATS)
  6448. return -EINVAL;
  6449. return (np->flags & NIU_FLAGS_XMAC ?
  6450. NUM_XMAC_STAT_KEYS :
  6451. NUM_BMAC_STAT_KEYS) +
  6452. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6453. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6454. }
  6455. static void niu_get_ethtool_stats(struct net_device *dev,
  6456. struct ethtool_stats *stats, u64 *data)
  6457. {
  6458. struct niu *np = netdev_priv(dev);
  6459. int i;
  6460. niu_sync_mac_stats(np);
  6461. if (np->flags & NIU_FLAGS_XMAC) {
  6462. memcpy(data, &np->mac_stats.xmac,
  6463. sizeof(struct niu_xmac_stats));
  6464. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6465. } else {
  6466. memcpy(data, &np->mac_stats.bmac,
  6467. sizeof(struct niu_bmac_stats));
  6468. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6469. }
  6470. for (i = 0; i < np->num_rx_rings; i++) {
  6471. struct rx_ring_info *rp = &np->rx_rings[i];
  6472. niu_sync_rx_discard_stats(np, rp, 0);
  6473. data[0] = rp->rx_channel;
  6474. data[1] = rp->rx_packets;
  6475. data[2] = rp->rx_bytes;
  6476. data[3] = rp->rx_dropped;
  6477. data[4] = rp->rx_errors;
  6478. data += 5;
  6479. }
  6480. for (i = 0; i < np->num_tx_rings; i++) {
  6481. struct tx_ring_info *rp = &np->tx_rings[i];
  6482. data[0] = rp->tx_channel;
  6483. data[1] = rp->tx_packets;
  6484. data[2] = rp->tx_bytes;
  6485. data[3] = rp->tx_errors;
  6486. data += 4;
  6487. }
  6488. }
  6489. static u64 niu_led_state_save(struct niu *np)
  6490. {
  6491. if (np->flags & NIU_FLAGS_XMAC)
  6492. return nr64_mac(XMAC_CONFIG);
  6493. else
  6494. return nr64_mac(BMAC_XIF_CONFIG);
  6495. }
  6496. static void niu_led_state_restore(struct niu *np, u64 val)
  6497. {
  6498. if (np->flags & NIU_FLAGS_XMAC)
  6499. nw64_mac(XMAC_CONFIG, val);
  6500. else
  6501. nw64_mac(BMAC_XIF_CONFIG, val);
  6502. }
  6503. static void niu_force_led(struct niu *np, int on)
  6504. {
  6505. u64 val, reg, bit;
  6506. if (np->flags & NIU_FLAGS_XMAC) {
  6507. reg = XMAC_CONFIG;
  6508. bit = XMAC_CONFIG_FORCE_LED_ON;
  6509. } else {
  6510. reg = BMAC_XIF_CONFIG;
  6511. bit = BMAC_XIF_CONFIG_LINK_LED;
  6512. }
  6513. val = nr64_mac(reg);
  6514. if (on)
  6515. val |= bit;
  6516. else
  6517. val &= ~bit;
  6518. nw64_mac(reg, val);
  6519. }
  6520. static int niu_phys_id(struct net_device *dev, u32 data)
  6521. {
  6522. struct niu *np = netdev_priv(dev);
  6523. u64 orig_led_state;
  6524. int i;
  6525. if (!netif_running(dev))
  6526. return -EAGAIN;
  6527. if (data == 0)
  6528. data = 2;
  6529. orig_led_state = niu_led_state_save(np);
  6530. for (i = 0; i < (data * 2); i++) {
  6531. int on = ((i % 2) == 0);
  6532. niu_force_led(np, on);
  6533. if (msleep_interruptible(500))
  6534. break;
  6535. }
  6536. niu_led_state_restore(np, orig_led_state);
  6537. return 0;
  6538. }
  6539. static int niu_set_flags(struct net_device *dev, u32 data)
  6540. {
  6541. return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
  6542. }
  6543. static const struct ethtool_ops niu_ethtool_ops = {
  6544. .get_drvinfo = niu_get_drvinfo,
  6545. .get_link = ethtool_op_get_link,
  6546. .get_msglevel = niu_get_msglevel,
  6547. .set_msglevel = niu_set_msglevel,
  6548. .nway_reset = niu_nway_reset,
  6549. .get_eeprom_len = niu_get_eeprom_len,
  6550. .get_eeprom = niu_get_eeprom,
  6551. .get_settings = niu_get_settings,
  6552. .set_settings = niu_set_settings,
  6553. .get_strings = niu_get_strings,
  6554. .get_sset_count = niu_get_sset_count,
  6555. .get_ethtool_stats = niu_get_ethtool_stats,
  6556. .phys_id = niu_phys_id,
  6557. .get_rxnfc = niu_get_nfc,
  6558. .set_rxnfc = niu_set_nfc,
  6559. .set_flags = niu_set_flags,
  6560. .get_flags = ethtool_op_get_flags,
  6561. };
  6562. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6563. int ldg, int ldn)
  6564. {
  6565. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6566. return -EINVAL;
  6567. if (ldn < 0 || ldn > LDN_MAX)
  6568. return -EINVAL;
  6569. parent->ldg_map[ldn] = ldg;
  6570. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6571. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6572. * the firmware, and we're not supposed to change them.
  6573. * Validate the mapping, because if it's wrong we probably
  6574. * won't get any interrupts and that's painful to debug.
  6575. */
  6576. if (nr64(LDG_NUM(ldn)) != ldg) {
  6577. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6578. np->port, ldn, ldg,
  6579. (unsigned long long) nr64(LDG_NUM(ldn)));
  6580. return -EINVAL;
  6581. }
  6582. } else
  6583. nw64(LDG_NUM(ldn), ldg);
  6584. return 0;
  6585. }
  6586. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6587. {
  6588. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6589. return -EINVAL;
  6590. nw64(LDG_TIMER_RES, res);
  6591. return 0;
  6592. }
  6593. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6594. {
  6595. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6596. (func < 0 || func > 3) ||
  6597. (vector < 0 || vector > 0x1f))
  6598. return -EINVAL;
  6599. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6600. return 0;
  6601. }
  6602. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6603. {
  6604. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6605. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6606. int limit;
  6607. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6608. return -EINVAL;
  6609. frame = frame_base;
  6610. nw64(ESPC_PIO_STAT, frame);
  6611. limit = 64;
  6612. do {
  6613. udelay(5);
  6614. frame = nr64(ESPC_PIO_STAT);
  6615. if (frame & ESPC_PIO_STAT_READ_END)
  6616. break;
  6617. } while (limit--);
  6618. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6619. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6620. (unsigned long long) frame);
  6621. return -ENODEV;
  6622. }
  6623. frame = frame_base;
  6624. nw64(ESPC_PIO_STAT, frame);
  6625. limit = 64;
  6626. do {
  6627. udelay(5);
  6628. frame = nr64(ESPC_PIO_STAT);
  6629. if (frame & ESPC_PIO_STAT_READ_END)
  6630. break;
  6631. } while (limit--);
  6632. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6633. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6634. (unsigned long long) frame);
  6635. return -ENODEV;
  6636. }
  6637. frame = nr64(ESPC_PIO_STAT);
  6638. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6639. }
  6640. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6641. {
  6642. int err = niu_pci_eeprom_read(np, off);
  6643. u16 val;
  6644. if (err < 0)
  6645. return err;
  6646. val = (err << 8);
  6647. err = niu_pci_eeprom_read(np, off + 1);
  6648. if (err < 0)
  6649. return err;
  6650. val |= (err & 0xff);
  6651. return val;
  6652. }
  6653. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6654. {
  6655. int err = niu_pci_eeprom_read(np, off);
  6656. u16 val;
  6657. if (err < 0)
  6658. return err;
  6659. val = (err & 0xff);
  6660. err = niu_pci_eeprom_read(np, off + 1);
  6661. if (err < 0)
  6662. return err;
  6663. val |= (err & 0xff) << 8;
  6664. return val;
  6665. }
  6666. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6667. u32 off,
  6668. char *namebuf,
  6669. int namebuf_len)
  6670. {
  6671. int i;
  6672. for (i = 0; i < namebuf_len; i++) {
  6673. int err = niu_pci_eeprom_read(np, off + i);
  6674. if (err < 0)
  6675. return err;
  6676. *namebuf++ = err;
  6677. if (!err)
  6678. break;
  6679. }
  6680. if (i >= namebuf_len)
  6681. return -EINVAL;
  6682. return i + 1;
  6683. }
  6684. static void __devinit niu_vpd_parse_version(struct niu *np)
  6685. {
  6686. struct niu_vpd *vpd = &np->vpd;
  6687. int len = strlen(vpd->version) + 1;
  6688. const char *s = vpd->version;
  6689. int i;
  6690. for (i = 0; i < len - 5; i++) {
  6691. if (!strncmp(s + i, "FCode ", 6))
  6692. break;
  6693. }
  6694. if (i >= len - 5)
  6695. return;
  6696. s += i + 5;
  6697. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6698. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6699. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6700. vpd->fcode_major, vpd->fcode_minor);
  6701. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6702. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6703. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6704. np->flags |= NIU_FLAGS_VPD_VALID;
  6705. }
  6706. /* ESPC_PIO_EN_ENABLE must be set */
  6707. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6708. u32 start, u32 end)
  6709. {
  6710. unsigned int found_mask = 0;
