t4_hw.c 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /*
  116. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  117. */
  118. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  119. u32 mbox_addr)
  120. {
  121. for ( ; nflit; nflit--, mbox_addr += 8)
  122. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  123. }
  124. /*
  125. * Handle a FW assertion reported in a mailbox.
  126. */
  127. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  128. {
  129. struct fw_debug_cmd asrt;
  130. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  131. dev_alert(adap->pdev_dev,
  132. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  133. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  134. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  135. }
  136. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  137. {
  138. dev_err(adap->pdev_dev,
  139. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  140. (unsigned long long)t4_read_reg64(adap, data_reg),
  141. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  142. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  143. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  144. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  145. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  146. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  147. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  148. }
  149. /**
  150. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  151. * @adap: the adapter
  152. * @mbox: index of the mailbox to use
  153. * @cmd: the command to write
  154. * @size: command length in bytes
  155. * @rpl: where to optionally store the reply
  156. * @sleep_ok: if true we may sleep while awaiting command completion
  157. *
  158. * Sends the given command to FW through the selected mailbox and waits
  159. * for the FW to execute the command. If @rpl is not %NULL it is used to
  160. * store the FW's reply to the command. The command and its optional
  161. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  162. * to respond. @sleep_ok determines whether we may sleep while awaiting
  163. * the response. If sleeping is allowed we use progressive backoff
  164. * otherwise we spin.
  165. *
  166. * The return value is 0 on success or a negative errno on failure. A
  167. * failure can happen either because we are not able to execute the
  168. * command or FW executes it but signals an error. In the latter case
  169. * the return value is the error code indicated by FW (negated).
  170. */
  171. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  172. void *rpl, bool sleep_ok)
  173. {
  174. static const int delay[] = {
  175. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  176. };
  177. u32 v;
  178. u64 res;
  179. int i, ms, delay_idx;
  180. const __be64 *p = cmd;
  181. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  182. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  183. if ((size & 15) || size > MBOX_LEN)
  184. return -EINVAL;
  185. /*
  186. * If the device is off-line, as in EEH, commands will time out.
  187. * Fail them early so we don't waste time waiting.
  188. */
  189. if (adap->pdev->error_state != pci_channel_io_normal)
  190. return -EIO;
  191. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  192. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  193. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  194. if (v != MBOX_OWNER_DRV)
  195. return v ? -EBUSY : -ETIMEDOUT;
  196. for (i = 0; i < size; i += 8)
  197. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  198. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  199. t4_read_reg(adap, ctl_reg); /* flush write */
  200. delay_idx = 0;
  201. ms = delay[0];
  202. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  203. if (sleep_ok) {
  204. ms = delay[delay_idx]; /* last element may repeat */
  205. if (delay_idx < ARRAY_SIZE(delay) - 1)
  206. delay_idx++;
  207. msleep(ms);
  208. } else
  209. mdelay(ms);
  210. v = t4_read_reg(adap, ctl_reg);
  211. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  212. if (!(v & MBMSGVALID)) {
  213. t4_write_reg(adap, ctl_reg, 0);
  214. continue;
  215. }
  216. res = t4_read_reg64(adap, data_reg);
  217. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  218. fw_asrt(adap, data_reg);
  219. res = FW_CMD_RETVAL(EIO);
  220. } else if (rpl)
  221. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  222. if (FW_CMD_RETVAL_GET((int)res))
  223. dump_mbox(adap, mbox, data_reg);
  224. t4_write_reg(adap, ctl_reg, 0);
  225. return -FW_CMD_RETVAL_GET((int)res);
  226. }
  227. }
  228. dump_mbox(adap, mbox, data_reg);
  229. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  230. *(const u8 *)cmd, mbox);
  231. return -ETIMEDOUT;
  232. }
  233. /**
  234. * t4_mc_read - read from MC through backdoor accesses
  235. * @adap: the adapter
  236. * @addr: address of first byte requested
  237. * @data: 64 bytes of data containing the requested address
  238. * @ecc: where to store the corresponding 64-bit ECC word
  239. *
  240. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  241. * that covers the requested address @addr. If @parity is not %NULL it
  242. * is assigned the 64-bit ECC word for the read data.
  243. */
  244. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  245. {
  246. int i;
  247. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  248. return -EBUSY;
  249. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  250. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  251. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  252. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  253. BIST_CMD_GAP(1));
  254. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  255. if (i)
  256. return i;
  257. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  258. for (i = 15; i >= 0; i--)
  259. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  260. if (ecc)
  261. *ecc = t4_read_reg64(adap, MC_DATA(16));
  262. #undef MC_DATA
  263. return 0;
  264. }
  265. /**
  266. * t4_edc_read - read from EDC through backdoor accesses
  267. * @adap: the adapter
  268. * @idx: which EDC to access
  269. * @addr: address of first byte requested
  270. * @data: 64 bytes of data containing the requested address
  271. * @ecc: where to store the corresponding 64-bit ECC word
  272. *
  273. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  274. * that covers the requested address @addr. If @parity is not %NULL it
  275. * is assigned the 64-bit ECC word for the read data.
  276. */
  277. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  278. {
  279. int i;
  280. idx *= EDC_STRIDE;
  281. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  282. return -EBUSY;
  283. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  284. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  285. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  286. t4_write_reg(adap, EDC_BIST_CMD + idx,
  287. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  288. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  289. if (i)
  290. return i;
  291. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  292. for (i = 15; i >= 0; i--)
  293. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  294. if (ecc)
  295. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  296. #undef EDC_DATA
  297. return 0;
  298. }
  299. #define EEPROM_STAT_ADDR 0x7bfc
  300. #define VPD_BASE 0
  301. #define VPD_LEN 512
  302. /**
  303. * t4_seeprom_wp - enable/disable EEPROM write protection
  304. * @adapter: the adapter
  305. * @enable: whether to enable or disable write protection
  306. *
  307. * Enables or disables write protection on the serial EEPROM.
  308. */
  309. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  310. {
  311. unsigned int v = enable ? 0xc : 0;
  312. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  313. return ret < 0 ? ret : 0;
  314. }
  315. /**
  316. * get_vpd_params - read VPD parameters from VPD EEPROM
  317. * @adapter: adapter to read
  318. * @p: where to store the parameters
  319. *
  320. * Reads card parameters stored in VPD EEPROM.
  321. */
  322. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  323. {
  324. int i, ret;
  325. int ec, sn;
  326. u8 vpd[VPD_LEN], csum;
  327. unsigned int vpdr_len, kw_offset, id_len;
  328. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
  329. if (ret < 0)
  330. return ret;
  331. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  332. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  333. return -EINVAL;
  334. }
  335. id_len = pci_vpd_lrdt_size(vpd);
  336. if (id_len > ID_LEN)
  337. id_len = ID_LEN;
  338. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  339. if (i < 0) {
  340. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  341. return -EINVAL;
  342. }
  343. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  344. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  345. if (vpdr_len + kw_offset > VPD_LEN) {
  346. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  347. return -EINVAL;
  348. }
  349. #define FIND_VPD_KW(var, name) do { \
  350. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  351. if (var < 0) { \
  352. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  353. return -EINVAL; \
  354. } \
  355. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  356. } while (0)
  357. FIND_VPD_KW(i, "RV");
  358. for (csum = 0; i >= 0; i--)
  359. csum += vpd[i];
  360. if (csum) {
  361. dev_err(adapter->pdev_dev,
  362. "corrupted VPD EEPROM, actual csum %u\n", csum);
  363. return -EINVAL;
  364. }
  365. FIND_VPD_KW(ec, "EC");
  366. FIND_VPD_KW(sn, "SN");
  367. #undef FIND_VPD_KW
  368. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  369. strim(p->id);
  370. memcpy(p->ec, vpd + ec, EC_LEN);
  371. strim(p->ec);
  372. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  373. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  374. strim(p->sn);
  375. return 0;
  376. }
  377. /* serial flash and firmware constants */
  378. enum {
  379. SF_ATTEMPTS = 10, /* max retries for SF operations */
  380. /* flash command opcodes */
  381. SF_PROG_PAGE = 2, /* program page */
  382. SF_WR_DISABLE = 4, /* disable writes */
  383. SF_RD_STATUS = 5, /* read status register */
  384. SF_WR_ENABLE = 6, /* enable writes */
  385. SF_RD_DATA_FAST = 0xb, /* read flash */
  386. SF_RD_ID = 0x9f, /* read ID */
  387. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  388. FW_MAX_SIZE = 512 * 1024,
  389. };
  390. /**
  391. * sf1_read - read data from the serial flash
  392. * @adapter: the adapter
  393. * @byte_cnt: number of bytes to read
  394. * @cont: whether another operation will be chained
  395. * @lock: whether to lock SF for PL access only
  396. * @valp: where to store the read data
  397. *
  398. * Reads up to 4 bytes of data from the serial flash. The location of
  399. * the read needs to be specified prior to calling this by issuing the
  400. * appropriate commands to the serial flash.
  401. */
  402. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  403. int lock, u32 *valp)
  404. {
  405. int ret;
  406. if (!byte_cnt || byte_cnt > 4)
  407. return -EINVAL;
  408. if (t4_read_reg(adapter, SF_OP) & BUSY)
  409. return -EBUSY;
  410. cont = cont ? SF_CONT : 0;
  411. lock = lock ? SF_LOCK : 0;
  412. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  413. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  414. if (!ret)
  415. *valp = t4_read_reg(adapter, SF_DATA);
  416. return ret;
  417. }
  418. /**
  419. * sf1_write - write data to the serial flash
  420. * @adapter: the adapter
  421. * @byte_cnt: number of bytes to write
  422. * @cont: whether another operation will be chained
  423. * @lock: whether to lock SF for PL access only
  424. * @val: value to write
  425. *
  426. * Writes up to 4 bytes of data to the serial flash. The location of
  427. * the write needs to be specified prior to calling this by issuing the
  428. * appropriate commands to the serial flash.
