tegra-kbc.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783
  1. /*
  2. * Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
  3. * keyboard controller
  4. *
  5. * Copyright (c) 2009-2011, NVIDIA Corporation.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/input.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/delay.h>
  25. #include <linux/io.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/clk.h>
  28. #include <linux/slab.h>
  29. #include <mach/clk.h>
  30. #include <mach/kbc.h>
  31. #define KBC_MAX_DEBOUNCE_CNT 0x3ffu
  32. /* KBC row scan time and delay for beginning the row scan. */
  33. #define KBC_ROW_SCAN_TIME 16
  34. #define KBC_ROW_SCAN_DLY 5
  35. /* KBC uses a 32KHz clock so a cycle = 1/32Khz */
  36. #define KBC_CYCLE_USEC 32
  37. /* KBC Registers */
  38. /* KBC Control Register */
  39. #define KBC_CONTROL_0 0x0
  40. #define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14)
  41. #define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4)
  42. #define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3)
  43. #define KBC_CONTROL_KBC_EN (1 << 0)
  44. /* KBC Interrupt Register */
  45. #define KBC_INT_0 0x4
  46. #define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2)
  47. #define KBC_ROW_CFG0_0 0x8
  48. #define KBC_COL_CFG0_0 0x18
  49. #define KBC_INIT_DLY_0 0x28
  50. #define KBC_RPT_DLY_0 0x2c
  51. #define KBC_KP_ENT0_0 0x30
  52. #define KBC_KP_ENT1_0 0x34
  53. #define KBC_ROW0_MASK_0 0x38
  54. #define KBC_ROW_SHIFT 3
  55. struct tegra_kbc {
  56. void __iomem *mmio;
  57. struct input_dev *idev;
  58. unsigned int irq;
  59. unsigned int wake_enable_rows;
  60. unsigned int wake_enable_cols;
  61. spinlock_t lock;
  62. unsigned int repoll_dly;
  63. unsigned long cp_dly_jiffies;
  64. bool use_fn_map;
  65. const struct tegra_kbc_platform_data *pdata;
  66. unsigned short keycode[KBC_MAX_KEY * 2];
  67. unsigned short current_keys[KBC_MAX_KPENT];
  68. unsigned int num_pressed_keys;
  69. struct timer_list timer;
  70. struct clk *clk;
  71. };
  72. static const u32 tegra_kbc_default_keymap[] = {
  73. KEY(0, 2, KEY_W),
  74. KEY(0, 3, KEY_S),
  75. KEY(0, 4, KEY_A),
  76. KEY(0, 5, KEY_Z),
  77. KEY(0, 7, KEY_FN),
  78. KEY(1, 7, KEY_LEFTMETA),
  79. KEY(2, 6, KEY_RIGHTALT),
  80. KEY(2, 7, KEY_LEFTALT),
  81. KEY(3, 0, KEY_5),
  82. KEY(3, 1, KEY_4),
  83. KEY(3, 2, KEY_R),
  84. KEY(3, 3, KEY_E),
  85. KEY(3, 4, KEY_F),
  86. KEY(3, 5, KEY_D),
  87. KEY(3, 6, KEY_X),
  88. KEY(4, 0, KEY_7),
  89. KEY(4, 1, KEY_6),
  90. KEY(4, 2, KEY_T),
  91. KEY(4, 3, KEY_H),
  92. KEY(4, 4, KEY_G),
  93. KEY(4, 5, KEY_V),
  94. KEY(4, 6, KEY_C),
  95. KEY(4, 7, KEY_SPACE),
  96. KEY(5, 0, KEY_9),
  97. KEY(5, 1, KEY_8),
  98. KEY(5, 2, KEY_U),
  99. KEY(5, 3, KEY_Y),
  100. KEY(5, 4, KEY_J),
  101. KEY(5, 5, KEY_N),
  102. KEY(5, 6, KEY_B),
  103. KEY(5, 7, KEY_BACKSLASH),
  104. KEY(6, 0, KEY_MINUS),
  105. KEY(6, 1, KEY_0),
  106. KEY(6, 2, KEY_O),
  107. KEY(6, 3, KEY_I),
  108. KEY(6, 4, KEY_L),
  109. KEY(6, 5, KEY_K),
  110. KEY(6, 6, KEY_COMMA),
  111. KEY(6, 7, KEY_M),
  112. KEY(7, 1, KEY_EQUAL),
  113. KEY(7, 2, KEY_RIGHTBRACE),
  114. KEY(7, 3, KEY_ENTER),
  115. KEY(7, 7, KEY_MENU),
  116. KEY(8, 4, KEY_RIGHTSHIFT),
  117. KEY(8, 5, KEY_LEFTSHIFT),
  118. KEY(9, 5, KEY_RIGHTCTRL),
  119. KEY(9, 7, KEY_LEFTCTRL),
  120. KEY(11, 0, KEY_LEFTBRACE),
  121. KEY(11, 1, KEY_P),
  122. KEY(11, 2, KEY_APOSTROPHE),
  123. KEY(11, 3, KEY_SEMICOLON),
  124. KEY(11, 4, KEY_SLASH),
  125. KEY(11, 5, KEY_DOT),
  126. KEY(12, 0, KEY_F10),
  127. KEY(12, 1, KEY_F9),
  128. KEY(12, 2, KEY_BACKSPACE),
  129. KEY(12, 3, KEY_3),
  130. KEY(12, 4, KEY_2),
  131. KEY(12, 5, KEY_UP),
  132. KEY(12, 6, KEY_PRINT),
  133. KEY(12, 7, KEY_PAUSE),
  134. KEY(13, 0, KEY_INSERT),
  135. KEY(13, 1, KEY_DELETE),
  136. KEY(13, 3, KEY_PAGEUP),
  137. KEY(13, 4, KEY_PAGEDOWN),
  138. KEY(13, 5, KEY_RIGHT),
  139. KEY(13, 6, KEY_DOWN),
  140. KEY(13, 7, KEY_LEFT),
  141. KEY(14, 0, KEY_F11),
  142. KEY(14, 1, KEY_F12),