  6711. #define FOUND_MASK_MODEL 0x00000001
  6712. #define FOUND_MASK_BMODEL 0x00000002
  6713. #define FOUND_MASK_VERS 0x00000004
  6714. #define FOUND_MASK_MAC 0x00000008
  6715. #define FOUND_MASK_NMAC 0x00000010
  6716. #define FOUND_MASK_PHY 0x00000020
  6717. #define FOUND_MASK_ALL 0x0000003f
  6718. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6719. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6720. while (start < end) {
  6721. int len, err, instance, type, prop_len;
  6722. char namebuf[64];
  6723. u8 *prop_buf;
  6724. int max_len;
  6725. if (found_mask == FOUND_MASK_ALL) {
  6726. niu_vpd_parse_version(np);
  6727. return 1;
  6728. }
  6729. err = niu_pci_eeprom_read(np, start + 2);
  6730. if (err < 0)
  6731. return err;
  6732. len = err;
  6733. start += 3;
  6734. instance = niu_pci_eeprom_read(np, start);
  6735. type = niu_pci_eeprom_read(np, start + 3);
  6736. prop_len = niu_pci_eeprom_read(np, start + 4);
  6737. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6738. if (err < 0)
  6739. return err;
  6740. prop_buf = NULL;
  6741. max_len = 0;
  6742. if (!strcmp(namebuf, "model")) {
  6743. prop_buf = np->vpd.model;
  6744. max_len = NIU_VPD_MODEL_MAX;
  6745. found_mask |= FOUND_MASK_MODEL;
  6746. } else if (!strcmp(namebuf, "board-model")) {
  6747. prop_buf = np->vpd.board_model;
  6748. max_len = NIU_VPD_BD_MODEL_MAX;
  6749. found_mask |= FOUND_MASK_BMODEL;
  6750. } else if (!strcmp(namebuf, "version")) {
  6751. prop_buf = np->vpd.version;
  6752. max_len = NIU_VPD_VERSION_MAX;
  6753. found_mask |= FOUND_MASK_VERS;
  6754. } else if (!strcmp(namebuf, "local-mac-address")) {
  6755. prop_buf = np->vpd.local_mac;
  6756. max_len = ETH_ALEN;
  6757. found_mask |= FOUND_MASK_MAC;
  6758. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6759. prop_buf = &np->vpd.mac_num;
  6760. max_len = 1;
  6761. found_mask |= FOUND_MASK_NMAC;
  6762. } else if (!strcmp(namebuf, "phy-type")) {
  6763. prop_buf = np->vpd.phy_type;
  6764. max_len = NIU_VPD_PHY_TYPE_MAX;
  6765. found_mask |= FOUND_MASK_PHY;
  6766. }
  6767. if (max_len && prop_len > max_len) {
  6768. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6769. return -EINVAL;
  6770. }
  6771. if (prop_buf) {
  6772. u32 off = start + 5 + err;
  6773. int i;
  6774. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6775. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6776. namebuf, prop_len);
  6777. for (i = 0; i < prop_len; i++)
  6778. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6779. }
  6780. start += len;
  6781. }
  6782. return 0;
  6783. }
  6784. /* ESPC_PIO_EN_ENABLE must be set */
  6785. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6786. {
  6787. u32 offset;
  6788. int err;
  6789. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6790. if (err < 0)
  6791. return;
  6792. offset = err + 3;
  6793. while (start + offset < ESPC_EEPROM_SIZE) {
  6794. u32 here = start + offset;
  6795. u32 end;
  6796. err = niu_pci_eeprom_read(np, here);
  6797. if (err != 0x90)
  6798. return;
  6799. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6800. if (err < 0)
  6801. return;
  6802. here = start + offset + 3;
  6803. end = start + offset + err;
  6804. offset += err;
  6805. err = niu_pci_vpd_scan_props(np, here, end);
  6806. if (err < 0 || err == 1)
  6807. return;
  6808. }
  6809. }
  6810. /* ESPC_PIO_EN_ENABLE must be set */
  6811. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6812. {
  6813. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6814. int err;
  6815. while (start < end) {
  6816. ret = start;
  6817. /* ROM header signature? */
  6818. err = niu_pci_eeprom_read16(np, start + 0);
  6819. if (err != 0x55aa)
  6820. return 0;
  6821. /* Apply offset to PCI data structure. */
  6822. err = niu_pci_eeprom_read16(np, start + 23);
  6823. if (err < 0)
  6824. return 0;
  6825. start += err;
  6826. /* Check for "PCIR" signature. */
  6827. err = niu_pci_eeprom_read16(np, start + 0);
  6828. if (err != 0x5043)
  6829. return 0;
  6830. err = niu_pci_eeprom_read16(np, start + 2);
  6831. if (err != 0x4952)
  6832. return 0;
  6833. /* Check for OBP image type. */
  6834. err = niu_pci_eeprom_read(np, start + 20);
  6835. if (err < 0)
  6836. return 0;
  6837. if (err != 0x01) {
  6838. err = niu_pci_eeprom_read(np, ret + 2);
  6839. if (err < 0)
  6840. return 0;
  6841. start = ret + (err * 512);
  6842. continue;
  6843. }
  6844. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6845. if (err < 0)
  6846. return err;
  6847. ret += err;
  6848. err = niu_pci_eeprom_read(np, ret + 0);
  6849. if (err != 0x82)
  6850. return 0;
  6851. return ret;
  6852. }
  6853. return 0;
  6854. }
  6855. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6856. const char *phy_prop)
  6857. {
  6858. if (!strcmp(phy_prop, "mif")) {
  6859. /* 1G copper, MII */
  6860. np->flags &= ~(NIU_FLAGS_FIBER |
  6861. NIU_FLAGS_10G);
  6862. np->mac_xcvr = MAC_XCVR_MII;
  6863. } else if (!strcmp(phy_prop, "xgf")) {
  6864. /* 10G fiber, XPCS */
  6865. np->flags |= (NIU_FLAGS_10G |
  6866. NIU_FLAGS_FIBER);
  6867. np->mac_xcvr = MAC_XCVR_XPCS;
  6868. } else if (!strcmp(phy_prop, "pcs")) {
  6869. /* 1G fiber, PCS */
  6870. np->flags &= ~NIU_FLAGS_10G;
  6871. np->flags |= NIU_FLAGS_FIBER;
  6872. np->mac_xcvr = MAC_XCVR_PCS;
  6873. } else if (!strcmp(phy_prop, "xgc")) {
  6874. /* 10G copper, XPCS */
  6875. np->flags |= NIU_FLAGS_10G;
  6876. np->flags &= ~NIU_FLAGS_FIBER;
  6877. np->mac_xcvr = MAC_XCVR_XPCS;
  6878. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6879. /* 10G Serdes or 1G Serdes, default to 10G */
  6880. np->flags |= NIU_FLAGS_10G;
  6881. np->flags &= ~NIU_FLAGS_FIBER;
  6882. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6883. np->mac_xcvr = MAC_XCVR_XPCS;
  6884. } else {
  6885. return -EINVAL;
  6886. }
  6887. return 0;
  6888. }
  6889. static int niu_pci_vpd_get_nports(struct niu *np)
  6890. {
  6891. int ports = 0;
  6892. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6893. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6894. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6895. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6896. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6897. ports = 4;
  6898. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6899. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6900. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6901. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6902. ports = 2;
  6903. }
  6904. return ports;
  6905. }
  6906. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6907. {
  6908. struct net_device *dev = np->dev;
  6909. struct niu_vpd *vpd = &np->vpd;
  6910. u8 val8;
  6911. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6912. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6913. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6914. return;
  6915. }
  6916. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6917. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6918. np->flags |= NIU_FLAGS_10G;
  6919. np->flags &= ~NIU_FLAGS_FIBER;
  6920. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6921. np->mac_xcvr = MAC_XCVR_PCS;
  6922. if (np->port > 1) {
  6923. np->flags |= NIU_FLAGS_FIBER;
  6924. np->flags &= ~NIU_FLAGS_10G;
  6925. }
  6926. if (np->flags & NIU_FLAGS_10G)
  6927. np->mac_xcvr = MAC_XCVR_XPCS;
  6928. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6929. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6930. NIU_FLAGS_HOTPLUG_PHY);
  6931. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6932. dev_err(np->device, "Illegal phy string [%s]\n",
  6933. np->vpd.phy_type);
  6934. dev_err(np->device, "Falling back to SPROM\n");
  6935. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6936. return;
  6937. }
  6938. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6939. val8 = dev->perm_addr[5];
  6940. dev->perm_addr[5] += np->port;
  6941. if (dev->perm_addr[5] < val8)
  6942. dev->perm_addr[4]++;
  6943. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6944. }
  6945. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6946. {
  6947. struct net_device *dev = np->dev;
  6948. int len, i;
  6949. u64 val, sum;
  6950. u8 val8;
  6951. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6952. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6953. len = val / 4;
  6954. np->eeprom_len = len;
  6955. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6956. "SPROM: Image size %llu\n", (unsigned long long)val);
