bnx2.c 208 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2011 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #include <net/ip.h>
  38. #include <net/tcp.h>
  39. #include <net/checksum.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/crc32.h>
  42. #include <linux/prefetch.h>
  43. #include <linux/cache.h>
  44. #include <linux/firmware.h>
  45. #include <linux/log2.h>
  46. #include <linux/aer.h>
  47. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  48. #define BCM_CNIC 1
  49. #include "cnic_if.h"
  50. #endif
  51. #include "bnx2.h"
  52. #include "bnx2_fw.h"
  53. #define DRV_MODULE_NAME "bnx2"
  54. #define DRV_MODULE_VERSION "2.1.6"
  55. #define DRV_MODULE_RELDATE "Mar 7, 2011"
  56. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
  57. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  58. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1a.fw"
  59. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  60. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  61. #define RUN_AT(x) (jiffies + (x))
  62. /* Time in jiffies before concluding the transmitter is hung. */
  63. #define TX_TIMEOUT (5*HZ)
  64. static char version[] __devinitdata =
  65. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  66. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  67. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  68. MODULE_LICENSE("GPL");
  69. MODULE_VERSION(DRV_MODULE_VERSION);
  70. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  71. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  75. static int disable_msi = 0;
  76. module_param(disable_msi, int, 0);
  77. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  78. typedef enum {
  79. BCM5706 = 0,
  80. NC370T,
  81. NC370I,
  82. BCM5706S,
  83. NC370F,
  84. BCM5708,
  85. BCM5708S,
  86. BCM5709,
  87. BCM5709S,
  88. BCM5716,
  89. BCM5716S,
  90. } board_t;
  91. /* indexed by board_t, above */
  92. static struct {
  93. char *name;
  94. } board_info[] __devinitdata = {
  95. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  96. { "HP NC370T Multifunction Gigabit Server Adapter" },
  97. { "HP NC370i Multifunction Gigabit Server Adapter" },
  98. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  99. { "HP NC370F Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  102. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  106. };
  107. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  108. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  109. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  117. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  126. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  130. { 0, }
  131. };
  132. static const struct flash_spec flash_table[] =
  133. {
  134. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  135. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  136. /* Slow EEPROM */
  137. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  138. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  139. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  140. "EEPROM - slow"},
  141. /* Expansion entry 0001 */
  142. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  143. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  144. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  145. "Entry 0001"},
  146. /* Saifun SA25F010 (non-buffered flash) */
  147. /* strap, cfg1, & write1 need updates */
  148. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  149. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  150. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  151. "Non-buffered flash (128kB)"},
  152. /* Saifun SA25F020 (non-buffered flash) */
  153. /* strap, cfg1, & write1 need updates */
  154. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  155. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  156. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  157. "Non-buffered flash (256kB)"},
  158. /* Expansion entry 0100 */
  159. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  160. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  161. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  162. "Entry 0100"},
  163. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  164. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  165. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  166. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  167. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  168. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  169. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  170. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  171. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  172. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  173. /* Saifun SA25F005 (non-buffered flash) */
  174. /* strap, cfg1, & write1 need updates */
  175. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  176. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  177. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  178. "Non-buffered flash (64kB)"},
  179. /* Fast EEPROM */
  180. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  181. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  182. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  183. "EEPROM - fast"},
  184. /* Expansion entry 1001 */
  185. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  186. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  187. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  188. "Entry 1001"},
  189. /* Expansion entry 1010 */
  190. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  191. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  192. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  193. "Entry 1010"},
  194. /* ATMEL AT45DB011B (buffered flash) */
  195. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  196. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  197. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  198. "Buffered flash (128kB)"},
  199. /* Expansion entry 1100 */
  200. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  201. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  202. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  203. "Entry 1100"},
  204. /* Expansion entry 1101 */
  205. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  206. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  207. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  208. "Entry 1101"},
  209. /* Ateml Expansion entry 1110 */
  210. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  211. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  212. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  213. "Entry 1110 (Atmel)"},
  214. /* ATMEL AT45DB021B (buffered flash) */
  215. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  216. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  217. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  218. "Buffered flash (256kB)"},
  219. };
  220. static const struct flash_spec flash_5709 = {
  221. .flags = BNX2_NV_BUFFERED,
  222. .page_bits = BCM5709_FLASH_PAGE_BITS,
  223. .page_size = BCM5709_FLASH_PAGE_SIZE,
  224. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  225. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  226. .name = "5709 Buffered flash (256kB)",
  227. };
  228. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  229. static void bnx2_init_napi(struct bnx2 *bp);
  230. static void bnx2_del_napi(struct bnx2 *bp);
  231. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  232. {
  233. u32 diff;
  234. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  235. barrier();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return bp->tx_ring_size - diff;
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = rcu_dereference_protected(bp->cnic_ops,
  392. lockdep_is_held(&bp->cnic_lock));
  393. if (c_ops) {
  394. info.cmd = CNIC_CTL_STOP_CMD;
  395. c_ops->cnic_ctl(bp->cnic_data, &info);
  396. }
  397. mutex_unlock(&bp->cnic_lock);
  398. }
  399. static void
  400. bnx2_cnic_start(struct bnx2 *bp)
  401. {
  402. struct cnic_ops *c_ops;
  403. struct cnic_ctl_info info;
  404. mutex_lock(&bp->cnic_lock);
  405. c_ops = rcu_dereference_protected(bp->cnic_ops,
  406. lockdep_is_held(&bp->cnic_lock));
  407. if (c_ops) {
  408. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  409. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  410. bnapi->cnic_tag = bnapi->last_status_idx;
  411. }
  412. info.cmd = CNIC_CTL_START_CMD;
  413. c_ops->cnic_ctl(bp->cnic_data, &info);
  414. }
  415. mutex_unlock(&bp->cnic_lock);
  416. }
  417. #else
  418. static void
  419. bnx2_cnic_stop(struct bnx2 *bp)
  420. {
  421. }
  422. static void
  423. bnx2_cnic_start(struct bnx2 *bp)
  424. {
  425. }
  426. #endif
  427. static int
  428. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  429. {
  430. u32 val1;
  431. int i, ret;
  432. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  433. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  434. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  435. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  436. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  437. udelay(40);
  438. }
  439. val1 = (bp->phy_addr << 21) | (reg << 16) |
  440. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  441. BNX2_EMAC_MDIO_COMM_START_BUSY;
  442. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  443. for (i = 0; i < 50; i++) {
  444. udelay(10);
  445. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  446. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  447. udelay(5);
  448. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  449. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  450. break;
  451. }
  452. }
  453. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  454. *val = 0x0;
  455. ret = -EBUSY;
  456. }
  457. else {
  458. *val = val1;
  459. ret = 0;
  460. }
  461. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  462. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  463. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  464. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  465. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  466. udelay(40);
  467. }
  468. return ret;
  469. }
  470. static int
  471. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  472. {
  473. u32 val1;
  474. int i, ret;
  475. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  476. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  477. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  478. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  479. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  480. udelay(40);
  481. }
  482. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  483. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  484. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  485. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  486. for (i = 0; i < 50; i++) {
  487. udelay(10);
  488. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  489. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  490. udelay(5);
  491. break;
  492. }
  493. }
  494. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  495. ret = -EBUSY;
  496. else
  497. ret = 0;
  498. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  499. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  500. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  501. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  502. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  503. udelay(40);
  504. }
  505. return ret;
  506. }
  507. static void
  508. bnx2_disable_int(struct bnx2 *bp)
  509. {
  510. int i;
  511. struct bnx2_napi *bnapi;
  512. for (i = 0; i < bp->irq_nvecs; i++) {
  513. bnapi = &bp->bnx2_napi[i];
  514. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  515. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  516. }
  517. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  518. }
  519. static void
  520. bnx2_enable_int(struct bnx2 *bp)
  521. {
  522. int i;
  523. struct bnx2_napi *bnapi;
  524. for (i = 0; i < bp->irq_nvecs; i++) {
  525. bnapi = &bp->bnx2_napi[i];
  526. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  527. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  528. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  529. bnapi->last_status_idx);
  530. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  531. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  532. bnapi->last_status_idx);
  533. }
  534. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  535. }
  536. static void
  537. bnx2_disable_int_sync(struct bnx2 *bp)
  538. {
  539. int i;
  540. atomic_inc(&bp->intr_sem);
  541. if (!netif_running(bp->dev))
  542. return;
  543. bnx2_disable_int(bp);
  544. for (i = 0; i < bp->irq_nvecs; i++)
  545. synchronize_irq(bp->irq_tbl[i].vector);
  546. }
  547. static void
  548. bnx2_napi_disable(struct bnx2 *bp)
  549. {
  550. int i;
  551. for (i = 0; i < bp->irq_nvecs; i++)
  552. napi_disable(&bp->bnx2_napi[i].napi);
  553. }
  554. static void
  555. bnx2_napi_enable(struct bnx2 *bp)
  556. {
  557. int i;
  558. for (i = 0; i < bp->irq_nvecs; i++)
  559. napi_enable(&bp->bnx2_napi[i].napi);
  560. }
  561. static void
  562. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  563. {
  564. if (stop_cnic)
  565. bnx2_cnic_stop(bp);
  566. if (netif_running(bp->dev)) {
  567. bnx2_napi_disable(bp);
  568. netif_tx_disable(bp->dev);
  569. }
  570. bnx2_disable_int_sync(bp);
  571. netif_carrier_off(bp->dev); /* prevent tx timeout */
  572. }
  573. static void
  574. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  575. {
  576. if (atomic_dec_and_test(&bp->intr_sem)) {
  577. if (netif_running(bp->dev)) {
  578. netif_tx_wake_all_queues(bp->dev);
  579. spin_lock_bh(&bp->phy_lock);
  580. if (bp->link_up)
  581. netif_carrier_on(bp->dev);
  582. spin_unlock_bh(&bp->phy_lock);
  583. bnx2_napi_enable(bp);
  584. bnx2_enable_int(bp);
  585. if (start_cnic)
  586. bnx2_cnic_start(bp);
  587. }
  588. }
  589. }
  590. static void
  591. bnx2_free_tx_mem(struct bnx2 *bp)
  592. {
  593. int i;
  594. for (i = 0; i < bp->num_tx_rings; i++) {
  595. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  596. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  597. if (txr->tx_desc_ring) {
  598. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  599. txr->tx_desc_ring,
  600. txr->tx_desc_mapping);
  601. txr->tx_desc_ring = NULL;
  602. }
  603. kfree(txr->tx_buf_ring);
  604. txr->tx_buf_ring = NULL;
  605. }
  606. }
  607. static void
  608. bnx2_free_rx_mem(struct bnx2 *bp)
  609. {
  610. int i;
  611. for (i = 0; i < bp->num_rx_rings; i++) {
  612. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  613. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  614. int j;
  615. for (j = 0; j < bp->rx_max_ring; j++) {
  616. if (rxr->rx_desc_ring[j])
  617. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  618. rxr->rx_desc_ring[j],
  619. rxr->rx_desc_mapping[j]);
  620. rxr->rx_desc_ring[j] = NULL;
  621. }
  622. vfree(rxr->rx_buf_ring);
  623. rxr->rx_buf_ring = NULL;
  624. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  625. if (rxr->rx_pg_desc_ring[j])
  626. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  627. rxr->rx_pg_desc_ring[j],
  628. rxr->rx_pg_desc_mapping[j]);
  629. rxr->rx_pg_desc_ring[j] = NULL;
  630. }
  631. vfree(rxr->rx_pg_ring);
  632. rxr->rx_pg_ring = NULL;
  633. }
  634. }
  635. static int
  636. bnx2_alloc_tx_mem(struct bnx2 *bp)
  637. {
  638. int i;
  639. for (i = 0; i < bp->num_tx_rings; i++) {
  640. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  641. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  642. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  643. if (txr->tx_buf_ring == NULL)
  644. return -ENOMEM;
  645. txr->tx_desc_ring =
  646. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  647. &txr->tx_desc_mapping, GFP_KERNEL);
  648. if (txr->tx_desc_ring == NULL)
  649. return -ENOMEM;
  650. }
  651. return 0;
  652. }
  653. static int
  654. bnx2_alloc_rx_mem(struct bnx2 *bp)
  655. {
  656. int i;
  657. for (i = 0; i < bp->num_rx_rings; i++) {
  658. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  659. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  660. int j;
  661. rxr->rx_buf_ring =
  662. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  663. if (rxr->rx_buf_ring == NULL)
  664. return -ENOMEM;
  665. for (j = 0; j < bp->rx_max_ring; j++) {
  666. rxr->rx_desc_ring[j] =
  667. dma_alloc_coherent(&bp->pdev->dev,
  668. RXBD_RING_SIZE,
  669. &rxr->rx_desc_mapping[j],
  670. GFP_KERNEL);
  671. if (rxr->rx_desc_ring[j] == NULL)
  672. return -ENOMEM;
  673. }
  674. if (bp->rx_pg_ring_size) {
  675. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  676. bp->rx_max_pg_ring);
  677. if (rxr->rx_pg_ring == NULL)
  678. return -ENOMEM;
  679. }
  680. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  681. rxr->rx_pg_desc_ring[j] =
  682. dma_alloc_coherent(&bp->pdev->dev,
  683. RXBD_RING_SIZE,
  684. &rxr->rx_pg_desc_mapping[j],
  685. GFP_KERNEL);
  686. if (rxr->rx_pg_desc_ring[j] == NULL)
  687. return -ENOMEM;
  688. }
  689. }
  690. return 0;
  691. }
  692. static void
  693. bnx2_free_mem(struct bnx2 *bp)
  694. {
  695. int i;
  696. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  697. bnx2_free_tx_mem(bp);
  698. bnx2_free_rx_mem(bp);
  699. for (i = 0; i < bp->ctx_pages; i++) {
  700. if (bp->ctx_blk[i]) {
  701. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  702. bp->ctx_blk[i],
  703. bp->ctx_blk_mapping[i]);
  704. bp->ctx_blk[i] = NULL;
  705. }
  706. }
  707. if (bnapi->status_blk.msi) {
  708. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  709. bnapi->status_blk.msi,
  710. bp->status_blk_mapping);
  711. bnapi->status_blk.msi = NULL;
  712. bp->stats_blk = NULL;
  713. }
  714. }
  715. static int
  716. bnx2_alloc_mem(struct bnx2 *bp)
  717. {
  718. int i, status_blk_size, err;
  719. struct bnx2_napi *bnapi;
  720. void *status_blk;
  721. /* Combine status and statistics blocks into one allocation. */
  722. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  723. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  724. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  725. BNX2_SBLK_MSIX_ALIGN_SIZE);
  726. bp->status_stats_size = status_blk_size +
  727. sizeof(struct statistics_block);
  728. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  729. &bp->status_blk_mapping, GFP_KERNEL);
  730. if (status_blk == NULL)
  731. goto alloc_mem_err;
  732. memset(status_blk, 0, bp->status_stats_size);
  733. bnapi = &bp->bnx2_napi[0];
  734. bnapi->status_blk.msi = status_blk;
  735. bnapi->hw_tx_cons_ptr =
  736. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  737. bnapi->hw_rx_cons_ptr =
  738. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  739. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  740. for (i = 1; i < bp->irq_nvecs; i++) {
  741. struct status_block_msix *sblk;
  742. bnapi = &bp->bnx2_napi[i];
  743. sblk = (void *) (status_blk +
  744. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  745. bnapi->status_blk.msix = sblk;
  746. bnapi->hw_tx_cons_ptr =
  747. &sblk->status_tx_quick_consumer_index;
  748. bnapi->hw_rx_cons_ptr =
  749. &sblk->status_rx_quick_consumer_index;
  750. bnapi->int_num = i << 24;
  751. }
  752. }
  753. bp->stats_blk = status_blk + status_blk_size;
  754. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  755. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  756. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  757. if (bp->ctx_pages == 0)
  758. bp->ctx_pages = 1;
  759. for (i = 0; i < bp->ctx_pages; i++) {
  760. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  761. BCM_PAGE_SIZE,
  762. &bp->ctx_blk_mapping[i],
  763. GFP_KERNEL);
  764. if (bp->ctx_blk[i] == NULL)
  765. goto alloc_mem_err;
  766. }
  767. }
  768. err = bnx2_alloc_rx_mem(bp);
  769. if (err)
  770. goto alloc_mem_err;
  771. err = bnx2_alloc_tx_mem(bp);
  772. if (err)
  773. goto alloc_mem_err;
  774. return 0;
  775. alloc_mem_err:
  776. bnx2_free_mem(bp);
  777. return -ENOMEM;
  778. }
  779. static void
  780. bnx2_report_fw_link(struct bnx2 *bp)
  781. {
  782. u32 fw_link_status = 0;
  783. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  784. return;
  785. if (bp->link_up) {
  786. u32 bmsr;
  787. switch (bp->line_speed) {
  788. case SPEED_10:
  789. if (bp->duplex == DUPLEX_HALF)
  790. fw_link_status = BNX2_LINK_STATUS_10HALF;
  791. else
  792. fw_link_status = BNX2_LINK_STATUS_10FULL;
  793. break;
  794. case SPEED_100:
  795. if (bp->duplex == DUPLEX_HALF)
  796. fw_link_status = BNX2_LINK_STATUS_100HALF;
  797. else
  798. fw_link_status = BNX2_LINK_STATUS_100FULL;
  799. break;
  800. case SPEED_1000:
  801. if (bp->duplex == DUPLEX_HALF)
  802. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  803. else
  804. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  805. break;
  806. case SPEED_2500:
  807. if (bp->duplex == DUPLEX_HALF)
  808. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  809. else
  810. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  811. break;
  812. }
  813. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  814. if (bp->autoneg) {
  815. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  816. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  817. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  818. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  819. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  820. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  821. else
  822. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  823. }
  824. }
  825. else
  826. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  827. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  828. }
  829. static char *
  830. bnx2_xceiver_str(struct bnx2 *bp)
  831. {
  832. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  833. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  834. "Copper");
  835. }
  836. static void
  837. bnx2_report_link(struct bnx2 *bp)
  838. {
  839. if (bp->link_up) {
  840. netif_carrier_on(bp->dev);
  841. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  842. bnx2_xceiver_str(bp),
  843. bp->line_speed,
  844. bp->duplex == DUPLEX_FULL ? "full" : "half");
  845. if (bp->flow_ctrl) {
  846. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  847. pr_cont(", receive ");
  848. if (bp->flow_ctrl & FLOW_CTRL_TX)
  849. pr_cont("& transmit ");
  850. }
  851. else {
  852. pr_cont(", transmit ");
  853. }
  854. pr_cont("flow control ON");
  855. }
  856. pr_cont("\n");
  857. } else {
  858. netif_carrier_off(bp->dev);
  859. netdev_err(bp->dev, "NIC %s Link is Down\n",
  860. bnx2_xceiver_str(bp));
  861. }
  862. bnx2_report_fw_link(bp);
  863. }
  864. static void
  865. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  866. {
  867. u32 local_adv, remote_adv;
  868. bp->flow_ctrl = 0;
  869. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  870. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  871. if (bp->duplex == DUPLEX_FULL) {
  872. bp->flow_ctrl = bp->req_flow_ctrl;
  873. }
  874. return;
  875. }
  876. if (bp->duplex != DUPLEX_FULL) {
  877. return;
  878. }
  879. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  880. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  881. u32 val;
  882. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  883. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  884. bp->flow_ctrl |= FLOW_CTRL_TX;
  885. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  886. bp->flow_ctrl |= FLOW_CTRL_RX;
  887. return;
  888. }
  889. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  890. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  891. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  892. u32 new_local_adv = 0;
  893. u32 new_remote_adv = 0;
  894. if (local_adv & ADVERTISE_1000XPAUSE)
  895. new_local_adv |= ADVERTISE_PAUSE_CAP;
  896. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  897. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  898. if (remote_adv & ADVERTISE_1000XPAUSE)
  899. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  900. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  901. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  902. local_adv = new_local_adv;
  903. remote_adv = new_remote_adv;
  904. }
  905. /* See Table 28B-3 of 802.3ab-1999 spec. */
  906. if (local_adv & ADVERTISE_PAUSE_CAP) {
  907. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  908. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  909. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  910. }
  911. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  912. bp->flow_ctrl = FLOW_CTRL_RX;
  913. }
  914. }
  915. else {
  916. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  917. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  918. }
  919. }
  920. }
  921. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  922. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  923. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  924. bp->flow_ctrl = FLOW_CTRL_TX;
  925. }
  926. }
  927. }
  928. static int
  929. bnx2_5709s_linkup(struct bnx2 *bp)
  930. {
  931. u32 val, speed;
  932. bp->link_up = 1;
  933. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  934. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  935. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  936. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  937. bp->line_speed = bp->req_line_speed;
  938. bp->duplex = bp->req_duplex;
  939. return 0;
  940. }
  941. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  942. switch (speed) {
  943. case MII_BNX2_GP_TOP_AN_SPEED_10:
  944. bp->line_speed = SPEED_10;
  945. break;
  946. case MII_BNX2_GP_TOP_AN_SPEED_100:
  947. bp->line_speed = SPEED_100;
  948. break;
  949. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  950. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  951. bp->line_speed = SPEED_1000;
  952. break;
  953. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  954. bp->line_speed = SPEED_2500;
  955. break;
  956. }
  957. if (val & MII_BNX2_GP_TOP_AN_FD)
  958. bp->duplex = DUPLEX_FULL;
  959. else
  960. bp->duplex = DUPLEX_HALF;
  961. return 0;
  962. }
  963. static int
  964. bnx2_5708s_linkup(struct bnx2 *bp)
  965. {
  966. u32 val;
  967. bp->link_up = 1;
  968. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  969. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  970. case BCM5708S_1000X_STAT1_SPEED_10:
  971. bp->line_speed = SPEED_10;
  972. break;
  973. case BCM5708S_1000X_STAT1_SPEED_100:
  974. bp->line_speed = SPEED_100;
  975. break;
  976. case BCM5708S_1000X_STAT1_SPEED_1G:
  977. bp->line_speed = SPEED_1000;
  978. break;
  979. case BCM5708S_1000X_STAT1_SPEED_2G5:
  980. bp->line_speed = SPEED_2500;
  981. break;
  982. }
  983. if (val & BCM5708S_1000X_STAT1_FD)
  984. bp->duplex = DUPLEX_FULL;
  985. else
  986. bp->duplex = DUPLEX_HALF;
  987. return 0;
  988. }
  989. static int
  990. bnx2_5706s_linkup(struct bnx2 *bp)
  991. {
  992. u32 bmcr, local_adv, remote_adv, common;
  993. bp->link_up = 1;
  994. bp->line_speed = SPEED_1000;
  995. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  996. if (bmcr & BMCR_FULLDPLX) {
  997. bp->duplex = DUPLEX_FULL;
  998. }
  999. else {
  1000. bp->duplex = DUPLEX_HALF;
  1001. }
  1002. if (!(bmcr & BMCR_ANENABLE)) {
  1003. return 0;
  1004. }
  1005. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1006. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1007. common = local_adv & remote_adv;
  1008. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1009. if (common & ADVERTISE_1000XFULL) {
  1010. bp->duplex = DUPLEX_FULL;
  1011. }
  1012. else {
  1013. bp->duplex = DUPLEX_HALF;
  1014. }
  1015. }
  1016. return 0;
  1017. }
  1018. static int