  429. */
  430. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  431. int lock, u32 val)
  432. {
  433. if (!byte_cnt || byte_cnt > 4)
  434. return -EINVAL;
  435. if (t4_read_reg(adapter, SF_OP) & BUSY)
  436. return -EBUSY;
  437. cont = cont ? SF_CONT : 0;
  438. lock = lock ? SF_LOCK : 0;
  439. t4_write_reg(adapter, SF_DATA, val);
  440. t4_write_reg(adapter, SF_OP, lock |
  441. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  442. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  443. }
  444. /**
  445. * flash_wait_op - wait for a flash operation to complete
  446. * @adapter: the adapter
  447. * @attempts: max number of polls of the status register
  448. * @delay: delay between polls in ms
  449. *
  450. * Wait for a flash operation to complete by polling the status register.
  451. */
  452. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  453. {
  454. int ret;
  455. u32 status;
  456. while (1) {
  457. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  458. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  459. return ret;
  460. if (!(status & 1))
  461. return 0;
  462. if (--attempts == 0)
  463. return -EAGAIN;
  464. if (delay)
  465. msleep(delay);
  466. }
  467. }
  468. /**
  469. * t4_read_flash - read words from serial flash
  470. * @adapter: the adapter
  471. * @addr: the start address for the read
  472. * @nwords: how many 32-bit words to read
  473. * @data: where to store the read data
  474. * @byte_oriented: whether to store data as bytes or as words
  475. *
  476. * Read the specified number of 32-bit words from the serial flash.
  477. * If @byte_oriented is set the read data is stored as a byte array
  478. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  479. * natural endianess.
  480. */
  481. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  482. unsigned int nwords, u32 *data, int byte_oriented)
  483. {
  484. int ret;
  485. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  486. return -EINVAL;
  487. addr = swab32(addr) | SF_RD_DATA_FAST;
  488. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  489. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  490. return ret;
  491. for ( ; nwords; nwords--, data++) {
  492. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  493. if (nwords == 1)
  494. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  495. if (ret)
  496. return ret;
  497. if (byte_oriented)
  498. *data = htonl(*data);
  499. }
  500. return 0;
  501. }
  502. /**
  503. * t4_write_flash - write up to a page of data to the serial flash
  504. * @adapter: the adapter
  505. * @addr: the start address to write
  506. * @n: length of data to write in bytes
  507. * @data: the data to write
  508. *
  509. * Writes up to a page of data (256 bytes) to the serial flash starting
  510. * at the given address. All the data must be written to the same page.
  511. */
  512. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  513. unsigned int n, const u8 *data)
  514. {
  515. int ret;
  516. u32 buf[64];
  517. unsigned int i, c, left, val, offset = addr & 0xff;
  518. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  519. return -EINVAL;
  520. val = swab32(addr) | SF_PROG_PAGE;
  521. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  522. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  523. goto unlock;
  524. for (left = n; left; left -= c) {
  525. c = min(left, 4U);
  526. for (val = 0, i = 0; i < c; ++i)
  527. val = (val << 8) + *data++;
  528. ret = sf1_write(adapter, c, c != left, 1, val);
  529. if (ret)
  530. goto unlock;
  531. }
  532. ret = flash_wait_op(adapter, 8, 1);
  533. if (ret)
  534. goto unlock;
  535. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  536. /* Read the page to verify the write succeeded */
  537. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  538. if (ret)
  539. return ret;
  540. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  541. dev_err(adapter->pdev_dev,
  542. "failed to correctly write the flash page at %#x\n",
  543. addr);
  544. return -EIO;
  545. }
  546. return 0;
  547. unlock:
  548. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  549. return ret;
  550. }
  551. /**
  552. * get_fw_version - read the firmware version
  553. * @adapter: the adapter
  554. * @vers: where to place the version
  555. *
  556. * Reads the FW version from flash.
  557. */
  558. static int get_fw_version(struct adapter *adapter, u32 *vers)
  559. {
  560. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  561. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  562. }
  563. /**
  564. * get_tp_version - read the TP microcode version
  565. * @adapter: the adapter
  566. * @vers: where to place the version
  567. *
  568. * Reads the TP microcode version from flash.
  569. */
  570. static int get_tp_version(struct adapter *adapter, u32 *vers)
  571. {
  572. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  573. offsetof(struct fw_hdr, tp_microcode_ver),
  574. 1, vers, 0);
  575. }
  576. /**
  577. * t4_check_fw_version - check if the FW is compatible with this driver
  578. * @adapter: the adapter
  579. *
  580. * Checks if an adapter's FW is compatible with the driver. Returns 0
  581. * if there's exact match, a negative error if the version could not be
  582. * read or there's a major version mismatch, and a positive value if the
  583. * expected major version is found but there's a minor version mismatch.
  584. */
  585. int t4_check_fw_version(struct adapter *adapter)
  586. {
  587. u32 api_vers[2];
  588. int ret, major, minor, micro;
  589. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  590. if (!ret)
  591. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  592. if (!ret)
  593. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  594. offsetof(struct fw_hdr, intfver_nic),
  595. 2, api_vers, 1);
  596. if (ret)
  597. return ret;
  598. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  599. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  600. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  601. memcpy(adapter->params.api_vers, api_vers,
  602. sizeof(adapter->params.api_vers));
  603. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  604. dev_err(adapter->pdev_dev,
  605. "card FW has major version %u, driver wants %u\n",
  606. major, FW_VERSION_MAJOR);
  607. return -EINVAL;
  608. }
  609. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  610. return 0; /* perfect match */
  611. /* Minor/micro version mismatch. Report it but often it's OK. */
  612. return 1;
  613. }
  614. /**
  615. * t4_flash_erase_sectors - erase a range of flash sectors
  616. * @adapter: the adapter
  617. * @start: the first sector to erase
  618. * @end: the last sector to erase
  619. *
  620. * Erases the sectors in the given inclusive range.
  621. */
  622. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  623. {
  624. int ret = 0;
  625. while (start <= end) {
  626. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  627. (ret = sf1_write(adapter, 4, 0, 1,
  628. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  629. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  630. dev_err(adapter->pdev_dev,
  631. "erase of flash sector %d failed, error %d\n",
  632. start, ret);
  633. break;
  634. }
  635. start++;
  636. }
  637. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  638. return ret;
  639. }
  640. /**
  641. * t4_load_fw - download firmware
  642. * @adap: the adapter
  643. * @fw_data: the firmware image to write
  644. * @size: image size
  645. *
  646. * Write the supplied firmware image to the card's serial flash.
  647. */
  648. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  649. {
  650. u32 csum;
  651. int ret, addr;
  652. unsigned int i;
  653. u8 first_page[SF_PAGE_SIZE];
  654. const u32 *p = (const u32 *)fw_data;
  655. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  656. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  657. unsigned int fw_img_start = adap->params.sf_fw_start;
  658. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  659. if (!size) {
  660. dev_err(adap->pdev_dev, "FW image has no data\n");
  661. return -EINVAL;
  662. }
  663. if (size & 511) {
  664. dev_err(adap->pdev_dev,
  665. "FW image size not multiple of 512 bytes\n");
  666. return -EINVAL;
  667. }
  668. if (ntohs(hdr->len512) * 512 != size) {
  669. dev_err(adap->pdev_dev,
  670. "FW image size differs from size in FW header\n");
  671. return -EINVAL;
  672. }
  673. if (size > FW_MAX_SIZE) {
  674. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  675. FW_MAX_SIZE);
  676. return -EFBIG;
  677. }
  678. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  679. csum += ntohl(p[i]);
  680. if (csum != 0xffffffff) {
  681. dev_err(adap->pdev_dev,
  682. "corrupted firmware image, checksum %#x\n", csum);
  683. return -EINVAL;
  684. }
  685. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  686. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  687. if (ret)
  688. goto out;
  689. /*
  690. * We write the correct version at the end so the driver can see a bad
  691. * version if the FW write fails. Start by writing a copy of the
  692. * first page with a bad version.
  693. */
  694. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  695. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  696. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  697. if (ret)
  698. goto out;
  699. addr = fw_img_start;
  700. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  701. addr += SF_PAGE_SIZE;
  702. fw_data += SF_PAGE_SIZE;
  703. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  704. if (ret)
  705. goto out;
  706. }
  707. ret = t4_write_flash(adap,
  708. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  709. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  710. out:
  711. if (ret)
  712. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  713. ret);
  714. return ret;
  715. }
  716. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  717. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  718. /**
  719. * t4_link_start - apply link configuration to MAC/PHY
  720. * @phy: the PHY to setup
  721. * @mac: the MAC to setup
  722. * @lc: the requested link configuration
  723. *
  724. * Set up a port's MAC and PHY according to a desired link configuration.
  725. * - If the PHY can auto-negotiate first decide what to advertise, then
  726. * enable/disable auto-negotiation as desired, and reset.
  727. * - If the PHY does not auto-negotiate just reset it.
  728. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  729. * otherwise do it later based on the outcome of auto-negotiation.