  6957. sum = 0;
  6958. for (i = 0; i < len; i++) {
  6959. val = nr64(ESPC_NCR(i));
  6960. sum += (val >> 0) & 0xff;
  6961. sum += (val >> 8) & 0xff;
  6962. sum += (val >> 16) & 0xff;
  6963. sum += (val >> 24) & 0xff;
  6964. }
  6965. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6966. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6967. if ((sum & 0xff) != 0xab) {
  6968. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6969. return -EINVAL;
  6970. }
  6971. val = nr64(ESPC_PHY_TYPE);
  6972. switch (np->port) {
  6973. case 0:
  6974. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6975. ESPC_PHY_TYPE_PORT0_SHIFT;
  6976. break;
  6977. case 1:
  6978. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6979. ESPC_PHY_TYPE_PORT1_SHIFT;
  6980. break;
  6981. case 2:
  6982. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6983. ESPC_PHY_TYPE_PORT2_SHIFT;
  6984. break;
  6985. case 3:
  6986. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6987. ESPC_PHY_TYPE_PORT3_SHIFT;
  6988. break;
  6989. default:
  6990. dev_err(np->device, "Bogus port number %u\n",
  6991. np->port);
  6992. return -EINVAL;
  6993. }
  6994. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6995. "SPROM: PHY type %x\n", val8);
  6996. switch (val8) {
  6997. case ESPC_PHY_TYPE_1G_COPPER:
  6998. /* 1G copper, MII */
  6999. np->flags &= ~(NIU_FLAGS_FIBER |
  7000. NIU_FLAGS_10G);
  7001. np->mac_xcvr = MAC_XCVR_MII;
  7002. break;
  7003. case ESPC_PHY_TYPE_1G_FIBER:
  7004. /* 1G fiber, PCS */
  7005. np->flags &= ~NIU_FLAGS_10G;
  7006. np->flags |= NIU_FLAGS_FIBER;
  7007. np->mac_xcvr = MAC_XCVR_PCS;
  7008. break;
  7009. case ESPC_PHY_TYPE_10G_COPPER:
  7010. /* 10G copper, XPCS */
  7011. np->flags |= NIU_FLAGS_10G;
  7012. np->flags &= ~NIU_FLAGS_FIBER;
  7013. np->mac_xcvr = MAC_XCVR_XPCS;
  7014. break;
  7015. case ESPC_PHY_TYPE_10G_FIBER:
  7016. /* 10G fiber, XPCS */
  7017. np->flags |= (NIU_FLAGS_10G |
  7018. NIU_FLAGS_FIBER);
  7019. np->mac_xcvr = MAC_XCVR_XPCS;
  7020. break;
  7021. default:
  7022. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7023. return -EINVAL;
  7024. }
  7025. val = nr64(ESPC_MAC_ADDR0);
  7026. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7027. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7028. dev->perm_addr[0] = (val >> 0) & 0xff;
  7029. dev->perm_addr[1] = (val >> 8) & 0xff;
  7030. dev->perm_addr[2] = (val >> 16) & 0xff;
  7031. dev->perm_addr[3] = (val >> 24) & 0xff;
  7032. val = nr64(ESPC_MAC_ADDR1);
  7033. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7034. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7035. dev->perm_addr[4] = (val >> 0) & 0xff;
  7036. dev->perm_addr[5] = (val >> 8) & 0xff;
  7037. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7038. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7039. dev->perm_addr);
  7040. return -EINVAL;
  7041. }
  7042. val8 = dev->perm_addr[5];
  7043. dev->perm_addr[5] += np->port;
  7044. if (dev->perm_addr[5] < val8)
  7045. dev->perm_addr[4]++;
  7046. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7047. val = nr64(ESPC_MOD_STR_LEN);
  7048. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7049. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7050. if (val >= 8 * 4)
  7051. return -EINVAL;
  7052. for (i = 0; i < val; i += 4) {
  7053. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7054. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7055. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7056. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7057. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7058. }
  7059. np->vpd.model[val] = '\0';
  7060. val = nr64(ESPC_BD_MOD_STR_LEN);
  7061. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7062. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7063. if (val >= 4 * 4)
  7064. return -EINVAL;
  7065. for (i = 0; i < val; i += 4) {
  7066. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7067. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7068. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7069. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7070. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7071. }
  7072. np->vpd.board_model[val] = '\0';
  7073. np->vpd.mac_num =
  7074. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7075. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7076. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7077. return 0;
  7078. }
  7079. static int __devinit niu_get_and_validate_port(struct niu *np)
  7080. {
  7081. struct niu_parent *parent = np->parent;
  7082. if (np->port <= 1)
  7083. np->flags |= NIU_FLAGS_XMAC;
  7084. if (!parent->num_ports) {
  7085. if (parent->plat_type == PLAT_TYPE_NIU) {
  7086. parent->num_ports = 2;
  7087. } else {
  7088. parent->num_ports = niu_pci_vpd_get_nports(np);
  7089. if (!parent->num_ports) {
  7090. /* Fall back to SPROM as last resort.
  7091. * This will fail on most cards.
  7092. */
  7093. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7094. ESPC_NUM_PORTS_MACS_VAL;
  7095. /* All of the current probing methods fail on
  7096. * Maramba on-board parts.
  7097. */
  7098. if (!parent->num_ports)
  7099. parent->num_ports = 4;
  7100. }
  7101. }
  7102. }
  7103. if (np->port >= parent->num_ports)
  7104. return -ENODEV;
  7105. return 0;
  7106. }
  7107. static int __devinit phy_record(struct niu_parent *parent,
  7108. struct phy_probe_info *p,
  7109. int dev_id_1, int dev_id_2, u8 phy_port,
  7110. int type)
  7111. {
  7112. u32 id = (dev_id_1 << 16) | dev_id_2;
  7113. u8 idx;
  7114. if (dev_id_1 < 0 || dev_id_2 < 0)
  7115. return 0;
  7116. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7117. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7118. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7119. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7120. return 0;
  7121. } else {
  7122. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7123. return 0;
  7124. }
  7125. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7126. parent->index, id,
  7127. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7128. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7129. phy_port);
  7130. if (p->cur[type] >= NIU_MAX_PORTS) {
  7131. pr_err("Too many PHY ports\n");
  7132. return -EINVAL;
  7133. }
  7134. idx = p->cur[type];
  7135. p->phy_id[type][idx] = id;
  7136. p->phy_port[type][idx] = phy_port;
  7137. p->cur[type] = idx + 1;
  7138. return 0;
  7139. }
  7140. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7141. {
  7142. int i;
  7143. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7144. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7145. return 1;
  7146. }
  7147. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7148. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7149. return 1;
  7150. }
  7151. return 0;
  7152. }
  7153. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7154. {
  7155. int port, cnt;
  7156. cnt = 0;
  7157. *lowest = 32;
  7158. for (port = 8; port < 32; port++) {
  7159. if (port_has_10g(p, port)) {
  7160. if (!cnt)
  7161. *lowest = port;
  7162. cnt++;
  7163. }
  7164. }
  7165. return cnt;
  7166. }
  7167. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7168. {
  7169. *lowest = 32;
  7170. if (p->cur[PHY_TYPE_MII])
  7171. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7172. return p->cur[PHY_TYPE_MII];
  7173. }
  7174. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7175. {
  7176. int num_ports = parent->num_ports;
  7177. int i;
  7178. for (i = 0; i < num_ports; i++) {
  7179. parent->rxchan_per_port[i] = (16 / num_ports);
  7180. parent->txchan_per_port[i] = (16 / num_ports);
  7181. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7182. parent->index, i,
  7183. parent->rxchan_per_port[i],
  7184. parent->txchan_per_port[i]);
  7185. }
  7186. }
  7187. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7188. int num_10g, int num_1g)
  7189. {
  7190. int num_ports = parent->num_ports;
  7191. int rx_chans_per_10g, rx_chans_per_1g;
  7192. int tx_chans_per_10g, tx_chans_per_1g;
  7193. int i, tot_rx, tot_tx;
  7194. if (!num_10g || !num_1g) {
  7195. rx_chans_per_10g = rx_chans_per_1g =
  7196. (NIU_NUM_RXCHAN / num_ports);
  7197. tx_chans_per_10g = tx_chans_per_1g =
  7198. (NIU_NUM_TXCHAN / num_ports);
  7199. } else {
  7200. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7201. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7202. (rx_chans_per_1g * num_1g)) /