  1019. bnx2_copper_linkup(struct bnx2 *bp)
  1020. {
  1021. u32 bmcr;
  1022. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1023. if (bmcr & BMCR_ANENABLE) {
  1024. u32 local_adv, remote_adv, common;
  1025. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1026. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1027. common = local_adv & (remote_adv >> 2);
  1028. if (common & ADVERTISE_1000FULL) {
  1029. bp->line_speed = SPEED_1000;
  1030. bp->duplex = DUPLEX_FULL;
  1031. }
  1032. else if (common & ADVERTISE_1000HALF) {
  1033. bp->line_speed = SPEED_1000;
  1034. bp->duplex = DUPLEX_HALF;
  1035. }
  1036. else {
  1037. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1038. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1039. common = local_adv & remote_adv;
  1040. if (common & ADVERTISE_100FULL) {
  1041. bp->line_speed = SPEED_100;
  1042. bp->duplex = DUPLEX_FULL;
  1043. }
  1044. else if (common & ADVERTISE_100HALF) {
  1045. bp->line_speed = SPEED_100;
  1046. bp->duplex = DUPLEX_HALF;
  1047. }
  1048. else if (common & ADVERTISE_10FULL) {
  1049. bp->line_speed = SPEED_10;
  1050. bp->duplex = DUPLEX_FULL;
  1051. }
  1052. else if (common & ADVERTISE_10HALF) {
  1053. bp->line_speed = SPEED_10;
  1054. bp->duplex = DUPLEX_HALF;
  1055. }
  1056. else {
  1057. bp->line_speed = 0;
  1058. bp->link_up = 0;
  1059. }
  1060. }
  1061. }
  1062. else {
  1063. if (bmcr & BMCR_SPEED100) {
  1064. bp->line_speed = SPEED_100;
  1065. }
  1066. else {
  1067. bp->line_speed = SPEED_10;
  1068. }
  1069. if (bmcr & BMCR_FULLDPLX) {
  1070. bp->duplex = DUPLEX_FULL;
  1071. }
  1072. else {
  1073. bp->duplex = DUPLEX_HALF;
  1074. }
  1075. }
  1076. return 0;
  1077. }
  1078. static void
  1079. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1080. {
  1081. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1082. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1083. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1084. val |= 0x02 << 8;
  1085. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1086. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1087. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1088. }
  1089. static void
  1090. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1091. {
  1092. int i;
  1093. u32 cid;
  1094. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1095. if (i == 1)
  1096. cid = RX_RSS_CID;
  1097. bnx2_init_rx_context(bp, cid);
  1098. }
  1099. }
  1100. static void
  1101. bnx2_set_mac_link(struct bnx2 *bp)
  1102. {
  1103. u32 val;
  1104. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1105. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1106. (bp->duplex == DUPLEX_HALF)) {
  1107. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1108. }
  1109. /* Configure the EMAC mode register. */
  1110. val = REG_RD(bp, BNX2_EMAC_MODE);
  1111. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1112. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1113. BNX2_EMAC_MODE_25G_MODE);
  1114. if (bp->link_up) {
  1115. switch (bp->line_speed) {
  1116. case SPEED_10:
  1117. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1118. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1119. break;
  1120. }
  1121. /* fall through */
  1122. case SPEED_100:
  1123. val |= BNX2_EMAC_MODE_PORT_MII;
  1124. break;
  1125. case SPEED_2500:
  1126. val |= BNX2_EMAC_MODE_25G_MODE;
  1127. /* fall through */
  1128. case SPEED_1000:
  1129. val |= BNX2_EMAC_MODE_PORT_GMII;
  1130. break;
  1131. }
  1132. }
  1133. else {
  1134. val |= BNX2_EMAC_MODE_PORT_GMII;
  1135. }
  1136. /* Set the MAC to operate in the appropriate duplex mode. */
  1137. if (bp->duplex == DUPLEX_HALF)
  1138. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1139. REG_WR(bp, BNX2_EMAC_MODE, val);
  1140. /* Enable/disable rx PAUSE. */
  1141. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1142. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1143. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1144. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1145. /* Enable/disable tx PAUSE. */
  1146. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1147. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1148. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1149. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1150. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1151. /* Acknowledge the interrupt. */
  1152. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1153. bnx2_init_all_rx_contexts(bp);
  1154. }
  1155. static void
  1156. bnx2_enable_bmsr1(struct bnx2 *bp)
  1157. {
  1158. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1159. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1160. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1161. MII_BNX2_BLK_ADDR_GP_STATUS);
  1162. }
  1163. static void
  1164. bnx2_disable_bmsr1(struct bnx2 *bp)
  1165. {
  1166. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1167. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1168. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1169. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1170. }
  1171. static int
  1172. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1173. {
  1174. u32 up1;
  1175. int ret = 1;
  1176. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1177. return 0;
  1178. if (bp->autoneg & AUTONEG_SPEED)
  1179. bp->advertising |= ADVERTISED_2500baseX_Full;
  1180. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1181. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1182. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1183. if (!(up1 & BCM5708S_UP1_2G5)) {
  1184. up1 |= BCM5708S_UP1_2G5;
  1185. bnx2_write_phy(bp, bp->mii_up1, up1);
  1186. ret = 0;
  1187. }
  1188. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1189. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1190. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1191. return ret;
  1192. }
  1193. static int
  1194. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1195. {
  1196. u32 up1;
  1197. int ret = 0;
  1198. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1199. return 0;
  1200. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1201. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1202. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1203. if (up1 & BCM5708S_UP1_2G5) {
  1204. up1 &= ~BCM5708S_UP1_2G5;
  1205. bnx2_write_phy(bp, bp->mii_up1, up1);
  1206. ret = 1;
  1207. }
  1208. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1209. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1210. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1211. return ret;
  1212. }
  1213. static void
  1214. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1215. {
  1216. u32 uninitialized_var(bmcr);
  1217. int err;
  1218. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1219. return;
  1220. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1221. u32 val;
  1222. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1223. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1224. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1225. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1226. val |= MII_BNX2_SD_MISC1_FORCE |
  1227. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1228. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1229. }
  1230. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1231. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1232. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1233. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1234. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1235. if (!err)
  1236. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1237. } else {
  1238. return;
  1239. }
  1240. if (err)
  1241. return;
  1242. if (bp->autoneg & AUTONEG_SPEED) {
  1243. bmcr &= ~BMCR_ANENABLE;
  1244. if (bp->req_duplex == DUPLEX_FULL)
  1245. bmcr |= BMCR_FULLDPLX;
  1246. }
  1247. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1248. }
  1249. static void
  1250. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1251. {
  1252. u32 uninitialized_var(bmcr);
  1253. int err;
  1254. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1255. return;
  1256. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1257. u32 val;
  1258. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1259. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1260. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1261. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1262. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1263. }
  1264. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1265. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1266. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1267. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1268. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1269. if (!err)
  1270. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1271. } else {
  1272. return;
  1273. }
  1274. if (err)
  1275. return;
  1276. if (bp->autoneg & AUTONEG_SPEED)
  1277. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1278. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1279. }
  1280. static void
  1281. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1282. {
  1283. u32 val;
  1284. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1285. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1286. if (start)
  1287. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1288. else
  1289. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1290. }
  1291. static int
  1292. bnx2_set_link(struct bnx2 *bp)
  1293. {
  1294. u32 bmsr;
  1295. u8 link_up;
  1296. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1297. bp->link_up = 1;
  1298. return 0;
  1299. }
  1300. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1301. return 0;
  1302. link_up = bp->link_up;
  1303. bnx2_enable_bmsr1(bp);
  1304. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1305. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1306. bnx2_disable_bmsr1(bp);
  1307. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1308. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1309. u32 val, an_dbg;
  1310. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1311. bnx2_5706s_force_link_dn(bp, 0);
  1312. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1313. }
  1314. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1315. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1316. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1317. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1318. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1319. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1320. bmsr |= BMSR_LSTATUS;
  1321. else
  1322. bmsr &= ~BMSR_LSTATUS;
  1323. }
  1324. if (bmsr & BMSR_LSTATUS) {
  1325. bp->link_up = 1;
  1326. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1327. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1328. bnx2_5706s_linkup(bp);
  1329. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1330. bnx2_5708s_linkup(bp);
  1331. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1332. bnx2_5709s_linkup(bp);
  1333. }
  1334. else {
  1335. bnx2_copper_linkup(bp);
  1336. }
  1337. bnx2_resolve_flow_ctrl(bp);
  1338. }
  1339. else {
  1340. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1341. (bp->autoneg & AUTONEG_SPEED))
  1342. bnx2_disable_forced_2g5(bp);
  1343. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1344. u32 bmcr;
  1345. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1346. bmcr |= BMCR_ANENABLE;
  1347. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1348. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1349. }
  1350. bp->link_up = 0;
  1351. }
  1352. if (bp->link_up != link_up) {
  1353. bnx2_report_link(bp);
  1354. }
  1355. bnx2_set_mac_link(bp);
  1356. return 0;
  1357. }
  1358. static int
  1359. bnx2_reset_phy(struct bnx2 *bp)
  1360. {
  1361. int i;
  1362. u32 reg;
  1363. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1364. #define PHY_RESET_MAX_WAIT 100
  1365. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1366. udelay(10);
  1367. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1368. if (!(reg & BMCR_RESET)) {
  1369. udelay(20);
  1370. break;
  1371. }
  1372. }
  1373. if (i == PHY_RESET_MAX_WAIT) {
  1374. return -EBUSY;
  1375. }
  1376. return 0;
  1377. }
  1378. static u32
  1379. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1380. {
  1381. u32 adv = 0;
  1382. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1383. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1384. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1385. adv = ADVERTISE_1000XPAUSE;
  1386. }
  1387. else {
  1388. adv = ADVERTISE_PAUSE_CAP;
  1389. }
  1390. }
  1391. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1392. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1393. adv = ADVERTISE_1000XPSE_ASYM;
  1394. }
  1395. else {
  1396. adv = ADVERTISE_PAUSE_ASYM;
  1397. }
  1398. }
  1399. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1400. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1401. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1402. }
  1403. else {
  1404. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1405. }
  1406. }
  1407. return adv;
  1408. }
  1409. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1410. static int
  1411. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1412. __releases(&bp->phy_lock)
  1413. __acquires(&bp->phy_lock)
  1414. {
  1415. u32 speed_arg = 0, pause_adv;
  1416. pause_adv = bnx2_phy_get_pause_adv(bp);
  1417. if (bp->autoneg & AUTONEG_SPEED) {
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1419. if (bp->advertising & ADVERTISED_10baseT_Half)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1421. if (bp->advertising & ADVERTISED_10baseT_Full)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1423. if (bp->advertising & ADVERTISED_100baseT_Half)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1425. if (bp->advertising & ADVERTISED_100baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1427. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1429. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1431. } else {
  1432. if (bp->req_line_speed == SPEED_2500)
  1433. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1434. else if (bp->req_line_speed == SPEED_1000)
  1435. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1436. else if (bp->req_line_speed == SPEED_100) {
  1437. if (bp->req_duplex == DUPLEX_FULL)
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1439. else
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1441. } else if (bp->req_line_speed == SPEED_10) {
  1442. if (bp->req_duplex == DUPLEX_FULL)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1444. else
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1446. }
  1447. }
  1448. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1450. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1452. if (port == PORT_TP)
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1454. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1455. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1456. spin_unlock_bh(&bp->phy_lock);
  1457. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1458. spin_lock_bh(&bp->phy_lock);
  1459. return 0;
  1460. }
  1461. static int
  1462. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1463. __releases(&bp->phy_lock)
  1464. __acquires(&bp->phy_lock)
  1465. {
  1466. u32 adv, bmcr;
  1467. u32 new_adv = 0;
  1468. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1469. return bnx2_setup_remote_phy(bp, port);
  1470. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1471. u32 new_bmcr;
  1472. int force_link_down = 0;
  1473. if (bp->req_line_speed == SPEED_2500) {
  1474. if (!bnx2_test_and_enable_2g5(bp))
  1475. force_link_down = 1;
  1476. } else if (bp->req_line_speed == SPEED_1000) {
  1477. if (bnx2_test_and_disable_2g5(bp))
  1478. force_link_down = 1;
  1479. }
  1480. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1481. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1482. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1483. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1484. new_bmcr |= BMCR_SPEED1000;
  1485. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1486. if (bp->req_line_speed == SPEED_2500)
  1487. bnx2_enable_forced_2g5(bp);
  1488. else if (bp->req_line_speed == SPEED_1000) {
  1489. bnx2_disable_forced_2g5(bp);
  1490. new_bmcr &= ~0x2000;
  1491. }
  1492. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1493. if (bp->req_line_speed == SPEED_2500)
  1494. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1495. else
  1496. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1497. }
  1498. if (bp->req_duplex == DUPLEX_FULL) {
  1499. adv |= ADVERTISE_1000XFULL;
  1500. new_bmcr |= BMCR_FULLDPLX;
  1501. }
  1502. else {
  1503. adv |= ADVERTISE_1000XHALF;
  1504. new_bmcr &= ~BMCR_FULLDPLX;
  1505. }
  1506. if ((new_bmcr != bmcr) || (force_link_down)) {
  1507. /* Force a link down visible on the other side */
  1508. if (bp->link_up) {
  1509. bnx2_write_phy(bp, bp->mii_adv, adv &
  1510. ~(ADVERTISE_1000XFULL |
  1511. ADVERTISE_1000XHALF));
  1512. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1513. BMCR_ANRESTART | BMCR_ANENABLE);
  1514. bp->link_up = 0;
  1515. netif_carrier_off(bp->dev);
  1516. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1517. bnx2_report_link(bp);
  1518. }
  1519. bnx2_write_phy(bp, bp->mii_adv, adv);
  1520. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1521. } else {
  1522. bnx2_resolve_flow_ctrl(bp);
  1523. bnx2_set_mac_link(bp);
  1524. }
  1525. return 0;
  1526. }
  1527. bnx2_test_and_enable_2g5(bp);
  1528. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1529. new_adv |= ADVERTISE_1000XFULL;
  1530. new_adv |= bnx2_phy_get_pause_adv(bp);
  1531. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1532. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1533. bp->serdes_an_pending = 0;
  1534. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1535. /* Force a link down visible on the other side */
  1536. if (bp->link_up) {
  1537. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1538. spin_unlock_bh(&bp->phy_lock);
  1539. msleep(20);
  1540. spin_lock_bh(&bp->phy_lock);
  1541. }
  1542. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1543. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1544. BMCR_ANENABLE);
  1545. /* Speed up link-up time when the link partner
  1546. * does not autonegotiate which is very common
  1547. * in blade servers. Some blade servers use
  1548. * IPMI for kerboard input and it's important
  1549. * to minimize link disruptions. Autoneg. involves
  1550. * exchanging base pages plus 3 next pages and
  1551. * normally completes in about 120 msec.
  1552. */
  1553. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1554. bp->serdes_an_pending = 1;
  1555. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1556. } else {
  1557. bnx2_resolve_flow_ctrl(bp);
  1558. bnx2_set_mac_link(bp);
  1559. }
  1560. return 0;
  1561. }
  1562. #define ETHTOOL_ALL_FIBRE_SPEED \
  1563. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1564. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1565. (ADVERTISED_1000baseT_Full)
  1566. #define ETHTOOL_ALL_COPPER_SPEED \
  1567. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1568. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1569. ADVERTISED_1000baseT_Full)
  1570. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1571. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1572. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1573. static void
  1574. bnx2_set_default_remote_link(struct bnx2 *bp)
  1575. {
  1576. u32 link;
  1577. if (bp->phy_port == PORT_TP)
  1578. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1579. else
  1580. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1581. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1582. bp->req_line_speed = 0;
  1583. bp->autoneg |= AUTONEG_SPEED;
  1584. bp->advertising = ADVERTISED_Autoneg;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1586. bp->advertising |= ADVERTISED_10baseT_Half;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1588. bp->advertising |= ADVERTISED_10baseT_Full;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1590. bp->advertising |= ADVERTISED_100baseT_Half;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1592. bp->advertising |= ADVERTISED_100baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1594. bp->advertising |= ADVERTISED_1000baseT_Full;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1596. bp->advertising |= ADVERTISED_2500baseX_Full;
  1597. } else {
  1598. bp->autoneg = 0;
  1599. bp->advertising = 0;
  1600. bp->req_duplex = DUPLEX_FULL;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1602. bp->req_line_speed = SPEED_10;
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1604. bp->req_duplex = DUPLEX_HALF;
  1605. }
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1607. bp->req_line_speed = SPEED_100;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1609. bp->req_duplex = DUPLEX_HALF;
  1610. }
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1612. bp->req_line_speed = SPEED_1000;
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1614. bp->req_line_speed = SPEED_2500;
  1615. }
  1616. }
  1617. static void
  1618. bnx2_set_default_link(struct bnx2 *bp)
  1619. {
  1620. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1621. bnx2_set_default_remote_link(bp);
  1622. return;
  1623. }
  1624. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1625. bp->req_line_speed = 0;
  1626. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1627. u32 reg;
  1628. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1629. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1630. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1631. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1632. bp->autoneg = 0;
  1633. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1634. bp->req_duplex = DUPLEX_FULL;
  1635. }
  1636. } else
  1637. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1638. }
  1639. static void
  1640. bnx2_send_heart_beat(struct bnx2 *bp)
  1641. {
  1642. u32 msg;
  1643. u32 addr;
  1644. spin_lock(&bp->indirect_lock);
  1645. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1646. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1647. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1648. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1649. spin_unlock(&bp->indirect_lock);
  1650. }
  1651. static void
  1652. bnx2_remote_phy_event(struct bnx2 *bp)
  1653. {
  1654. u32 msg;
  1655. u8 link_up = bp->link_up;
  1656. u8 old_port;
  1657. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1658. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1659. bnx2_send_heart_beat(bp);
  1660. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1661. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1662. bp->link_up = 0;
  1663. else {
  1664. u32 speed;
  1665. bp->link_up = 1;
  1666. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1667. bp->duplex = DUPLEX_FULL;
  1668. switch (speed) {
  1669. case BNX2_LINK_STATUS_10HALF:
  1670. bp->duplex = DUPLEX_HALF;
  1671. case BNX2_LINK_STATUS_10FULL:
  1672. bp->line_speed = SPEED_10;
  1673. break;
  1674. case BNX2_LINK_STATUS_100HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. case BNX2_LINK_STATUS_100BASE_T4:
  1677. case BNX2_LINK_STATUS_100FULL:
  1678. bp->line_speed = SPEED_100;
  1679. break;
  1680. case BNX2_LINK_STATUS_1000HALF:
  1681. bp->duplex = DUPLEX_HALF;
  1682. case BNX2_LINK_STATUS_1000FULL:
  1683. bp->line_speed = SPEED_1000;
  1684. break;
  1685. case BNX2_LINK_STATUS_2500HALF:
  1686. bp->duplex = DUPLEX_HALF;
  1687. case BNX2_LINK_STATUS_2500FULL:
  1688. bp->line_speed = SPEED_2500;
  1689. break;
  1690. default:
  1691. bp->line_speed = 0;
  1692. break;
  1693. }
  1694. bp->flow_ctrl = 0;
  1695. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1696. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1697. if (bp->duplex == DUPLEX_FULL)
  1698. bp->flow_ctrl = bp->req_flow_ctrl;
  1699. } else {
  1700. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1701. bp->flow_ctrl |= FLOW_CTRL_TX;
  1702. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1703. bp->flow_ctrl |= FLOW_CTRL_RX;
  1704. }
  1705. old_port = bp->phy_port;
  1706. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1707. bp->phy_port = PORT_FIBRE;
  1708. else
  1709. bp->phy_port = PORT_TP;
  1710. if (old_port != bp->phy_port)
  1711. bnx2_set_default_link(bp);
  1712. }
  1713. if (bp->link_up != link_up)
  1714. bnx2_report_link(bp);
  1715. bnx2_set_mac_link(bp);
  1716. }
  1717. static int
  1718. bnx2_set_remote_link(struct bnx2 *bp)
  1719. {
  1720. u32 evt_code;
  1721. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1722. switch (evt_code) {
  1723. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1724. bnx2_remote_phy_event(bp);
  1725. break;
  1726. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1727. default:
  1728. bnx2_send_heart_beat(bp);
  1729. break;
  1730. }
  1731. return 0;
  1732. }
  1733. static int
  1734. bnx2_setup_copper_phy(struct bnx2 *bp)
  1735. __releases(&bp->phy_lock)
  1736. __acquires(&bp->phy_lock)
  1737. {
  1738. u32 bmcr;
  1739. u32 new_bmcr;
  1740. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1741. if (bp->autoneg & AUTONEG_SPEED) {
  1742. u32 adv_reg, adv1000_reg;
  1743. u32 new_adv_reg = 0;
  1744. u32 new_adv1000_reg = 0;
  1745. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1746. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1747. ADVERTISE_PAUSE_ASYM);
  1748. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1749. adv1000_reg &= PHY_ALL_1000_SPEED;
  1750. if (bp->advertising & ADVERTISED_10baseT_Half)
  1751. new_adv_reg |= ADVERTISE_10HALF;
  1752. if (bp->advertising & ADVERTISED_10baseT_Full)
  1753. new_adv_reg |= ADVERTISE_10FULL;
  1754. if (bp->advertising & ADVERTISED_100baseT_Half)
  1755. new_adv_reg |= ADVERTISE_100HALF;
  1756. if (bp->advertising & ADVERTISED_100baseT_Full)
  1757. new_adv_reg |= ADVERTISE_100FULL;
  1758. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1759. new_adv1000_reg |= ADVERTISE_1000FULL;
  1760. new_adv_reg |= ADVERTISE_CSMA;
  1761. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1762. if ((adv1000_reg != new_adv1000_reg) ||
  1763. (adv_reg != new_adv_reg) ||
  1764. ((bmcr & BMCR_ANENABLE) == 0)) {
  1765. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1766. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1767. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1768. BMCR_ANENABLE);
  1769. }
  1770. else if (bp->link_up) {
  1771. /* Flow ctrl may have changed from auto to forced */
  1772. /* or vice-versa. */
  1773. bnx2_resolve_flow_ctrl(bp);
  1774. bnx2_set_mac_link(bp);
  1775. }
  1776. return 0;
  1777. }
  1778. new_bmcr = 0;
  1779. if (bp->req_line_speed == SPEED_100) {
  1780. new_bmcr |= BMCR_SPEED100;
  1781. }
  1782. if (bp->req_duplex == DUPLEX_FULL) {
  1783. new_bmcr |= BMCR_FULLDPLX;
  1784. }
  1785. if (new_bmcr != bmcr) {
  1786. u32 bmsr;
  1787. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1788. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1789. if (bmsr & BMSR_LSTATUS) {
  1790. /* Force link down */
  1791. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1792. spin_unlock_bh(&bp->phy_lock);
  1793. msleep(50);
  1794. spin_lock_bh(&bp->phy_lock);
  1795. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1796. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1797. }
  1798. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1799. /* Normally, the new speed is setup after the link has
  1800. * gone down and up again. In some cases, link will not go
  1801. * down so we need to set up the new speed here.