  730. */
  731. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  732. struct link_config *lc)
  733. {
  734. struct fw_port_cmd c;
  735. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  736. lc->link_ok = 0;
  737. if (lc->requested_fc & PAUSE_RX)
  738. fc |= FW_PORT_CAP_FC_RX;
  739. if (lc->requested_fc & PAUSE_TX)
  740. fc |= FW_PORT_CAP_FC_TX;
  741. memset(&c, 0, sizeof(c));
  742. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  743. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  744. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  745. FW_LEN16(c));
  746. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  747. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  748. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  749. } else if (lc->autoneg == AUTONEG_DISABLE) {
  750. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  751. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  752. } else
  753. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  754. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  755. }
  756. /**
  757. * t4_restart_aneg - restart autonegotiation
  758. * @adap: the adapter
  759. * @mbox: mbox to use for the FW command
  760. * @port: the port id
  761. *
  762. * Restarts autonegotiation for the selected port.
  763. */
  764. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  765. {
  766. struct fw_port_cmd c;
  767. memset(&c, 0, sizeof(c));
  768. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  769. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  770. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  771. FW_LEN16(c));
  772. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  773. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  774. }
  775. struct intr_info {
  776. unsigned int mask; /* bits to check in interrupt status */
  777. const char *msg; /* message to print or NULL */
  778. short stat_idx; /* stat counter to increment or -1 */
  779. unsigned short fatal; /* whether the condition reported is fatal */
  780. };
  781. /**
  782. * t4_handle_intr_status - table driven interrupt handler
  783. * @adapter: the adapter that generated the interrupt
  784. * @reg: the interrupt status register to process
  785. * @acts: table of interrupt actions
  786. *
  787. * A table driven interrupt handler that applies a set of masks to an
  788. * interrupt status word and performs the corresponding actions if the
  789. * interrupts described by the mask have occured. The actions include
  790. * optionally emitting a warning or alert message. The table is terminated
  791. * by an entry specifying mask 0. Returns the number of fatal interrupt
  792. * conditions.
  793. */
  794. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  795. const struct intr_info *acts)
  796. {
  797. int fatal = 0;
  798. unsigned int mask = 0;
  799. unsigned int status = t4_read_reg(adapter, reg);
  800. for ( ; acts->mask; ++acts) {
  801. if (!(status & acts->mask))
  802. continue;
  803. if (acts->fatal) {
  804. fatal++;
  805. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  806. status & acts->mask);
  807. } else if (acts->msg && printk_ratelimit())
  808. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  809. status & acts->mask);
  810. mask |= acts->mask;
  811. }
  812. status &= mask;
  813. if (status) /* clear processed interrupts */
  814. t4_write_reg(adapter, reg, status);
  815. return fatal;
  816. }
  817. /*
  818. * Interrupt handler for the PCIE module.
  819. */
  820. static void pcie_intr_handler(struct adapter *adapter)
  821. {
  822. static const struct intr_info sysbus_intr_info[] = {
  823. { RNPP, "RXNP array parity error", -1, 1 },
  824. { RPCP, "RXPC array parity error", -1, 1 },
  825. { RCIP, "RXCIF array parity error", -1, 1 },
  826. { RCCP, "Rx completions control array parity error", -1, 1 },
  827. { RFTP, "RXFT array parity error", -1, 1 },
  828. { 0 }
  829. };
  830. static const struct intr_info pcie_port_intr_info[] = {
  831. { TPCP, "TXPC array parity error", -1, 1 },
  832. { TNPP, "TXNP array parity error", -1, 1 },
  833. { TFTP, "TXFT array parity error", -1, 1 },
  834. { TCAP, "TXCA array parity error", -1, 1 },
  835. { TCIP, "TXCIF array parity error", -1, 1 },
  836. { RCAP, "RXCA array parity error", -1, 1 },
  837. { OTDD, "outbound request TLP discarded", -1, 1 },
  838. { RDPE, "Rx data parity error", -1, 1 },
  839. { TDUE, "Tx uncorrectable data error", -1, 1 },
  840. { 0 }
  841. };
  842. static const struct intr_info pcie_intr_info[] = {
  843. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  844. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  845. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  846. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  847. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  848. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  849. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  850. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  851. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  852. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  853. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  854. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  855. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  856. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  857. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  858. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  859. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  860. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  861. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  862. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  863. { FIDPERR, "PCI FID parity error", -1, 1 },
  864. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  865. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  866. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  867. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  868. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  869. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  870. { PCIESINT, "PCI core secondary fault", -1, 1 },
  871. { PCIEPINT, "PCI core primary fault", -1, 1 },
  872. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  873. { 0 }
  874. };
  875. int fat;
  876. fat = t4_handle_intr_status(adapter,
  877. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  878. sysbus_intr_info) +
  879. t4_handle_intr_status(adapter,
  880. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  881. pcie_port_intr_info) +
  882. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  883. if (fat)
  884. t4_fatal_err(adapter);
  885. }
  886. /*
  887. * TP interrupt handler.
  888. */
  889. static void tp_intr_handler(struct adapter *adapter)
  890. {
  891. static const struct intr_info tp_intr_info[] = {
  892. { 0x3fffffff, "TP parity error", -1, 1 },
  893. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  894. { 0 }
  895. };
  896. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  897. t4_fatal_err(adapter);
  898. }
  899. /*
  900. * SGE interrupt handler.
  901. */
  902. static void sge_intr_handler(struct adapter *adapter)
  903. {
  904. u64 v;
  905. static const struct intr_info sge_intr_info[] = {
  906. { ERR_CPL_EXCEED_IQE_SIZE,
  907. "SGE received CPL exceeding IQE size", -1, 1 },
  908. { ERR_INVALID_CIDX_INC,
  909. "SGE GTS CIDX increment too large", -1, 0 },
  910. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  911. { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
  912. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  913. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  914. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  915. 0 },
  916. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  917. 0 },
  918. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  919. 0 },
  920. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  921. 0 },
  922. { ERR_ING_CTXT_PRIO,
  923. "SGE too many priority ingress contexts", -1, 0 },
  924. { ERR_EGR_CTXT_PRIO,
  925. "SGE too many priority egress contexts", -1, 0 },
  926. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  927. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  928. { 0 }
  929. };
  930. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  931. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  932. if (v) {
  933. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  934. (unsigned long long)v);
  935. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  936. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  937. }
  938. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  939. v != 0)
  940. t4_fatal_err(adapter);
  941. }
  942. /*
  943. * CIM interrupt handler.
  944. */
  945. static void cim_intr_handler(struct adapter *adapter)
  946. {
  947. static const struct intr_info cim_intr_info[] = {
  948. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  949. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  950. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  951. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  952. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  953. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  954. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  955. { 0 }
  956. };
  957. static const struct intr_info cim_upintr_info[] = {
  958. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  959. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  960. { ILLWRINT, "CIM illegal write", -1, 1 },
  961. { ILLRDINT, "CIM illegal read", -1, 1 },
  962. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  963. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  964. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  965. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  966. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  967. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  968. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  969. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  970. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  971. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  972. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  973. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  974. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  975. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  976. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  977. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  978. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  979. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  980. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  981. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  982. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  983. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  984. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  985. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  986. { 0 }
  987. };
  988. int fat;
  989. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  990. cim_intr_info) +
  991. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  992. cim_upintr_info);
  993. if (fat)
  994. t4_fatal_err(adapter);
  995. }
  996. /*
  997. * ULP RX interrupt handler.
  998. */
  999. static void ulprx_intr_handler(struct adapter *adapter)
  1000. {
  1001. static const struct intr_info ulprx_intr_info[] = {
  1002. { 0x1800000, "ULPRX context error", -1, 1 },
  1003. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1004. { 0 }
  1005. };
  1006. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1007. t4_fatal_err(adapter);
  1008. }
  1009. /*
  1010. * ULP TX interrupt handler.
  1011. */
  1012. static void ulptx_intr_handler(struct adapter *adapter)
  1013. {
  1014. static const struct intr_info ulptx_intr_info[] = {
  1015. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1016. 0 },
  1017. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1018. 0 },
  1019. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1020. 0 },
  1021. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1022. 0 },
  1023. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1024. { 0 }
  1025. };
  1026. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1027. t4_fatal_err(adapter);
  1028. }
  1029. /*
  1030. * PM TX interrupt handler.
  1031. */
  1032. static void pmtx_intr_handler(struct adapter *adapter)
  1033. {
  1034. static const struct intr_info pmtx_intr_info[] = {
  1035. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1036. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1037. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1038. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1039. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1040. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1041. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1042. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1043. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1044. { 0 }
  1045. };
  1046. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1047. t4_fatal_err(adapter);
  1048. }
  1049. /*
  1050. * PM RX interrupt handler.
  1051. */
  1052. static void pmrx_intr_handler(struct adapter *adapter)
  1053. {
  1054. static const struct intr_info pmrx_intr_info[] = {
  1055. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1056. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1057. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1058. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1059. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1060. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1061. { 0 }
  1062. };
  1063. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1064. t4_fatal_err(adapter);
  1065. }
  1066. /*
  1067. * CPL switch interrupt handler.
  1068. */
  1069. static void cplsw_intr_handler(struct adapter *adapter)
  1070. {
  1071. static const struct intr_info cplsw_intr_info[] = {
  1072. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1073. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1074. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1075. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1076. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1077. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1078. { 0 }
  1079. };
  1080. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1081. t4_fatal_err(adapter);
  1082. }
  1083. /*
  1084. * LE interrupt handler.