  7203. num_10g;
  7204. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7205. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7206. (tx_chans_per_1g * num_1g)) /
  7207. num_10g;
  7208. }
  7209. tot_rx = tot_tx = 0;
  7210. for (i = 0; i < num_ports; i++) {
  7211. int type = phy_decode(parent->port_phy, i);
  7212. if (type == PORT_TYPE_10G) {
  7213. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7214. parent->txchan_per_port[i] = tx_chans_per_10g;
  7215. } else {
  7216. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7217. parent->txchan_per_port[i] = tx_chans_per_1g;
  7218. }
  7219. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7220. parent->index, i,
  7221. parent->rxchan_per_port[i],
  7222. parent->txchan_per_port[i]);
  7223. tot_rx += parent->rxchan_per_port[i];
  7224. tot_tx += parent->txchan_per_port[i];
  7225. }
  7226. if (tot_rx > NIU_NUM_RXCHAN) {
  7227. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7228. parent->index, tot_rx);
  7229. for (i = 0; i < num_ports; i++)
  7230. parent->rxchan_per_port[i] = 1;
  7231. }
  7232. if (tot_tx > NIU_NUM_TXCHAN) {
  7233. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7234. parent->index, tot_tx);
  7235. for (i = 0; i < num_ports; i++)
  7236. parent->txchan_per_port[i] = 1;
  7237. }
  7238. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7239. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7240. parent->index, tot_rx, tot_tx);
  7241. }
  7242. }
  7243. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7244. int num_10g, int num_1g)
  7245. {
  7246. int i, num_ports = parent->num_ports;
  7247. int rdc_group, rdc_groups_per_port;
  7248. int rdc_channel_base;
  7249. rdc_group = 0;
  7250. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7251. rdc_channel_base = 0;
  7252. for (i = 0; i < num_ports; i++) {
  7253. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7254. int grp, num_channels = parent->rxchan_per_port[i];
  7255. int this_channel_offset;
  7256. tp->first_table_num = rdc_group;
  7257. tp->num_tables = rdc_groups_per_port;
  7258. this_channel_offset = 0;
  7259. for (grp = 0; grp < tp->num_tables; grp++) {
  7260. struct rdc_table *rt = &tp->tables[grp];
  7261. int slot;
  7262. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7263. parent->index, i, tp->first_table_num + grp);
  7264. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7265. rt->rxdma_channel[slot] =
  7266. rdc_channel_base + this_channel_offset;
  7267. pr_cont("%d ", rt->rxdma_channel[slot]);
  7268. if (++this_channel_offset == num_channels)
  7269. this_channel_offset = 0;
  7270. }
  7271. pr_cont("]\n");
  7272. }
  7273. parent->rdc_default[i] = rdc_channel_base;
  7274. rdc_channel_base += num_channels;
  7275. rdc_group += rdc_groups_per_port;
  7276. }
  7277. }
  7278. static int __devinit fill_phy_probe_info(struct niu *np,
  7279. struct niu_parent *parent,
  7280. struct phy_probe_info *info)
  7281. {
  7282. unsigned long flags;
  7283. int port, err;
  7284. memset(info, 0, sizeof(*info));
  7285. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7286. niu_lock_parent(np, flags);
  7287. err = 0;
  7288. for (port = 8; port < 32; port++) {
  7289. int dev_id_1, dev_id_2;
  7290. dev_id_1 = mdio_read(np, port,
  7291. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7292. dev_id_2 = mdio_read(np, port,
  7293. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7294. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7295. PHY_TYPE_PMA_PMD);
  7296. if (err)
  7297. break;
  7298. dev_id_1 = mdio_read(np, port,
  7299. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7300. dev_id_2 = mdio_read(np, port,
  7301. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7302. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7303. PHY_TYPE_PCS);
  7304. if (err)
  7305. break;
  7306. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7307. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7308. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7309. PHY_TYPE_MII);
  7310. if (err)
  7311. break;
  7312. }
  7313. niu_unlock_parent(np, flags);
  7314. return err;
  7315. }
  7316. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7317. {
  7318. struct phy_probe_info *info = &parent->phy_probe_info;
  7319. int lowest_10g, lowest_1g;
  7320. int num_10g, num_1g;
  7321. u32 val;
  7322. int err;
  7323. num_10g = num_1g = 0;
  7324. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7325. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7326. num_10g = 0;
  7327. num_1g = 2;
  7328. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7329. parent->num_ports = 4;
  7330. val = (phy_encode(PORT_TYPE_1G, 0) |
  7331. phy_encode(PORT_TYPE_1G, 1) |
  7332. phy_encode(PORT_TYPE_1G, 2) |
  7333. phy_encode(PORT_TYPE_1G, 3));
  7334. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7335. num_10g = 2;
  7336. num_1g = 0;
  7337. parent->num_ports = 2;
  7338. val = (phy_encode(PORT_TYPE_10G, 0) |
  7339. phy_encode(PORT_TYPE_10G, 1));
  7340. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7341. (parent->plat_type == PLAT_TYPE_NIU)) {
  7342. /* this is the Monza case */
  7343. if (np->flags & NIU_FLAGS_10G) {
  7344. val = (phy_encode(PORT_TYPE_10G, 0) |
  7345. phy_encode(PORT_TYPE_10G, 1));
  7346. } else {
  7347. val = (phy_encode(PORT_TYPE_1G, 0) |
  7348. phy_encode(PORT_TYPE_1G, 1));
  7349. }
  7350. } else {
  7351. err = fill_phy_probe_info(np, parent, info);
  7352. if (err)
  7353. return err;
  7354. num_10g = count_10g_ports(info, &lowest_10g);
  7355. num_1g = count_1g_ports(info, &lowest_1g);
  7356. switch ((num_10g << 4) | num_1g) {
  7357. case 0x24:
  7358. if (lowest_1g == 10)
  7359. parent->plat_type = PLAT_TYPE_VF_P0;
  7360. else if (lowest_1g == 26)
  7361. parent->plat_type = PLAT_TYPE_VF_P1;
  7362. else
  7363. goto unknown_vg_1g_port;
  7364. /* fallthru */
  7365. case 0x22:
  7366. val = (phy_encode(PORT_TYPE_10G, 0) |
  7367. phy_encode(PORT_TYPE_10G, 1) |
  7368. phy_encode(PORT_TYPE_1G, 2) |
  7369. phy_encode(PORT_TYPE_1G, 3));
  7370. break;
  7371. case 0x20:
  7372. val = (phy_encode(PORT_TYPE_10G, 0) |
  7373. phy_encode(PORT_TYPE_10G, 1));
  7374. break;
  7375. case 0x10:
  7376. val = phy_encode(PORT_TYPE_10G, np->port);
  7377. break;
  7378. case 0x14:
  7379. if (lowest_1g == 10)
  7380. parent->plat_type = PLAT_TYPE_VF_P0;
  7381. else if (lowest_1g == 26)
  7382. parent->plat_type = PLAT_TYPE_VF_P1;
  7383. else
  7384. goto unknown_vg_1g_port;
  7385. /* fallthru */
  7386. case 0x13:
  7387. if ((lowest_10g & 0x7) == 0)
  7388. val = (phy_encode(PORT_TYPE_10G, 0) |
  7389. phy_encode(PORT_TYPE_1G, 1) |
  7390. phy_encode(PORT_TYPE_1G, 2) |
  7391. phy_encode(PORT_TYPE_1G, 3));
  7392. else
  7393. val = (phy_encode(PORT_TYPE_1G, 0) |
  7394. phy_encode(PORT_TYPE_10G, 1) |
  7395. phy_encode(PORT_TYPE_1G, 2) |
  7396. phy_encode(PORT_TYPE_1G, 3));
  7397. break;
  7398. case 0x04:
  7399. if (lowest_1g == 10)
  7400. parent->plat_type = PLAT_TYPE_VF_P0;
  7401. else if (lowest_1g == 26)
  7402. parent->plat_type = PLAT_TYPE_VF_P1;
  7403. else
  7404. goto unknown_vg_1g_port;
  7405. val = (phy_encode(PORT_TYPE_1G, 0) |
  7406. phy_encode(PORT_TYPE_1G, 1) |
  7407. phy_encode(PORT_TYPE_1G, 2) |
  7408. phy_encode(PORT_TYPE_1G, 3));
  7409. break;
  7410. default:
  7411. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7412. num_10g, num_1g);
  7413. return -EINVAL;
  7414. }
  7415. }
  7416. parent->port_phy = val;
  7417. if (parent->plat_type == PLAT_TYPE_NIU)
  7418. niu_n2_divide_channels(parent);
  7419. else
  7420. niu_divide_channels(parent, num_10g, num_1g);
  7421. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7422. return 0;
  7423. unknown_vg_1g_port:
  7424. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7425. return -EINVAL;
  7426. }
  7427. static int __devinit niu_probe_ports(struct niu *np)
  7428. {
  7429. struct niu_parent *parent = np->parent;
  7430. int err, i;
  7431. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7432. err = walk_phys(np, parent);
  7433. if (err)
  7434. return err;
  7435. niu_set_ldg_timer_res(np, 2);
  7436. for (i = 0; i <= LDN_MAX; i++)
  7437. niu_ldn_irq_enable(np, i, 0);
  7438. }
  7439. if (parent->port_phy == PORT_PHY_INVALID)
  7440. return -EINVAL;
  7441. return 0;
  7442. }
  7443. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7444. {
  7445. struct niu_classifier *cp = &np->clas;