  1802. */
  1803. if (bmsr & BMSR_LSTATUS) {
  1804. bp->line_speed = bp->req_line_speed;
  1805. bp->duplex = bp->req_duplex;
  1806. bnx2_resolve_flow_ctrl(bp);
  1807. bnx2_set_mac_link(bp);
  1808. }
  1809. } else {
  1810. bnx2_resolve_flow_ctrl(bp);
  1811. bnx2_set_mac_link(bp);
  1812. }
  1813. return 0;
  1814. }
  1815. static int
  1816. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1817. __releases(&bp->phy_lock)
  1818. __acquires(&bp->phy_lock)
  1819. {
  1820. if (bp->loopback == MAC_LOOPBACK)
  1821. return 0;
  1822. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1823. return bnx2_setup_serdes_phy(bp, port);
  1824. }
  1825. else {
  1826. return bnx2_setup_copper_phy(bp);
  1827. }
  1828. }
  1829. static int
  1830. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1831. {
  1832. u32 val;
  1833. bp->mii_bmcr = MII_BMCR + 0x10;
  1834. bp->mii_bmsr = MII_BMSR + 0x10;
  1835. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1836. bp->mii_adv = MII_ADVERTISE + 0x10;
  1837. bp->mii_lpa = MII_LPA + 0x10;
  1838. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1839. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1840. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1841. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1842. if (reset_phy)
  1843. bnx2_reset_phy(bp);
  1844. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1845. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1846. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1847. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1848. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1849. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1850. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1851. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1852. val |= BCM5708S_UP1_2G5;
  1853. else
  1854. val &= ~BCM5708S_UP1_2G5;
  1855. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1857. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1858. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1859. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1861. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1862. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1863. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1865. return 0;
  1866. }
  1867. static int
  1868. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1869. {
  1870. u32 val;
  1871. if (reset_phy)
  1872. bnx2_reset_phy(bp);
  1873. bp->mii_up1 = BCM5708S_UP1;
  1874. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1875. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1876. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1877. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1878. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1879. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1880. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1881. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1882. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1883. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1884. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1885. val |= BCM5708S_UP1_2G5;
  1886. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1887. }
  1888. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1889. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1890. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1891. /* increase tx signal amplitude */
  1892. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1893. BCM5708S_BLK_ADDR_TX_MISC);
  1894. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1895. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1896. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1897. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1898. }
  1899. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1900. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1901. if (val) {
  1902. u32 is_backplane;
  1903. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1904. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1905. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1906. BCM5708S_BLK_ADDR_TX_MISC);
  1907. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1908. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1909. BCM5708S_BLK_ADDR_DIG);
  1910. }
  1911. }
  1912. return 0;
  1913. }
  1914. static int
  1915. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1916. {
  1917. if (reset_phy)
  1918. bnx2_reset_phy(bp);
  1919. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1920. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1921. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1922. if (bp->dev->mtu > 1500) {
  1923. u32 val;
  1924. /* Set extended packet length bit */
  1925. bnx2_write_phy(bp, 0x18, 0x7);
  1926. bnx2_read_phy(bp, 0x18, &val);
  1927. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1928. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1929. bnx2_read_phy(bp, 0x1c, &val);
  1930. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1931. }
  1932. else {
  1933. u32 val;
  1934. bnx2_write_phy(bp, 0x18, 0x7);
  1935. bnx2_read_phy(bp, 0x18, &val);
  1936. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1937. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1938. bnx2_read_phy(bp, 0x1c, &val);
  1939. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1940. }
  1941. return 0;
  1942. }
  1943. static int
  1944. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1945. {
  1946. u32 val;
  1947. if (reset_phy)
  1948. bnx2_reset_phy(bp);
  1949. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1950. bnx2_write_phy(bp, 0x18, 0x0c00);
  1951. bnx2_write_phy(bp, 0x17, 0x000a);
  1952. bnx2_write_phy(bp, 0x15, 0x310b);
  1953. bnx2_write_phy(bp, 0x17, 0x201f);
  1954. bnx2_write_phy(bp, 0x15, 0x9506);
  1955. bnx2_write_phy(bp, 0x17, 0x401f);
  1956. bnx2_write_phy(bp, 0x15, 0x14e2);
  1957. bnx2_write_phy(bp, 0x18, 0x0400);
  1958. }
  1959. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1960. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1961. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1962. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1963. val &= ~(1 << 8);
  1964. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1965. }
  1966. if (bp->dev->mtu > 1500) {
  1967. /* Set extended packet length bit */
  1968. bnx2_write_phy(bp, 0x18, 0x7);
  1969. bnx2_read_phy(bp, 0x18, &val);
  1970. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1971. bnx2_read_phy(bp, 0x10, &val);
  1972. bnx2_write_phy(bp, 0x10, val | 0x1);
  1973. }
  1974. else {
  1975. bnx2_write_phy(bp, 0x18, 0x7);
  1976. bnx2_read_phy(bp, 0x18, &val);
  1977. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1978. bnx2_read_phy(bp, 0x10, &val);
  1979. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1980. }
  1981. /* ethernet@wirespeed */
  1982. bnx2_write_phy(bp, 0x18, 0x7007);
  1983. bnx2_read_phy(bp, 0x18, &val);
  1984. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1985. return 0;
  1986. }
  1987. static int
  1988. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1989. __releases(&bp->phy_lock)
  1990. __acquires(&bp->phy_lock)
  1991. {
  1992. u32 val;
  1993. int rc = 0;
  1994. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1995. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1996. bp->mii_bmcr = MII_BMCR;
  1997. bp->mii_bmsr = MII_BMSR;
  1998. bp->mii_bmsr1 = MII_BMSR;
  1999. bp->mii_adv = MII_ADVERTISE;
  2000. bp->mii_lpa = MII_LPA;
  2001. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2002. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2003. goto setup_phy;
  2004. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2005. bp->phy_id = val << 16;
  2006. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2007. bp->phy_id |= val & 0xffff;
  2008. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2009. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2010. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2011. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2012. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2013. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2014. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2015. }
  2016. else {
  2017. rc = bnx2_init_copper_phy(bp, reset_phy);
  2018. }
  2019. setup_phy:
  2020. if (!rc)
  2021. rc = bnx2_setup_phy(bp, bp->phy_port);
  2022. return rc;
  2023. }
  2024. static int
  2025. bnx2_set_mac_loopback(struct bnx2 *bp)
  2026. {
  2027. u32 mac_mode;
  2028. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2029. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2030. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2031. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2032. bp->link_up = 1;
  2033. return 0;
  2034. }
  2035. static int bnx2_test_link(struct bnx2 *);
  2036. static int
  2037. bnx2_set_phy_loopback(struct bnx2 *bp)
  2038. {
  2039. u32 mac_mode;
  2040. int rc, i;
  2041. spin_lock_bh(&bp->phy_lock);
  2042. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2043. BMCR_SPEED1000);
  2044. spin_unlock_bh(&bp->phy_lock);
  2045. if (rc)
  2046. return rc;
  2047. for (i = 0; i < 10; i++) {
  2048. if (bnx2_test_link(bp) == 0)
  2049. break;
  2050. msleep(100);
  2051. }
  2052. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2053. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2054. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2055. BNX2_EMAC_MODE_25G_MODE);
  2056. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2057. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2058. bp->link_up = 1;
  2059. return 0;
  2060. }
  2061. static int
  2062. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2063. {
  2064. int i;
  2065. u32 val;
  2066. bp->fw_wr_seq++;
  2067. msg_data |= bp->fw_wr_seq;
  2068. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2069. if (!ack)
  2070. return 0;
  2071. /* wait for an acknowledgement. */
  2072. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2073. msleep(10);
  2074. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2075. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2076. break;
  2077. }
  2078. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2079. return 0;
  2080. /* If we timed out, inform the firmware that this is the case. */
  2081. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2082. if (!silent)
  2083. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2084. msg_data &= ~BNX2_DRV_MSG_CODE;
  2085. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2086. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2087. return -EBUSY;
  2088. }
  2089. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2090. return -EIO;
  2091. return 0;
  2092. }
  2093. static int
  2094. bnx2_init_5709_context(struct bnx2 *bp)
  2095. {
  2096. int i, ret = 0;
  2097. u32 val;
  2098. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2099. val |= (BCM_PAGE_BITS - 8) << 16;
  2100. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2101. for (i = 0; i < 10; i++) {
  2102. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2103. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2104. break;
  2105. udelay(2);
  2106. }
  2107. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2108. return -EBUSY;
  2109. for (i = 0; i < bp->ctx_pages; i++) {
  2110. int j;
  2111. if (bp->ctx_blk[i])
  2112. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2113. else
  2114. return -ENOMEM;
  2115. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2116. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2117. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2118. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2119. (u64) bp->ctx_blk_mapping[i] >> 32);
  2120. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2121. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2122. for (j = 0; j < 10; j++) {
  2123. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2124. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2125. break;
  2126. udelay(5);
  2127. }
  2128. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2129. ret = -EBUSY;
  2130. break;
  2131. }
  2132. }
  2133. return ret;
  2134. }
  2135. static void
  2136. bnx2_init_context(struct bnx2 *bp)
  2137. {
  2138. u32 vcid;
  2139. vcid = 96;
  2140. while (vcid) {
  2141. u32 vcid_addr, pcid_addr, offset;
  2142. int i;
  2143. vcid--;
  2144. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2145. u32 new_vcid;
  2146. vcid_addr = GET_PCID_ADDR(vcid);
  2147. if (vcid & 0x8) {
  2148. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2149. }
  2150. else {
  2151. new_vcid = vcid;
  2152. }
  2153. pcid_addr = GET_PCID_ADDR(new_vcid);
  2154. }
  2155. else {
  2156. vcid_addr = GET_CID_ADDR(vcid);
  2157. pcid_addr = vcid_addr;
  2158. }
  2159. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2160. vcid_addr += (i << PHY_CTX_SHIFT);
  2161. pcid_addr += (i << PHY_CTX_SHIFT);
  2162. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2163. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2164. /* Zero out the context. */
  2165. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2166. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2167. }
  2168. }
  2169. }
  2170. static int
  2171. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2172. {
  2173. u16 *good_mbuf;
  2174. u32 good_mbuf_cnt;
  2175. u32 val;
  2176. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2177. if (good_mbuf == NULL) {
  2178. pr_err("Failed to allocate memory in %s\n", __func__);
  2179. return -ENOMEM;
  2180. }
  2181. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2182. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2183. good_mbuf_cnt = 0;
  2184. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2185. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2186. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2187. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2188. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2189. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2190. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2191. /* The addresses with Bit 9 set are bad memory blocks. */
  2192. if (!(val & (1 << 9))) {
  2193. good_mbuf[good_mbuf_cnt] = (u16) val;
  2194. good_mbuf_cnt++;
  2195. }
  2196. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2197. }
  2198. /* Free the good ones back to the mbuf pool thus discarding
  2199. * all the bad ones. */
  2200. while (good_mbuf_cnt) {
  2201. good_mbuf_cnt--;
  2202. val = good_mbuf[good_mbuf_cnt];
  2203. val = (val << 9) | val | 1;
  2204. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2205. }
  2206. kfree(good_mbuf);
  2207. return 0;
  2208. }
  2209. static void
  2210. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2211. {
  2212. u32 val;
  2213. val = (mac_addr[0] << 8) | mac_addr[1];
  2214. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2215. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2216. (mac_addr[4] << 8) | mac_addr[5];
  2217. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2218. }
  2219. static inline int
  2220. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2221. {
  2222. dma_addr_t mapping;
  2223. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2224. struct rx_bd *rxbd =
  2225. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2226. struct page *page = alloc_page(gfp);
  2227. if (!page)
  2228. return -ENOMEM;
  2229. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2230. PCI_DMA_FROMDEVICE);
  2231. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2232. __free_page(page);
  2233. return -EIO;
  2234. }
  2235. rx_pg->page = page;
  2236. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2237. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2238. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2239. return 0;
  2240. }
  2241. static void
  2242. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2243. {
  2244. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2245. struct page *page = rx_pg->page;
  2246. if (!page)
  2247. return;
  2248. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2249. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2250. __free_page(page);
  2251. rx_pg->page = NULL;
  2252. }
  2253. static inline int
  2254. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2255. {
  2256. struct sk_buff *skb;
  2257. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2258. dma_addr_t mapping;
  2259. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2260. unsigned long align;
  2261. skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
  2262. if (skb == NULL) {
  2263. return -ENOMEM;
  2264. }
  2265. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2266. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2267. mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
  2268. PCI_DMA_FROMDEVICE);
  2269. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2270. dev_kfree_skb(skb);
  2271. return -EIO;
  2272. }
  2273. rx_buf->skb = skb;
  2274. rx_buf->desc = (struct l2_fhdr *) skb->data;
  2275. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2276. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2277. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2278. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2279. return 0;
  2280. }
  2281. static int
  2282. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2283. {
  2284. struct status_block *sblk = bnapi->status_blk.msi;
  2285. u32 new_link_state, old_link_state;
  2286. int is_set = 1;
  2287. new_link_state = sblk->status_attn_bits & event;
  2288. old_link_state = sblk->status_attn_bits_ack & event;
  2289. if (new_link_state != old_link_state) {
  2290. if (new_link_state)
  2291. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2292. else
  2293. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2294. } else
  2295. is_set = 0;
  2296. return is_set;
  2297. }
  2298. static void
  2299. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2300. {
  2301. spin_lock(&bp->phy_lock);
  2302. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2303. bnx2_set_link(bp);
  2304. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2305. bnx2_set_remote_link(bp);
  2306. spin_unlock(&bp->phy_lock);
  2307. }
  2308. static inline u16
  2309. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2310. {
  2311. u16 cons;
  2312. /* Tell compiler that status block fields can change. */
  2313. barrier();
  2314. cons = *bnapi->hw_tx_cons_ptr;
  2315. barrier();
  2316. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2317. cons++;
  2318. return cons;
  2319. }
  2320. static int
  2321. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2322. {
  2323. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2324. u16 hw_cons, sw_cons, sw_ring_cons;
  2325. int tx_pkt = 0, index;
  2326. struct netdev_queue *txq;
  2327. index = (bnapi - bp->bnx2_napi);
  2328. txq = netdev_get_tx_queue(bp->dev, index);
  2329. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2330. sw_cons = txr->tx_cons;
  2331. while (sw_cons != hw_cons) {
  2332. struct sw_tx_bd *tx_buf;
  2333. struct sk_buff *skb;
  2334. int i, last;
  2335. sw_ring_cons = TX_RING_IDX(sw_cons);
  2336. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2337. skb = tx_buf->skb;
  2338. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2339. prefetch(&skb->end);
  2340. /* partial BD completions possible with TSO packets */
  2341. if (tx_buf->is_gso) {
  2342. u16 last_idx, last_ring_idx;
  2343. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2344. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2345. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2346. last_idx++;
  2347. }
  2348. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2349. break;
  2350. }
  2351. }
  2352. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2353. skb_headlen(skb), PCI_DMA_TODEVICE);
  2354. tx_buf->skb = NULL;
  2355. last = tx_buf->nr_frags;
  2356. for (i = 0; i < last; i++) {
  2357. sw_cons = NEXT_TX_BD(sw_cons);
  2358. dma_unmap_page(&bp->pdev->dev,
  2359. dma_unmap_addr(
  2360. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2361. mapping),
  2362. skb_shinfo(skb)->frags[i].size,
  2363. PCI_DMA_TODEVICE);
  2364. }
  2365. sw_cons = NEXT_TX_BD(sw_cons);
  2366. dev_kfree_skb(skb);
  2367. tx_pkt++;
  2368. if (tx_pkt == budget)
  2369. break;
  2370. if (hw_cons == sw_cons)
  2371. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2372. }
  2373. txr->hw_tx_cons = hw_cons;
  2374. txr->tx_cons = sw_cons;
  2375. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2376. * before checking for netif_tx_queue_stopped(). Without the
  2377. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2378. * will miss it and cause the queue to be stopped forever.
  2379. */
  2380. smp_mb();
  2381. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2382. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2383. __netif_tx_lock(txq, smp_processor_id());
  2384. if ((netif_tx_queue_stopped(txq)) &&
  2385. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2386. netif_tx_wake_queue(txq);
  2387. __netif_tx_unlock(txq);
  2388. }
  2389. return tx_pkt;
  2390. }
  2391. static void
  2392. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2393. struct sk_buff *skb, int count)
  2394. {
  2395. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2396. struct rx_bd *cons_bd, *prod_bd;
  2397. int i;
  2398. u16 hw_prod, prod;
  2399. u16 cons = rxr->rx_pg_cons;
  2400. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2401. /* The caller was unable to allocate a new page to replace the
  2402. * last one in the frags array, so we need to recycle that page
  2403. * and then free the skb.
  2404. */
  2405. if (skb) {
  2406. struct page *page;
  2407. struct skb_shared_info *shinfo;
  2408. shinfo = skb_shinfo(skb);
  2409. shinfo->nr_frags--;
  2410. page = shinfo->frags[shinfo->nr_frags].page;
  2411. shinfo->frags[shinfo->nr_frags].page = NULL;
  2412. cons_rx_pg->page = page;
  2413. dev_kfree_skb(skb);
  2414. }
  2415. hw_prod = rxr->rx_pg_prod;
  2416. for (i = 0; i < count; i++) {
  2417. prod = RX_PG_RING_IDX(hw_prod);
  2418. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2419. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2420. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2421. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2422. if (prod != cons) {
  2423. prod_rx_pg->page = cons_rx_pg->page;
  2424. cons_rx_pg->page = NULL;
  2425. dma_unmap_addr_set(prod_rx_pg, mapping,
  2426. dma_unmap_addr(cons_rx_pg, mapping));
  2427. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2428. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2429. }
  2430. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2431. hw_prod = NEXT_RX_BD(hw_prod);
  2432. }
  2433. rxr->rx_pg_prod = hw_prod;
  2434. rxr->rx_pg_cons = cons;
  2435. }
  2436. static inline void
  2437. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2438. struct sk_buff *skb, u16 cons, u16 prod)
  2439. {
  2440. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2441. struct rx_bd *cons_bd, *prod_bd;
  2442. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2443. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2444. dma_sync_single_for_device(&bp->pdev->dev,
  2445. dma_unmap_addr(cons_rx_buf, mapping),
  2446. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2447. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2448. prod_rx_buf->skb = skb;
  2449. prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
  2450. if (cons == prod)
  2451. return;
  2452. dma_unmap_addr_set(prod_rx_buf, mapping,
  2453. dma_unmap_addr(cons_rx_buf, mapping));
  2454. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2455. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2456. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2457. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2458. }
  2459. static int
  2460. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2461. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2462. u32 ring_idx)
  2463. {
  2464. int err;
  2465. u16 prod = ring_idx & 0xffff;
  2466. err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
  2467. if (unlikely(err)) {
  2468. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2469. if (hdr_len) {
  2470. unsigned int raw_len = len + 4;
  2471. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2472. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2473. }
  2474. return err;
  2475. }
  2476. skb_reserve(skb, BNX2_RX_OFFSET);
  2477. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2478. PCI_DMA_FROMDEVICE);
  2479. if (hdr_len == 0) {
  2480. skb_put(skb, len);
  2481. return 0;
  2482. } else {
  2483. unsigned int i, frag_len, frag_size, pages;
  2484. struct sw_pg *rx_pg;
  2485. u16 pg_cons = rxr->rx_pg_cons;
  2486. u16 pg_prod = rxr->rx_pg_prod;
  2487. frag_size = len + 4 - hdr_len;
  2488. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2489. skb_put(skb, hdr_len);
  2490. for (i = 0; i < pages; i++) {
  2491. dma_addr_t mapping_old;
  2492. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2493. if (unlikely(frag_len <= 4)) {
  2494. unsigned int tail = 4 - frag_len;
  2495. rxr->rx_pg_cons = pg_cons;
  2496. rxr->rx_pg_prod = pg_prod;
  2497. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2498. pages - i);
  2499. skb->len -= tail;
  2500. if (i == 0) {
  2501. skb->tail -= tail;
  2502. } else {
  2503. skb_frag_t *frag =
  2504. &skb_shinfo(skb)->frags[i - 1];
  2505. frag->size -= tail;
  2506. skb->data_len -= tail;
  2507. skb->truesize -= tail;
  2508. }
  2509. return 0;
  2510. }
  2511. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2512. /* Don't unmap yet. If we're unable to allocate a new
  2513. * page, we need to recycle the page and the DMA addr.
  2514. */
  2515. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2516. if (i == pages - 1)
  2517. frag_len -= 4;
  2518. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2519. rx_pg->page = NULL;
  2520. err = bnx2_alloc_rx_page(bp, rxr,
  2521. RX_PG_RING_IDX(pg_prod),
  2522. GFP_ATOMIC);
  2523. if (unlikely(err)) {
  2524. rxr->rx_pg_cons = pg_cons;
  2525. rxr->rx_pg_prod = pg_prod;
  2526. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2527. pages - i);
  2528. return err;
  2529. }
  2530. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2531. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2532. frag_size -= frag_len;
  2533. skb->data_len += frag_len;
  2534. skb->truesize += frag_len;
  2535. skb->len += frag_len;
  2536. pg_prod = NEXT_RX_BD(pg_prod);
  2537. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2538. }
  2539. rxr->rx_pg_prod = pg_prod;
  2540. rxr->rx_pg_cons = pg_cons;
  2541. }
  2542. return 0;
  2543. }
  2544. static inline u16
  2545. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2546. {
  2547. u16 cons;
  2548. /* Tell compiler that status block fields can change. */
  2549. barrier();
  2550. cons = *bnapi->hw_rx_cons_ptr;
  2551. barrier();
  2552. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2553. cons++;
  2554. return cons;
  2555. }
  2556. static int
  2557. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2558. {
  2559. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2560. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2561. struct l2_fhdr *rx_hdr;
  2562. int rx_pkt = 0, pg_ring_used = 0;
  2563. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2564. sw_cons = rxr->rx_cons;
  2565. sw_prod = rxr->rx_prod;
  2566. /* Memory barrier necessary as speculative reads of the rx
  2567. * buffer can be ahead of the index in the status block
  2568. */
  2569. rmb();
  2570. while (sw_cons != hw_cons) {
  2571. unsigned int len, hdr_len;
  2572. u32 status;
  2573. struct sw_bd *rx_buf, *next_rx_buf;
  2574. struct sk_buff *skb;
  2575. dma_addr_t dma_addr;
  2576. sw_ring_cons = RX_RING_IDX(sw_cons);
  2577. sw_ring_prod = RX_RING_IDX(sw_prod);
  2578. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2579. skb = rx_buf->skb;
  2580. prefetchw(skb);
  2581. next_rx_buf =
  2582. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2583. prefetch(next_rx_buf->desc);
  2584. rx_buf->skb = NULL;
  2585. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2586. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2587. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2588. PCI_DMA_FROMDEVICE);
  2589. rx_hdr = rx_buf->desc;
  2590. len = rx_hdr->l2_fhdr_pkt_len;
  2591. status = rx_hdr->l2_fhdr_status;
  2592. hdr_len = 0;
  2593. if (status & L2_FHDR_STATUS_SPLIT) {
  2594. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2595. pg_ring_used = 1;
  2596. } else if (len > bp->rx_jumbo_thresh) {
  2597. hdr_len = bp->rx_jumbo_thresh;
  2598. pg_ring_used = 1;
  2599. }
  2600. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2601. L2_FHDR_ERRORS_PHY_DECODE |
  2602. L2_FHDR_ERRORS_ALIGNMENT |
  2603. L2_FHDR_ERRORS_TOO_SHORT |
  2604. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2605. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2606. sw_ring_prod);
  2607. if (pg_ring_used) {
  2608. int pages;
  2609. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2610. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2611. }
  2612. goto next_rx;
  2613. }
  2614. len -= 4;
  2615. if (len <= bp->rx_copy_thresh) {
  2616. struct sk_buff *new_skb;
  2617. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2618. if (new_skb == NULL) {
  2619. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2620. sw_ring_prod);
  2621. goto next_rx;
  2622. }
  2623. /* aligned copy */
  2624. skb_copy_from_linear_data_offset(skb,
  2625. BNX2_RX_OFFSET - 6,
  2626. new_skb->data, len + 6);
  2627. skb_reserve(new_skb, 6);
  2628. skb_put(new_skb, len);
  2629. bnx2_reuse_rx_skb(bp, rxr, skb,
  2630. sw_ring_cons, sw_ring_prod);
  2631. skb = new_skb;
  2632. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2633. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2634. goto next_rx;
  2635. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2636. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2637. __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
  2638. skb->protocol = eth_type_trans(skb, bp->dev);
  2639. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2640. (ntohs(skb->protocol) != 0x8100)) {
  2641. dev_kfree_skb(skb);
  2642. goto next_rx;
  2643. }
  2644. skb_checksum_none_assert(skb);
  2645. if (bp->rx_csum &&
  2646. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2647. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2648. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2649. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2650. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2651. }
  2652. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2653. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2654. L2_FHDR_STATUS_USE_RXHASH))
  2655. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2656. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2657. napi_gro_receive(&bnapi->napi, skb);
  2658. rx_pkt++;
  2659. next_rx:
  2660. sw_cons = NEXT_RX_BD(sw_cons);
  2661. sw_prod = NEXT_RX_BD(sw_prod);
  2662. if ((rx_pkt == budget))
  2663. break;
  2664. /* Refresh hw_cons to see if there is new work */
  2665. if (sw_cons == hw_cons) {
  2666. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2667. rmb();
  2668. }
  2669. }
  2670. rxr->rx_cons = sw_cons;
  2671. rxr->rx_prod = sw_prod;
  2672. if (pg_ring_used)
  2673. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2674. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2675. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2676. mmiowb();
  2677. return rx_pkt;
  2678. }
  2679. /* MSI ISR - The only difference between this and the INTx ISR
  2680. * is that the MSI interrupt is always serviced.
  2681. */
  2682. static irqreturn_t
  2683. bnx2_msi(int irq, void *dev_instance)
  2684. {
  2685. struct bnx2_napi *bnapi = dev_instance;
  2686. struct bnx2 *bp = bnapi->bp;
  2687. prefetch(bnapi->status_blk.msi);
  2688. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2689. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2690. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2691. /* Return here if interrupt is disabled. */
  2692. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2693. return IRQ_HANDLED;
  2694. napi_schedule(&bnapi->napi);
  2695. return IRQ_HANDLED;
  2696. }
  2697. static irqreturn_t
  2698. bnx2_msi_1shot(int irq, void *dev_instance)
  2699. {
  2700. struct bnx2_napi *bnapi = dev_instance;
  2701. struct bnx2 *bp = bnapi->bp;
  2702. prefetch(bnapi->status_blk.msi);
  2703. /* Return here if interrupt is disabled. */
  2704. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2705. return IRQ_HANDLED;
  2706. napi_schedule(&bnapi->napi);
  2707. return IRQ_HANDLED;
  2708. }
  2709. static irqreturn_t
  2710. bnx2_interrupt(int irq, void *dev_instance)
  2711. {
  2712. struct bnx2_napi *bnapi = dev_instance;
  2713. struct bnx2 *bp = bnapi->bp;
  2714. struct status_block *sblk = bnapi->status_blk.msi;
  2715. /* When using INTx, it is possible for the interrupt to arrive
  2716. * at the CPU before the status block posted prior to the
  2717. * interrupt. Reading a register will flush the status block.
  2718. * When using MSI, the MSI message will always complete after
  2719. * the status block write.
  2720. */
  2721. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2722. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2723. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2724. return IRQ_NONE;
  2725. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2726. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2727. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2728. /* Read back to deassert IRQ immediately to avoid too many
  2729. * spurious interrupts.
  2730. */
  2731. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2732. /* Return here if interrupt is shared and is disabled. */
  2733. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2734. return IRQ_HANDLED;
  2735. if (napi_schedule_prep(&bnapi->napi)) {
  2736. bnapi->last_status_idx = sblk->status_idx;
  2737. __napi_schedule(&bnapi->napi);
  2738. }
  2739. return IRQ_HANDLED;
  2740. }
  2741. static inline int
  2742. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2743. {
  2744. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2745. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2746. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2747. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2748. return 1;
  2749. return 0;
  2750. }
  2751. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2752. STATUS_ATTN_BITS_TIMER_ABORT)
  2753. static inline int
  2754. bnx2_has_work(struct bnx2_napi *bnapi)
  2755. {
  2756. struct status_block *sblk = bnapi->status_blk.msi;
  2757. if (bnx2_has_fast_work(bnapi))
  2758. return 1;
  2759. #ifdef BCM_CNIC
  2760. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2761. return 1;
  2762. #endif
  2763. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2764. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2765. return 1;
  2766. return 0;
  2767. }
  2768. static void
  2769. bnx2_chk_missed_msi(struct bnx2 *bp)
  2770. {
  2771. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2772. u32 msi_ctrl;
  2773. if (bnx2_has_work(bnapi)) {
  2774. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2775. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2776. return;
  2777. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2778. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2779. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2780. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2781. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2782. }
  2783. }
  2784. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2785. }
  2786. #ifdef BCM_CNIC
  2787. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2788. {
  2789. struct cnic_ops *c_ops;
  2790. if (!bnapi->cnic_present)
  2791. return;
  2792. rcu_read_lock();
  2793. c_ops = rcu_dereference(bp->cnic_ops);
  2794. if (c_ops)
  2795. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2796. bnapi->status_blk.msi);
  2797. rcu_read_unlock();
  2798. }
  2799. #endif
  2800. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2801. {
  2802. struct status_block *sblk = bnapi->status_blk.msi;
  2803. u32 status_attn_bits = sblk->status_attn_bits;
  2804. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2805. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2806. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2807. bnx2_phy_int(bp, bnapi);
  2808. /* This is needed to take care of transient status
  2809. * during link changes.
  2810. */
  2811. REG_WR(bp, BNX2_HC_COMMAND,
  2812. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2813. REG_RD(bp, BNX2_HC_COMMAND);
  2814. }
  2815. }
  2816. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2817. int work_done, int budget)
  2818. {
  2819. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2820. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2821. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2822. bnx2_tx_int(bp, bnapi, 0);
  2823. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2824. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2825. return work_done;
  2826. }
  2827. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2828. {
  2829. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2830. struct bnx2 *bp = bnapi->bp;
  2831. int work_done = 0;
  2832. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2833. while (1) {
  2834. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2835. if (unlikely(work_done >= budget))
  2836. break;
  2837. bnapi->last_status_idx = sblk->status_idx;
  2838. /* status idx must be read before checking for more work. */
  2839. rmb();
  2840. if (likely(!bnx2_has_fast_work(bnapi))) {
  2841. napi_complete(napi);
  2842. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2843. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2844. bnapi->last_status_idx);
  2845. break;
  2846. }
  2847. }
  2848. return work_done;
  2849. }
  2850. static int bnx2_poll(struct napi_struct *napi, int budget)
  2851. {
  2852. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2853. struct bnx2 *bp = bnapi->bp;
  2854. int work_done = 0;
  2855. struct status_block *sblk = bnapi->status_blk.msi;
  2856. while (1) {
  2857. bnx2_poll_link(bp, bnapi);
  2858. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2859. #ifdef BCM_CNIC
  2860. bnx2_poll_cnic(bp, bnapi);
  2861. #endif
  2862. /* bnapi->last_status_idx is used below to tell the hw how
  2863. * much work has been processed, so we must read it before
  2864. * checking for more work.