  1085. */
  1086. static void le_intr_handler(struct adapter *adap)
  1087. {
  1088. static const struct intr_info le_intr_info[] = {
  1089. { LIPMISS, "LE LIP miss", -1, 0 },
  1090. { LIP0, "LE 0 LIP error", -1, 0 },
  1091. { PARITYERR, "LE parity error", -1, 1 },
  1092. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1093. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1094. { 0 }
  1095. };
  1096. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1097. t4_fatal_err(adap);
  1098. }
  1099. /*
  1100. * MPS interrupt handler.
  1101. */
  1102. static void mps_intr_handler(struct adapter *adapter)
  1103. {
  1104. static const struct intr_info mps_rx_intr_info[] = {
  1105. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1106. { 0 }
  1107. };
  1108. static const struct intr_info mps_tx_intr_info[] = {
  1109. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1110. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1111. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1112. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1113. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1114. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1115. { FRMERR, "MPS Tx framing error", -1, 1 },
  1116. { 0 }
  1117. };
  1118. static const struct intr_info mps_trc_intr_info[] = {
  1119. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1120. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1121. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1122. { 0 }
  1123. };
  1124. static const struct intr_info mps_stat_sram_intr_info[] = {
  1125. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1126. { 0 }
  1127. };
  1128. static const struct intr_info mps_stat_tx_intr_info[] = {
  1129. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1130. { 0 }
  1131. };
  1132. static const struct intr_info mps_stat_rx_intr_info[] = {
  1133. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1134. { 0 }
  1135. };
  1136. static const struct intr_info mps_cls_intr_info[] = {
  1137. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1138. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1139. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1140. { 0 }
  1141. };
  1142. int fat;
  1143. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1144. mps_rx_intr_info) +
  1145. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1146. mps_tx_intr_info) +
  1147. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1148. mps_trc_intr_info) +
  1149. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1150. mps_stat_sram_intr_info) +
  1151. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1152. mps_stat_tx_intr_info) +
  1153. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1154. mps_stat_rx_intr_info) +
  1155. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1156. mps_cls_intr_info);
  1157. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1158. RXINT | TXINT | STATINT);
  1159. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1160. if (fat)
  1161. t4_fatal_err(adapter);
  1162. }
  1163. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1164. /*
  1165. * EDC/MC interrupt handler.
  1166. */
  1167. static void mem_intr_handler(struct adapter *adapter, int idx)
  1168. {
  1169. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1170. unsigned int addr, cnt_addr, v;
  1171. if (idx <= MEM_EDC1) {
  1172. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1173. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1174. } else {
  1175. addr = MC_INT_CAUSE;
  1176. cnt_addr = MC_ECC_STATUS;
  1177. }
  1178. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1179. if (v & PERR_INT_CAUSE)
  1180. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1181. name[idx]);
  1182. if (v & ECC_CE_INT_CAUSE) {
  1183. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1184. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1185. if (printk_ratelimit())
  1186. dev_warn(adapter->pdev_dev,
  1187. "%u %s correctable ECC data error%s\n",
  1188. cnt, name[idx], cnt > 1 ? "s" : "");
  1189. }
  1190. if (v & ECC_UE_INT_CAUSE)
  1191. dev_alert(adapter->pdev_dev,
  1192. "%s uncorrectable ECC data error\n", name[idx]);
  1193. t4_write_reg(adapter, addr, v);
  1194. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1195. t4_fatal_err(adapter);
  1196. }
  1197. /*
  1198. * MA interrupt handler.
  1199. */
  1200. static void ma_intr_handler(struct adapter *adap)
  1201. {
  1202. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1203. if (status & MEM_PERR_INT_CAUSE)
  1204. dev_alert(adap->pdev_dev,
  1205. "MA parity error, parity status %#x\n",
  1206. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1207. if (status & MEM_WRAP_INT_CAUSE) {
  1208. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1209. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1210. "client %u to address %#x\n",
  1211. MEM_WRAP_CLIENT_NUM_GET(v),
  1212. MEM_WRAP_ADDRESS_GET(v) << 4);
  1213. }
  1214. t4_write_reg(adap, MA_INT_CAUSE, status);
  1215. t4_fatal_err(adap);
  1216. }
  1217. /*
  1218. * SMB interrupt handler.
  1219. */
  1220. static void smb_intr_handler(struct adapter *adap)
  1221. {
  1222. static const struct intr_info smb_intr_info[] = {
  1223. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1224. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1225. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1226. { 0 }
  1227. };
  1228. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1229. t4_fatal_err(adap);
  1230. }
  1231. /*
  1232. * NC-SI interrupt handler.
  1233. */
  1234. static void ncsi_intr_handler(struct adapter *adap)
  1235. {
  1236. static const struct intr_info ncsi_intr_info[] = {
  1237. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1238. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1239. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1240. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1241. { 0 }
  1242. };
  1243. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1244. t4_fatal_err(adap);
  1245. }
  1246. /*
  1247. * XGMAC interrupt handler.
  1248. */
  1249. static void xgmac_intr_handler(struct adapter *adap, int port)
  1250. {
  1251. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1252. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1253. if (!v)
  1254. return;
  1255. if (v & TXFIFO_PRTY_ERR)
  1256. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1257. port);
  1258. if (v & RXFIFO_PRTY_ERR)
  1259. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1260. port);
  1261. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1262. t4_fatal_err(adap);
  1263. }
  1264. /*
  1265. * PL interrupt handler.
  1266. */
  1267. static void pl_intr_handler(struct adapter *adap)
  1268. {
  1269. static const struct intr_info pl_intr_info[] = {
  1270. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1271. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1272. { 0 }
  1273. };
  1274. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1275. t4_fatal_err(adap);
  1276. }
  1277. #define PF_INTR_MASK (PFSW)
  1278. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1279. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1280. CPL_SWITCH | SGE | ULP_TX)
  1281. /**
  1282. * t4_slow_intr_handler - control path interrupt handler
  1283. * @adapter: the adapter
  1284. *
  1285. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1286. * The designation 'slow' is because it involves register reads, while
  1287. * data interrupts typically don't involve any MMIOs.
  1288. */
  1289. int t4_slow_intr_handler(struct adapter *adapter)
  1290. {
  1291. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1292. if (!(cause & GLBL_INTR_MASK))
  1293. return 0;
  1294. if (cause & CIM)
  1295. cim_intr_handler(adapter);
  1296. if (cause & MPS)
  1297. mps_intr_handler(adapter);
  1298. if (cause & NCSI)
  1299. ncsi_intr_handler(adapter);
  1300. if (cause & PL)
  1301. pl_intr_handler(adapter);
  1302. if (cause & SMB)
  1303. smb_intr_handler(adapter);
  1304. if (cause & XGMAC0)
  1305. xgmac_intr_handler(adapter, 0);
  1306. if (cause & XGMAC1)
  1307. xgmac_intr_handler(adapter, 1);
  1308. if (cause & XGMAC_KR0)
  1309. xgmac_intr_handler(adapter, 2);
  1310. if (cause & XGMAC_KR1)
  1311. xgmac_intr_handler(adapter, 3);
  1312. if (cause & PCIE)
  1313. pcie_intr_handler(adapter);
  1314. if (cause & MC)
  1315. mem_intr_handler(adapter, MEM_MC);
  1316. if (cause & EDC0)
  1317. mem_intr_handler(adapter, MEM_EDC0);
  1318. if (cause & EDC1)
  1319. mem_intr_handler(adapter, MEM_EDC1);
  1320. if (cause & LE)
  1321. le_intr_handler(adapter);
  1322. if (cause & TP)
  1323. tp_intr_handler(adapter);
  1324. if (cause & MA)
  1325. ma_intr_handler(adapter);
  1326. if (cause & PM_TX)
  1327. pmtx_intr_handler(adapter);
  1328. if (cause & PM_RX)
  1329. pmrx_intr_handler(adapter);
  1330. if (cause & ULP_RX)
  1331. ulprx_intr_handler(adapter);
  1332. if (cause & CPL_SWITCH)
  1333. cplsw_intr_handler(adapter);
  1334. if (cause & SGE)
  1335. sge_intr_handler(adapter);
  1336. if (cause & ULP_TX)
  1337. ulptx_intr_handler(adapter);
  1338. /* Clear the interrupts just processed for which we are the master. */
  1339. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1340. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1341. return 1;
  1342. }
  1343. /**
  1344. * t4_intr_enable - enable interrupts
  1345. * @adapter: the adapter whose interrupts should be enabled
  1346. *
  1347. * Enable PF-specific interrupts for the calling function and the top-level
  1348. * interrupt concentrator for global interrupts. Interrupts are already
  1349. * enabled at each module, here we just enable the roots of the interrupt
  1350. * hierarchies.
  1351. *
  1352. * Note: this function should be called only when the driver manages
  1353. * non PF-specific interrupts from the various HW modules. Only one PCI
  1354. * function at a time should be doing this.
  1355. */
  1356. void t4_intr_enable(struct adapter *adapter)
  1357. {
  1358. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1359. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1360. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1361. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1362. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1363. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1364. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1365. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1366. EGRESS_SIZE_ERR);
  1367. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1368. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1369. }
  1370. /**
  1371. * t4_intr_disable - disable interrupts
  1372. * @adapter: the adapter whose interrupts should be disabled
  1373. *
  1374. * Disable interrupts. We only disable the top-level interrupt
  1375. * concentrators. The caller must be a PCI function managing global
  1376. * interrupts.