  7446. cp->tcam_top = (u16) np->port;
  7447. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7448. cp->h1_init = 0xffffffff;
  7449. cp->h2_init = 0xffff;
  7450. return fflp_early_init(np);
  7451. }
  7452. static void __devinit niu_link_config_init(struct niu *np)
  7453. {
  7454. struct niu_link_config *lp = &np->link_config;
  7455. lp->advertising = (ADVERTISED_10baseT_Half |
  7456. ADVERTISED_10baseT_Full |
  7457. ADVERTISED_100baseT_Half |
  7458. ADVERTISED_100baseT_Full |
  7459. ADVERTISED_1000baseT_Half |
  7460. ADVERTISED_1000baseT_Full |
  7461. ADVERTISED_10000baseT_Full |
  7462. ADVERTISED_Autoneg);
  7463. lp->speed = lp->active_speed = SPEED_INVALID;
  7464. lp->duplex = DUPLEX_FULL;
  7465. lp->active_duplex = DUPLEX_INVALID;
  7466. lp->autoneg = 1;
  7467. #if 0
  7468. lp->loopback_mode = LOOPBACK_MAC;
  7469. lp->active_speed = SPEED_10000;
  7470. lp->active_duplex = DUPLEX_FULL;
  7471. #else
  7472. lp->loopback_mode = LOOPBACK_DISABLED;
  7473. #endif
  7474. }
  7475. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7476. {
  7477. switch (np->port) {
  7478. case 0:
  7479. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7480. np->ipp_off = 0x00000;
  7481. np->pcs_off = 0x04000;
  7482. np->xpcs_off = 0x02000;
  7483. break;
  7484. case 1:
  7485. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7486. np->ipp_off = 0x08000;
  7487. np->pcs_off = 0x0a000;
  7488. np->xpcs_off = 0x08000;
  7489. break;
  7490. case 2:
  7491. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7492. np->ipp_off = 0x04000;
  7493. np->pcs_off = 0x0e000;
  7494. np->xpcs_off = ~0UL;
  7495. break;
  7496. case 3:
  7497. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7498. np->ipp_off = 0x0c000;
  7499. np->pcs_off = 0x12000;
  7500. np->xpcs_off = ~0UL;
  7501. break;
  7502. default:
  7503. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7504. return -EINVAL;
  7505. }
  7506. return 0;
  7507. }
  7508. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7509. {
  7510. struct msix_entry msi_vec[NIU_NUM_LDG];
  7511. struct niu_parent *parent = np->parent;
  7512. struct pci_dev *pdev = np->pdev;
  7513. int i, num_irqs, err;
  7514. u8 first_ldg;
  7515. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7516. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7517. ldg_num_map[i] = first_ldg + i;
  7518. num_irqs = (parent->rxchan_per_port[np->port] +
  7519. parent->txchan_per_port[np->port] +
  7520. (np->port == 0 ? 3 : 1));
  7521. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7522. retry:
  7523. for (i = 0; i < num_irqs; i++) {
  7524. msi_vec[i].vector = 0;
  7525. msi_vec[i].entry = i;
  7526. }
  7527. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7528. if (err < 0) {
  7529. np->flags &= ~NIU_FLAGS_MSIX;
  7530. return;
  7531. }
  7532. if (err > 0) {
  7533. num_irqs = err;
  7534. goto retry;
  7535. }
  7536. np->flags |= NIU_FLAGS_MSIX;
  7537. for (i = 0; i < num_irqs; i++)
  7538. np->ldg[i].irq = msi_vec[i].vector;
  7539. np->num_ldg = num_irqs;
  7540. }
  7541. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7542. {
  7543. #ifdef CONFIG_SPARC64
  7544. struct platform_device *op = np->op;
  7545. const u32 *int_prop;
  7546. int i;
  7547. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7548. if (!int_prop)
  7549. return -ENODEV;
  7550. for (i = 0; i < op->archdata.num_irqs; i++) {
  7551. ldg_num_map[i] = int_prop[i];
  7552. np->ldg[i].irq = op->archdata.irqs[i];
  7553. }
  7554. np->num_ldg = op->archdata.num_irqs;
  7555. return 0;
  7556. #else
  7557. return -EINVAL;
  7558. #endif
  7559. }
  7560. static int __devinit niu_ldg_init(struct niu *np)
  7561. {
  7562. struct niu_parent *parent = np->parent;
  7563. u8 ldg_num_map[NIU_NUM_LDG];
  7564. int first_chan, num_chan;
  7565. int i, err, ldg_rotor;
  7566. u8 port;
  7567. np->num_ldg = 1;
  7568. np->ldg[0].irq = np->dev->irq;
  7569. if (parent->plat_type == PLAT_TYPE_NIU) {
  7570. err = niu_n2_irq_init(np, ldg_num_map);
  7571. if (err)
  7572. return err;
  7573. } else
  7574. niu_try_msix(np, ldg_num_map);
  7575. port = np->port;
  7576. for (i = 0; i < np->num_ldg; i++) {
  7577. struct niu_ldg *lp = &np->ldg[i];
  7578. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7579. lp->np = np;
  7580. lp->ldg_num = ldg_num_map[i];
  7581. lp->timer = 2; /* XXX */
  7582. /* On N2 NIU the firmware has setup the SID mappings so they go
  7583. * to the correct values that will route the LDG to the proper
  7584. * interrupt in the NCU interrupt table.
  7585. */
  7586. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7587. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7588. if (err)
  7589. return err;
  7590. }
  7591. }
  7592. /* We adopt the LDG assignment ordering used by the N2 NIU
  7593. * 'interrupt' properties because that simplifies a lot of
  7594. * things. This ordering is:
  7595. *
  7596. * MAC
  7597. * MIF (if port zero)
  7598. * SYSERR (if port zero)
  7599. * RX channels
  7600. * TX channels
  7601. */
  7602. ldg_rotor = 0;
  7603. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7604. LDN_MAC(port));
  7605. if (err)
  7606. return err;
  7607. ldg_rotor++;
  7608. if (ldg_rotor == np->num_ldg)
  7609. ldg_rotor = 0;
  7610. if (port == 0) {
  7611. err = niu_ldg_assign_ldn(np, parent,
  7612. ldg_num_map[ldg_rotor],
  7613. LDN_MIF);
  7614. if (err)
  7615. return err;
  7616. ldg_rotor++;
  7617. if (ldg_rotor == np->num_ldg)
  7618. ldg_rotor = 0;
  7619. err = niu_ldg_assign_ldn(np, parent,
  7620. ldg_num_map[ldg_rotor],
  7621. LDN_DEVICE_ERROR);
  7622. if (err)
  7623. return err;
  7624. ldg_rotor++;
  7625. if (ldg_rotor == np->num_ldg)
  7626. ldg_rotor = 0;
  7627. }
  7628. first_chan = 0;
  7629. for (i = 0; i < port; i++)
  7630. first_chan += parent->rxchan_per_port[port];
  7631. num_chan = parent->rxchan_per_port[port];
  7632. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7633. err = niu_ldg_assign_ldn(np, parent,
  7634. ldg_num_map[ldg_rotor],
  7635. LDN_RXDMA(i));
  7636. if (err)
  7637. return err;
  7638. ldg_rotor++;
  7639. if (ldg_rotor == np->num_ldg)
  7640. ldg_rotor = 0;
  7641. }
  7642. first_chan = 0;
  7643. for (i = 0; i < port; i++)
  7644. first_chan += parent->txchan_per_port[port];
  7645. num_chan = parent->txchan_per_port[port];
  7646. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7647. err = niu_ldg_assign_ldn(np, parent,
  7648. ldg_num_map[ldg_rotor],
  7649. LDN_TXDMA(i));
  7650. if (err)
  7651. return err;
  7652. ldg_rotor++;
  7653. if (ldg_rotor == np->num_ldg)
  7654. ldg_rotor = 0;
  7655. }
  7656. return 0;
  7657. }
  7658. static void __devexit niu_ldg_free(struct niu *np)
  7659. {
  7660. if (np->flags & NIU_FLAGS_MSIX)
  7661. pci_disable_msix(np->pdev);
  7662. }
  7663. static int __devinit niu_get_of_props(struct niu *np)
  7664. {
  7665. #ifdef CONFIG_SPARC64
  7666. struct net_device *dev = np->dev;
  7667. struct device_node *dp;
  7668. const char *phy_type;
  7669. const u8 *mac_addr;
  7670. const char *model;
  7671. int prop_len;
  7672. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7673. dp = np->op->dev.of_node;
  7674. else
  7675. dp = pci_device_to_OF_node(np->pdev);
  7676. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7677. if (!phy_type) {
  7678. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7679. dp->full_name);
  7680. return -EINVAL;
  7681. }
  7682. if (!strcmp(phy_type, "none"))
  7683. return -ENODEV;
  7684. strcpy(np->vpd.phy_type, phy_type);
  7685. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7686. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7687. dp->full_name, np->vpd.phy_type);
  7688. return -EINVAL;
  7689. }
  7690. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7691. if (!mac_addr) {
  7692. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7693. dp->full_name);
  7694. return -EINVAL;
  7695. }
  7696. if (prop_len != dev->addr_len) {
  7697. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7698. dp->full_name, prop_len);
  7699. }
  7700. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7701. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7702. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7703. dp->full_name);
  7704. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->perm_addr);
  7705. return -EINVAL;
  7706. }
  7707. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7708. model = of_get_property(dp, "model", &prop_len);
  7709. if (model)