  2865. */
  2866. bnapi->last_status_idx = sblk->status_idx;
  2867. if (unlikely(work_done >= budget))
  2868. break;
  2869. rmb();
  2870. if (likely(!bnx2_has_work(bnapi))) {
  2871. napi_complete(napi);
  2872. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2873. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2874. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2875. bnapi->last_status_idx);
  2876. break;
  2877. }
  2878. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2879. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2880. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2881. bnapi->last_status_idx);
  2882. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2883. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2884. bnapi->last_status_idx);
  2885. break;
  2886. }
  2887. }
  2888. return work_done;
  2889. }
  2890. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2891. * from set_multicast.
  2892. */
  2893. static void
  2894. bnx2_set_rx_mode(struct net_device *dev)
  2895. {
  2896. struct bnx2 *bp = netdev_priv(dev);
  2897. u32 rx_mode, sort_mode;
  2898. struct netdev_hw_addr *ha;
  2899. int i;
  2900. if (!netif_running(dev))
  2901. return;
  2902. spin_lock_bh(&bp->phy_lock);
  2903. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2904. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2905. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2906. if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
  2907. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2908. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2909. if (dev->flags & IFF_PROMISC) {
  2910. /* Promiscuous mode. */
  2911. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2912. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2913. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2914. }
  2915. else if (dev->flags & IFF_ALLMULTI) {
  2916. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2917. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2918. 0xffffffff);
  2919. }
  2920. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2921. }
  2922. else {
  2923. /* Accept one or more multicast(s). */
  2924. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2925. u32 regidx;
  2926. u32 bit;
  2927. u32 crc;
  2928. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2929. netdev_for_each_mc_addr(ha, dev) {
  2930. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2931. bit = crc & 0xff;
  2932. regidx = (bit & 0xe0) >> 5;
  2933. bit &= 0x1f;
  2934. mc_filter[regidx] |= (1 << bit);
  2935. }
  2936. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2937. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2938. mc_filter[i]);
  2939. }
  2940. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2941. }
  2942. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2943. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2944. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2945. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2946. } else if (!(dev->flags & IFF_PROMISC)) {
  2947. /* Add all entries into to the match filter list */
  2948. i = 0;
  2949. netdev_for_each_uc_addr(ha, dev) {
  2950. bnx2_set_mac_addr(bp, ha->addr,
  2951. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2952. sort_mode |= (1 <<
  2953. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2954. i++;
  2955. }
  2956. }
  2957. if (rx_mode != bp->rx_mode) {
  2958. bp->rx_mode = rx_mode;
  2959. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2960. }
  2961. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2962. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2963. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2964. spin_unlock_bh(&bp->phy_lock);
  2965. }
  2966. static int __devinit
  2967. check_fw_section(const struct firmware *fw,
  2968. const struct bnx2_fw_file_section *section,
  2969. u32 alignment, bool non_empty)
  2970. {
  2971. u32 offset = be32_to_cpu(section->offset);
  2972. u32 len = be32_to_cpu(section->len);
  2973. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2974. return -EINVAL;
  2975. if ((non_empty && len == 0) || len > fw->size - offset ||
  2976. len & (alignment - 1))
  2977. return -EINVAL;
  2978. return 0;
  2979. }
  2980. static int __devinit
  2981. check_mips_fw_entry(const struct firmware *fw,
  2982. const struct bnx2_mips_fw_file_entry *entry)
  2983. {
  2984. if (check_fw_section(fw, &entry->text, 4, true) ||
  2985. check_fw_section(fw, &entry->data, 4, false) ||
  2986. check_fw_section(fw, &entry->rodata, 4, false))
  2987. return -EINVAL;
  2988. return 0;
  2989. }
  2990. static int __devinit
  2991. bnx2_request_firmware(struct bnx2 *bp)
  2992. {
  2993. const char *mips_fw_file, *rv2p_fw_file;
  2994. const struct bnx2_mips_fw_file *mips_fw;
  2995. const struct bnx2_rv2p_fw_file *rv2p_fw;
  2996. int rc;
  2997. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2998. mips_fw_file = FW_MIPS_FILE_09;
  2999. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3000. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3001. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3002. else
  3003. rv2p_fw_file = FW_RV2P_FILE_09;
  3004. } else {
  3005. mips_fw_file = FW_MIPS_FILE_06;
  3006. rv2p_fw_file = FW_RV2P_FILE_06;
  3007. }
  3008. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3009. if (rc) {
  3010. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3011. return rc;
  3012. }
  3013. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3014. if (rc) {
  3015. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3016. return rc;
  3017. }
  3018. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3019. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3020. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3021. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3022. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3023. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3024. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3025. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3026. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3027. return -EINVAL;
  3028. }
  3029. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3030. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3031. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3032. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3033. return -EINVAL;
  3034. }
  3035. return 0;
  3036. }
  3037. static u32
  3038. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3039. {
  3040. switch (idx) {
  3041. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3042. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3043. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3044. break;
  3045. }
  3046. return rv2p_code;
  3047. }
  3048. static int
  3049. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3050. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3051. {
  3052. u32 rv2p_code_len, file_offset;
  3053. __be32 *rv2p_code;
  3054. int i;
  3055. u32 val, cmd, addr;
  3056. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3057. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3058. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3059. if (rv2p_proc == RV2P_PROC1) {
  3060. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3061. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3062. } else {
  3063. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3064. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3065. }
  3066. for (i = 0; i < rv2p_code_len; i += 8) {
  3067. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3068. rv2p_code++;
  3069. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3070. rv2p_code++;
  3071. val = (i / 8) | cmd;
  3072. REG_WR(bp, addr, val);
  3073. }
  3074. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3075. for (i = 0; i < 8; i++) {
  3076. u32 loc, code;
  3077. loc = be32_to_cpu(fw_entry->fixup[i]);
  3078. if (loc && ((loc * 4) < rv2p_code_len)) {
  3079. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3080. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3081. code = be32_to_cpu(*(rv2p_code + loc));
  3082. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3083. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3084. val = (loc / 2) | cmd;
  3085. REG_WR(bp, addr, val);
  3086. }
  3087. }
  3088. /* Reset the processor, un-stall is done later. */
  3089. if (rv2p_proc == RV2P_PROC1) {
  3090. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3091. }
  3092. else {
  3093. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3094. }
  3095. return 0;
  3096. }
  3097. static int
  3098. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3099. const struct bnx2_mips_fw_file_entry *fw_entry)
  3100. {
  3101. u32 addr, len, file_offset;
  3102. __be32 *data;
  3103. u32 offset;
  3104. u32 val;
  3105. /* Halt the CPU. */
  3106. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3107. val |= cpu_reg->mode_value_halt;
  3108. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3109. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3110. /* Load the Text area. */
  3111. addr = be32_to_cpu(fw_entry->text.addr);
  3112. len = be32_to_cpu(fw_entry->text.len);
  3113. file_offset = be32_to_cpu(fw_entry->text.offset);
  3114. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3115. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3116. if (len) {
  3117. int j;
  3118. for (j = 0; j < (len / 4); j++, offset += 4)
  3119. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3120. }
  3121. /* Load the Data area. */
  3122. addr = be32_to_cpu(fw_entry->data.addr);
  3123. len = be32_to_cpu(fw_entry->data.len);
  3124. file_offset = be32_to_cpu(fw_entry->data.offset);
  3125. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3126. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3127. if (len) {
  3128. int j;
  3129. for (j = 0; j < (len / 4); j++, offset += 4)
  3130. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3131. }
  3132. /* Load the Read-Only area. */
  3133. addr = be32_to_cpu(fw_entry->rodata.addr);
  3134. len = be32_to_cpu(fw_entry->rodata.len);
  3135. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3136. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3137. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3138. if (len) {
  3139. int j;
  3140. for (j = 0; j < (len / 4); j++, offset += 4)
  3141. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3142. }
  3143. /* Clear the pre-fetch instruction. */
  3144. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3145. val = be32_to_cpu(fw_entry->start_addr);
  3146. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3147. /* Start the CPU. */
  3148. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3149. val &= ~cpu_reg->mode_value_halt;
  3150. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3151. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3152. return 0;
  3153. }
  3154. static int
  3155. bnx2_init_cpus(struct bnx2 *bp)
  3156. {
  3157. const struct bnx2_mips_fw_file *mips_fw =
  3158. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3159. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3160. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3161. int rc;
  3162. /* Initialize the RV2P processor. */
  3163. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3164. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3165. /* Initialize the RX Processor. */
  3166. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3167. if (rc)
  3168. goto init_cpu_err;
  3169. /* Initialize the TX Processor. */
  3170. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3171. if (rc)
  3172. goto init_cpu_err;
  3173. /* Initialize the TX Patch-up Processor. */
  3174. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3175. if (rc)
  3176. goto init_cpu_err;
  3177. /* Initialize the Completion Processor. */
  3178. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3179. if (rc)
  3180. goto init_cpu_err;
  3181. /* Initialize the Command Processor. */
  3182. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3183. init_cpu_err:
  3184. return rc;
  3185. }
  3186. static int
  3187. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3188. {
  3189. u16 pmcsr;
  3190. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3191. switch (state) {
  3192. case PCI_D0: {
  3193. u32 val;
  3194. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3195. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3196. PCI_PM_CTRL_PME_STATUS);
  3197. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3198. /* delay required during transition out of D3hot */
  3199. msleep(20);
  3200. val = REG_RD(bp, BNX2_EMAC_MODE);
  3201. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3202. val &= ~BNX2_EMAC_MODE_MPKT;
  3203. REG_WR(bp, BNX2_EMAC_MODE, val);
  3204. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3205. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3206. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3207. break;
  3208. }
  3209. case PCI_D3hot: {
  3210. int i;
  3211. u32 val, wol_msg;
  3212. if (bp->wol) {
  3213. u32 advertising;
  3214. u8 autoneg;
  3215. autoneg = bp->autoneg;
  3216. advertising = bp->advertising;
  3217. if (bp->phy_port == PORT_TP) {
  3218. bp->autoneg = AUTONEG_SPEED;
  3219. bp->advertising = ADVERTISED_10baseT_Half |
  3220. ADVERTISED_10baseT_Full |
  3221. ADVERTISED_100baseT_Half |
  3222. ADVERTISED_100baseT_Full |
  3223. ADVERTISED_Autoneg;
  3224. }
  3225. spin_lock_bh(&bp->phy_lock);
  3226. bnx2_setup_phy(bp, bp->phy_port);
  3227. spin_unlock_bh(&bp->phy_lock);
  3228. bp->autoneg = autoneg;
  3229. bp->advertising = advertising;
  3230. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3231. val = REG_RD(bp, BNX2_EMAC_MODE);
  3232. /* Enable port mode. */
  3233. val &= ~BNX2_EMAC_MODE_PORT;
  3234. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3235. BNX2_EMAC_MODE_ACPI_RCVD |
  3236. BNX2_EMAC_MODE_MPKT;
  3237. if (bp->phy_port == PORT_TP)
  3238. val |= BNX2_EMAC_MODE_PORT_MII;
  3239. else {
  3240. val |= BNX2_EMAC_MODE_PORT_GMII;
  3241. if (bp->line_speed == SPEED_2500)
  3242. val |= BNX2_EMAC_MODE_25G_MODE;
  3243. }
  3244. REG_WR(bp, BNX2_EMAC_MODE, val);
  3245. /* receive all multicast */
  3246. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3247. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3248. 0xffffffff);
  3249. }
  3250. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3251. BNX2_EMAC_RX_MODE_SORT_MODE);
  3252. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3253. BNX2_RPM_SORT_USER0_MC_EN;
  3254. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3255. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3256. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3257. BNX2_RPM_SORT_USER0_ENA);
  3258. /* Need to enable EMAC and RPM for WOL. */
  3259. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3260. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3261. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3262. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3263. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3264. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3265. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3266. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3267. }
  3268. else {
  3269. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3270. }
  3271. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3272. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3273. 1, 0);
  3274. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3275. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3276. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3277. if (bp->wol)
  3278. pmcsr |= 3;
  3279. }
  3280. else {
  3281. pmcsr |= 3;
  3282. }
  3283. if (bp->wol) {
  3284. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3285. }
  3286. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3287. pmcsr);
  3288. /* No more memory access after this point until
  3289. * device is brought back to D0.
  3290. */
  3291. udelay(50);
  3292. break;
  3293. }
  3294. default:
  3295. return -EINVAL;
  3296. }
  3297. return 0;
  3298. }
  3299. static int
  3300. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3301. {
  3302. u32 val;
  3303. int j;
  3304. /* Request access to the flash interface. */
  3305. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3306. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3307. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3308. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3309. break;
  3310. udelay(5);
  3311. }
  3312. if (j >= NVRAM_TIMEOUT_COUNT)
  3313. return -EBUSY;
  3314. return 0;
  3315. }
  3316. static int
  3317. bnx2_release_nvram_lock(struct bnx2 *bp)
  3318. {
  3319. int j;
  3320. u32 val;
  3321. /* Relinquish nvram interface. */
  3322. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3323. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3324. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3325. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3326. break;
  3327. udelay(5);
  3328. }
  3329. if (j >= NVRAM_TIMEOUT_COUNT)
  3330. return -EBUSY;
  3331. return 0;
  3332. }
  3333. static int
  3334. bnx2_enable_nvram_write(struct bnx2 *bp)
  3335. {
  3336. u32 val;
  3337. val = REG_RD(bp, BNX2_MISC_CFG);
  3338. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3339. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3340. int j;
  3341. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3342. REG_WR(bp, BNX2_NVM_COMMAND,
  3343. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3344. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3345. udelay(5);
  3346. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3347. if (val & BNX2_NVM_COMMAND_DONE)
  3348. break;
  3349. }
  3350. if (j >= NVRAM_TIMEOUT_COUNT)
  3351. return -EBUSY;
  3352. }
  3353. return 0;
  3354. }
  3355. static void
  3356. bnx2_disable_nvram_write(struct bnx2 *bp)
  3357. {
  3358. u32 val;
  3359. val = REG_RD(bp, BNX2_MISC_CFG);
  3360. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3361. }
  3362. static void
  3363. bnx2_enable_nvram_access(struct bnx2 *bp)
  3364. {
  3365. u32 val;
  3366. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3367. /* Enable both bits, even on read. */
  3368. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3369. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3370. }
  3371. static void
  3372. bnx2_disable_nvram_access(struct bnx2 *bp)
  3373. {
  3374. u32 val;
  3375. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3376. /* Disable both bits, even after read. */
  3377. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3378. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3379. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3380. }
  3381. static int
  3382. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3383. {
  3384. u32 cmd;
  3385. int j;
  3386. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3387. /* Buffered flash, no erase needed */
  3388. return 0;
  3389. /* Build an erase command */
  3390. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3391. BNX2_NVM_COMMAND_DOIT;
  3392. /* Need to clear DONE bit separately. */
  3393. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3394. /* Address of the NVRAM to read from. */
  3395. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3396. /* Issue an erase command. */
  3397. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3398. /* Wait for completion. */
  3399. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3400. u32 val;
  3401. udelay(5);
  3402. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3403. if (val & BNX2_NVM_COMMAND_DONE)
  3404. break;
  3405. }
  3406. if (j >= NVRAM_TIMEOUT_COUNT)
  3407. return -EBUSY;
  3408. return 0;
  3409. }
  3410. static int
  3411. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3412. {
  3413. u32 cmd;
  3414. int j;
  3415. /* Build the command word. */
  3416. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3417. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3418. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3419. offset = ((offset / bp->flash_info->page_size) <<
  3420. bp->flash_info->page_bits) +
  3421. (offset % bp->flash_info->page_size);
  3422. }
  3423. /* Need to clear DONE bit separately. */
  3424. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3425. /* Address of the NVRAM to read from. */
  3426. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3427. /* Issue a read command. */
  3428. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3429. /* Wait for completion. */
  3430. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3431. u32 val;
  3432. udelay(5);
  3433. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3434. if (val & BNX2_NVM_COMMAND_DONE) {
  3435. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3436. memcpy(ret_val, &v, 4);
  3437. break;
  3438. }
  3439. }
  3440. if (j >= NVRAM_TIMEOUT_COUNT)
  3441. return -EBUSY;
  3442. return 0;
  3443. }
  3444. static int
  3445. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3446. {
  3447. u32 cmd;
  3448. __be32 val32;
  3449. int j;
  3450. /* Build the command word. */
  3451. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3452. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3453. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3454. offset = ((offset / bp->flash_info->page_size) <<
  3455. bp->flash_info->page_bits) +
  3456. (offset % bp->flash_info->page_size);
  3457. }
  3458. /* Need to clear DONE bit separately. */
  3459. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3460. memcpy(&val32, val, 4);
  3461. /* Write the data. */
  3462. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3463. /* Address of the NVRAM to write to. */
  3464. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3465. /* Issue the write command. */
  3466. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3467. /* Wait for completion. */
  3468. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3469. udelay(5);
  3470. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3471. break;
  3472. }
  3473. if (j >= NVRAM_TIMEOUT_COUNT)
  3474. return -EBUSY;
  3475. return 0;
  3476. }
  3477. static int
  3478. bnx2_init_nvram(struct bnx2 *bp)
  3479. {
  3480. u32 val;
  3481. int j, entry_count, rc = 0;
  3482. const struct flash_spec *flash;
  3483. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3484. bp->flash_info = &flash_5709;
  3485. goto get_flash_size;
  3486. }
  3487. /* Determine the selected interface. */
  3488. val = REG_RD(bp, BNX2_NVM_CFG1);
  3489. entry_count = ARRAY_SIZE(flash_table);
  3490. if (val & 0x40000000) {
  3491. /* Flash interface has been reconfigured */
  3492. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3493. j++, flash++) {
  3494. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3495. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3496. bp->flash_info = flash;
  3497. break;
  3498. }
  3499. }
  3500. }
  3501. else {
  3502. u32 mask;
  3503. /* Not yet been reconfigured */
  3504. if (val & (1 << 23))
  3505. mask = FLASH_BACKUP_STRAP_MASK;
  3506. else
  3507. mask = FLASH_STRAP_MASK;
  3508. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3509. j++, flash++) {
  3510. if ((val & mask) == (flash->strapping & mask)) {
  3511. bp->flash_info = flash;
  3512. /* Request access to the flash interface. */
  3513. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3514. return rc;
  3515. /* Enable access to flash interface */
  3516. bnx2_enable_nvram_access(bp);
  3517. /* Reconfigure the flash interface */
  3518. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3519. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3520. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3521. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3522. /* Disable access to flash interface */
  3523. bnx2_disable_nvram_access(bp);
  3524. bnx2_release_nvram_lock(bp);
  3525. break;
  3526. }
  3527. }
  3528. } /* if (val & 0x40000000) */
  3529. if (j == entry_count) {
  3530. bp->flash_info = NULL;
  3531. pr_alert("Unknown flash/EEPROM type\n");
  3532. return -ENODEV;
  3533. }
  3534. get_flash_size:
  3535. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3536. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3537. if (val)
  3538. bp->flash_size = val;
  3539. else
  3540. bp->flash_size = bp->flash_info->total_size;
  3541. return rc;
  3542. }
  3543. static int
  3544. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3545. int buf_size)
  3546. {
  3547. int rc = 0;
  3548. u32 cmd_flags, offset32, len32, extra;
  3549. if (buf_size == 0)
  3550. return 0;
  3551. /* Request access to the flash interface. */
  3552. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3553. return rc;
  3554. /* Enable access to flash interface */
  3555. bnx2_enable_nvram_access(bp);
  3556. len32 = buf_size;
  3557. offset32 = offset;
  3558. extra = 0;
  3559. cmd_flags = 0;
  3560. if (offset32 & 3) {
  3561. u8 buf[4];
  3562. u32 pre_len;
  3563. offset32 &= ~3;
  3564. pre_len = 4 - (offset & 3);
  3565. if (pre_len >= len32) {
  3566. pre_len = len32;
  3567. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3568. BNX2_NVM_COMMAND_LAST;
  3569. }
  3570. else {
  3571. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3572. }
  3573. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3574. if (rc)
  3575. return rc;
  3576. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3577. offset32 += 4;
  3578. ret_buf += pre_len;
  3579. len32 -= pre_len;
  3580. }
  3581. if (len32 & 3) {
  3582. extra = 4 - (len32 & 3);
  3583. len32 = (len32 + 4) & ~3;
  3584. }
  3585. if (len32 == 4) {
  3586. u8 buf[4];
  3587. if (cmd_flags)
  3588. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3589. else
  3590. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3591. BNX2_NVM_COMMAND_LAST;
  3592. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3593. memcpy(ret_buf, buf, 4 - extra);
  3594. }
  3595. else if (len32 > 0) {
  3596. u8 buf[4];
  3597. /* Read the first word. */
  3598. if (cmd_flags)
  3599. cmd_flags = 0;
  3600. else
  3601. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3602. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3603. /* Advance to the next dword. */
  3604. offset32 += 4;
  3605. ret_buf += 4;
  3606. len32 -= 4;
  3607. while (len32 > 4 && rc == 0) {
  3608. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3609. /* Advance to the next dword. */
  3610. offset32 += 4;
  3611. ret_buf += 4;
  3612. len32 -= 4;
  3613. }
  3614. if (rc)
  3615. return rc;
  3616. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3617. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3618. memcpy(ret_buf, buf, 4 - extra);
  3619. }
  3620. /* Disable access to flash interface */
  3621. bnx2_disable_nvram_access(bp);
  3622. bnx2_release_nvram_lock(bp);
  3623. return rc;
  3624. }
  3625. static int
  3626. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3627. int buf_size)
  3628. {
  3629. u32 written, offset32, len32;
  3630. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3631. int rc = 0;
  3632. int align_start, align_end;
  3633. buf = data_buf;
  3634. offset32 = offset;
  3635. len32 = buf_size;
  3636. align_start = align_end = 0;
  3637. if ((align_start = (offset32 & 3))) {
  3638. offset32 &= ~3;
  3639. len32 += align_start;
  3640. if (len32 < 4)
  3641. len32 = 4;
  3642. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3643. return rc;
  3644. }
  3645. if (len32 & 3) {
  3646. align_end = 4 - (len32 & 3);
  3647. len32 += align_end;
  3648. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3649. return rc;
  3650. }
  3651. if (align_start || align_end) {
  3652. align_buf = kmalloc(len32, GFP_KERNEL);
  3653. if (align_buf == NULL)
  3654. return -ENOMEM;
  3655. if (align_start) {
  3656. memcpy(align_buf, start, 4);
  3657. }
  3658. if (align_end) {
  3659. memcpy(align_buf + len32 - 4, end, 4);
  3660. }
  3661. memcpy(align_buf + align_start, data_buf, buf_size);
  3662. buf = align_buf;
  3663. }
  3664. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3665. flash_buffer = kmalloc(264, GFP_KERNEL);
  3666. if (flash_buffer == NULL) {
  3667. rc = -ENOMEM;
  3668. goto nvram_write_end;
  3669. }
  3670. }
  3671. written = 0;
  3672. while ((written < len32) && (rc == 0)) {
  3673. u32 page_start, page_end, data_start, data_end;
  3674. u32 addr, cmd_flags;
  3675. int i;
  3676. /* Find the page_start addr */
  3677. page_start = offset32 + written;
  3678. page_start -= (page_start % bp->flash_info->page_size);
  3679. /* Find the page_end addr */
  3680. page_end = page_start + bp->flash_info->page_size;
  3681. /* Find the data_start addr */
  3682. data_start = (written == 0) ? offset32 : page_start;
  3683. /* Find the data_end addr */
  3684. data_end = (page_end > offset32 + len32) ?