  1377. */
  1378. void t4_intr_disable(struct adapter *adapter)
  1379. {
  1380. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1381. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1382. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1383. }
  1384. /**
  1385. * hash_mac_addr - return the hash value of a MAC address
  1386. * @addr: the 48-bit Ethernet MAC address
  1387. *
  1388. * Hashes a MAC address according to the hash function used by HW inexact
  1389. * (hash) address matching.
  1390. */
  1391. static int hash_mac_addr(const u8 *addr)
  1392. {
  1393. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1394. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1395. a ^= b;
  1396. a ^= (a >> 12);
  1397. a ^= (a >> 6);
  1398. return a & 0x3f;
  1399. }
  1400. /**
  1401. * t4_config_rss_range - configure a portion of the RSS mapping table
  1402. * @adapter: the adapter
  1403. * @mbox: mbox to use for the FW command
  1404. * @viid: virtual interface whose RSS subtable is to be written
  1405. * @start: start entry in the table to write
  1406. * @n: how many table entries to write
  1407. * @rspq: values for the response queue lookup table
  1408. * @nrspq: number of values in @rspq
  1409. *
  1410. * Programs the selected part of the VI's RSS mapping table with the
  1411. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1412. * until the full table range is populated.
  1413. *
  1414. * The caller must ensure the values in @rspq are in the range allowed for
  1415. * @viid.
  1416. */
  1417. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1418. int start, int n, const u16 *rspq, unsigned int nrspq)
  1419. {
  1420. int ret;
  1421. const u16 *rsp = rspq;
  1422. const u16 *rsp_end = rspq + nrspq;
  1423. struct fw_rss_ind_tbl_cmd cmd;
  1424. memset(&cmd, 0, sizeof(cmd));
  1425. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1426. FW_CMD_REQUEST | FW_CMD_WRITE |
  1427. FW_RSS_IND_TBL_CMD_VIID(viid));
  1428. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1429. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1430. while (n > 0) {
  1431. int nq = min(n, 32);
  1432. __be32 *qp = &cmd.iq0_to_iq2;
  1433. cmd.niqid = htons(nq);
  1434. cmd.startidx = htons(start);
  1435. start += nq;
  1436. n -= nq;
  1437. while (nq > 0) {
  1438. unsigned int v;
  1439. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1440. if (++rsp >= rsp_end)
  1441. rsp = rspq;
  1442. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1443. if (++rsp >= rsp_end)
  1444. rsp = rspq;
  1445. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1446. if (++rsp >= rsp_end)
  1447. rsp = rspq;
  1448. *qp++ = htonl(v);
  1449. nq -= 3;
  1450. }
  1451. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1452. if (ret)
  1453. return ret;
  1454. }
  1455. return 0;
  1456. }
  1457. /**
  1458. * t4_config_glbl_rss - configure the global RSS mode
  1459. * @adapter: the adapter
  1460. * @mbox: mbox to use for the FW command
  1461. * @mode: global RSS mode
  1462. * @flags: mode-specific flags
  1463. *
  1464. * Sets the global RSS mode.
  1465. */
  1466. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1467. unsigned int flags)
  1468. {
  1469. struct fw_rss_glb_config_cmd c;
  1470. memset(&c, 0, sizeof(c));
  1471. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1472. FW_CMD_REQUEST | FW_CMD_WRITE);
  1473. c.retval_len16 = htonl(FW_LEN16(c));
  1474. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1475. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1476. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1477. c.u.basicvirtual.mode_pkd =
  1478. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1479. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1480. } else
  1481. return -EINVAL;
  1482. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1483. }
  1484. /**
  1485. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1486. * @adap: the adapter
  1487. * @v4: holds the TCP/IP counter values
  1488. * @v6: holds the TCP/IPv6 counter values
  1489. *
  1490. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1491. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1492. */
  1493. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1494. struct tp_tcp_stats *v6)
  1495. {
  1496. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1497. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1498. #define STAT(x) val[STAT_IDX(x)]
  1499. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1500. if (v4) {
  1501. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1502. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1503. v4->tcpOutRsts = STAT(OUT_RST);
  1504. v4->tcpInSegs = STAT64(IN_SEG);
  1505. v4->tcpOutSegs = STAT64(OUT_SEG);
  1506. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1507. }
  1508. if (v6) {
  1509. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1510. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1511. v6->tcpOutRsts = STAT(OUT_RST);
  1512. v6->tcpInSegs = STAT64(IN_SEG);
  1513. v6->tcpOutSegs = STAT64(OUT_SEG);
  1514. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1515. }
  1516. #undef STAT64
  1517. #undef STAT
  1518. #undef STAT_IDX
  1519. }
  1520. /**
  1521. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1522. * @adap: the adapter
  1523. * @mtus: where to store the MTU values
  1524. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1525. *
  1526. * Reads the HW path MTU table.
  1527. */
  1528. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1529. {
  1530. u32 v;
  1531. int i;
  1532. for (i = 0; i < NMTUS; ++i) {
  1533. t4_write_reg(adap, TP_MTU_TABLE,
  1534. MTUINDEX(0xff) | MTUVALUE(i));
  1535. v = t4_read_reg(adap, TP_MTU_TABLE);
  1536. mtus[i] = MTUVALUE_GET(v);
  1537. if (mtu_log)
  1538. mtu_log[i] = MTUWIDTH_GET(v);
  1539. }
  1540. }
  1541. /**
  1542. * init_cong_ctrl - initialize congestion control parameters
  1543. * @a: the alpha values for congestion control
  1544. * @b: the beta values for congestion control
  1545. *
  1546. * Initialize the congestion control parameters.
  1547. */
  1548. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1549. {
  1550. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1551. a[9] = 2;
  1552. a[10] = 3;
  1553. a[11] = 4;
  1554. a[12] = 5;
  1555. a[13] = 6;
  1556. a[14] = 7;
  1557. a[15] = 8;
  1558. a[16] = 9;
  1559. a[17] = 10;
  1560. a[18] = 14;
  1561. a[19] = 17;
  1562. a[20] = 21;
  1563. a[21] = 25;
  1564. a[22] = 30;
  1565. a[23] = 35;
  1566. a[24] = 45;
  1567. a[25] = 60;
  1568. a[26] = 80;
  1569. a[27] = 100;
  1570. a[28] = 200;
  1571. a[29] = 300;
  1572. a[30] = 400;
  1573. a[31] = 500;
  1574. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1575. b[9] = b[10] = 1;
  1576. b[11] = b[12] = 2;
  1577. b[13] = b[14] = b[15] = b[16] = 3;
  1578. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1579. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1580. b[28] = b[29] = 6;
  1581. b[30] = b[31] = 7;
  1582. }
  1583. /* The minimum additive increment value for the congestion control table */
  1584. #define CC_MIN_INCR 2U
  1585. /**
  1586. * t4_load_mtus - write the MTU and congestion control HW tables
  1587. * @adap: the adapter
  1588. * @mtus: the values for the MTU table
  1589. * @alpha: the values for the congestion control alpha parameter
  1590. * @beta: the values for the congestion control beta parameter
  1591. *
  1592. * Write the HW MTU table with the supplied MTUs and the high-speed
  1593. * congestion control table with the supplied alpha, beta, and MTUs.
  1594. * We write the two tables together because the additive increments
  1595. * depend on the MTUs.
  1596. */
  1597. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1598. const unsigned short *alpha, const unsigned short *beta)
  1599. {
  1600. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1601. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1602. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1603. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1604. };
  1605. unsigned int i, w;
  1606. for (i = 0; i < NMTUS; ++i) {
  1607. unsigned int mtu = mtus[i];
  1608. unsigned int log2 = fls(mtu);
  1609. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1610. log2--;
  1611. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1612. MTUWIDTH(log2) | MTUVALUE(mtu));
  1613. for (w = 0; w < NCCTRL_WIN; ++w) {
  1614. unsigned int inc;
  1615. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1616. CC_MIN_INCR);
  1617. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1618. (w << 16) | (beta[w] << 13) | inc);
  1619. }
  1620. }
  1621. }
  1622. /**
  1623. * get_mps_bg_map - return the buffer groups associated with a port
  1624. * @adap: the adapter
  1625. * @idx: the port index
  1626. *
  1627. * Returns a bitmap indicating which MPS buffer groups are associated
  1628. * with the given port. Bit i is set if buffer group i is used by the
  1629. * port.
  1630. */
  1631. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1632. {
  1633. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1634. if (n == 0)
  1635. return idx == 0 ? 0xf : 0;
  1636. if (n == 1)
  1637. return idx < 2 ? (3 << (2 * idx)) : 0;
  1638. return 1 << idx;
  1639. }
  1640. /**
  1641. * t4_get_port_stats - collect port statistics
  1642. * @adap: the adapter
  1643. * @idx: the port index
  1644. * @p: the stats structure to fill
  1645. *
  1646. * Collect statistics related to the given port from HW.
  1647. */
  1648. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1649. {
  1650. u32 bgmap = get_mps_bg_map(adap, idx);
  1651. #define GET_STAT(name) \
  1652. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1653. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1654. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1655. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1656. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1657. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1658. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1659. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1660. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1661. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1662. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1663. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1664. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1665. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1666. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1667. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1668. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1669. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1670. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1671. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1672. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1673. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1674. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1675. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1676. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1677. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1678. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1679. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1680. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1681. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1682. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1683. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1684. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1685. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1686. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1687. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1688. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1689. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1690. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1691. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1692. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1693. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1694. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1695. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1696. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1697. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1698. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1699. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1700. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1701. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1702. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1703. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1704. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1705. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1706. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1707. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1708. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1709. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1710. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1711. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1712. #undef GET_STAT
  1713. #undef GET_STAT_COM
  1714. }
  1715. /**
  1716. * t4_wol_magic_enable - enable/disable magic packet WoL
  1717. * @adap: the adapter
  1718. * @port: the physical port index
  1719. * @addr: MAC address expected in magic packets, %NULL to disable
  1720. *
  1721. * Enables/disables magic packet wake-on-LAN for the selected port.