  7710. strcpy(np->vpd.model, model);
  7711. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7712. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7713. NIU_FLAGS_HOTPLUG_PHY);
  7714. }
  7715. return 0;
  7716. #else
  7717. return -EINVAL;
  7718. #endif
  7719. }
  7720. static int __devinit niu_get_invariants(struct niu *np)
  7721. {
  7722. int err, have_props;
  7723. u32 offset;
  7724. err = niu_get_of_props(np);
  7725. if (err == -ENODEV)
  7726. return err;
  7727. have_props = !err;
  7728. err = niu_init_mac_ipp_pcs_base(np);
  7729. if (err)
  7730. return err;
  7731. if (have_props) {
  7732. err = niu_get_and_validate_port(np);
  7733. if (err)
  7734. return err;
  7735. } else {
  7736. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7737. return -EINVAL;
  7738. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7739. offset = niu_pci_vpd_offset(np);
  7740. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7741. "%s() VPD offset [%08x]\n", __func__, offset);
  7742. if (offset)
  7743. niu_pci_vpd_fetch(np, offset);
  7744. nw64(ESPC_PIO_EN, 0);
  7745. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7746. niu_pci_vpd_validate(np);
  7747. err = niu_get_and_validate_port(np);
  7748. if (err)
  7749. return err;
  7750. }
  7751. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7752. err = niu_get_and_validate_port(np);
  7753. if (err)
  7754. return err;
  7755. err = niu_pci_probe_sprom(np);
  7756. if (err)
  7757. return err;
  7758. }
  7759. }
  7760. err = niu_probe_ports(np);
  7761. if (err)
  7762. return err;
  7763. niu_ldg_init(np);
  7764. niu_classifier_swstate_init(np);
  7765. niu_link_config_init(np);
  7766. err = niu_determine_phy_disposition(np);
  7767. if (!err)
  7768. err = niu_init_link(np);
  7769. return err;
  7770. }
  7771. static LIST_HEAD(niu_parent_list);
  7772. static DEFINE_MUTEX(niu_parent_lock);
  7773. static int niu_parent_index;
  7774. static ssize_t show_port_phy(struct device *dev,
  7775. struct device_attribute *attr, char *buf)
  7776. {
  7777. struct platform_device *plat_dev = to_platform_device(dev);
  7778. struct niu_parent *p = plat_dev->dev.platform_data;
  7779. u32 port_phy = p->port_phy;
  7780. char *orig_buf = buf;
  7781. int i;
  7782. if (port_phy == PORT_PHY_UNKNOWN ||
  7783. port_phy == PORT_PHY_INVALID)
  7784. return 0;
  7785. for (i = 0; i < p->num_ports; i++) {
  7786. const char *type_str;
  7787. int type;
  7788. type = phy_decode(port_phy, i);
  7789. if (type == PORT_TYPE_10G)
  7790. type_str = "10G";
  7791. else
  7792. type_str = "1G";
  7793. buf += sprintf(buf,
  7794. (i == 0) ? "%s" : " %s",
  7795. type_str);
  7796. }
  7797. buf += sprintf(buf, "\n");
  7798. return buf - orig_buf;
  7799. }
  7800. static ssize_t show_plat_type(struct device *dev,
  7801. struct device_attribute *attr, char *buf)
  7802. {
  7803. struct platform_device *plat_dev = to_platform_device(dev);
  7804. struct niu_parent *p = plat_dev->dev.platform_data;
  7805. const char *type_str;
  7806. switch (p->plat_type) {
  7807. case PLAT_TYPE_ATLAS:
  7808. type_str = "atlas";
  7809. break;
  7810. case PLAT_TYPE_NIU:
  7811. type_str = "niu";
  7812. break;
  7813. case PLAT_TYPE_VF_P0:
  7814. type_str = "vf_p0";
  7815. break;
  7816. case PLAT_TYPE_VF_P1:
  7817. type_str = "vf_p1";
  7818. break;
  7819. default:
  7820. type_str = "unknown";
  7821. break;
  7822. }
  7823. return sprintf(buf, "%s\n", type_str);
  7824. }
  7825. static ssize_t __show_chan_per_port(struct device *dev,
  7826. struct device_attribute *attr, char *buf,
  7827. int rx)
  7828. {
  7829. struct platform_device *plat_dev = to_platform_device(dev);
  7830. struct niu_parent *p = plat_dev->dev.platform_data;
  7831. char *orig_buf = buf;
  7832. u8 *arr;
  7833. int i;
  7834. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7835. for (i = 0; i < p->num_ports; i++) {
  7836. buf += sprintf(buf,
  7837. (i == 0) ? "%d" : " %d",
  7838. arr[i]);
  7839. }
  7840. buf += sprintf(buf, "\n");
  7841. return buf - orig_buf;
  7842. }
  7843. static ssize_t show_rxchan_per_port(struct device *dev,
  7844. struct device_attribute *attr, char *buf)
  7845. {
  7846. return __show_chan_per_port(dev, attr, buf, 1);
  7847. }
  7848. static ssize_t show_txchan_per_port(struct device *dev,
  7849. struct device_attribute *attr, char *buf)
  7850. {
  7851. return __show_chan_per_port(dev, attr, buf, 1);
  7852. }
  7853. static ssize_t show_num_ports(struct device *dev,
  7854. struct device_attribute *attr, char *buf)
  7855. {
  7856. struct platform_device *plat_dev = to_platform_device(dev);
  7857. struct niu_parent *p = plat_dev->dev.platform_data;
  7858. return sprintf(buf, "%d\n", p->num_ports);
  7859. }
  7860. static struct device_attribute niu_parent_attributes[] = {
  7861. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7862. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7863. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7864. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7865. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7866. {}
  7867. };
  7868. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7869. union niu_parent_id *id,
  7870. u8 ptype)
  7871. {
  7872. struct platform_device *plat_dev;
  7873. struct niu_parent *p;
  7874. int i;
  7875. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7876. NULL, 0);
  7877. if (IS_ERR(plat_dev))
  7878. return NULL;
  7879. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7880. int err = device_create_file(&plat_dev->dev,
  7881. &niu_parent_attributes[i]);
  7882. if (err)
  7883. goto fail_unregister;
  7884. }
  7885. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7886. if (!p)
  7887. goto fail_unregister;
  7888. p->index = niu_parent_index++;
  7889. plat_dev->dev.platform_data = p;
  7890. p->plat_dev = plat_dev;
  7891. memcpy(&p->id, id, sizeof(*id));
  7892. p->plat_type = ptype;
  7893. INIT_LIST_HEAD(&p->list);
  7894. atomic_set(&p->refcnt, 0);
  7895. list_add(&p->list, &niu_parent_list);
  7896. spin_lock_init(&p->lock);
  7897. p->rxdma_clock_divider = 7500;
  7898. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7899. if (p->plat_type == PLAT_TYPE_NIU)
  7900. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7901. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7902. int index = i - CLASS_CODE_USER_PROG1;
  7903. p->tcam_key[index] = TCAM_KEY_TSEL;
  7904. p->flow_key[index] = (FLOW_KEY_IPSA |
  7905. FLOW_KEY_IPDA |
  7906. FLOW_KEY_PROTO |
  7907. (FLOW_KEY_L4_BYTE12 <<
  7908. FLOW_KEY_L4_0_SHIFT) |
  7909. (FLOW_KEY_L4_BYTE12 <<
  7910. FLOW_KEY_L4_1_SHIFT));
  7911. }
  7912. for (i = 0; i < LDN_MAX + 1; i++)
  7913. p->ldg_map[i] = LDG_INVALID;
  7914. return p;
  7915. fail_unregister:
  7916. platform_device_unregister(plat_dev);
  7917. return NULL;
  7918. }
  7919. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7920. union niu_parent_id *id,
  7921. u8 ptype)
  7922. {
  7923. struct niu_parent *p, *tmp;
  7924. int port = np->port;
  7925. mutex_lock(&niu_parent_lock);
  7926. p = NULL;
  7927. list_for_each_entry(tmp, &niu_parent_list, list) {
  7928. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7929. p = tmp;
  7930. break;
  7931. }
  7932. }
  7933. if (!p)
  7934. p = niu_new_parent(np, id, ptype);
  7935. if (p) {
  7936. char port_name[6];
  7937. int err;
  7938. sprintf(port_name, "port%d", port);
  7939. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7940. &np->device->kobj,
  7941. port_name);
  7942. if (!err) {
  7943. p->ports[port] = np;
  7944. atomic_inc(&p->refcnt);
  7945. }
  7946. }
  7947. mutex_unlock(&niu_parent_lock);
  7948. return p;
  7949. }
  7950. static void niu_put_parent(struct niu *np)
  7951. {
  7952. struct niu_parent *p = np->parent;
  7953. u8 port = np->port;
  7954. char port_name[6];
  7955. BUG_ON(!p || p->ports[port] != np);
  7956. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7957. "%s() port[%u]\n", __func__, port);
  7958. sprintf(port_name, "port%d", port);
  7959. mutex_lock(&niu_parent_lock);
  7960. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7961. p->ports[port] = NULL;
  7962. np->parent = NULL;
  7963. if (atomic_dec_and_test(&p->refcnt)) {
  7964. list_del(&p->list);
  7965. platform_device_unregister(p->plat_dev);
  7966. }
  7967. mutex_unlock(&niu_parent_lock);
  7968. }
  7969. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7970. u64 *handle, gfp_t flag)
  7971. {
  7972. dma_addr_t dh;