  3685. (offset32 + len32) : page_end;
  3686. /* Request access to the flash interface. */
  3687. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3688. goto nvram_write_end;
  3689. /* Enable access to flash interface */
  3690. bnx2_enable_nvram_access(bp);
  3691. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3692. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3693. int j;
  3694. /* Read the whole page into the buffer
  3695. * (non-buffer flash only) */
  3696. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3697. if (j == (bp->flash_info->page_size - 4)) {
  3698. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3699. }
  3700. rc = bnx2_nvram_read_dword(bp,
  3701. page_start + j,
  3702. &flash_buffer[j],
  3703. cmd_flags);
  3704. if (rc)
  3705. goto nvram_write_end;
  3706. cmd_flags = 0;
  3707. }
  3708. }
  3709. /* Enable writes to flash interface (unlock write-protect) */
  3710. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3711. goto nvram_write_end;
  3712. /* Loop to write back the buffer data from page_start to
  3713. * data_start */
  3714. i = 0;
  3715. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3716. /* Erase the page */
  3717. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3718. goto nvram_write_end;
  3719. /* Re-enable the write again for the actual write */
  3720. bnx2_enable_nvram_write(bp);
  3721. for (addr = page_start; addr < data_start;
  3722. addr += 4, i += 4) {
  3723. rc = bnx2_nvram_write_dword(bp, addr,
  3724. &flash_buffer[i], cmd_flags);
  3725. if (rc != 0)
  3726. goto nvram_write_end;
  3727. cmd_flags = 0;
  3728. }
  3729. }
  3730. /* Loop to write the new data from data_start to data_end */
  3731. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3732. if ((addr == page_end - 4) ||
  3733. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3734. (addr == data_end - 4))) {
  3735. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3736. }
  3737. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3738. cmd_flags);
  3739. if (rc != 0)
  3740. goto nvram_write_end;
  3741. cmd_flags = 0;
  3742. buf += 4;
  3743. }
  3744. /* Loop to write back the buffer data from data_end
  3745. * to page_end */
  3746. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3747. for (addr = data_end; addr < page_end;
  3748. addr += 4, i += 4) {
  3749. if (addr == page_end-4) {
  3750. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3751. }
  3752. rc = bnx2_nvram_write_dword(bp, addr,
  3753. &flash_buffer[i], cmd_flags);
  3754. if (rc != 0)
  3755. goto nvram_write_end;
  3756. cmd_flags = 0;
  3757. }
  3758. }
  3759. /* Disable writes to flash interface (lock write-protect) */
  3760. bnx2_disable_nvram_write(bp);
  3761. /* Disable access to flash interface */
  3762. bnx2_disable_nvram_access(bp);
  3763. bnx2_release_nvram_lock(bp);
  3764. /* Increment written */
  3765. written += data_end - data_start;
  3766. }
  3767. nvram_write_end:
  3768. kfree(flash_buffer);
  3769. kfree(align_buf);
  3770. return rc;
  3771. }
  3772. static void
  3773. bnx2_init_fw_cap(struct bnx2 *bp)
  3774. {
  3775. u32 val, sig = 0;
  3776. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3777. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3778. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3779. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3780. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3781. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3782. return;
  3783. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3784. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3785. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3786. }
  3787. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3788. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3789. u32 link;
  3790. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3791. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3792. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3793. bp->phy_port = PORT_FIBRE;
  3794. else
  3795. bp->phy_port = PORT_TP;
  3796. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3797. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3798. }
  3799. if (netif_running(bp->dev) && sig)
  3800. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3801. }
  3802. static void
  3803. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3804. {
  3805. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3806. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3807. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3808. }
  3809. static int
  3810. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3811. {
  3812. u32 val;
  3813. int i, rc = 0;
  3814. u8 old_port;
  3815. /* Wait for the current PCI transaction to complete before
  3816. * issuing a reset. */
  3817. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3818. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  3819. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3820. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3821. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3822. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3823. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3824. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3825. udelay(5);
  3826. } else { /* 5709 */
  3827. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3828. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3829. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3830. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3831. for (i = 0; i < 100; i++) {
  3832. msleep(1);
  3833. val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3834. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3835. break;
  3836. }
  3837. }
  3838. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3839. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3840. /* Deposit a driver reset signature so the firmware knows that
  3841. * this is a soft reset. */
  3842. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3843. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3844. /* Do a dummy read to force the chip to complete all current transaction
  3845. * before we issue a reset. */
  3846. val = REG_RD(bp, BNX2_MISC_ID);
  3847. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3848. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3849. REG_RD(bp, BNX2_MISC_COMMAND);
  3850. udelay(5);
  3851. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3852. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3853. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3854. } else {
  3855. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3856. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3857. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3858. /* Chip reset. */
  3859. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3860. /* Reading back any register after chip reset will hang the
  3861. * bus on 5706 A0 and A1. The msleep below provides plenty
  3862. * of margin for write posting.
  3863. */
  3864. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3865. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3866. msleep(20);
  3867. /* Reset takes approximate 30 usec */
  3868. for (i = 0; i < 10; i++) {
  3869. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3870. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3871. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3872. break;
  3873. udelay(10);
  3874. }
  3875. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3876. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3877. pr_err("Chip reset did not complete\n");
  3878. return -EBUSY;
  3879. }
  3880. }
  3881. /* Make sure byte swapping is properly configured. */
  3882. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3883. if (val != 0x01020304) {
  3884. pr_err("Chip not in correct endian mode\n");
  3885. return -ENODEV;
  3886. }
  3887. /* Wait for the firmware to finish its initialization. */
  3888. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3889. if (rc)
  3890. return rc;
  3891. spin_lock_bh(&bp->phy_lock);
  3892. old_port = bp->phy_port;
  3893. bnx2_init_fw_cap(bp);
  3894. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3895. old_port != bp->phy_port)
  3896. bnx2_set_default_remote_link(bp);
  3897. spin_unlock_bh(&bp->phy_lock);
  3898. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3899. /* Adjust the voltage regular to two steps lower. The default
  3900. * of this register is 0x0000000e. */
  3901. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3902. /* Remove bad rbuf memory from the free pool. */
  3903. rc = bnx2_alloc_bad_rbuf(bp);
  3904. }
  3905. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3906. bnx2_setup_msix_tbl(bp);
  3907. /* Prevent MSIX table reads and write from timing out */
  3908. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3909. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3910. }
  3911. return rc;
  3912. }
  3913. static int
  3914. bnx2_init_chip(struct bnx2 *bp)
  3915. {
  3916. u32 val, mtu;
  3917. int rc, i;
  3918. /* Make sure the interrupt is not active. */
  3919. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3920. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3921. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3922. #ifdef __BIG_ENDIAN
  3923. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3924. #endif
  3925. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3926. DMA_READ_CHANS << 12 |
  3927. DMA_WRITE_CHANS << 16;
  3928. val |= (0x2 << 20) | (1 << 11);
  3929. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3930. val |= (1 << 23);
  3931. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3932. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3933. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3934. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3935. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3936. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3937. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3938. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3939. }
  3940. if (bp->flags & BNX2_FLAG_PCIX) {
  3941. u16 val16;
  3942. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3943. &val16);
  3944. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3945. val16 & ~PCI_X_CMD_ERO);
  3946. }
  3947. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3948. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3949. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3950. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3951. /* Initialize context mapping and zero out the quick contexts. The
  3952. * context block must have already been enabled. */
  3953. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3954. rc = bnx2_init_5709_context(bp);
  3955. if (rc)
  3956. return rc;
  3957. } else
  3958. bnx2_init_context(bp);
  3959. if ((rc = bnx2_init_cpus(bp)) != 0)
  3960. return rc;
  3961. bnx2_init_nvram(bp);
  3962. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3963. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3964. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3965. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3966. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3967. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3968. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3969. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3970. }
  3971. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3972. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3973. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3974. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3975. val = (BCM_PAGE_BITS - 8) << 24;
  3976. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3977. /* Configure page size. */
  3978. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3979. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3980. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3981. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3982. val = bp->mac_addr[0] +
  3983. (bp->mac_addr[1] << 8) +
  3984. (bp->mac_addr[2] << 16) +
  3985. bp->mac_addr[3] +
  3986. (bp->mac_addr[4] << 8) +
  3987. (bp->mac_addr[5] << 16);
  3988. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3989. /* Program the MTU. Also include 4 bytes for CRC32. */
  3990. mtu = bp->dev->mtu;
  3991. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3992. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3993. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3994. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3995. if (mtu < 1500)
  3996. mtu = 1500;
  3997. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3998. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3999. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4000. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4001. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4002. bp->bnx2_napi[i].last_status_idx = 0;
  4003. bp->idle_chk_status_idx = 0xffff;
  4004. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4005. /* Set up how to generate a link change interrupt. */
  4006. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4007. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4008. (u64) bp->status_blk_mapping & 0xffffffff);
  4009. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4010. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4011. (u64) bp->stats_blk_mapping & 0xffffffff);
  4012. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4013. (u64) bp->stats_blk_mapping >> 32);
  4014. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4015. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4016. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4017. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4018. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4019. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4020. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4021. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4022. REG_WR(bp, BNX2_HC_COM_TICKS,
  4023. (bp->com_ticks_int << 16) | bp->com_ticks);
  4024. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4025. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4026. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4027. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4028. else
  4029. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4030. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4031. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4032. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4033. else {
  4034. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4035. BNX2_HC_CONFIG_COLLECT_STATS;
  4036. }
  4037. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4038. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4039. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4040. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4041. }
  4042. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4043. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4044. REG_WR(bp, BNX2_HC_CONFIG, val);
  4045. if (bp->rx_ticks < 25)
  4046. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4047. else
  4048. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4049. for (i = 1; i < bp->irq_nvecs; i++) {
  4050. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4051. BNX2_HC_SB_CONFIG_1;
  4052. REG_WR(bp, base,
  4053. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4054. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4055. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4056. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4057. (bp->tx_quick_cons_trip_int << 16) |
  4058. bp->tx_quick_cons_trip);
  4059. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4060. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4061. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4062. (bp->rx_quick_cons_trip_int << 16) |
  4063. bp->rx_quick_cons_trip);
  4064. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4065. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4066. }
  4067. /* Clear internal stats counters. */
  4068. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4069. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4070. /* Initialize the receive filter. */
  4071. bnx2_set_rx_mode(bp->dev);
  4072. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4073. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4074. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4075. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4076. }
  4077. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4078. 1, 0);
  4079. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4080. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4081. udelay(20);
  4082. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4083. return rc;
  4084. }
  4085. static void
  4086. bnx2_clear_ring_states(struct bnx2 *bp)
  4087. {
  4088. struct bnx2_napi *bnapi;
  4089. struct bnx2_tx_ring_info *txr;
  4090. struct bnx2_rx_ring_info *rxr;
  4091. int i;
  4092. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4093. bnapi = &bp->bnx2_napi[i];
  4094. txr = &bnapi->tx_ring;
  4095. rxr = &bnapi->rx_ring;
  4096. txr->tx_cons = 0;
  4097. txr->hw_tx_cons = 0;
  4098. rxr->rx_prod_bseq = 0;
  4099. rxr->rx_prod = 0;
  4100. rxr->rx_cons = 0;
  4101. rxr->rx_pg_prod = 0;
  4102. rxr->rx_pg_cons = 0;
  4103. }
  4104. }
  4105. static void
  4106. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4107. {
  4108. u32 val, offset0, offset1, offset2, offset3;
  4109. u32 cid_addr = GET_CID_ADDR(cid);
  4110. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4111. offset0 = BNX2_L2CTX_TYPE_XI;
  4112. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4113. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4114. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4115. } else {
  4116. offset0 = BNX2_L2CTX_TYPE;
  4117. offset1 = BNX2_L2CTX_CMD_TYPE;
  4118. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4119. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4120. }
  4121. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4122. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4123. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4124. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4125. val = (u64) txr->tx_desc_mapping >> 32;
  4126. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4127. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4128. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4129. }
  4130. static void
  4131. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4132. {
  4133. struct tx_bd *txbd;
  4134. u32 cid = TX_CID;
  4135. struct bnx2_napi *bnapi;
  4136. struct bnx2_tx_ring_info *txr;
  4137. bnapi = &bp->bnx2_napi[ring_num];
  4138. txr = &bnapi->tx_ring;
  4139. if (ring_num == 0)
  4140. cid = TX_CID;
  4141. else
  4142. cid = TX_TSS_CID + ring_num - 1;
  4143. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4144. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4145. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4146. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4147. txr->tx_prod = 0;
  4148. txr->tx_prod_bseq = 0;
  4149. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4150. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4151. bnx2_init_tx_context(bp, cid, txr);
  4152. }
  4153. static void
  4154. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4155. int num_rings)
  4156. {
  4157. int i;
  4158. struct rx_bd *rxbd;
  4159. for (i = 0; i < num_rings; i++) {
  4160. int j;
  4161. rxbd = &rx_ring[i][0];
  4162. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4163. rxbd->rx_bd_len = buf_size;
  4164. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4165. }
  4166. if (i == (num_rings - 1))
  4167. j = 0;
  4168. else
  4169. j = i + 1;
  4170. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4171. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4172. }
  4173. }
  4174. static void
  4175. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4176. {
  4177. int i;
  4178. u16 prod, ring_prod;
  4179. u32 cid, rx_cid_addr, val;
  4180. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4181. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4182. if (ring_num == 0)
  4183. cid = RX_CID;
  4184. else
  4185. cid = RX_RSS_CID + ring_num - 1;
  4186. rx_cid_addr = GET_CID_ADDR(cid);
  4187. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4188. bp->rx_buf_use_size, bp->rx_max_ring);
  4189. bnx2_init_rx_context(bp, cid);
  4190. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4191. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4192. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4193. }
  4194. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4195. if (bp->rx_pg_ring_size) {
  4196. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4197. rxr->rx_pg_desc_mapping,
  4198. PAGE_SIZE, bp->rx_max_pg_ring);
  4199. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4200. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4201. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4202. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4203. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4204. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4205. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4206. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4207. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4208. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4209. }
  4210. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4211. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4212. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4213. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4214. ring_prod = prod = rxr->rx_pg_prod;
  4215. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4216. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4217. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4218. ring_num, i, bp->rx_pg_ring_size);
  4219. break;
  4220. }
  4221. prod = NEXT_RX_BD(prod);
  4222. ring_prod = RX_PG_RING_IDX(prod);
  4223. }
  4224. rxr->rx_pg_prod = prod;
  4225. ring_prod = prod = rxr->rx_prod;
  4226. for (i = 0; i < bp->rx_ring_size; i++) {
  4227. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4228. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4229. ring_num, i, bp->rx_ring_size);
  4230. break;
  4231. }
  4232. prod = NEXT_RX_BD(prod);
  4233. ring_prod = RX_RING_IDX(prod);
  4234. }
  4235. rxr->rx_prod = prod;
  4236. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4237. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4238. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4239. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4240. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4241. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4242. }
  4243. static void
  4244. bnx2_init_all_rings(struct bnx2 *bp)
  4245. {
  4246. int i;
  4247. u32 val;
  4248. bnx2_clear_ring_states(bp);
  4249. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4250. for (i = 0; i < bp->num_tx_rings; i++)
  4251. bnx2_init_tx_ring(bp, i);
  4252. if (bp->num_tx_rings > 1)
  4253. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4254. (TX_TSS_CID << 7));
  4255. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4256. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4257. for (i = 0; i < bp->num_rx_rings; i++)
  4258. bnx2_init_rx_ring(bp, i);
  4259. if (bp->num_rx_rings > 1) {
  4260. u32 tbl_32 = 0;
  4261. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4262. int shift = (i % 8) << 2;
  4263. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4264. if ((i % 8) == 7) {
  4265. REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4266. REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4267. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4268. BNX2_RLUP_RSS_COMMAND_WRITE |
  4269. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4270. tbl_32 = 0;
  4271. }
  4272. }
  4273. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4274. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4275. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4276. }
  4277. }
  4278. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4279. {
  4280. u32 max, num_rings = 1;
  4281. while (ring_size > MAX_RX_DESC_CNT) {
  4282. ring_size -= MAX_RX_DESC_CNT;
  4283. num_rings++;
  4284. }
  4285. /* round to next power of 2 */
  4286. max = max_size;
  4287. while ((max & num_rings) == 0)
  4288. max >>= 1;
  4289. if (num_rings != max)
  4290. max <<= 1;
  4291. return max;
  4292. }
  4293. static void
  4294. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4295. {
  4296. u32 rx_size, rx_space, jumbo_size;
  4297. /* 8 for CRC and VLAN */
  4298. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4299. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4300. sizeof(struct skb_shared_info);
  4301. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4302. bp->rx_pg_ring_size = 0;
  4303. bp->rx_max_pg_ring = 0;
  4304. bp->rx_max_pg_ring_idx = 0;
  4305. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4306. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4307. jumbo_size = size * pages;
  4308. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4309. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4310. bp->rx_pg_ring_size = jumbo_size;
  4311. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4312. MAX_RX_PG_RINGS);
  4313. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4314. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4315. bp->rx_copy_thresh = 0;
  4316. }
  4317. bp->rx_buf_use_size = rx_size;
  4318. /* hw alignment */
  4319. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4320. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4321. bp->rx_ring_size = size;
  4322. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4323. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4324. }
  4325. static void
  4326. bnx2_free_tx_skbs(struct bnx2 *bp)
  4327. {
  4328. int i;
  4329. for (i = 0; i < bp->num_tx_rings; i++) {
  4330. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4331. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4332. int j;
  4333. if (txr->tx_buf_ring == NULL)
  4334. continue;
  4335. for (j = 0; j < TX_DESC_CNT; ) {
  4336. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4337. struct sk_buff *skb = tx_buf->skb;
  4338. int k, last;
  4339. if (skb == NULL) {
  4340. j++;
  4341. continue;
  4342. }
  4343. dma_unmap_single(&bp->pdev->dev,
  4344. dma_unmap_addr(tx_buf, mapping),
  4345. skb_headlen(skb),
  4346. PCI_DMA_TODEVICE);
  4347. tx_buf->skb = NULL;
  4348. last = tx_buf->nr_frags;
  4349. j++;
  4350. for (k = 0; k < last; k++, j++) {
  4351. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4352. dma_unmap_page(&bp->pdev->dev,
  4353. dma_unmap_addr(tx_buf, mapping),
  4354. skb_shinfo(skb)->frags[k].size,
  4355. PCI_DMA_TODEVICE);
  4356. }
  4357. dev_kfree_skb(skb);
  4358. }
  4359. }
  4360. }
  4361. static void
  4362. bnx2_free_rx_skbs(struct bnx2 *bp)
  4363. {
  4364. int i;
  4365. for (i = 0; i < bp->num_rx_rings; i++) {
  4366. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4367. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4368. int j;
  4369. if (rxr->rx_buf_ring == NULL)
  4370. return;
  4371. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4372. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4373. struct sk_buff *skb = rx_buf->skb;
  4374. if (skb == NULL)
  4375. continue;
  4376. dma_unmap_single(&bp->pdev->dev,
  4377. dma_unmap_addr(rx_buf, mapping),
  4378. bp->rx_buf_use_size,
  4379. PCI_DMA_FROMDEVICE);
  4380. rx_buf->skb = NULL;
  4381. dev_kfree_skb(skb);
  4382. }
  4383. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4384. bnx2_free_rx_page(bp, rxr, j);
  4385. }
  4386. }
  4387. static void
  4388. bnx2_free_skbs(struct bnx2 *bp)
  4389. {
  4390. bnx2_free_tx_skbs(bp);
  4391. bnx2_free_rx_skbs(bp);
  4392. }
  4393. static int
  4394. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4395. {
  4396. int rc;
  4397. rc = bnx2_reset_chip(bp, reset_code);
  4398. bnx2_free_skbs(bp);
  4399. if (rc)
  4400. return rc;
  4401. if ((rc = bnx2_init_chip(bp)) != 0)
  4402. return rc;
  4403. bnx2_init_all_rings(bp);
  4404. return 0;
  4405. }
  4406. static int
  4407. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4408. {
  4409. int rc;
  4410. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4411. return rc;
  4412. spin_lock_bh(&bp->phy_lock);
  4413. bnx2_init_phy(bp, reset_phy);
  4414. bnx2_set_link(bp);
  4415. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4416. bnx2_remote_phy_event(bp);
  4417. spin_unlock_bh(&bp->phy_lock);
  4418. return 0;
  4419. }
  4420. static int
  4421. bnx2_shutdown_chip(struct bnx2 *bp)
  4422. {
  4423. u32 reset_code;
  4424. if (bp->flags & BNX2_FLAG_NO_WOL)
  4425. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4426. else if (bp->wol)
  4427. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4428. else
  4429. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4430. return bnx2_reset_chip(bp, reset_code);
  4431. }
  4432. static int
  4433. bnx2_test_registers(struct bnx2 *bp)
  4434. {
  4435. int ret;
  4436. int i, is_5709;
  4437. static const struct {
  4438. u16 offset;
  4439. u16 flags;
  4440. #define BNX2_FL_NOT_5709 1
  4441. u32 rw_mask;
  4442. u32 ro_mask;
  4443. } reg_tbl[] = {
  4444. { 0x006c, 0, 0x00000000, 0x0000003f },
  4445. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4446. { 0x0094, 0, 0x00000000, 0x00000000 },
  4447. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4448. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4449. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4450. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4451. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4452. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4453. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4454. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4455. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4456. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4457. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4458. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4459. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4460. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4461. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4462. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4463. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4464. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4465. { 0x1000, 0, 0x00000000, 0x00000001 },
  4466. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4467. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4468. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4469. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4470. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4471. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4472. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4473. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4474. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4475. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4476. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4477. { 0x1800, 0, 0x00000000, 0x00000001 },
  4478. { 0x1804, 0, 0x00000000, 0x00000003 },
  4479. { 0x2800, 0, 0x00000000, 0x00000001 },
  4480. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4481. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4482. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4483. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4484. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4485. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4486. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4487. { 0x2840, 0, 0x00000000, 0xffffffff },
  4488. { 0x2844, 0, 0x00000000, 0xffffffff },
  4489. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4490. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4491. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4492. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4493. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4494. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4495. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4496. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4497. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4498. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4499. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4500. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4501. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4502. { 0x5004, 0, 0x00000000, 0x0000007f },
  4503. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4504. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4505. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4506. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4507. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4508. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4509. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4510. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4511. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4512. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4513. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4514. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4515. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4516. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4517. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4518. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4519. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4520. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4521. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4522. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4523. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4524. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4525. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4526. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4527. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4528. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4529. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4530. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4531. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4532. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4533. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4534. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4535. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4536. { 0xffff, 0, 0x00000000, 0x00000000 },