  1722. */
  1723. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1724. const u8 *addr)
  1725. {
  1726. if (addr) {
  1727. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1728. (addr[2] << 24) | (addr[3] << 16) |
  1729. (addr[4] << 8) | addr[5]);
  1730. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1731. (addr[0] << 8) | addr[1]);
  1732. }
  1733. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1734. addr ? MAGICEN : 0);
  1735. }
  1736. /**
  1737. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1738. * @adap: the adapter
  1739. * @port: the physical port index
  1740. * @map: bitmap of which HW pattern filters to set
  1741. * @mask0: byte mask for bytes 0-63 of a packet
  1742. * @mask1: byte mask for bytes 64-127 of a packet
  1743. * @crc: Ethernet CRC for selected bytes
  1744. * @enable: enable/disable switch
  1745. *
  1746. * Sets the pattern filters indicated in @map to mask out the bytes
  1747. * specified in @mask0/@mask1 in received packets and compare the CRC of
  1748. * the resulting packet against @crc. If @enable is %true pattern-based
  1749. * WoL is enabled, otherwise disabled.
  1750. */
  1751. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  1752. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  1753. {
  1754. int i;
  1755. if (!enable) {
  1756. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  1757. PATEN, 0);
  1758. return 0;
  1759. }
  1760. if (map > 0xff)
  1761. return -EINVAL;
  1762. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  1763. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  1764. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  1765. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  1766. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  1767. if (!(map & 1))
  1768. continue;
  1769. /* write byte masks */
  1770. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  1771. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  1772. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1773. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  1774. return -ETIMEDOUT;
  1775. /* write CRC */
  1776. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  1777. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  1778. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1779. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  1780. return -ETIMEDOUT;
  1781. }
  1782. #undef EPIO_REG
  1783. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  1784. return 0;
  1785. }
  1786. #define INIT_CMD(var, cmd, rd_wr) do { \
  1787. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  1788. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  1789. (var).retval_len16 = htonl(FW_LEN16(var)); \
  1790. } while (0)
  1791. /**
  1792. * t4_mdio_rd - read a PHY register through MDIO
  1793. * @adap: the adapter
  1794. * @mbox: mailbox to use for the FW command
  1795. * @phy_addr: the PHY address
  1796. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  1797. * @reg: the register to read
  1798. * @valp: where to store the value
  1799. *
  1800. * Issues a FW command through the given mailbox to read a PHY register.
  1801. */
  1802. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  1803. unsigned int mmd, unsigned int reg, u16 *valp)
  1804. {
  1805. int ret;
  1806. struct fw_ldst_cmd c;
  1807. memset(&c, 0, sizeof(c));
  1808. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  1809. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  1810. c.cycles_to_len16 = htonl(FW_LEN16(c));
  1811. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  1812. FW_LDST_CMD_MMD(mmd));
  1813. c.u.mdio.raddr = htons(reg);
  1814. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1815. if (ret == 0)
  1816. *valp = ntohs(c.u.mdio.rval);
  1817. return ret;
  1818. }
  1819. /**
  1820. * t4_mdio_wr - write a PHY register through MDIO
  1821. * @adap: the adapter
  1822. * @mbox: mailbox to use for the FW command
  1823. * @phy_addr: the PHY address
  1824. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  1825. * @reg: the register to write
  1826. * @valp: value to write
  1827. *
  1828. * Issues a FW command through the given mailbox to write a PHY register.
  1829. */
  1830. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  1831. unsigned int mmd, unsigned int reg, u16 val)
  1832. {
  1833. struct fw_ldst_cmd c;
  1834. memset(&c, 0, sizeof(c));
  1835. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  1836. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  1837. c.cycles_to_len16 = htonl(FW_LEN16(c));
  1838. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  1839. FW_LDST_CMD_MMD(mmd));
  1840. c.u.mdio.raddr = htons(reg);
  1841. c.u.mdio.rval = htons(val);
  1842. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1843. }
  1844. /**
  1845. * t4_fw_hello - establish communication with FW
  1846. * @adap: the adapter
  1847. * @mbox: mailbox to use for the FW command
  1848. * @evt_mbox: mailbox to receive async FW events
  1849. * @master: specifies the caller's willingness to be the device master
  1850. * @state: returns the current device state
  1851. *
  1852. * Issues a command to establish communication with FW.
  1853. */
  1854. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  1855. enum dev_master master, enum dev_state *state)
  1856. {
  1857. int ret;
  1858. struct fw_hello_cmd c;
  1859. INIT_CMD(c, HELLO, WRITE);
  1860. c.err_to_mbasyncnot = htonl(
  1861. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  1862. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  1863. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
  1864. FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
  1865. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1866. if (ret == 0 && state) {
  1867. u32 v = ntohl(c.err_to_mbasyncnot);
  1868. if (v & FW_HELLO_CMD_INIT)
  1869. *state = DEV_STATE_INIT;
  1870. else if (v & FW_HELLO_CMD_ERR)
  1871. *state = DEV_STATE_ERR;
  1872. else
  1873. *state = DEV_STATE_UNINIT;
  1874. }
  1875. return ret;
  1876. }
  1877. /**
  1878. * t4_fw_bye - end communication with FW
  1879. * @adap: the adapter
  1880. * @mbox: mailbox to use for the FW command
  1881. *
  1882. * Issues a command to terminate communication with FW.
  1883. */
  1884. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  1885. {
  1886. struct fw_bye_cmd c;
  1887. INIT_CMD(c, BYE, WRITE);
  1888. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1889. }
  1890. /**
  1891. * t4_init_cmd - ask FW to initialize the device
  1892. * @adap: the adapter
  1893. * @mbox: mailbox to use for the FW command
  1894. *
  1895. * Issues a command to FW to partially initialize the device. This
  1896. * performs initialization that generally doesn't depend on user input.
  1897. */
  1898. int t4_early_init(struct adapter *adap, unsigned int mbox)
  1899. {
  1900. struct fw_initialize_cmd c;
  1901. INIT_CMD(c, INITIALIZE, WRITE);
  1902. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1903. }
  1904. /**
  1905. * t4_fw_reset - issue a reset to FW
  1906. * @adap: the adapter
  1907. * @mbox: mailbox to use for the FW command
  1908. * @reset: specifies the type of reset to perform
  1909. *
  1910. * Issues a reset command of the specified type to FW.
  1911. */
  1912. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  1913. {
  1914. struct fw_reset_cmd c;
  1915. INIT_CMD(c, RESET, WRITE);
  1916. c.val = htonl(reset);
  1917. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1918. }
  1919. /**
  1920. * t4_query_params - query FW or device parameters
  1921. * @adap: the adapter
  1922. * @mbox: mailbox to use for the FW command
  1923. * @pf: the PF
  1924. * @vf: the VF
  1925. * @nparams: the number of parameters
  1926. * @params: the parameter names
  1927. * @val: the parameter values
  1928. *
  1929. * Reads the value of FW or device parameters. Up to 7 parameters can be
  1930. * queried at once.
  1931. */
  1932. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  1933. unsigned int vf, unsigned int nparams, const u32 *params,
  1934. u32 *val)
  1935. {
  1936. int i, ret;
  1937. struct fw_params_cmd c;
  1938. __be32 *p = &c.param[0].mnem;
  1939. if (nparams > 7)
  1940. return -EINVAL;
  1941. memset(&c, 0, sizeof(c));
  1942. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  1943. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  1944. FW_PARAMS_CMD_VFN(vf));
  1945. c.retval_len16 = htonl(FW_LEN16(c));
  1946. for (i = 0; i < nparams; i++, p += 2)
  1947. *p = htonl(*params++);
  1948. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  1949. if (ret == 0)
  1950. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  1951. *val++ = ntohl(*p);
  1952. return ret;
  1953. }
  1954. /**
  1955. * t4_set_params - sets FW or device parameters
  1956. * @adap: the adapter
  1957. * @mbox: mailbox to use for the FW command
  1958. * @pf: the PF
  1959. * @vf: the VF
  1960. * @nparams: the number of parameters
  1961. * @params: the parameter names
  1962. * @val: the parameter values
  1963. *
  1964. * Sets the value of FW or device parameters. Up to 7 parameters can be
  1965. * specified at once.
  1966. */
  1967. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  1968. unsigned int vf, unsigned int nparams, const u32 *params,
  1969. const u32 *val)
  1970. {
  1971. struct fw_params_cmd c;
  1972. __be32 *p = &c.param[0].mnem;
  1973. if (nparams > 7)
  1974. return -EINVAL;
  1975. memset(&c, 0, sizeof(c));
  1976. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  1977. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  1978. FW_PARAMS_CMD_VFN(vf));
  1979. c.retval_len16 = htonl(FW_LEN16(c));
  1980. while (nparams--) {
  1981. *p++ = htonl(*params++);
  1982. *p++ = htonl(*val++);
  1983. }
  1984. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1985. }
  1986. /**
  1987. * t4_cfg_pfvf - configure PF/VF resource limits
  1988. * @adap: the adapter
  1989. * @mbox: mailbox to use for the FW command
  1990. * @pf: the PF being configured
  1991. * @vf: the VF being configured
  1992. * @txq: the max number of egress queues
  1993. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  1994. * @rxqi: the max number of interrupt-capable ingress queues
  1995. * @rxq: the max number of interruptless ingress queues
  1996. * @tc: the PCI traffic class
  1997. * @vi: the max number of virtual interfaces
  1998. * @cmask: the channel access rights mask for the PF/VF
  1999. * @pmask: the port access rights mask for the PF/VF
  2000. * @nexact: the maximum number of exact MPS filters
  2001. * @rcaps: read capabilities
  2002. * @wxcaps: write/execute capabilities
  2003. *
  2004. * Configures resource limits and capabilities for a physical or virtual
  2005. * function.