  7973. void *ret;
  7974. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7975. if (ret)
  7976. *handle = dh;
  7977. return ret;
  7978. }
  7979. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7980. void *cpu_addr, u64 handle)
  7981. {
  7982. dma_free_coherent(dev, size, cpu_addr, handle);
  7983. }
  7984. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7985. unsigned long offset, size_t size,
  7986. enum dma_data_direction direction)
  7987. {
  7988. return dma_map_page(dev, page, offset, size, direction);
  7989. }
  7990. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7991. size_t size, enum dma_data_direction direction)
  7992. {
  7993. dma_unmap_page(dev, dma_address, size, direction);
  7994. }
  7995. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7996. size_t size,
  7997. enum dma_data_direction direction)
  7998. {
  7999. return dma_map_single(dev, cpu_addr, size, direction);
  8000. }
  8001. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8002. size_t size,
  8003. enum dma_data_direction direction)
  8004. {
  8005. dma_unmap_single(dev, dma_address, size, direction);
  8006. }
  8007. static const struct niu_ops niu_pci_ops = {
  8008. .alloc_coherent = niu_pci_alloc_coherent,
  8009. .free_coherent = niu_pci_free_coherent,
  8010. .map_page = niu_pci_map_page,
  8011. .unmap_page = niu_pci_unmap_page,
  8012. .map_single = niu_pci_map_single,
  8013. .unmap_single = niu_pci_unmap_single,
  8014. };
  8015. static void __devinit niu_driver_version(void)
  8016. {
  8017. static int niu_version_printed;
  8018. if (niu_version_printed++ == 0)
  8019. pr_info("%s", version);
  8020. }
  8021. static struct net_device * __devinit niu_alloc_and_init(
  8022. struct device *gen_dev, struct pci_dev *pdev,
  8023. struct platform_device *op, const struct niu_ops *ops,
  8024. u8 port)
  8025. {
  8026. struct net_device *dev;
  8027. struct niu *np;
  8028. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8029. if (!dev) {
  8030. dev_err(gen_dev, "Etherdev alloc failed, aborting\n");
  8031. return NULL;
  8032. }
  8033. SET_NETDEV_DEV(dev, gen_dev);
  8034. np = netdev_priv(dev);
  8035. np->dev = dev;
  8036. np->pdev = pdev;
  8037. np->op = op;
  8038. np->device = gen_dev;
  8039. np->ops = ops;
  8040. np->msg_enable = niu_debug;
  8041. spin_lock_init(&np->lock);
  8042. INIT_WORK(&np->reset_task, niu_reset_task);
  8043. np->port = port;
  8044. return dev;
  8045. }
  8046. static const struct net_device_ops niu_netdev_ops = {
  8047. .ndo_open = niu_open,
  8048. .ndo_stop = niu_close,
  8049. .ndo_start_xmit = niu_start_xmit,
  8050. .ndo_get_stats = niu_get_stats,
  8051. .ndo_set_multicast_list = niu_set_rx_mode,
  8052. .ndo_validate_addr = eth_validate_addr,
  8053. .ndo_set_mac_address = niu_set_mac_addr,
  8054. .ndo_do_ioctl = niu_ioctl,
  8055. .ndo_tx_timeout = niu_tx_timeout,
  8056. .ndo_change_mtu = niu_change_mtu,
  8057. };
  8058. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8059. {
  8060. dev->netdev_ops = &niu_netdev_ops;
  8061. dev->ethtool_ops = &niu_ethtool_ops;
  8062. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8063. }
  8064. static void __devinit niu_device_announce(struct niu *np)
  8065. {
  8066. struct net_device *dev = np->dev;
  8067. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8068. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8069. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8070. dev->name,
  8071. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8072. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8073. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8074. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8075. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8076. np->vpd.phy_type);
  8077. } else {
  8078. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8079. dev->name,
  8080. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8081. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8082. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8083. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8084. "COPPER")),
  8085. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8086. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8087. np->vpd.phy_type);
  8088. }
  8089. }
  8090. static void __devinit niu_set_basic_features(struct net_device *dev)
  8091. {
  8092. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM |
  8093. NETIF_F_GRO | NETIF_F_RXHASH);
  8094. }
  8095. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8096. const struct pci_device_id *ent)
  8097. {
  8098. union niu_parent_id parent_id;
  8099. struct net_device *dev;
  8100. struct niu *np;
  8101. int err, pos;
  8102. u64 dma_mask;
  8103. u16 val16;
  8104. niu_driver_version();
  8105. err = pci_enable_device(pdev);
  8106. if (err) {
  8107. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8108. return err;
  8109. }
  8110. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8111. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8112. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8113. err = -ENODEV;
  8114. goto err_out_disable_pdev;
  8115. }
  8116. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8117. if (err) {
  8118. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8119. goto err_out_disable_pdev;
  8120. }
  8121. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8122. if (pos <= 0) {
  8123. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8124. goto err_out_free_res;
  8125. }
  8126. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8127. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8128. if (!dev) {
  8129. err = -ENOMEM;
  8130. goto err_out_free_res;
  8131. }
  8132. np = netdev_priv(dev);
  8133. memset(&parent_id, 0, sizeof(parent_id));
  8134. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8135. parent_id.pci.bus = pdev->bus->number;
  8136. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8137. np->parent = niu_get_parent(np, &parent_id,
  8138. PLAT_TYPE_ATLAS);
  8139. if (!np->parent) {
  8140. err = -ENOMEM;
  8141. goto err_out_free_dev;
  8142. }
  8143. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8144. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8145. val16 |= (PCI_EXP_DEVCTL_CERE |
  8146. PCI_EXP_DEVCTL_NFERE |
  8147. PCI_EXP_DEVCTL_FERE |
  8148. PCI_EXP_DEVCTL_URRE |
  8149. PCI_EXP_DEVCTL_RELAX_EN);
  8150. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8151. dma_mask = DMA_BIT_MASK(44);
  8152. err = pci_set_dma_mask(pdev, dma_mask);
  8153. if (!err) {
  8154. dev->features |= NETIF_F_HIGHDMA;
  8155. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8156. if (err) {
  8157. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8158. goto err_out_release_parent;
  8159. }
  8160. }
  8161. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8162. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8163. if (err) {
  8164. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8165. goto err_out_release_parent;
  8166. }
  8167. }
  8168. niu_set_basic_features(dev);
  8169. np->regs = pci_ioremap_bar(pdev, 0);
  8170. if (!np->regs) {
  8171. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8172. err = -ENOMEM;
  8173. goto err_out_release_parent;
  8174. }
  8175. pci_set_master(pdev);
  8176. pci_save_state(pdev);
  8177. dev->irq = pdev->irq;
  8178. niu_assign_netdev_ops(dev);
  8179. err = niu_get_invariants(np);
  8180. if (err) {
  8181. if (err != -ENODEV)
  8182. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8183. goto err_out_iounmap;
  8184. }
  8185. err = register_netdev(dev);
  8186. if (err) {
  8187. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8188. goto err_out_iounmap;
  8189. }
  8190. pci_set_drvdata(pdev, dev);
  8191. niu_device_announce(np);
  8192. return 0;
  8193. err_out_iounmap:
  8194. if (np->regs) {
  8195. iounmap(np->regs);
  8196. np->regs = NULL;
  8197. }
  8198. err_out_release_parent:
  8199. niu_put_parent(np);
  8200. err_out_free_dev:
  8201. free_netdev(dev);
  8202. err_out_free_res:
  8203. pci_release_regions(pdev);
  8204. err_out_disable_pdev:
  8205. pci_disable_device(pdev);
  8206. pci_set_drvdata(pdev, NULL);
  8207. return err;
  8208. }
  8209. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8210. {
  8211. struct net_device *dev = pci_get_drvdata(pdev);
  8212. if (dev) {
  8213. struct niu *np = netdev_priv(dev);
  8214. unregister_netdev(dev);
  8215. if (np->regs) {
  8216. iounmap(np->regs);