  4537. };
  4538. ret = 0;
  4539. is_5709 = 0;
  4540. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4541. is_5709 = 1;
  4542. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4543. u32 offset, rw_mask, ro_mask, save_val, val;
  4544. u16 flags = reg_tbl[i].flags;
  4545. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4546. continue;
  4547. offset = (u32) reg_tbl[i].offset;
  4548. rw_mask = reg_tbl[i].rw_mask;
  4549. ro_mask = reg_tbl[i].ro_mask;
  4550. save_val = readl(bp->regview + offset);
  4551. writel(0, bp->regview + offset);
  4552. val = readl(bp->regview + offset);
  4553. if ((val & rw_mask) != 0) {
  4554. goto reg_test_err;
  4555. }
  4556. if ((val & ro_mask) != (save_val & ro_mask)) {
  4557. goto reg_test_err;
  4558. }
  4559. writel(0xffffffff, bp->regview + offset);
  4560. val = readl(bp->regview + offset);
  4561. if ((val & rw_mask) != rw_mask) {
  4562. goto reg_test_err;
  4563. }
  4564. if ((val & ro_mask) != (save_val & ro_mask)) {
  4565. goto reg_test_err;
  4566. }
  4567. writel(save_val, bp->regview + offset);
  4568. continue;
  4569. reg_test_err:
  4570. writel(save_val, bp->regview + offset);
  4571. ret = -ENODEV;
  4572. break;
  4573. }
  4574. return ret;
  4575. }
  4576. static int
  4577. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4578. {
  4579. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4580. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4581. int i;
  4582. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4583. u32 offset;
  4584. for (offset = 0; offset < size; offset += 4) {
  4585. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4586. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4587. test_pattern[i]) {
  4588. return -ENODEV;
  4589. }
  4590. }
  4591. }
  4592. return 0;
  4593. }
  4594. static int
  4595. bnx2_test_memory(struct bnx2 *bp)
  4596. {
  4597. int ret = 0;
  4598. int i;
  4599. static struct mem_entry {
  4600. u32 offset;
  4601. u32 len;
  4602. } mem_tbl_5706[] = {
  4603. { 0x60000, 0x4000 },
  4604. { 0xa0000, 0x3000 },
  4605. { 0xe0000, 0x4000 },
  4606. { 0x120000, 0x4000 },
  4607. { 0x1a0000, 0x4000 },
  4608. { 0x160000, 0x4000 },
  4609. { 0xffffffff, 0 },
  4610. },
  4611. mem_tbl_5709[] = {
  4612. { 0x60000, 0x4000 },
  4613. { 0xa0000, 0x3000 },
  4614. { 0xe0000, 0x4000 },
  4615. { 0x120000, 0x4000 },
  4616. { 0x1a0000, 0x4000 },
  4617. { 0xffffffff, 0 },
  4618. };
  4619. struct mem_entry *mem_tbl;
  4620. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4621. mem_tbl = mem_tbl_5709;
  4622. else
  4623. mem_tbl = mem_tbl_5706;
  4624. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4625. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4626. mem_tbl[i].len)) != 0) {
  4627. return ret;
  4628. }
  4629. }
  4630. return ret;
  4631. }
  4632. #define BNX2_MAC_LOOPBACK 0
  4633. #define BNX2_PHY_LOOPBACK 1
  4634. static int
  4635. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4636. {
  4637. unsigned int pkt_size, num_pkts, i;
  4638. struct sk_buff *skb, *rx_skb;
  4639. unsigned char *packet;
  4640. u16 rx_start_idx, rx_idx;
  4641. dma_addr_t map;
  4642. struct tx_bd *txbd;
  4643. struct sw_bd *rx_buf;
  4644. struct l2_fhdr *rx_hdr;
  4645. int ret = -ENODEV;
  4646. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4647. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4648. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4649. tx_napi = bnapi;
  4650. txr = &tx_napi->tx_ring;
  4651. rxr = &bnapi->rx_ring;
  4652. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4653. bp->loopback = MAC_LOOPBACK;
  4654. bnx2_set_mac_loopback(bp);
  4655. }
  4656. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4657. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4658. return 0;
  4659. bp->loopback = PHY_LOOPBACK;
  4660. bnx2_set_phy_loopback(bp);
  4661. }
  4662. else
  4663. return -EINVAL;
  4664. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4665. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4666. if (!skb)
  4667. return -ENOMEM;
  4668. packet = skb_put(skb, pkt_size);
  4669. memcpy(packet, bp->dev->dev_addr, 6);
  4670. memset(packet + 6, 0x0, 8);
  4671. for (i = 14; i < pkt_size; i++)
  4672. packet[i] = (unsigned char) (i & 0xff);
  4673. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4674. PCI_DMA_TODEVICE);
  4675. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4676. dev_kfree_skb(skb);
  4677. return -EIO;
  4678. }
  4679. REG_WR(bp, BNX2_HC_COMMAND,
  4680. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4681. REG_RD(bp, BNX2_HC_COMMAND);
  4682. udelay(5);
  4683. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4684. num_pkts = 0;
  4685. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4686. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4687. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4688. txbd->tx_bd_mss_nbytes = pkt_size;
  4689. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4690. num_pkts++;
  4691. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4692. txr->tx_prod_bseq += pkt_size;
  4693. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4694. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4695. udelay(100);
  4696. REG_WR(bp, BNX2_HC_COMMAND,
  4697. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4698. REG_RD(bp, BNX2_HC_COMMAND);
  4699. udelay(5);
  4700. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4701. dev_kfree_skb(skb);
  4702. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4703. goto loopback_test_done;
  4704. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4705. if (rx_idx != rx_start_idx + num_pkts) {
  4706. goto loopback_test_done;
  4707. }
  4708. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4709. rx_skb = rx_buf->skb;
  4710. rx_hdr = rx_buf->desc;
  4711. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4712. dma_sync_single_for_cpu(&bp->pdev->dev,
  4713. dma_unmap_addr(rx_buf, mapping),
  4714. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4715. if (rx_hdr->l2_fhdr_status &
  4716. (L2_FHDR_ERRORS_BAD_CRC |
  4717. L2_FHDR_ERRORS_PHY_DECODE |
  4718. L2_FHDR_ERRORS_ALIGNMENT |
  4719. L2_FHDR_ERRORS_TOO_SHORT |
  4720. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4721. goto loopback_test_done;
  4722. }
  4723. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4724. goto loopback_test_done;
  4725. }
  4726. for (i = 14; i < pkt_size; i++) {
  4727. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4728. goto loopback_test_done;
  4729. }
  4730. }
  4731. ret = 0;
  4732. loopback_test_done:
  4733. bp->loopback = 0;
  4734. return ret;
  4735. }
  4736. #define BNX2_MAC_LOOPBACK_FAILED 1
  4737. #define BNX2_PHY_LOOPBACK_FAILED 2
  4738. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4739. BNX2_PHY_LOOPBACK_FAILED)
  4740. static int
  4741. bnx2_test_loopback(struct bnx2 *bp)
  4742. {
  4743. int rc = 0;
  4744. if (!netif_running(bp->dev))
  4745. return BNX2_LOOPBACK_FAILED;
  4746. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4747. spin_lock_bh(&bp->phy_lock);
  4748. bnx2_init_phy(bp, 1);
  4749. spin_unlock_bh(&bp->phy_lock);
  4750. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4751. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4752. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4753. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4754. return rc;
  4755. }
  4756. #define NVRAM_SIZE 0x200
  4757. #define CRC32_RESIDUAL 0xdebb20e3
  4758. static int
  4759. bnx2_test_nvram(struct bnx2 *bp)
  4760. {
  4761. __be32 buf[NVRAM_SIZE / 4];
  4762. u8 *data = (u8 *) buf;
  4763. int rc = 0;
  4764. u32 magic, csum;
  4765. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4766. goto test_nvram_done;
  4767. magic = be32_to_cpu(buf[0]);
  4768. if (magic != 0x669955aa) {
  4769. rc = -ENODEV;
  4770. goto test_nvram_done;
  4771. }
  4772. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4773. goto test_nvram_done;
  4774. csum = ether_crc_le(0x100, data);
  4775. if (csum != CRC32_RESIDUAL) {
  4776. rc = -ENODEV;
  4777. goto test_nvram_done;
  4778. }
  4779. csum = ether_crc_le(0x100, data + 0x100);
  4780. if (csum != CRC32_RESIDUAL) {
  4781. rc = -ENODEV;
  4782. }
  4783. test_nvram_done:
  4784. return rc;
  4785. }
  4786. static int
  4787. bnx2_test_link(struct bnx2 *bp)
  4788. {
  4789. u32 bmsr;
  4790. if (!netif_running(bp->dev))
  4791. return -ENODEV;
  4792. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4793. if (bp->link_up)
  4794. return 0;
  4795. return -ENODEV;
  4796. }
  4797. spin_lock_bh(&bp->phy_lock);
  4798. bnx2_enable_bmsr1(bp);
  4799. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4800. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4801. bnx2_disable_bmsr1(bp);
  4802. spin_unlock_bh(&bp->phy_lock);
  4803. if (bmsr & BMSR_LSTATUS) {
  4804. return 0;
  4805. }
  4806. return -ENODEV;
  4807. }
  4808. static int
  4809. bnx2_test_intr(struct bnx2 *bp)
  4810. {
  4811. int i;
  4812. u16 status_idx;
  4813. if (!netif_running(bp->dev))
  4814. return -ENODEV;
  4815. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4816. /* This register is not touched during run-time. */
  4817. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4818. REG_RD(bp, BNX2_HC_COMMAND);
  4819. for (i = 0; i < 10; i++) {
  4820. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4821. status_idx) {
  4822. break;
  4823. }
  4824. msleep_interruptible(10);
  4825. }
  4826. if (i < 10)
  4827. return 0;
  4828. return -ENODEV;
  4829. }
  4830. /* Determining link for parallel detection. */
  4831. static int
  4832. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4833. {
  4834. u32 mode_ctl, an_dbg, exp;
  4835. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4836. return 0;
  4837. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4838. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4839. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4840. return 0;
  4841. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4842. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4843. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4844. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4845. return 0;
  4846. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4847. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4848. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4849. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4850. return 0;
  4851. return 1;
  4852. }
  4853. static void
  4854. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4855. {
  4856. int check_link = 1;
  4857. spin_lock(&bp->phy_lock);
  4858. if (bp->serdes_an_pending) {
  4859. bp->serdes_an_pending--;
  4860. check_link = 0;
  4861. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4862. u32 bmcr;
  4863. bp->current_interval = BNX2_TIMER_INTERVAL;
  4864. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4865. if (bmcr & BMCR_ANENABLE) {
  4866. if (bnx2_5706_serdes_has_link(bp)) {
  4867. bmcr &= ~BMCR_ANENABLE;
  4868. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4869. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4870. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4871. }
  4872. }
  4873. }
  4874. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4875. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4876. u32 phy2;
  4877. bnx2_write_phy(bp, 0x17, 0x0f01);
  4878. bnx2_read_phy(bp, 0x15, &phy2);
  4879. if (phy2 & 0x20) {
  4880. u32 bmcr;
  4881. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4882. bmcr |= BMCR_ANENABLE;
  4883. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4884. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4885. }
  4886. } else
  4887. bp->current_interval = BNX2_TIMER_INTERVAL;
  4888. if (check_link) {
  4889. u32 val;
  4890. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4891. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4892. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4893. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4894. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4895. bnx2_5706s_force_link_dn(bp, 1);
  4896. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4897. } else
  4898. bnx2_set_link(bp);
  4899. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4900. bnx2_set_link(bp);
  4901. }
  4902. spin_unlock(&bp->phy_lock);
  4903. }
  4904. static void
  4905. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4906. {
  4907. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4908. return;
  4909. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4910. bp->serdes_an_pending = 0;
  4911. return;
  4912. }
  4913. spin_lock(&bp->phy_lock);
  4914. if (bp->serdes_an_pending)
  4915. bp->serdes_an_pending--;
  4916. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4917. u32 bmcr;
  4918. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4919. if (bmcr & BMCR_ANENABLE) {
  4920. bnx2_enable_forced_2g5(bp);
  4921. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4922. } else {
  4923. bnx2_disable_forced_2g5(bp);
  4924. bp->serdes_an_pending = 2;
  4925. bp->current_interval = BNX2_TIMER_INTERVAL;
  4926. }
  4927. } else
  4928. bp->current_interval = BNX2_TIMER_INTERVAL;
  4929. spin_unlock(&bp->phy_lock);
  4930. }
  4931. static void
  4932. bnx2_timer(unsigned long data)
  4933. {
  4934. struct bnx2 *bp = (struct bnx2 *) data;
  4935. if (!netif_running(bp->dev))
  4936. return;
  4937. if (atomic_read(&bp->intr_sem) != 0)
  4938. goto bnx2_restart_timer;
  4939. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4940. BNX2_FLAG_USING_MSI)
  4941. bnx2_chk_missed_msi(bp);
  4942. bnx2_send_heart_beat(bp);
  4943. bp->stats_blk->stat_FwRxDrop =
  4944. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4945. /* workaround occasional corrupted counters */
  4946. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4947. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4948. BNX2_HC_COMMAND_STATS_NOW);
  4949. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4950. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4951. bnx2_5706_serdes_timer(bp);
  4952. else
  4953. bnx2_5708_serdes_timer(bp);
  4954. }
  4955. bnx2_restart_timer:
  4956. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4957. }
  4958. static int
  4959. bnx2_request_irq(struct bnx2 *bp)
  4960. {
  4961. unsigned long flags;
  4962. struct bnx2_irq *irq;
  4963. int rc = 0, i;
  4964. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4965. flags = 0;
  4966. else
  4967. flags = IRQF_SHARED;
  4968. for (i = 0; i < bp->irq_nvecs; i++) {
  4969. irq = &bp->irq_tbl[i];
  4970. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4971. &bp->bnx2_napi[i]);
  4972. if (rc)
  4973. break;
  4974. irq->requested = 1;
  4975. }
  4976. return rc;
  4977. }
  4978. static void
  4979. __bnx2_free_irq(struct bnx2 *bp)
  4980. {
  4981. struct bnx2_irq *irq;
  4982. int i;
  4983. for (i = 0; i < bp->irq_nvecs; i++) {
  4984. irq = &bp->irq_tbl[i];
  4985. if (irq->requested)
  4986. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4987. irq->requested = 0;
  4988. }
  4989. }
  4990. static void
  4991. bnx2_free_irq(struct bnx2 *bp)
  4992. {
  4993. __bnx2_free_irq(bp);
  4994. if (bp->flags & BNX2_FLAG_USING_MSI)
  4995. pci_disable_msi(bp->pdev);
  4996. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4997. pci_disable_msix(bp->pdev);
  4998. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4999. }
  5000. static void
  5001. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5002. {
  5003. int i, total_vecs, rc;
  5004. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5005. struct net_device *dev = bp->dev;
  5006. const int len = sizeof(bp->irq_tbl[0].name);
  5007. bnx2_setup_msix_tbl(bp);
  5008. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5009. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5010. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5011. /* Need to flush the previous three writes to ensure MSI-X
  5012. * is setup properly */
  5013. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5014. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5015. msix_ent[i].entry = i;
  5016. msix_ent[i].vector = 0;
  5017. }
  5018. total_vecs = msix_vecs;
  5019. #ifdef BCM_CNIC
  5020. total_vecs++;
  5021. #endif
  5022. rc = -ENOSPC;
  5023. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5024. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5025. if (rc <= 0)
  5026. break;
  5027. if (rc > 0)
  5028. total_vecs = rc;
  5029. }
  5030. if (rc != 0)
  5031. return;
  5032. msix_vecs = total_vecs;
  5033. #ifdef BCM_CNIC
  5034. msix_vecs--;
  5035. #endif
  5036. bp->irq_nvecs = msix_vecs;
  5037. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5038. for (i = 0; i < total_vecs; i++) {
  5039. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5040. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5041. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5042. }
  5043. }
  5044. static int
  5045. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5046. {
  5047. int cpus = num_online_cpus();
  5048. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5049. bp->irq_tbl[0].handler = bnx2_interrupt;
  5050. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5051. bp->irq_nvecs = 1;
  5052. bp->irq_tbl[0].vector = bp->pdev->irq;
  5053. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5054. bnx2_enable_msix(bp, msix_vecs);
  5055. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5056. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5057. if (pci_enable_msi(bp->pdev) == 0) {
  5058. bp->flags |= BNX2_FLAG_USING_MSI;
  5059. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5060. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5061. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5062. } else
  5063. bp->irq_tbl[0].handler = bnx2_msi;
  5064. bp->irq_tbl[0].vector = bp->pdev->irq;
  5065. }
  5066. }
  5067. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5068. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5069. bp->num_rx_rings = bp->irq_nvecs;
  5070. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5071. }
  5072. /* Called with rtnl_lock */
  5073. static int
  5074. bnx2_open(struct net_device *dev)
  5075. {
  5076. struct bnx2 *bp = netdev_priv(dev);
  5077. int rc;
  5078. netif_carrier_off(dev);
  5079. bnx2_set_power_state(bp, PCI_D0);
  5080. bnx2_disable_int(bp);
  5081. rc = bnx2_setup_int_mode(bp, disable_msi);
  5082. if (rc)
  5083. goto open_err;
  5084. bnx2_init_napi(bp);
  5085. bnx2_napi_enable(bp);
  5086. rc = bnx2_alloc_mem(bp);
  5087. if (rc)
  5088. goto open_err;
  5089. rc = bnx2_request_irq(bp);
  5090. if (rc)
  5091. goto open_err;
  5092. rc = bnx2_init_nic(bp, 1);
  5093. if (rc)
  5094. goto open_err;
  5095. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5096. atomic_set(&bp->intr_sem, 0);
  5097. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5098. bnx2_enable_int(bp);
  5099. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5100. /* Test MSI to make sure it is working
  5101. * If MSI test fails, go back to INTx mode
  5102. */
  5103. if (bnx2_test_intr(bp) != 0) {
  5104. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5105. bnx2_disable_int(bp);
  5106. bnx2_free_irq(bp);
  5107. bnx2_setup_int_mode(bp, 1);
  5108. rc = bnx2_init_nic(bp, 0);
  5109. if (!rc)
  5110. rc = bnx2_request_irq(bp);
  5111. if (rc) {
  5112. del_timer_sync(&bp->timer);
  5113. goto open_err;
  5114. }
  5115. bnx2_enable_int(bp);
  5116. }
  5117. }
  5118. if (bp->flags & BNX2_FLAG_USING_MSI)
  5119. netdev_info(dev, "using MSI\n");
  5120. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5121. netdev_info(dev, "using MSIX\n");
  5122. netif_tx_start_all_queues(dev);
  5123. return 0;
  5124. open_err:
  5125. bnx2_napi_disable(bp);
  5126. bnx2_free_skbs(bp);
  5127. bnx2_free_irq(bp);
  5128. bnx2_free_mem(bp);
  5129. bnx2_del_napi(bp);
  5130. return rc;
  5131. }
  5132. static void
  5133. bnx2_reset_task(struct work_struct *work)
  5134. {
  5135. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5136. rtnl_lock();
  5137. if (!netif_running(bp->dev)) {
  5138. rtnl_unlock();
  5139. return;
  5140. }
  5141. bnx2_netif_stop(bp, true);
  5142. bnx2_init_nic(bp, 1);
  5143. atomic_set(&bp->intr_sem, 1);
  5144. bnx2_netif_start(bp, true);
  5145. rtnl_unlock();
  5146. }
  5147. static void
  5148. bnx2_dump_state(struct bnx2 *bp)
  5149. {
  5150. struct net_device *dev = bp->dev;
  5151. u32 mcp_p0, mcp_p1, val1, val2;
  5152. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5153. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5154. atomic_read(&bp->intr_sem), val1);
  5155. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5156. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5157. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5158. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5159. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5160. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5161. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5162. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5163. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5164. mcp_p0 = BNX2_MCP_STATE_P0;
  5165. mcp_p1 = BNX2_MCP_STATE_P1;
  5166. } else {
  5167. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  5168. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  5169. }
  5170. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5171. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  5172. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5173. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5174. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5175. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5176. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5177. }
  5178. static void
  5179. bnx2_tx_timeout(struct net_device *dev)
  5180. {
  5181. struct bnx2 *bp = netdev_priv(dev);
  5182. bnx2_dump_state(bp);
  5183. /* This allows the netif to be shutdown gracefully before resetting */
  5184. schedule_work(&bp->reset_task);
  5185. }
  5186. /* Called with netif_tx_lock.
  5187. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5188. * netif_wake_queue().
  5189. */
  5190. static netdev_tx_t
  5191. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5192. {
  5193. struct bnx2 *bp = netdev_priv(dev);
  5194. dma_addr_t mapping;
  5195. struct tx_bd *txbd;
  5196. struct sw_tx_bd *tx_buf;
  5197. u32 len, vlan_tag_flags, last_frag, mss;
  5198. u16 prod, ring_prod;
  5199. int i;
  5200. struct bnx2_napi *bnapi;
  5201. struct bnx2_tx_ring_info *txr;
  5202. struct netdev_queue *txq;
  5203. /* Determine which tx ring we will be placed on */
  5204. i = skb_get_queue_mapping(skb);
  5205. bnapi = &bp->bnx2_napi[i];
  5206. txr = &bnapi->tx_ring;
  5207. txq = netdev_get_tx_queue(dev, i);
  5208. if (unlikely(bnx2_tx_avail(bp, txr) <
  5209. (skb_shinfo(skb)->nr_frags + 1))) {
  5210. netif_tx_stop_queue(txq);
  5211. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5212. return NETDEV_TX_BUSY;
  5213. }
  5214. len = skb_headlen(skb);
  5215. prod = txr->tx_prod;
  5216. ring_prod = TX_RING_IDX(prod);
  5217. vlan_tag_flags = 0;
  5218. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5219. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5220. }
  5221. if (vlan_tx_tag_present(skb)) {
  5222. vlan_tag_flags |=
  5223. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5224. }
  5225. if ((mss = skb_shinfo(skb)->gso_size)) {
  5226. u32 tcp_opt_len;
  5227. struct iphdr *iph;
  5228. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5229. tcp_opt_len = tcp_optlen(skb);
  5230. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5231. u32 tcp_off = skb_transport_offset(skb) -
  5232. sizeof(struct ipv6hdr) - ETH_HLEN;
  5233. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5234. TX_BD_FLAGS_SW_FLAGS;
  5235. if (likely(tcp_off == 0))
  5236. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5237. else {
  5238. tcp_off >>= 3;
  5239. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5240. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5241. ((tcp_off & 0x10) <<
  5242. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5243. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5244. }
  5245. } else {
  5246. iph = ip_hdr(skb);
  5247. if (tcp_opt_len || (iph->ihl > 5)) {
  5248. vlan_tag_flags |= ((iph->ihl - 5) +
  5249. (tcp_opt_len >> 2)) << 8;
  5250. }
  5251. }
  5252. } else
  5253. mss = 0;
  5254. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5255. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5256. dev_kfree_skb(skb);
  5257. return NETDEV_TX_OK;
  5258. }
  5259. tx_buf = &txr->tx_buf_ring[ring_prod];
  5260. tx_buf->skb = skb;
  5261. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5262. txbd = &txr->tx_desc_ring[ring_prod];
  5263. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5264. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5265. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5266. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5267. last_frag = skb_shinfo(skb)->nr_frags;
  5268. tx_buf->nr_frags = last_frag;
  5269. tx_buf->is_gso = skb_is_gso(skb);
  5270. for (i = 0; i < last_frag; i++) {
  5271. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5272. prod = NEXT_TX_BD(prod);
  5273. ring_prod = TX_RING_IDX(prod);
  5274. txbd = &txr->tx_desc_ring[ring_prod];
  5275. len = frag->size;
  5276. mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
  5277. len, PCI_DMA_TODEVICE);
  5278. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5279. goto dma_error;
  5280. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5281. mapping);
  5282. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5283. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5284. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5285. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5286. }
  5287. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5288. prod = NEXT_TX_BD(prod);
  5289. txr->tx_prod_bseq += skb->len;
  5290. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5291. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5292. mmiowb();
  5293. txr->tx_prod = prod;
  5294. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5295. netif_tx_stop_queue(txq);
  5296. /* netif_tx_stop_queue() must be done before checking
  5297. * tx index in bnx2_tx_avail() below, because in
  5298. * bnx2_tx_int(), we update tx index before checking for
  5299. * netif_tx_queue_stopped().
  5300. */
  5301. smp_mb();
  5302. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5303. netif_tx_wake_queue(txq);
  5304. }
  5305. return NETDEV_TX_OK;
  5306. dma_error:
  5307. /* save value of frag that failed */
  5308. last_frag = i;
  5309. /* start back at beginning and unmap skb */
  5310. prod = txr->tx_prod;
  5311. ring_prod = TX_RING_IDX(prod);
  5312. tx_buf = &txr->tx_buf_ring[ring_prod];
  5313. tx_buf->skb = NULL;
  5314. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5315. skb_headlen(skb), PCI_DMA_TODEVICE);
  5316. /* unmap remaining mapped pages */
  5317. for (i = 0; i < last_frag; i++) {
  5318. prod = NEXT_TX_BD(prod);
  5319. ring_prod = TX_RING_IDX(prod);
  5320. tx_buf = &txr->tx_buf_ring[ring_prod];
  5321. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5322. skb_shinfo(skb)->frags[i].size,
  5323. PCI_DMA_TODEVICE);
  5324. }
  5325. dev_kfree_skb(skb);
  5326. return NETDEV_TX_OK;
  5327. }
  5328. /* Called with rtnl_lock */
  5329. static int
  5330. bnx2_close(struct net_device *dev)
  5331. {
  5332. struct bnx2 *bp = netdev_priv(dev);
  5333. cancel_work_sync(&bp->reset_task);
  5334. bnx2_disable_int_sync(bp);
  5335. bnx2_napi_disable(bp);
  5336. del_timer_sync(&bp->timer);
  5337. bnx2_shutdown_chip(bp);
  5338. bnx2_free_irq(bp);
  5339. bnx2_free_skbs(bp);
  5340. bnx2_free_mem(bp);
  5341. bnx2_del_napi(bp);
  5342. bp->link_up = 0;
  5343. netif_carrier_off(bp->dev);
  5344. bnx2_set_power_state(bp, PCI_D3hot);
  5345. return 0;
  5346. }
  5347. static void
  5348. bnx2_save_stats(struct bnx2 *bp)
  5349. {
  5350. u32 *hw_stats = (u32 *) bp->stats_blk;
  5351. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5352. int i;
  5353. /* The 1st 10 counters are 64-bit counters */
  5354. for (i = 0; i < 20; i += 2) {
  5355. u32 hi;
  5356. u64 lo;
  5357. hi = temp_stats[i] + hw_stats[i];
  5358. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5359. if (lo > 0xffffffff)
  5360. hi++;
  5361. temp_stats[i] = hi;
  5362. temp_stats[i + 1] = lo & 0xffffffff;
  5363. }
  5364. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5365. temp_stats[i] += hw_stats[i];
  5366. }
  5367. #define GET_64BIT_NET_STATS64(ctr) \
  5368. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5369. #define GET_64BIT_NET_STATS(ctr) \
  5370. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5371. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5372. #define GET_32BIT_NET_STATS(ctr) \
  5373. (unsigned long) (bp->stats_blk->ctr + \
  5374. bp->temp_stats_blk->ctr)
  5375. static struct rtnl_link_stats64 *
  5376. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5377. {
  5378. struct bnx2 *bp = netdev_priv(dev);
  5379. if (bp->stats_blk == NULL)
  5380. return net_stats;
  5381. net_stats->rx_packets =
  5382. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5383. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5384. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5385. net_stats->tx_packets =
  5386. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5387. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5388. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5389. net_stats->rx_bytes =
  5390. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5391. net_stats->tx_bytes =
  5392. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5393. net_stats->multicast =
  5394. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5395. net_stats->collisions =
  5396. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5397. net_stats->rx_length_errors =
  5398. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5399. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5400. net_stats->rx_over_errors =
  5401. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5402. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5403. net_stats->rx_frame_errors =
  5404. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5405. net_stats->rx_crc_errors =
  5406. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5407. net_stats->rx_errors = net_stats->rx_length_errors +
  5408. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5409. net_stats->rx_crc_errors;
  5410. net_stats->tx_aborted_errors =
  5411. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5412. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5413. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5414. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5415. net_stats->tx_carrier_errors = 0;
  5416. else {
  5417. net_stats->tx_carrier_errors =
  5418. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5419. }
  5420. net_stats->tx_errors =
  5421. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5422. net_stats->tx_aborted_errors +
  5423. net_stats->tx_carrier_errors;
  5424. net_stats->rx_missed_errors =
  5425. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5426. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5427. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5428. return net_stats;
  5429. }
  5430. /* All ethtool functions called with rtnl_lock */
  5431. static int
  5432. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5433. {
  5434. struct bnx2 *bp = netdev_priv(dev);
  5435. int support_serdes = 0, support_copper = 0;
  5436. cmd->supported = SUPPORTED_Autoneg;
  5437. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5438. support_serdes = 1;
  5439. support_copper = 1;
  5440. } else if (bp->phy_port == PORT_FIBRE)
  5441. support_serdes = 1;
  5442. else
  5443. support_copper = 1;
  5444. if (support_serdes) {
  5445. cmd->supported |= SUPPORTED_1000baseT_Full |
  5446. SUPPORTED_FIBRE;
  5447. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5448. cmd->supported |= SUPPORTED_2500baseX_Full;
  5449. }
  5450. if (support_copper) {
  5451. cmd->supported |= SUPPORTED_10baseT_Half |
  5452. SUPPORTED_10baseT_Full |
  5453. SUPPORTED_100baseT_Half |
  5454. SUPPORTED_100baseT_Full |
  5455. SUPPORTED_1000baseT_Full |
  5456. SUPPORTED_TP;
  5457. }
  5458. spin_lock_bh(&bp->phy_lock);
  5459. cmd->port = bp->phy_port;
  5460. cmd->advertising = bp->advertising;
  5461. if (bp->autoneg & AUTONEG_SPEED) {
  5462. cmd->autoneg = AUTONEG_ENABLE;
  5463. }
  5464. else {
  5465. cmd->autoneg = AUTONEG_DISABLE;
  5466. }
  5467. if (netif_carrier_ok(dev)) {
  5468. cmd->speed = bp->line_speed;
  5469. cmd->duplex = bp->duplex;
  5470. }
  5471. else {
  5472. cmd->speed = -1;
  5473. cmd->duplex = -1;
  5474. }
  5475. spin_unlock_bh(&bp->phy_lock);
  5476. cmd->transceiver = XCVR_INTERNAL;
  5477. cmd->phy_address = bp->phy_addr;
  5478. return 0;
  5479. }
  5480. static int
  5481. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5482. {
  5483. struct bnx2 *bp = netdev_priv(dev);
  5484. u8 autoneg = bp->autoneg;
  5485. u8 req_duplex = bp->req_duplex;
  5486. u16 req_line_speed = bp->req_line_speed;
  5487. u32 advertising = bp->advertising;
  5488. int err = -EINVAL;
  5489. spin_lock_bh(&bp->phy_lock);
  5490. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5491. goto err_out_unlock;
  5492. if (cmd->port != bp->phy_port &&
  5493. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5494. goto err_out_unlock;
  5495. /* If device is down, we can store the settings only if the user
  5496. * is setting the currently active port.