  2006. */
  2007. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2008. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2009. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2010. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2011. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2012. {
  2013. struct fw_pfvf_cmd c;
  2014. memset(&c, 0, sizeof(c));
  2015. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2016. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2017. FW_PFVF_CMD_VFN(vf));
  2018. c.retval_len16 = htonl(FW_LEN16(c));
  2019. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2020. FW_PFVF_CMD_NIQ(rxq));
  2021. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2022. FW_PFVF_CMD_PMASK(pmask) |
  2023. FW_PFVF_CMD_NEQ(txq));
  2024. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2025. FW_PFVF_CMD_NEXACTF(nexact));
  2026. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2027. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2028. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2029. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2030. }
  2031. /**
  2032. * t4_alloc_vi - allocate a virtual interface
  2033. * @adap: the adapter
  2034. * @mbox: mailbox to use for the FW command
  2035. * @port: physical port associated with the VI
  2036. * @pf: the PF owning the VI
  2037. * @vf: the VF owning the VI
  2038. * @nmac: number of MAC addresses needed (1 to 5)
  2039. * @mac: the MAC addresses of the VI
  2040. * @rss_size: size of RSS table slice associated with this VI
  2041. *
  2042. * Allocates a virtual interface for the given physical port. If @mac is
  2043. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2044. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2045. * stored consecutively so the space needed is @nmac * 6 bytes.
  2046. * Returns a negative error number or the non-negative VI id.
  2047. */
  2048. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2049. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2050. unsigned int *rss_size)
  2051. {
  2052. int ret;
  2053. struct fw_vi_cmd c;
  2054. memset(&c, 0, sizeof(c));
  2055. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2056. FW_CMD_WRITE | FW_CMD_EXEC |
  2057. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2058. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2059. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2060. c.nmac = nmac - 1;
  2061. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2062. if (ret)
  2063. return ret;
  2064. if (mac) {
  2065. memcpy(mac, c.mac, sizeof(c.mac));
  2066. switch (nmac) {
  2067. case 5:
  2068. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2069. case 4:
  2070. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2071. case 3:
  2072. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2073. case 2:
  2074. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2075. }
  2076. }
  2077. if (rss_size)
  2078. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2079. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2080. }
  2081. /**
  2082. * t4_set_rxmode - set Rx properties of a virtual interface
  2083. * @adap: the adapter
  2084. * @mbox: mailbox to use for the FW command
  2085. * @viid: the VI id
  2086. * @mtu: the new MTU or -1
  2087. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2088. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2089. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2090. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2091. * @sleep_ok: if true we may sleep while awaiting command completion
  2092. *
  2093. * Sets Rx properties of a virtual interface.
  2094. */
  2095. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2096. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2097. bool sleep_ok)
  2098. {
  2099. struct fw_vi_rxmode_cmd c;
  2100. /* convert to FW values */
  2101. if (mtu < 0)
  2102. mtu = FW_RXMODE_MTU_NO_CHG;
  2103. if (promisc < 0)
  2104. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2105. if (all_multi < 0)
  2106. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2107. if (bcast < 0)
  2108. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2109. if (vlanex < 0)
  2110. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2111. memset(&c, 0, sizeof(c));
  2112. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2113. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2114. c.retval_len16 = htonl(FW_LEN16(c));
  2115. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2116. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2117. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2118. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2119. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2120. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2121. }
  2122. /**
  2123. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2124. * @adap: the adapter
  2125. * @mbox: mailbox to use for the FW command
  2126. * @viid: the VI id
  2127. * @free: if true any existing filters for this VI id are first removed
  2128. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2129. * @addr: the MAC address(es)
  2130. * @idx: where to store the index of each allocated filter
  2131. * @hash: pointer to hash address filter bitmap
  2132. * @sleep_ok: call is allowed to sleep
  2133. *
  2134. * Allocates an exact-match filter for each of the supplied addresses and
  2135. * sets it to the corresponding address. If @idx is not %NULL it should
  2136. * have at least @naddr entries, each of which will be set to the index of
  2137. * the filter allocated for the corresponding MAC address. If a filter
  2138. * could not be allocated for an address its index is set to 0xffff.
  2139. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2140. * are hashed and update the hash filter bitmap pointed at by @hash.
  2141. *
  2142. * Returns a negative error number or the number of filters allocated.
  2143. */
  2144. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2145. unsigned int viid, bool free, unsigned int naddr,
  2146. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2147. {
  2148. int i, ret;
  2149. struct fw_vi_mac_cmd c;
  2150. struct fw_vi_mac_exact *p;
  2151. if (naddr > 7)
  2152. return -EINVAL;
  2153. memset(&c, 0, sizeof(c));
  2154. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2155. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2156. FW_VI_MAC_CMD_VIID(viid));
  2157. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2158. FW_CMD_LEN16((naddr + 2) / 2));
  2159. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2160. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2161. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2162. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2163. }
  2164. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2165. if (ret)
  2166. return ret;
  2167. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2168. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2169. if (idx)
  2170. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2171. if (index < NEXACT_MAC)
  2172. ret++;
  2173. else if (hash)
  2174. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2175. }
  2176. return ret;
  2177. }
  2178. /**
  2179. * t4_change_mac - modifies the exact-match filter for a MAC address
  2180. * @adap: the adapter
  2181. * @mbox: mailbox to use for the FW command
  2182. * @viid: the VI id
  2183. * @idx: index of existing filter for old value of MAC address, or -1
  2184. * @addr: the new MAC address value
  2185. * @persist: whether a new MAC allocation should be persistent
  2186. * @add_smt: if true also add the address to the HW SMT
  2187. *
  2188. * Modifies an exact-match filter and sets it to the new MAC address.
  2189. * Note that in general it is not possible to modify the value of a given
  2190. * filter so the generic way to modify an address filter is to free the one
  2191. * being used by the old address value and allocate a new filter for the
  2192. * new address value. @idx can be -1 if the address is a new addition.
  2193. *
  2194. * Returns a negative error number or the index of the filter with the new
  2195. * MAC value.
  2196. */
  2197. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2198. int idx, const u8 *addr, bool persist, bool add_smt)
  2199. {
  2200. int ret, mode;
  2201. struct fw_vi_mac_cmd c;
  2202. struct fw_vi_mac_exact *p = c.u.exact;
  2203. if (idx < 0) /* new allocation */
  2204. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2205. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2206. memset(&c, 0, sizeof(c));
  2207. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2208. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2209. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2210. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2211. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2212. FW_VI_MAC_CMD_IDX(idx));
  2213. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2214. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2215. if (ret == 0) {
  2216. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2217. if (ret >= NEXACT_MAC)
  2218. ret = -ENOMEM;
  2219. }
  2220. return ret;
  2221. }
  2222. /**
  2223. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2224. * @adap: the adapter
  2225. * @mbox: mailbox to use for the FW command
  2226. * @viid: the VI id
  2227. * @ucast: whether the hash filter should also match unicast addresses
  2228. * @vec: the value to be written to the hash filter
  2229. * @sleep_ok: call is allowed to sleep
  2230. *
  2231. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2232. */
  2233. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2234. bool ucast, u64 vec, bool sleep_ok)
  2235. {
  2236. struct fw_vi_mac_cmd c;
  2237. memset(&c, 0, sizeof(c));
  2238. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2239. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2240. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2241. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2242. FW_CMD_LEN16(1));
  2243. c.u.hash.hashvec = cpu_to_be64(vec);
  2244. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2245. }
  2246. /**
  2247. * t4_enable_vi - enable/disable a virtual interface
  2248. * @adap: the adapter
  2249. * @mbox: mailbox to use for the FW command
  2250. * @viid: the VI id
  2251. * @rx_en: 1=enable Rx, 0=disable Rx
  2252. * @tx_en: 1=enable Tx, 0=disable Tx
  2253. *
  2254. * Enables/disables a virtual interface.
  2255. */
  2256. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2257. bool rx_en, bool tx_en)
  2258. {
  2259. struct fw_vi_enable_cmd c;
  2260. memset(&c, 0, sizeof(c));
  2261. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2262. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2263. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2264. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2265. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2266. }
  2267. /**
  2268. * t4_identify_port - identify a VI's port by blinking its LED
  2269. * @adap: the adapter
  2270. * @mbox: mailbox to use for the FW command
  2271. * @viid: the VI id
  2272. * @nblinks: how many times to blink LED at 2.5 Hz
  2273. *
  2274. * Identifies a VI's port by blinking its LED.
  2275. */
  2276. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2277. unsigned int nblinks)
  2278. {
  2279. struct fw_vi_enable_cmd c;
  2280. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2281. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2282. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2283. c.blinkdur = htons(nblinks);
  2284. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2285. }
  2286. /**
  2287. * t4_iq_free - free an ingress queue and its FLs
  2288. * @adap: the adapter
  2289. * @mbox: mailbox to use for the FW command
  2290. * @pf: the PF owning the queues
  2291. * @vf: the VF owning the queues
  2292. * @iqtype: the ingress queue type
  2293. * @iqid: ingress queue id
  2294. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2295. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2296. *
  2297. * Frees an ingress queue and its associated FLs, if any.