  8217. np->regs = NULL;
  8218. }
  8219. niu_ldg_free(np);
  8220. niu_put_parent(np);
  8221. free_netdev(dev);
  8222. pci_release_regions(pdev);
  8223. pci_disable_device(pdev);
  8224. pci_set_drvdata(pdev, NULL);
  8225. }
  8226. }
  8227. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8228. {
  8229. struct net_device *dev = pci_get_drvdata(pdev);
  8230. struct niu *np = netdev_priv(dev);
  8231. unsigned long flags;
  8232. if (!netif_running(dev))
  8233. return 0;
  8234. flush_work_sync(&np->reset_task);
  8235. niu_netif_stop(np);
  8236. del_timer_sync(&np->timer);
  8237. spin_lock_irqsave(&np->lock, flags);
  8238. niu_enable_interrupts(np, 0);
  8239. spin_unlock_irqrestore(&np->lock, flags);
  8240. netif_device_detach(dev);
  8241. spin_lock_irqsave(&np->lock, flags);
  8242. niu_stop_hw(np);
  8243. spin_unlock_irqrestore(&np->lock, flags);
  8244. pci_save_state(pdev);
  8245. return 0;
  8246. }
  8247. static int niu_resume(struct pci_dev *pdev)
  8248. {
  8249. struct net_device *dev = pci_get_drvdata(pdev);
  8250. struct niu *np = netdev_priv(dev);
  8251. unsigned long flags;
  8252. int err;
  8253. if (!netif_running(dev))
  8254. return 0;
  8255. pci_restore_state(pdev);
  8256. netif_device_attach(dev);
  8257. spin_lock_irqsave(&np->lock, flags);
  8258. err = niu_init_hw(np);
  8259. if (!err) {
  8260. np->timer.expires = jiffies + HZ;
  8261. add_timer(&np->timer);
  8262. niu_netif_start(np);
  8263. }
  8264. spin_unlock_irqrestore(&np->lock, flags);
  8265. return err;
  8266. }
  8267. static struct pci_driver niu_pci_driver = {
  8268. .name = DRV_MODULE_NAME,
  8269. .id_table = niu_pci_tbl,
  8270. .probe = niu_pci_init_one,
  8271. .remove = __devexit_p(niu_pci_remove_one),
  8272. .suspend = niu_suspend,
  8273. .resume = niu_resume,
  8274. };
  8275. #ifdef CONFIG_SPARC64
  8276. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8277. u64 *dma_addr, gfp_t flag)
  8278. {
  8279. unsigned long order = get_order(size);
  8280. unsigned long page = __get_free_pages(flag, order);
  8281. if (page == 0UL)
  8282. return NULL;
  8283. memset((char *)page, 0, PAGE_SIZE << order);
  8284. *dma_addr = __pa(page);
  8285. return (void *) page;
  8286. }
  8287. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8288. void *cpu_addr, u64 handle)
  8289. {
  8290. unsigned long order = get_order(size);
  8291. free_pages((unsigned long) cpu_addr, order);
  8292. }
  8293. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8294. unsigned long offset, size_t size,
  8295. enum dma_data_direction direction)
  8296. {
  8297. return page_to_phys(page) + offset;
  8298. }
  8299. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8300. size_t size, enum dma_data_direction direction)
  8301. {
  8302. /* Nothing to do. */
  8303. }
  8304. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8305. size_t size,
  8306. enum dma_data_direction direction)
  8307. {
  8308. return __pa(cpu_addr);
  8309. }
  8310. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8311. size_t size,
  8312. enum dma_data_direction direction)
  8313. {
  8314. /* Nothing to do. */
  8315. }
  8316. static const struct niu_ops niu_phys_ops = {
  8317. .alloc_coherent = niu_phys_alloc_coherent,
  8318. .free_coherent = niu_phys_free_coherent,
  8319. .map_page = niu_phys_map_page,
  8320. .unmap_page = niu_phys_unmap_page,
  8321. .map_single = niu_phys_map_single,
  8322. .unmap_single = niu_phys_unmap_single,
  8323. };
  8324. static int __devinit niu_of_probe(struct platform_device *op)
  8325. {
  8326. union niu_parent_id parent_id;
  8327. struct net_device *dev;
  8328. struct niu *np;
  8329. const u32 *reg;
  8330. int err;
  8331. niu_driver_version();
  8332. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8333. if (!reg) {
  8334. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8335. op->dev.of_node->full_name);
  8336. return -ENODEV;
  8337. }
  8338. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8339. &niu_phys_ops, reg[0] & 0x1);
  8340. if (!dev) {
  8341. err = -ENOMEM;
  8342. goto err_out;
  8343. }
  8344. np = netdev_priv(dev);
  8345. memset(&parent_id, 0, sizeof(parent_id));
  8346. parent_id.of = of_get_parent(op->dev.of_node);
  8347. np->parent = niu_get_parent(np, &parent_id,
  8348. PLAT_TYPE_NIU);
  8349. if (!np->parent) {
  8350. err = -ENOMEM;
  8351. goto err_out_free_dev;
  8352. }
  8353. niu_set_basic_features(dev);
  8354. np->regs = of_ioremap(&op->resource[1], 0,
  8355. resource_size(&op->resource[1]),
  8356. "niu regs");
  8357. if (!np->regs) {
  8358. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8359. err = -ENOMEM;
  8360. goto err_out_release_parent;
  8361. }
  8362. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8363. resource_size(&op->resource[2]),
  8364. "niu vregs-1");
  8365. if (!np->vir_regs_1) {
  8366. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8367. err = -ENOMEM;
  8368. goto err_out_iounmap;
  8369. }
  8370. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8371. resource_size(&op->resource[3]),
  8372. "niu vregs-2");
  8373. if (!np->vir_regs_2) {
  8374. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8375. err = -ENOMEM;
  8376. goto err_out_iounmap;
  8377. }
  8378. niu_assign_netdev_ops(dev);
  8379. err = niu_get_invariants(np);
  8380. if (err) {
  8381. if (err != -ENODEV)
  8382. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8383. goto err_out_iounmap;
  8384. }
  8385. err = register_netdev(dev);
  8386. if (err) {
  8387. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8388. goto err_out_iounmap;
  8389. }
  8390. dev_set_drvdata(&op->dev, dev);
  8391. niu_device_announce(np);
  8392. return 0;
  8393. err_out_iounmap:
  8394. if (np->vir_regs_1) {
  8395. of_iounmap(&op->resource[2], np->vir_regs_1,
  8396. resource_size(&op->resource[2]));
  8397. np->vir_regs_1 = NULL;
  8398. }
  8399. if (np->vir_regs_2) {
  8400. of_iounmap(&op->resource[3], np->vir_regs_2,
  8401. resource_size(&op->resource[3]));
  8402. np->vir_regs_2 = NULL;
  8403. }
  8404. if (np->regs) {
  8405. of_iounmap(&op->resource[1], np->regs,
  8406. resource_size(&op->resource[1]));
  8407. np->regs = NULL;
  8408. }
  8409. err_out_release_parent:
  8410. niu_put_parent(np);
  8411. err_out_free_dev:
  8412. free_netdev(dev);
  8413. err_out:
  8414. return err;
  8415. }
  8416. static int __devexit niu_of_remove(struct platform_device *op)
  8417. {
  8418. struct net_device *dev = dev_get_drvdata(&op->dev);
  8419. if (dev) {
  8420. struct niu *np = netdev_priv(dev);
  8421. unregister_netdev(dev);
  8422. if (np->vir_regs_1) {
  8423. of_iounmap(&op->resource[2], np->vir_regs_1,
  8424. resource_size(&op->resource[2]));
  8425. np->vir_regs_1 = NULL;
  8426. }
  8427. if (np->vir_regs_2) {
  8428. of_iounmap(&op->resource[3], np->vir_regs_2,
  8429. resource_size(&op->resource[3]));
  8430. np->vir_regs_2 = NULL;
  8431. }
  8432. if (np->regs) {
  8433. of_iounmap(&op->resource[1], np->regs,
  8434. resource_size(&op->resource[1]));
  8435. np->regs = NULL;
  8436. }
  8437. niu_ldg_free(np);
  8438. niu_put_parent(np);
  8439. free_netdev(dev);
  8440. dev_set_drvdata(&op->dev, NULL);
  8441. }
  8442. return 0;
  8443. }
  8444. static const struct of_device_id niu_match[] = {
  8445. {
  8446. .name = "network",
  8447. .compatible = "SUNW,niusl",
  8448. },
  8449. {},
  8450. };
  8451. MODULE_DEVICE_TABLE(of, niu_match);
  8452. static struct platform_driver niu_of_driver = {
  8453. .driver = {
  8454. .name = "niu",
  8455. .owner = THIS_MODULE,
  8456. .of_match_table = niu_match,
  8457. },
  8458. .probe = niu_of_probe,
  8459. .remove = __devexit_p(niu_of_remove),
  8460. };
  8461. #endif /* CONFIG_SPARC64 */
  8462. static int __init niu_init(void)
  8463. {
  8464. int err = 0;
  8465. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8466. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8467. #ifdef CONFIG_SPARC64
  8468. err = platform_driver_register(&niu_of_driver);
  8469. #endif
  8470. if (!err) {
  8471. err = pci_register_driver(&niu_pci_driver);
  8472. #ifdef CONFIG_SPARC64
  8473. if (err)
  8474. platform_driver_unregister(&niu_of_driver);
  8475. #endif
  8476. }
  8477. return err;
  8478. }
  8479. static void __exit niu_exit(void)
  8480. {
  8481. pci_unregister_driver(&niu_pci_driver);
  8482. #ifdef CONFIG_SPARC64
  8483. platform_driver_unregister(&niu_of_driver);
  8484. #endif
  8485. }
  8486. module_init(niu_init);
  8487. module_exit(niu_exit);