  5497. */
  5498. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5499. goto err_out_unlock;
  5500. if (cmd->autoneg == AUTONEG_ENABLE) {
  5501. autoneg |= AUTONEG_SPEED;
  5502. advertising = cmd->advertising;
  5503. if (cmd->port == PORT_TP) {
  5504. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5505. if (!advertising)
  5506. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5507. } else {
  5508. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5509. if (!advertising)
  5510. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5511. }
  5512. advertising |= ADVERTISED_Autoneg;
  5513. }
  5514. else {
  5515. if (cmd->port == PORT_FIBRE) {
  5516. if ((cmd->speed != SPEED_1000 &&
  5517. cmd->speed != SPEED_2500) ||
  5518. (cmd->duplex != DUPLEX_FULL))
  5519. goto err_out_unlock;
  5520. if (cmd->speed == SPEED_2500 &&
  5521. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5522. goto err_out_unlock;
  5523. }
  5524. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5525. goto err_out_unlock;
  5526. autoneg &= ~AUTONEG_SPEED;
  5527. req_line_speed = cmd->speed;
  5528. req_duplex = cmd->duplex;
  5529. advertising = 0;
  5530. }
  5531. bp->autoneg = autoneg;
  5532. bp->advertising = advertising;
  5533. bp->req_line_speed = req_line_speed;
  5534. bp->req_duplex = req_duplex;
  5535. err = 0;
  5536. /* If device is down, the new settings will be picked up when it is
  5537. * brought up.
  5538. */
  5539. if (netif_running(dev))
  5540. err = bnx2_setup_phy(bp, cmd->port);
  5541. err_out_unlock:
  5542. spin_unlock_bh(&bp->phy_lock);
  5543. return err;
  5544. }
  5545. static void
  5546. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5547. {
  5548. struct bnx2 *bp = netdev_priv(dev);
  5549. strcpy(info->driver, DRV_MODULE_NAME);
  5550. strcpy(info->version, DRV_MODULE_VERSION);
  5551. strcpy(info->bus_info, pci_name(bp->pdev));
  5552. strcpy(info->fw_version, bp->fw_version);
  5553. }
  5554. #define BNX2_REGDUMP_LEN (32 * 1024)
  5555. static int
  5556. bnx2_get_regs_len(struct net_device *dev)
  5557. {
  5558. return BNX2_REGDUMP_LEN;
  5559. }
  5560. static void
  5561. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5562. {
  5563. u32 *p = _p, i, offset;
  5564. u8 *orig_p = _p;
  5565. struct bnx2 *bp = netdev_priv(dev);
  5566. static const u32 reg_boundaries[] = {
  5567. 0x0000, 0x0098, 0x0400, 0x045c,
  5568. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5569. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5570. 0x1040, 0x1048, 0x1080, 0x10a4,
  5571. 0x1400, 0x1490, 0x1498, 0x14f0,
  5572. 0x1500, 0x155c, 0x1580, 0x15dc,
  5573. 0x1600, 0x1658, 0x1680, 0x16d8,
  5574. 0x1800, 0x1820, 0x1840, 0x1854,
  5575. 0x1880, 0x1894, 0x1900, 0x1984,
  5576. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5577. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5578. 0x2000, 0x2030, 0x23c0, 0x2400,
  5579. 0x2800, 0x2820, 0x2830, 0x2850,
  5580. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5581. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5582. 0x4080, 0x4090, 0x43c0, 0x4458,
  5583. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5584. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5585. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5586. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5587. 0x6800, 0x6848, 0x684c, 0x6860,
  5588. 0x6888, 0x6910, 0x8000
  5589. };
  5590. regs->version = 0;
  5591. memset(p, 0, BNX2_REGDUMP_LEN);
  5592. if (!netif_running(bp->dev))
  5593. return;
  5594. i = 0;
  5595. offset = reg_boundaries[0];
  5596. p += offset;
  5597. while (offset < BNX2_REGDUMP_LEN) {
  5598. *p++ = REG_RD(bp, offset);
  5599. offset += 4;
  5600. if (offset == reg_boundaries[i + 1]) {
  5601. offset = reg_boundaries[i + 2];
  5602. p = (u32 *) (orig_p + offset);
  5603. i += 2;
  5604. }
  5605. }
  5606. }
  5607. static void
  5608. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5609. {
  5610. struct bnx2 *bp = netdev_priv(dev);
  5611. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5612. wol->supported = 0;
  5613. wol->wolopts = 0;
  5614. }
  5615. else {
  5616. wol->supported = WAKE_MAGIC;
  5617. if (bp->wol)
  5618. wol->wolopts = WAKE_MAGIC;
  5619. else
  5620. wol->wolopts = 0;
  5621. }
  5622. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5623. }
  5624. static int
  5625. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5626. {
  5627. struct bnx2 *bp = netdev_priv(dev);
  5628. if (wol->wolopts & ~WAKE_MAGIC)
  5629. return -EINVAL;
  5630. if (wol->wolopts & WAKE_MAGIC) {
  5631. if (bp->flags & BNX2_FLAG_NO_WOL)
  5632. return -EINVAL;
  5633. bp->wol = 1;
  5634. }
  5635. else {
  5636. bp->wol = 0;
  5637. }
  5638. return 0;
  5639. }
  5640. static int
  5641. bnx2_nway_reset(struct net_device *dev)
  5642. {
  5643. struct bnx2 *bp = netdev_priv(dev);
  5644. u32 bmcr;
  5645. if (!netif_running(dev))
  5646. return -EAGAIN;
  5647. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5648. return -EINVAL;
  5649. }
  5650. spin_lock_bh(&bp->phy_lock);
  5651. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5652. int rc;
  5653. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5654. spin_unlock_bh(&bp->phy_lock);
  5655. return rc;
  5656. }
  5657. /* Force a link down visible on the other side */
  5658. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5659. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5660. spin_unlock_bh(&bp->phy_lock);
  5661. msleep(20);
  5662. spin_lock_bh(&bp->phy_lock);
  5663. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5664. bp->serdes_an_pending = 1;
  5665. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5666. }
  5667. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5668. bmcr &= ~BMCR_LOOPBACK;
  5669. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5670. spin_unlock_bh(&bp->phy_lock);
  5671. return 0;
  5672. }
  5673. static u32
  5674. bnx2_get_link(struct net_device *dev)
  5675. {
  5676. struct bnx2 *bp = netdev_priv(dev);
  5677. return bp->link_up;
  5678. }
  5679. static int
  5680. bnx2_get_eeprom_len(struct net_device *dev)
  5681. {
  5682. struct bnx2 *bp = netdev_priv(dev);
  5683. if (bp->flash_info == NULL)
  5684. return 0;
  5685. return (int) bp->flash_size;
  5686. }
  5687. static int
  5688. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5689. u8 *eebuf)
  5690. {
  5691. struct bnx2 *bp = netdev_priv(dev);
  5692. int rc;
  5693. if (!netif_running(dev))
  5694. return -EAGAIN;
  5695. /* parameters already validated in ethtool_get_eeprom */
  5696. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5697. return rc;
  5698. }
  5699. static int
  5700. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5701. u8 *eebuf)
  5702. {
  5703. struct bnx2 *bp = netdev_priv(dev);
  5704. int rc;
  5705. if (!netif_running(dev))
  5706. return -EAGAIN;
  5707. /* parameters already validated in ethtool_set_eeprom */
  5708. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5709. return rc;
  5710. }
  5711. static int
  5712. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5713. {
  5714. struct bnx2 *bp = netdev_priv(dev);
  5715. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5716. coal->rx_coalesce_usecs = bp->rx_ticks;
  5717. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5718. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5719. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5720. coal->tx_coalesce_usecs = bp->tx_ticks;
  5721. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5722. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5723. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5724. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5725. return 0;
  5726. }
  5727. static int
  5728. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5729. {
  5730. struct bnx2 *bp = netdev_priv(dev);
  5731. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5732. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5733. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5734. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5735. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5736. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5737. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5738. if (bp->rx_quick_cons_trip_int > 0xff)
  5739. bp->rx_quick_cons_trip_int = 0xff;
  5740. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5741. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5742. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5743. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5744. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5745. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5746. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5747. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5748. 0xff;
  5749. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5750. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5751. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5752. bp->stats_ticks = USEC_PER_SEC;
  5753. }
  5754. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5755. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5756. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5757. if (netif_running(bp->dev)) {
  5758. bnx2_netif_stop(bp, true);
  5759. bnx2_init_nic(bp, 0);
  5760. bnx2_netif_start(bp, true);
  5761. }
  5762. return 0;
  5763. }
  5764. static void
  5765. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5766. {
  5767. struct bnx2 *bp = netdev_priv(dev);
  5768. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5769. ering->rx_mini_max_pending = 0;
  5770. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5771. ering->rx_pending = bp->rx_ring_size;
  5772. ering->rx_mini_pending = 0;
  5773. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5774. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5775. ering->tx_pending = bp->tx_ring_size;
  5776. }
  5777. static int
  5778. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5779. {
  5780. if (netif_running(bp->dev)) {
  5781. /* Reset will erase chipset stats; save them */
  5782. bnx2_save_stats(bp);
  5783. bnx2_netif_stop(bp, true);
  5784. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5785. __bnx2_free_irq(bp);
  5786. bnx2_free_skbs(bp);
  5787. bnx2_free_mem(bp);
  5788. }
  5789. bnx2_set_rx_ring_size(bp, rx);
  5790. bp->tx_ring_size = tx;
  5791. if (netif_running(bp->dev)) {
  5792. int rc;
  5793. rc = bnx2_alloc_mem(bp);
  5794. if (!rc)
  5795. rc = bnx2_request_irq(bp);
  5796. if (!rc)
  5797. rc = bnx2_init_nic(bp, 0);
  5798. if (rc) {
  5799. bnx2_napi_enable(bp);
  5800. dev_close(bp->dev);
  5801. return rc;
  5802. }
  5803. #ifdef BCM_CNIC
  5804. mutex_lock(&bp->cnic_lock);
  5805. /* Let cnic know about the new status block. */
  5806. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5807. bnx2_setup_cnic_irq_info(bp);
  5808. mutex_unlock(&bp->cnic_lock);
  5809. #endif
  5810. bnx2_netif_start(bp, true);
  5811. }
  5812. return 0;
  5813. }
  5814. static int
  5815. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5816. {
  5817. struct bnx2 *bp = netdev_priv(dev);
  5818. int rc;
  5819. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5820. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5821. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5822. return -EINVAL;
  5823. }
  5824. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5825. return rc;
  5826. }
  5827. static void
  5828. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5829. {
  5830. struct bnx2 *bp = netdev_priv(dev);
  5831. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5832. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5833. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5834. }
  5835. static int
  5836. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5837. {
  5838. struct bnx2 *bp = netdev_priv(dev);
  5839. bp->req_flow_ctrl = 0;
  5840. if (epause->rx_pause)
  5841. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5842. if (epause->tx_pause)
  5843. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5844. if (epause->autoneg) {
  5845. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5846. }
  5847. else {
  5848. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5849. }
  5850. if (netif_running(dev)) {
  5851. spin_lock_bh(&bp->phy_lock);
  5852. bnx2_setup_phy(bp, bp->phy_port);
  5853. spin_unlock_bh(&bp->phy_lock);
  5854. }
  5855. return 0;
  5856. }
  5857. static u32
  5858. bnx2_get_rx_csum(struct net_device *dev)
  5859. {
  5860. struct bnx2 *bp = netdev_priv(dev);
  5861. return bp->rx_csum;
  5862. }
  5863. static int
  5864. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5865. {
  5866. struct bnx2 *bp = netdev_priv(dev);
  5867. bp->rx_csum = data;
  5868. return 0;
  5869. }
  5870. static int
  5871. bnx2_set_tso(struct net_device *dev, u32 data)
  5872. {
  5873. struct bnx2 *bp = netdev_priv(dev);
  5874. if (data) {
  5875. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5876. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5877. dev->features |= NETIF_F_TSO6;
  5878. } else
  5879. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5880. NETIF_F_TSO_ECN);
  5881. return 0;
  5882. }
  5883. static struct {
  5884. char string[ETH_GSTRING_LEN];
  5885. } bnx2_stats_str_arr[] = {
  5886. { "rx_bytes" },
  5887. { "rx_error_bytes" },
  5888. { "tx_bytes" },
  5889. { "tx_error_bytes" },
  5890. { "rx_ucast_packets" },
  5891. { "rx_mcast_packets" },
  5892. { "rx_bcast_packets" },
  5893. { "tx_ucast_packets" },
  5894. { "tx_mcast_packets" },
  5895. { "tx_bcast_packets" },
  5896. { "tx_mac_errors" },
  5897. { "tx_carrier_errors" },
  5898. { "rx_crc_errors" },
  5899. { "rx_align_errors" },
  5900. { "tx_single_collisions" },
  5901. { "tx_multi_collisions" },
  5902. { "tx_deferred" },
  5903. { "tx_excess_collisions" },
  5904. { "tx_late_collisions" },
  5905. { "tx_total_collisions" },
  5906. { "rx_fragments" },
  5907. { "rx_jabbers" },
  5908. { "rx_undersize_packets" },
  5909. { "rx_oversize_packets" },
  5910. { "rx_64_byte_packets" },
  5911. { "rx_65_to_127_byte_packets" },
  5912. { "rx_128_to_255_byte_packets" },
  5913. { "rx_256_to_511_byte_packets" },
  5914. { "rx_512_to_1023_byte_packets" },
  5915. { "rx_1024_to_1522_byte_packets" },
  5916. { "rx_1523_to_9022_byte_packets" },
  5917. { "tx_64_byte_packets" },
  5918. { "tx_65_to_127_byte_packets" },
  5919. { "tx_128_to_255_byte_packets" },
  5920. { "tx_256_to_511_byte_packets" },
  5921. { "tx_512_to_1023_byte_packets" },
  5922. { "tx_1024_to_1522_byte_packets" },
  5923. { "tx_1523_to_9022_byte_packets" },
  5924. { "rx_xon_frames" },
  5925. { "rx_xoff_frames" },
  5926. { "tx_xon_frames" },
  5927. { "tx_xoff_frames" },
  5928. { "rx_mac_ctrl_frames" },
  5929. { "rx_filtered_packets" },
  5930. { "rx_ftq_discards" },
  5931. { "rx_discards" },
  5932. { "rx_fw_discards" },
  5933. };
  5934. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5935. sizeof(bnx2_stats_str_arr[0]))
  5936. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5937. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5938. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5939. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5940. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5941. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5942. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5943. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5944. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5945. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5946. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5947. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5948. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5949. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5950. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5951. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5952. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5953. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5954. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5955. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5956. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5957. STATS_OFFSET32(stat_EtherStatsCollisions),
  5958. STATS_OFFSET32(stat_EtherStatsFragments),
  5959. STATS_OFFSET32(stat_EtherStatsJabbers),
  5960. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5961. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5962. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5963. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5964. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5965. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5966. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5967. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5968. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5969. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5970. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5971. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5972. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5973. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5974. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5975. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5976. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5977. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5978. STATS_OFFSET32(stat_OutXonSent),
  5979. STATS_OFFSET32(stat_OutXoffSent),
  5980. STATS_OFFSET32(stat_MacControlFramesReceived),
  5981. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5982. STATS_OFFSET32(stat_IfInFTQDiscards),
  5983. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5984. STATS_OFFSET32(stat_FwRxDrop),
  5985. };
  5986. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5987. * skipped because of errata.
  5988. */
  5989. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5990. 8,0,8,8,8,8,8,8,8,8,
  5991. 4,0,4,4,4,4,4,4,4,4,
  5992. 4,4,4,4,4,4,4,4,4,4,
  5993. 4,4,4,4,4,4,4,4,4,4,
  5994. 4,4,4,4,4,4,4,
  5995. };
  5996. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5997. 8,0,8,8,8,8,8,8,8,8,
  5998. 4,4,4,4,4,4,4,4,4,4,
  5999. 4,4,4,4,4,4,4,4,4,4,
  6000. 4,4,4,4,4,4,4,4,4,4,
  6001. 4,4,4,4,4,4,4,
  6002. };
  6003. #define BNX2_NUM_TESTS 6
  6004. static struct {
  6005. char string[ETH_GSTRING_LEN];
  6006. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6007. { "register_test (offline)" },
  6008. { "memory_test (offline)" },
  6009. { "loopback_test (offline)" },
  6010. { "nvram_test (online)" },
  6011. { "interrupt_test (online)" },
  6012. { "link_test (online)" },
  6013. };
  6014. static int
  6015. bnx2_get_sset_count(struct net_device *dev, int sset)
  6016. {
  6017. switch (sset) {
  6018. case ETH_SS_TEST:
  6019. return BNX2_NUM_TESTS;
  6020. case ETH_SS_STATS:
  6021. return BNX2_NUM_STATS;
  6022. default:
  6023. return -EOPNOTSUPP;
  6024. }
  6025. }
  6026. static void
  6027. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6028. {
  6029. struct bnx2 *bp = netdev_priv(dev);
  6030. bnx2_set_power_state(bp, PCI_D0);
  6031. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6032. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6033. int i;
  6034. bnx2_netif_stop(bp, true);
  6035. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6036. bnx2_free_skbs(bp);
  6037. if (bnx2_test_registers(bp) != 0) {
  6038. buf[0] = 1;
  6039. etest->flags |= ETH_TEST_FL_FAILED;
  6040. }
  6041. if (bnx2_test_memory(bp) != 0) {
  6042. buf[1] = 1;
  6043. etest->flags |= ETH_TEST_FL_FAILED;
  6044. }
  6045. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6046. etest->flags |= ETH_TEST_FL_FAILED;
  6047. if (!netif_running(bp->dev))
  6048. bnx2_shutdown_chip(bp);
  6049. else {
  6050. bnx2_init_nic(bp, 1);
  6051. bnx2_netif_start(bp, true);
  6052. }
  6053. /* wait for link up */
  6054. for (i = 0; i < 7; i++) {
  6055. if (bp->link_up)
  6056. break;
  6057. msleep_interruptible(1000);
  6058. }
  6059. }
  6060. if (bnx2_test_nvram(bp) != 0) {
  6061. buf[3] = 1;
  6062. etest->flags |= ETH_TEST_FL_FAILED;
  6063. }
  6064. if (bnx2_test_intr(bp) != 0) {
  6065. buf[4] = 1;
  6066. etest->flags |= ETH_TEST_FL_FAILED;
  6067. }
  6068. if (bnx2_test_link(bp) != 0) {
  6069. buf[5] = 1;
  6070. etest->flags |= ETH_TEST_FL_FAILED;
  6071. }
  6072. if (!netif_running(bp->dev))
  6073. bnx2_set_power_state(bp, PCI_D3hot);
  6074. }
  6075. static void
  6076. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6077. {
  6078. switch (stringset) {
  6079. case ETH_SS_STATS:
  6080. memcpy(buf, bnx2_stats_str_arr,
  6081. sizeof(bnx2_stats_str_arr));
  6082. break;
  6083. case ETH_SS_TEST:
  6084. memcpy(buf, bnx2_tests_str_arr,
  6085. sizeof(bnx2_tests_str_arr));
  6086. break;
  6087. }
  6088. }
  6089. static void
  6090. bnx2_get_ethtool_stats(struct net_device *dev,
  6091. struct ethtool_stats *stats, u64 *buf)
  6092. {
  6093. struct bnx2 *bp = netdev_priv(dev);
  6094. int i;
  6095. u32 *hw_stats = (u32 *) bp->stats_blk;
  6096. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6097. u8 *stats_len_arr = NULL;
  6098. if (hw_stats == NULL) {
  6099. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6100. return;
  6101. }
  6102. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6103. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6104. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6105. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6106. stats_len_arr = bnx2_5706_stats_len_arr;
  6107. else
  6108. stats_len_arr = bnx2_5708_stats_len_arr;
  6109. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6110. unsigned long offset;
  6111. if (stats_len_arr[i] == 0) {
  6112. /* skip this counter */
  6113. buf[i] = 0;
  6114. continue;
  6115. }
  6116. offset = bnx2_stats_offset_arr[i];
  6117. if (stats_len_arr[i] == 4) {
  6118. /* 4-byte counter */
  6119. buf[i] = (u64) *(hw_stats + offset) +
  6120. *(temp_stats + offset);
  6121. continue;
  6122. }
  6123. /* 8-byte counter */
  6124. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6125. *(hw_stats + offset + 1) +
  6126. (((u64) *(temp_stats + offset)) << 32) +
  6127. *(temp_stats + offset + 1);
  6128. }
  6129. }
  6130. static int
  6131. bnx2_phys_id(struct net_device *dev, u32 data)
  6132. {
  6133. struct bnx2 *bp = netdev_priv(dev);
  6134. int i;
  6135. u32 save;
  6136. bnx2_set_power_state(bp, PCI_D0);
  6137. if (data == 0)
  6138. data = 2;
  6139. save = REG_RD(bp, BNX2_MISC_CFG);
  6140. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6141. for (i = 0; i < (data * 2); i++) {
  6142. if ((i % 2) == 0) {
  6143. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6144. }
  6145. else {
  6146. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6147. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6148. BNX2_EMAC_LED_100MB_OVERRIDE |
  6149. BNX2_EMAC_LED_10MB_OVERRIDE |
  6150. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6151. BNX2_EMAC_LED_TRAFFIC);
  6152. }
  6153. msleep_interruptible(500);
  6154. if (signal_pending(current))
  6155. break;
  6156. }
  6157. REG_WR(bp, BNX2_EMAC_LED, 0);
  6158. REG_WR(bp, BNX2_MISC_CFG, save);
  6159. if (!netif_running(dev))
  6160. bnx2_set_power_state(bp, PCI_D3hot);
  6161. return 0;
  6162. }
  6163. static int
  6164. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6165. {
  6166. struct bnx2 *bp = netdev_priv(dev);
  6167. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6168. return ethtool_op_set_tx_ipv6_csum(dev, data);
  6169. else
  6170. return ethtool_op_set_tx_csum(dev, data);
  6171. }
  6172. static int
  6173. bnx2_set_flags(struct net_device *dev, u32 data)
  6174. {
  6175. struct bnx2 *bp = netdev_priv(dev);
  6176. int rc;
  6177. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN) &&
  6178. !(data & ETH_FLAG_RXVLAN))
  6179. return -EINVAL;
  6180. /* TSO with VLAN tag won't work with current firmware */
  6181. if (!(data & ETH_FLAG_TXVLAN))
  6182. return -EINVAL;
  6183. rc = ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH | ETH_FLAG_RXVLAN |
  6184. ETH_FLAG_TXVLAN);
  6185. if (rc)
  6186. return rc;
  6187. if ((!!(data & ETH_FLAG_RXVLAN) !=
  6188. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6189. netif_running(dev)) {
  6190. bnx2_netif_stop(bp, false);
  6191. bnx2_set_rx_mode(dev);
  6192. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6193. bnx2_netif_start(bp, false);
  6194. }
  6195. return 0;
  6196. }
  6197. static const struct ethtool_ops bnx2_ethtool_ops = {
  6198. .get_settings = bnx2_get_settings,
  6199. .set_settings = bnx2_set_settings,
  6200. .get_drvinfo = bnx2_get_drvinfo,
  6201. .get_regs_len = bnx2_get_regs_len,
  6202. .get_regs = bnx2_get_regs,
  6203. .get_wol = bnx2_get_wol,
  6204. .set_wol = bnx2_set_wol,
  6205. .nway_reset = bnx2_nway_reset,
  6206. .get_link = bnx2_get_link,
  6207. .get_eeprom_len = bnx2_get_eeprom_len,
  6208. .get_eeprom = bnx2_get_eeprom,
  6209. .set_eeprom = bnx2_set_eeprom,
  6210. .get_coalesce = bnx2_get_coalesce,
  6211. .set_coalesce = bnx2_set_coalesce,
  6212. .get_ringparam = bnx2_get_ringparam,
  6213. .set_ringparam = bnx2_set_ringparam,
  6214. .get_pauseparam = bnx2_get_pauseparam,
  6215. .set_pauseparam = bnx2_set_pauseparam,
  6216. .get_rx_csum = bnx2_get_rx_csum,
  6217. .set_rx_csum = bnx2_set_rx_csum,
  6218. .set_tx_csum = bnx2_set_tx_csum,
  6219. .set_sg = ethtool_op_set_sg,
  6220. .set_tso = bnx2_set_tso,
  6221. .self_test = bnx2_self_test,
  6222. .get_strings = bnx2_get_strings,
  6223. .phys_id = bnx2_phys_id,
  6224. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6225. .get_sset_count = bnx2_get_sset_count,
  6226. .set_flags = bnx2_set_flags,
  6227. .get_flags = ethtool_op_get_flags,
  6228. };
  6229. /* Called with rtnl_lock */
  6230. static int
  6231. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6232. {
  6233. struct mii_ioctl_data *data = if_mii(ifr);
  6234. struct bnx2 *bp = netdev_priv(dev);
  6235. int err;
  6236. switch(cmd) {
  6237. case SIOCGMIIPHY:
  6238. data->phy_id = bp->phy_addr;
  6239. /* fallthru */
  6240. case SIOCGMIIREG: {
  6241. u32 mii_regval;
  6242. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6243. return -EOPNOTSUPP;
  6244. if (!netif_running(dev))
  6245. return -EAGAIN;
  6246. spin_lock_bh(&bp->phy_lock);
  6247. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6248. spin_unlock_bh(&bp->phy_lock);
  6249. data->val_out = mii_regval;
  6250. return err;
  6251. }
  6252. case SIOCSMIIREG:
  6253. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6254. return -EOPNOTSUPP;
  6255. if (!netif_running(dev))
  6256. return -EAGAIN;
  6257. spin_lock_bh(&bp->phy_lock);
  6258. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6259. spin_unlock_bh(&bp->phy_lock);
  6260. return err;
  6261. default:
  6262. /* do nothing */
  6263. break;
  6264. }
  6265. return -EOPNOTSUPP;
  6266. }
  6267. /* Called with rtnl_lock */
  6268. static int
  6269. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6270. {
  6271. struct sockaddr *addr = p;
  6272. struct bnx2 *bp = netdev_priv(dev);
  6273. if (!is_valid_ether_addr(addr->sa_data))
  6274. return -EINVAL;
  6275. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6276. if (netif_running(dev))
  6277. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6278. return 0;
  6279. }
  6280. /* Called with rtnl_lock */
  6281. static int
  6282. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6283. {
  6284. struct bnx2 *bp = netdev_priv(dev);
  6285. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6286. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6287. return -EINVAL;
  6288. dev->mtu = new_mtu;
  6289. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
  6290. }
  6291. #ifdef CONFIG_NET_POLL_CONTROLLER
  6292. static void
  6293. poll_bnx2(struct net_device *dev)
  6294. {
  6295. struct bnx2 *bp = netdev_priv(dev);
  6296. int i;
  6297. for (i = 0; i < bp->irq_nvecs; i++) {
  6298. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6299. disable_irq(irq->vector);
  6300. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6301. enable_irq(irq->vector);
  6302. }
  6303. }
  6304. #endif
  6305. static void __devinit
  6306. bnx2_get_5709_media(struct bnx2 *bp)
  6307. {
  6308. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6309. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6310. u32 strap;
  6311. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6312. return;
  6313. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6314. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6315. return;
  6316. }
  6317. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6318. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6319. else
  6320. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6321. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6322. switch (strap) {
  6323. case 0x4:
  6324. case 0x5:
  6325. case 0x6:
  6326. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6327. return;
  6328. }
  6329. } else {
  6330. switch (strap) {
  6331. case 0x1:
  6332. case 0x2:
  6333. case 0x4:
  6334. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6335. return;
  6336. }
  6337. }
  6338. }
  6339. static void __devinit
  6340. bnx2_get_pci_speed(struct bnx2 *bp)
  6341. {
  6342. u32 reg;
  6343. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6344. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6345. u32 clkreg;
  6346. bp->flags |= BNX2_FLAG_PCIX;
  6347. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6348. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6349. switch (clkreg) {
  6350. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6351. bp->bus_speed_mhz = 133;
  6352. break;
  6353. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6354. bp->bus_speed_mhz = 100;
  6355. break;
  6356. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6357. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6358. bp->bus_speed_mhz = 66;
  6359. break;
  6360. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6361. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6362. bp->bus_speed_mhz = 50;
  6363. break;
  6364. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6365. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6366. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6367. bp->bus_speed_mhz = 33;
  6368. break;
  6369. }
  6370. }
  6371. else {
  6372. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6373. bp->bus_speed_mhz = 66;
  6374. else
  6375. bp->bus_speed_mhz = 33;
  6376. }
  6377. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6378. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6379. }
  6380. static void __devinit
  6381. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6382. {
  6383. int rc, i, j;
  6384. u8 *data;
  6385. unsigned int block_end, rosize, len;
  6386. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6387. #define BNX2_VPD_LEN 128
  6388. #define BNX2_MAX_VER_SLEN 30
  6389. data = kmalloc(256, GFP_KERNEL);
  6390. if (!data)
  6391. return;
  6392. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6393. BNX2_VPD_LEN);
  6394. if (rc)
  6395. goto vpd_done;
  6396. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6397. data[i] = data[i + BNX2_VPD_LEN + 3];
  6398. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6399. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6400. data[i + 3] = data[i + BNX2_VPD_LEN];
  6401. }
  6402. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6403. if (i < 0)
  6404. goto vpd_done;
  6405. rosize = pci_vpd_lrdt_size(&data[i]);
  6406. i += PCI_VPD_LRDT_TAG_SIZE;
  6407. block_end = i + rosize;
  6408. if (block_end > BNX2_VPD_LEN)
  6409. goto vpd_done;
  6410. j = pci_vpd_find_info_keyword(data, i, rosize,
  6411. PCI_VPD_RO_KEYWORD_MFR_ID);
  6412. if (j < 0)
  6413. goto vpd_done;
  6414. len = pci_vpd_info_field_size(&data[j]);
  6415. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6416. if (j + len > block_end || len != 4 ||
  6417. memcmp(&data[j], "1028", 4))
  6418. goto vpd_done;
  6419. j = pci_vpd_find_info_keyword(data, i, rosize,
  6420. PCI_VPD_RO_KEYWORD_VENDOR0);
  6421. if (j < 0)
  6422. goto vpd_done;
  6423. len = pci_vpd_info_field_size(&data[j]);
  6424. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6425. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6426. goto vpd_done;
  6427. memcpy(bp->fw_version, &data[j], len);
  6428. bp->fw_version[len] = ' ';
  6429. vpd_done:
  6430. kfree(data);
  6431. }
  6432. static int __devinit
  6433. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6434. {
  6435. struct bnx2 *bp;
  6436. unsigned long mem_len;
  6437. int rc, i, j;
  6438. u32 reg;
  6439. u64 dma_mask, persist_dma_mask;
  6440. int err;
  6441. SET_NETDEV_DEV(dev, &pdev->dev);
  6442. bp = netdev_priv(dev);
  6443. bp->flags = 0;
  6444. bp->phy_flags = 0;
  6445. bp->temp_stats_blk =
  6446. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6447. if (bp->temp_stats_blk == NULL) {
  6448. rc = -ENOMEM;
  6449. goto err_out;
  6450. }
  6451. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6452. rc = pci_enable_device(pdev);
  6453. if (rc) {
  6454. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6455. goto err_out;
  6456. }
  6457. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6458. dev_err(&pdev->dev,
  6459. "Cannot find PCI device base address, aborting\n");
  6460. rc = -ENODEV;
  6461. goto err_out_disable;
  6462. }
  6463. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6464. if (rc) {
  6465. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6466. goto err_out_disable;
  6467. }
  6468. pci_set_master(pdev);
  6469. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6470. if (bp->pm_cap == 0) {
  6471. dev_err(&pdev->dev,
  6472. "Cannot find power management capability, aborting\n");
  6473. rc = -EIO;
  6474. goto err_out_release;
  6475. }
  6476. bp->dev = dev;
  6477. bp->pdev = pdev;
  6478. spin_lock_init(&bp->phy_lock);
  6479. spin_lock_init(&bp->indirect_lock);
  6480. #ifdef BCM_CNIC
  6481. mutex_init(&bp->cnic_lock);
  6482. #endif
  6483. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6484. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6485. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6486. dev->mem_end = dev->mem_start + mem_len;
  6487. dev->irq = pdev->irq;
  6488. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6489. if (!bp->regview) {
  6490. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6491. rc = -ENOMEM;
  6492. goto err_out_release;
  6493. }
  6494. bnx2_set_power_state(bp, PCI_D0);
  6495. /* Configure byte swap and enable write to the reg_window registers.