  2298. */
  2299. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2300. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2301. unsigned int fl0id, unsigned int fl1id)
  2302. {
  2303. struct fw_iq_cmd c;
  2304. memset(&c, 0, sizeof(c));
  2305. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2306. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2307. FW_IQ_CMD_VFN(vf));
  2308. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2309. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2310. c.iqid = htons(iqid);
  2311. c.fl0id = htons(fl0id);
  2312. c.fl1id = htons(fl1id);
  2313. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2314. }
  2315. /**
  2316. * t4_eth_eq_free - free an Ethernet egress queue
  2317. * @adap: the adapter
  2318. * @mbox: mailbox to use for the FW command
  2319. * @pf: the PF owning the queue
  2320. * @vf: the VF owning the queue
  2321. * @eqid: egress queue id
  2322. *
  2323. * Frees an Ethernet egress queue.
  2324. */
  2325. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2326. unsigned int vf, unsigned int eqid)
  2327. {
  2328. struct fw_eq_eth_cmd c;
  2329. memset(&c, 0, sizeof(c));
  2330. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  2331. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  2332. FW_EQ_ETH_CMD_VFN(vf));
  2333. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  2334. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  2335. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2336. }
  2337. /**
  2338. * t4_ctrl_eq_free - free a control egress queue
  2339. * @adap: the adapter
  2340. * @mbox: mailbox to use for the FW command
  2341. * @pf: the PF owning the queue
  2342. * @vf: the VF owning the queue
  2343. * @eqid: egress queue id
  2344. *
  2345. * Frees a control egress queue.
  2346. */
  2347. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2348. unsigned int vf, unsigned int eqid)
  2349. {
  2350. struct fw_eq_ctrl_cmd c;
  2351. memset(&c, 0, sizeof(c));
  2352. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  2353. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  2354. FW_EQ_CTRL_CMD_VFN(vf));
  2355. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  2356. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  2357. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2358. }
  2359. /**
  2360. * t4_ofld_eq_free - free an offload egress queue
  2361. * @adap: the adapter
  2362. * @mbox: mailbox to use for the FW command
  2363. * @pf: the PF owning the queue
  2364. * @vf: the VF owning the queue
  2365. * @eqid: egress queue id
  2366. *
  2367. * Frees a control egress queue.
  2368. */
  2369. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2370. unsigned int vf, unsigned int eqid)
  2371. {
  2372. struct fw_eq_ofld_cmd c;
  2373. memset(&c, 0, sizeof(c));
  2374. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  2375. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  2376. FW_EQ_OFLD_CMD_VFN(vf));
  2377. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  2378. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  2379. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2380. }
  2381. /**
  2382. * t4_handle_fw_rpl - process a FW reply message
  2383. * @adap: the adapter
  2384. * @rpl: start of the FW message
  2385. *
  2386. * Processes a FW message, such as link state change messages.
  2387. */
  2388. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  2389. {
  2390. u8 opcode = *(const u8 *)rpl;
  2391. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  2392. int speed = 0, fc = 0;
  2393. const struct fw_port_cmd *p = (void *)rpl;
  2394. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  2395. int port = adap->chan_map[chan];
  2396. struct port_info *pi = adap2pinfo(adap, port);
  2397. struct link_config *lc = &pi->link_cfg;
  2398. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  2399. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  2400. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  2401. if (stat & FW_PORT_CMD_RXPAUSE)
  2402. fc |= PAUSE_RX;
  2403. if (stat & FW_PORT_CMD_TXPAUSE)
  2404. fc |= PAUSE_TX;
  2405. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  2406. speed = SPEED_100;
  2407. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  2408. speed = SPEED_1000;
  2409. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  2410. speed = SPEED_10000;
  2411. if (link_ok != lc->link_ok || speed != lc->speed ||
  2412. fc != lc->fc) { /* something changed */
  2413. lc->link_ok = link_ok;
  2414. lc->speed = speed;
  2415. lc->fc = fc;
  2416. t4_os_link_changed(adap, port, link_ok);
  2417. }
  2418. if (mod != pi->mod_type) {
  2419. pi->mod_type = mod;
  2420. t4_os_portmod_changed(adap, port);
  2421. }
  2422. }
  2423. return 0;
  2424. }
  2425. static void __devinit get_pci_mode(struct adapter *adapter,
  2426. struct pci_params *p)
  2427. {
  2428. u16 val;
  2429. u32 pcie_cap = pci_pcie_cap(adapter->pdev);
  2430. if (pcie_cap) {
  2431. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2432. &val);
  2433. p->speed = val & PCI_EXP_LNKSTA_CLS;
  2434. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  2435. }
  2436. }
  2437. /**
  2438. * init_link_config - initialize a link's SW state
  2439. * @lc: structure holding the link state
  2440. * @caps: link capabilities
  2441. *
  2442. * Initializes the SW state maintained for each link, including the link's
  2443. * capabilities and default speed/flow-control/autonegotiation settings.
  2444. */
  2445. static void __devinit init_link_config(struct link_config *lc,
  2446. unsigned int caps)
  2447. {
  2448. lc->supported = caps;
  2449. lc->requested_speed = 0;
  2450. lc->speed = 0;
  2451. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2452. if (lc->supported & FW_PORT_CAP_ANEG) {
  2453. lc->advertising = lc->supported & ADVERT_MASK;
  2454. lc->autoneg = AUTONEG_ENABLE;
  2455. lc->requested_fc |= PAUSE_AUTONEG;
  2456. } else {
  2457. lc->advertising = 0;
  2458. lc->autoneg = AUTONEG_DISABLE;
  2459. }
  2460. }
  2461. int t4_wait_dev_ready(struct adapter *adap)
  2462. {
  2463. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  2464. return 0;
  2465. msleep(500);
  2466. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  2467. }
  2468. static int __devinit get_flash_params(struct adapter *adap)
  2469. {
  2470. int ret;
  2471. u32 info;
  2472. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  2473. if (!ret)
  2474. ret = sf1_read(adap, 3, 0, 1, &info);
  2475. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  2476. if (ret)
  2477. return ret;
  2478. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  2479. return -EINVAL;
  2480. info >>= 16; /* log2 of size */
  2481. if (info >= 0x14 && info < 0x18)
  2482. adap->params.sf_nsec = 1 << (info - 16);
  2483. else if (info == 0x18)
  2484. adap->params.sf_nsec = 64;
  2485. else
  2486. return -EINVAL;
  2487. adap->params.sf_size = 1 << info;
  2488. adap->params.sf_fw_start =
  2489. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  2490. return 0;
  2491. }
  2492. /**
  2493. * t4_prep_adapter - prepare SW and HW for operation
  2494. * @adapter: the adapter
  2495. * @reset: if true perform a HW reset
  2496. *
  2497. * Initialize adapter SW state for the various HW modules, set initial
  2498. * values for some adapter tunables, take PHYs out of reset, and
  2499. * initialize the MDIO interface.
  2500. */
  2501. int __devinit t4_prep_adapter(struct adapter *adapter)
  2502. {
  2503. int ret;
  2504. ret = t4_wait_dev_ready(adapter);
  2505. if (ret < 0)
  2506. return ret;
  2507. get_pci_mode(adapter, &adapter->params.pci);
  2508. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  2509. ret = get_flash_params(adapter);
  2510. if (ret < 0) {
  2511. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  2512. return ret;
  2513. }
  2514. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2515. if (ret < 0)
  2516. return ret;
  2517. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2518. /*
  2519. * Default port for debugging in case we can't reach FW.
  2520. */
  2521. adapter->params.nports = 1;
  2522. adapter->params.portvec = 1;
  2523. return 0;
  2524. }
  2525. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  2526. {
  2527. u8 addr[6];
  2528. int ret, i, j = 0;
  2529. struct fw_port_cmd c;
  2530. struct fw_rss_vi_config_cmd rvc;
  2531. memset(&c, 0, sizeof(c));
  2532. memset(&rvc, 0, sizeof(rvc));
  2533. for_each_port(adap, i) {
  2534. unsigned int rss_size;
  2535. struct port_info *p = adap2pinfo(adap, i);
  2536. while ((adap->params.portvec & (1 << j)) == 0)
  2537. j++;
  2538. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  2539. FW_CMD_REQUEST | FW_CMD_READ |
  2540. FW_PORT_CMD_PORTID(j));
  2541. c.action_to_len16 = htonl(
  2542. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  2543. FW_LEN16(c));
  2544. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2545. if (ret)
  2546. return ret;
  2547. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  2548. if (ret < 0)
  2549. return ret;
  2550. p->viid = ret;
  2551. p->tx_chan = j;
  2552. p->lport = j;
  2553. p->rss_size = rss_size;
  2554. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  2555. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  2556. adap->port[i]->dev_id = j;
  2557. ret = ntohl(c.u.info.lstatus_to_modtype);
  2558. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  2559. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  2560. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  2561. p->mod_type = FW_PORT_MOD_TYPE_NA;
  2562. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  2563. FW_CMD_REQUEST | FW_CMD_READ |
  2564. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  2565. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  2566. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  2567. if (ret)
  2568. return ret;
  2569. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  2570. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  2571. j++;
  2572. }
  2573. return 0;
  2574. }