  6496. * Rely on CPU to do target byte swapping on big endian systems
  6497. * The chip's target access swapping will not swap all accesses
  6498. */
  6499. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6500. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6501. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6502. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6503. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6504. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6505. dev_err(&pdev->dev,
  6506. "Cannot find PCIE capability, aborting\n");
  6507. rc = -EIO;
  6508. goto err_out_unmap;
  6509. }
  6510. bp->flags |= BNX2_FLAG_PCIE;
  6511. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6512. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6513. /* AER (Advanced Error Reporting) hooks */
  6514. err = pci_enable_pcie_error_reporting(pdev);
  6515. if (!err)
  6516. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6517. } else {
  6518. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6519. if (bp->pcix_cap == 0) {
  6520. dev_err(&pdev->dev,
  6521. "Cannot find PCIX capability, aborting\n");
  6522. rc = -EIO;
  6523. goto err_out_unmap;
  6524. }
  6525. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6526. }
  6527. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6528. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6529. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6530. }
  6531. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6532. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6533. bp->flags |= BNX2_FLAG_MSI_CAP;
  6534. }
  6535. /* 5708 cannot support DMA addresses > 40-bit. */
  6536. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6537. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6538. else
  6539. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6540. /* Configure DMA attributes. */
  6541. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6542. dev->features |= NETIF_F_HIGHDMA;
  6543. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6544. if (rc) {
  6545. dev_err(&pdev->dev,
  6546. "pci_set_consistent_dma_mask failed, aborting\n");
  6547. goto err_out_unmap;
  6548. }
  6549. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6550. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6551. goto err_out_unmap;
  6552. }
  6553. if (!(bp->flags & BNX2_FLAG_PCIE))
  6554. bnx2_get_pci_speed(bp);
  6555. /* 5706A0 may falsely detect SERR and PERR. */
  6556. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6557. reg = REG_RD(bp, PCI_COMMAND);
  6558. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6559. REG_WR(bp, PCI_COMMAND, reg);
  6560. }
  6561. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6562. !(bp->flags & BNX2_FLAG_PCIX)) {
  6563. dev_err(&pdev->dev,
  6564. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6565. goto err_out_unmap;
  6566. }
  6567. bnx2_init_nvram(bp);
  6568. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6569. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6570. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6571. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6572. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6573. } else
  6574. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6575. /* Get the permanent MAC address. First we need to make sure the
  6576. * firmware is actually running.
  6577. */
  6578. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6579. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6580. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6581. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6582. rc = -ENODEV;
  6583. goto err_out_unmap;
  6584. }
  6585. bnx2_read_vpd_fw_ver(bp);
  6586. j = strlen(bp->fw_version);
  6587. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6588. for (i = 0; i < 3 && j < 24; i++) {
  6589. u8 num, k, skip0;
  6590. if (i == 0) {
  6591. bp->fw_version[j++] = 'b';
  6592. bp->fw_version[j++] = 'c';
  6593. bp->fw_version[j++] = ' ';
  6594. }
  6595. num = (u8) (reg >> (24 - (i * 8)));
  6596. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6597. if (num >= k || !skip0 || k == 1) {
  6598. bp->fw_version[j++] = (num / k) + '0';
  6599. skip0 = 0;
  6600. }
  6601. }
  6602. if (i != 2)
  6603. bp->fw_version[j++] = '.';
  6604. }
  6605. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6606. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6607. bp->wol = 1;
  6608. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6609. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6610. for (i = 0; i < 30; i++) {
  6611. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6612. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6613. break;
  6614. msleep(10);
  6615. }
  6616. }
  6617. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6618. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6619. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6620. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6621. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6622. if (j < 32)
  6623. bp->fw_version[j++] = ' ';
  6624. for (i = 0; i < 3 && j < 28; i++) {
  6625. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6626. reg = swab32(reg);
  6627. memcpy(&bp->fw_version[j], &reg, 4);
  6628. j += 4;
  6629. }
  6630. }
  6631. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6632. bp->mac_addr[0] = (u8) (reg >> 8);
  6633. bp->mac_addr[1] = (u8) reg;
  6634. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6635. bp->mac_addr[2] = (u8) (reg >> 24);
  6636. bp->mac_addr[3] = (u8) (reg >> 16);
  6637. bp->mac_addr[4] = (u8) (reg >> 8);
  6638. bp->mac_addr[5] = (u8) reg;
  6639. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6640. bnx2_set_rx_ring_size(bp, 255);
  6641. bp->rx_csum = 1;
  6642. bp->tx_quick_cons_trip_int = 2;
  6643. bp->tx_quick_cons_trip = 20;
  6644. bp->tx_ticks_int = 18;
  6645. bp->tx_ticks = 80;
  6646. bp->rx_quick_cons_trip_int = 2;
  6647. bp->rx_quick_cons_trip = 12;
  6648. bp->rx_ticks_int = 18;
  6649. bp->rx_ticks = 18;
  6650. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6651. bp->current_interval = BNX2_TIMER_INTERVAL;
  6652. bp->phy_addr = 1;
  6653. /* Disable WOL support if we are running on a SERDES chip. */
  6654. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6655. bnx2_get_5709_media(bp);
  6656. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6657. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6658. bp->phy_port = PORT_TP;
  6659. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6660. bp->phy_port = PORT_FIBRE;
  6661. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6662. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6663. bp->flags |= BNX2_FLAG_NO_WOL;
  6664. bp->wol = 0;
  6665. }
  6666. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6667. /* Don't do parallel detect on this board because of
  6668. * some board problems. The link will not go down
  6669. * if we do parallel detect.
  6670. */
  6671. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6672. pdev->subsystem_device == 0x310c)
  6673. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6674. } else {
  6675. bp->phy_addr = 2;
  6676. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6677. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6678. }
  6679. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6680. CHIP_NUM(bp) == CHIP_NUM_5708)
  6681. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6682. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6683. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6684. CHIP_REV(bp) == CHIP_REV_Bx))
  6685. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6686. bnx2_init_fw_cap(bp);
  6687. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6688. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6689. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6690. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6691. bp->flags |= BNX2_FLAG_NO_WOL;
  6692. bp->wol = 0;
  6693. }
  6694. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6695. bp->tx_quick_cons_trip_int =
  6696. bp->tx_quick_cons_trip;
  6697. bp->tx_ticks_int = bp->tx_ticks;
  6698. bp->rx_quick_cons_trip_int =
  6699. bp->rx_quick_cons_trip;
  6700. bp->rx_ticks_int = bp->rx_ticks;
  6701. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6702. bp->com_ticks_int = bp->com_ticks;
  6703. bp->cmd_ticks_int = bp->cmd_ticks;
  6704. }
  6705. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6706. *
  6707. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6708. * with byte enables disabled on the unused 32-bit word. This is legal
  6709. * but causes problems on the AMD 8132 which will eventually stop
  6710. * responding after a while.
  6711. *
  6712. * AMD believes this incompatibility is unique to the 5706, and
  6713. * prefers to locally disable MSI rather than globally disabling it.
  6714. */
  6715. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6716. struct pci_dev *amd_8132 = NULL;
  6717. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6718. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6719. amd_8132))) {
  6720. if (amd_8132->revision >= 0x10 &&
  6721. amd_8132->revision <= 0x13) {
  6722. disable_msi = 1;
  6723. pci_dev_put(amd_8132);
  6724. break;
  6725. }
  6726. }
  6727. }
  6728. bnx2_set_default_link(bp);
  6729. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6730. init_timer(&bp->timer);
  6731. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6732. bp->timer.data = (unsigned long) bp;
  6733. bp->timer.function = bnx2_timer;
  6734. pci_save_state(pdev);
  6735. return 0;
  6736. err_out_unmap:
  6737. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6738. pci_disable_pcie_error_reporting(pdev);
  6739. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6740. }
  6741. if (bp->regview) {
  6742. iounmap(bp->regview);
  6743. bp->regview = NULL;
  6744. }
  6745. err_out_release:
  6746. pci_release_regions(pdev);
  6747. err_out_disable:
  6748. pci_disable_device(pdev);
  6749. pci_set_drvdata(pdev, NULL);
  6750. err_out:
  6751. return rc;
  6752. }
  6753. static char * __devinit
  6754. bnx2_bus_string(struct bnx2 *bp, char *str)
  6755. {
  6756. char *s = str;
  6757. if (bp->flags & BNX2_FLAG_PCIE) {
  6758. s += sprintf(s, "PCI Express");
  6759. } else {
  6760. s += sprintf(s, "PCI");
  6761. if (bp->flags & BNX2_FLAG_PCIX)
  6762. s += sprintf(s, "-X");
  6763. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6764. s += sprintf(s, " 32-bit");
  6765. else
  6766. s += sprintf(s, " 64-bit");
  6767. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6768. }
  6769. return str;
  6770. }
  6771. static void
  6772. bnx2_del_napi(struct bnx2 *bp)
  6773. {
  6774. int i;
  6775. for (i = 0; i < bp->irq_nvecs; i++)
  6776. netif_napi_del(&bp->bnx2_napi[i].napi);
  6777. }
  6778. static void
  6779. bnx2_init_napi(struct bnx2 *bp)
  6780. {
  6781. int i;
  6782. for (i = 0; i < bp->irq_nvecs; i++) {
  6783. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6784. int (*poll)(struct napi_struct *, int);
  6785. if (i == 0)
  6786. poll = bnx2_poll;
  6787. else
  6788. poll = bnx2_poll_msix;
  6789. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6790. bnapi->bp = bp;
  6791. }
  6792. }
  6793. static const struct net_device_ops bnx2_netdev_ops = {
  6794. .ndo_open = bnx2_open,
  6795. .ndo_start_xmit = bnx2_start_xmit,
  6796. .ndo_stop = bnx2_close,
  6797. .ndo_get_stats64 = bnx2_get_stats64,
  6798. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6799. .ndo_do_ioctl = bnx2_ioctl,
  6800. .ndo_validate_addr = eth_validate_addr,
  6801. .ndo_set_mac_address = bnx2_change_mac_addr,
  6802. .ndo_change_mtu = bnx2_change_mtu,
  6803. .ndo_tx_timeout = bnx2_tx_timeout,
  6804. #ifdef CONFIG_NET_POLL_CONTROLLER
  6805. .ndo_poll_controller = poll_bnx2,
  6806. #endif
  6807. };
  6808. static void inline vlan_features_add(struct net_device *dev, u32 flags)
  6809. {
  6810. dev->vlan_features |= flags;
  6811. }
  6812. static int __devinit
  6813. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6814. {
  6815. static int version_printed = 0;
  6816. struct net_device *dev = NULL;
  6817. struct bnx2 *bp;
  6818. int rc;
  6819. char str[40];
  6820. if (version_printed++ == 0)
  6821. pr_info("%s", version);
  6822. /* dev zeroed in init_etherdev */
  6823. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6824. if (!dev)
  6825. return -ENOMEM;
  6826. rc = bnx2_init_board(pdev, dev);
  6827. if (rc < 0) {
  6828. free_netdev(dev);
  6829. return rc;
  6830. }
  6831. dev->netdev_ops = &bnx2_netdev_ops;
  6832. dev->watchdog_timeo = TX_TIMEOUT;
  6833. dev->ethtool_ops = &bnx2_ethtool_ops;
  6834. bp = netdev_priv(dev);
  6835. pci_set_drvdata(pdev, dev);
  6836. rc = bnx2_request_firmware(bp);
  6837. if (rc)
  6838. goto error;
  6839. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6840. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6841. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
  6842. NETIF_F_RXHASH;
  6843. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6844. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6845. dev->features |= NETIF_F_IPV6_CSUM;
  6846. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6847. }
  6848. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6849. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6850. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6851. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6852. dev->features |= NETIF_F_TSO6;
  6853. vlan_features_add(dev, NETIF_F_TSO6);
  6854. }
  6855. if ((rc = register_netdev(dev))) {
  6856. dev_err(&pdev->dev, "Cannot register net device\n");
  6857. goto error;
  6858. }
  6859. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6860. board_info[ent->driver_data].name,
  6861. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6862. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6863. bnx2_bus_string(bp, str),
  6864. dev->base_addr,
  6865. bp->pdev->irq, dev->dev_addr);
  6866. return 0;
  6867. error:
  6868. if (bp->mips_firmware)
  6869. release_firmware(bp->mips_firmware);
  6870. if (bp->rv2p_firmware)
  6871. release_firmware(bp->rv2p_firmware);
  6872. if (bp->regview)
  6873. iounmap(bp->regview);
  6874. pci_release_regions(pdev);
  6875. pci_disable_device(pdev);
  6876. pci_set_drvdata(pdev, NULL);
  6877. free_netdev(dev);
  6878. return rc;
  6879. }
  6880. static void __devexit
  6881. bnx2_remove_one(struct pci_dev *pdev)
  6882. {
  6883. struct net_device *dev = pci_get_drvdata(pdev);
  6884. struct bnx2 *bp = netdev_priv(dev);
  6885. unregister_netdev(dev);
  6886. if (bp->mips_firmware)
  6887. release_firmware(bp->mips_firmware);
  6888. if (bp->rv2p_firmware)
  6889. release_firmware(bp->rv2p_firmware);
  6890. if (bp->regview)
  6891. iounmap(bp->regview);
  6892. kfree(bp->temp_stats_blk);
  6893. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6894. pci_disable_pcie_error_reporting(pdev);
  6895. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6896. }
  6897. free_netdev(dev);
  6898. pci_release_regions(pdev);
  6899. pci_disable_device(pdev);
  6900. pci_set_drvdata(pdev, NULL);
  6901. }
  6902. static int
  6903. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6904. {
  6905. struct net_device *dev = pci_get_drvdata(pdev);
  6906. struct bnx2 *bp = netdev_priv(dev);
  6907. /* PCI register 4 needs to be saved whether netif_running() or not.
  6908. * MSI address and data need to be saved if using MSI and
  6909. * netif_running().
  6910. */
  6911. pci_save_state(pdev);
  6912. if (!netif_running(dev))
  6913. return 0;
  6914. cancel_work_sync(&bp->reset_task);
  6915. bnx2_netif_stop(bp, true);
  6916. netif_device_detach(dev);
  6917. del_timer_sync(&bp->timer);
  6918. bnx2_shutdown_chip(bp);
  6919. bnx2_free_skbs(bp);
  6920. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6921. return 0;
  6922. }
  6923. static int
  6924. bnx2_resume(struct pci_dev *pdev)
  6925. {
  6926. struct net_device *dev = pci_get_drvdata(pdev);
  6927. struct bnx2 *bp = netdev_priv(dev);
  6928. pci_restore_state(pdev);
  6929. if (!netif_running(dev))
  6930. return 0;
  6931. bnx2_set_power_state(bp, PCI_D0);
  6932. netif_device_attach(dev);
  6933. bnx2_init_nic(bp, 1);
  6934. bnx2_netif_start(bp, true);
  6935. return 0;
  6936. }
  6937. /**
  6938. * bnx2_io_error_detected - called when PCI error is detected
  6939. * @pdev: Pointer to PCI device
  6940. * @state: The current pci connection state
  6941. *
  6942. * This function is called after a PCI bus error affecting
  6943. * this device has been detected.
  6944. */
  6945. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6946. pci_channel_state_t state)
  6947. {
  6948. struct net_device *dev = pci_get_drvdata(pdev);
  6949. struct bnx2 *bp = netdev_priv(dev);
  6950. rtnl_lock();
  6951. netif_device_detach(dev);
  6952. if (state == pci_channel_io_perm_failure) {
  6953. rtnl_unlock();
  6954. return PCI_ERS_RESULT_DISCONNECT;
  6955. }
  6956. if (netif_running(dev)) {
  6957. bnx2_netif_stop(bp, true);
  6958. del_timer_sync(&bp->timer);
  6959. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6960. }
  6961. pci_disable_device(pdev);
  6962. rtnl_unlock();
  6963. /* Request a slot slot reset. */
  6964. return PCI_ERS_RESULT_NEED_RESET;
  6965. }
  6966. /**
  6967. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6968. * @pdev: Pointer to PCI device
  6969. *
  6970. * Restart the card from scratch, as if from a cold-boot.
  6971. */
  6972. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6973. {
  6974. struct net_device *dev = pci_get_drvdata(pdev);
  6975. struct bnx2 *bp = netdev_priv(dev);
  6976. pci_ers_result_t result;
  6977. int err;
  6978. rtnl_lock();
  6979. if (pci_enable_device(pdev)) {
  6980. dev_err(&pdev->dev,
  6981. "Cannot re-enable PCI device after reset\n");
  6982. result = PCI_ERS_RESULT_DISCONNECT;
  6983. } else {
  6984. pci_set_master(pdev);
  6985. pci_restore_state(pdev);
  6986. pci_save_state(pdev);
  6987. if (netif_running(dev)) {
  6988. bnx2_set_power_state(bp, PCI_D0);
  6989. bnx2_init_nic(bp, 1);
  6990. }
  6991. result = PCI_ERS_RESULT_RECOVERED;
  6992. }
  6993. rtnl_unlock();
  6994. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  6995. return result;
  6996. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6997. if (err) {
  6998. dev_err(&pdev->dev,
  6999. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7000. err); /* non-fatal, continue */
  7001. }
  7002. return result;
  7003. }
  7004. /**
  7005. * bnx2_io_resume - called when traffic can start flowing again.
  7006. * @pdev: Pointer to PCI device
  7007. *
  7008. * This callback is called when the error recovery driver tells us that
  7009. * its OK to resume normal operation.
  7010. */
  7011. static void bnx2_io_resume(struct pci_dev *pdev)
  7012. {
  7013. struct net_device *dev = pci_get_drvdata(pdev);
  7014. struct bnx2 *bp = netdev_priv(dev);
  7015. rtnl_lock();
  7016. if (netif_running(dev))
  7017. bnx2_netif_start(bp, true);
  7018. netif_device_attach(dev);
  7019. rtnl_unlock();
  7020. }
  7021. static struct pci_error_handlers bnx2_err_handler = {
  7022. .error_detected = bnx2_io_error_detected,
  7023. .slot_reset = bnx2_io_slot_reset,
  7024. .resume = bnx2_io_resume,
  7025. };
  7026. static struct pci_driver bnx2_pci_driver = {
  7027. .name = DRV_MODULE_NAME,
  7028. .id_table = bnx2_pci_tbl,
  7029. .probe = bnx2_init_one,
  7030. .remove = __devexit_p(bnx2_remove_one),
  7031. .suspend = bnx2_suspend,
  7032. .resume = bnx2_resume,
  7033. .err_handler = &bnx2_err_handler,
  7034. };
  7035. static int __init bnx2_init(void)
  7036. {
  7037. return pci_register_driver(&bnx2_pci_driver);
  7038. }
  7039. static void __exit bnx2_cleanup(void)
  7040. {
  7041. pci_unregister_driver(&bnx2_pci_driver);
  7042. }
  7043. module_init(bnx2_init);
  7044. module_exit(bnx2_cleanup);