  143. KEY(14, 2, KEY_F8),
  144. KEY(14, 3, KEY_Q),
  145. KEY(14, 4, KEY_F4),
  146. KEY(14, 5, KEY_F3),
  147. KEY(14, 6, KEY_1),
  148. KEY(14, 7, KEY_F7),
  149. KEY(15, 0, KEY_ESC),
  150. KEY(15, 1, KEY_GRAVE),
  151. KEY(15, 2, KEY_F5),
  152. KEY(15, 3, KEY_TAB),
  153. KEY(15, 4, KEY_F1),
  154. KEY(15, 5, KEY_F2),
  155. KEY(15, 6, KEY_CAPSLOCK),
  156. KEY(15, 7, KEY_F6),
  157. /* Software Handled Function Keys */
  158. KEY(20, 0, KEY_KP7),
  159. KEY(21, 0, KEY_KP9),
  160. KEY(21, 1, KEY_KP8),
  161. KEY(21, 2, KEY_KP4),
  162. KEY(21, 4, KEY_KP1),
  163. KEY(22, 1, KEY_KPSLASH),
  164. KEY(22, 2, KEY_KP6),
  165. KEY(22, 3, KEY_KP5),
  166. KEY(22, 4, KEY_KP3),
  167. KEY(22, 5, KEY_KP2),
  168. KEY(22, 7, KEY_KP0),
  169. KEY(27, 1, KEY_KPASTERISK),
  170. KEY(27, 3, KEY_KPMINUS),
  171. KEY(27, 4, KEY_KPPLUS),
  172. KEY(27, 5, KEY_KPDOT),
  173. KEY(28, 5, KEY_VOLUMEUP),
  174. KEY(29, 3, KEY_HOME),
  175. KEY(29, 4, KEY_END),
  176. KEY(29, 5, KEY_BRIGHTNESSDOWN),
  177. KEY(29, 6, KEY_VOLUMEDOWN),
  178. KEY(29, 7, KEY_BRIGHTNESSUP),
  179. KEY(30, 0, KEY_NUMLOCK),
  180. KEY(30, 1, KEY_SCROLLLOCK),
  181. KEY(30, 2, KEY_MUTE),
  182. KEY(31, 4, KEY_HELP),
  183. };
  184. static const struct matrix_keymap_data tegra_kbc_default_keymap_data = {
  185. .keymap = tegra_kbc_default_keymap,
  186. .keymap_size = ARRAY_SIZE(tegra_kbc_default_keymap),
  187. };
  188. static void tegra_kbc_report_released_keys(struct input_dev *input,
  189. unsigned short old_keycodes[],
  190. unsigned int old_num_keys,
  191. unsigned short new_keycodes[],
  192. unsigned int new_num_keys)
  193. {
  194. unsigned int i, j;
  195. for (i = 0; i < old_num_keys; i++) {
  196. for (j = 0; j < new_num_keys; j++)
  197. if (old_keycodes[i] == new_keycodes[j])
  198. break;
  199. if (j == new_num_keys)
  200. input_report_key(input, old_keycodes[i], 0);
  201. }
  202. }
  203. static void tegra_kbc_report_pressed_keys(struct input_dev *input,
  204. unsigned char scancodes[],
  205. unsigned short keycodes[],
  206. unsigned int num_pressed_keys)
  207. {
  208. unsigned int i;
  209. for (i = 0; i < num_pressed_keys; i++) {
  210. input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
  211. input_report_key(input, keycodes[i], 1);
  212. }
  213. }
  214. static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
  215. {
  216. unsigned char scancodes[KBC_MAX_KPENT];
  217. unsigned short keycodes[KBC_MAX_KPENT];
  218. u32 val = 0;
  219. unsigned int i;
  220. unsigned int num_down = 0;
  221. unsigned long flags;
  222. bool fn_keypress = false;
  223. spin_lock_irqsave(&kbc->lock, flags);
  224. for (i = 0; i < KBC_MAX_KPENT; i++) {
  225. if ((i % 4) == 0)
  226. val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
  227. if (val & 0x80) {
  228. unsigned int col = val & 0x07;
  229. unsigned int row = (val >> 3) & 0x0f;
  230. unsigned char scancode =
  231. MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
  232. scancodes[num_down] = scancode;
  233. keycodes[num_down] = kbc->keycode[scancode];
  234. /* If driver uses Fn map, do not report the Fn key. */
  235. if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map)
  236. fn_keypress = true;
  237. else
  238. num_down++;
  239. }
  240. val >>= 8;
  241. }
  242. /*
  243. * If the platform uses Fn keymaps, translate keys on a Fn keypress.
  244. * Function keycodes are KBC_MAX_KEY apart from the plain keycodes.
  245. */
  246. if (fn_keypress) {
  247. for (i = 0; i < num_down; i++) {
  248. scancodes[i] += KBC_MAX_KEY;
  249. keycodes[i] = kbc->keycode[scancodes[i]];
  250. }
  251. }
  252. spin_unlock_irqrestore(&kbc->lock, flags);
  253. tegra_kbc_report_released_keys(kbc->idev,
  254. kbc->current_keys, kbc->num_pressed_keys,
  255. keycodes, num_down);
  256. tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
  257. input_sync(kbc->idev);
  258. memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
  259. kbc->num_pressed_keys = num_down;
  260. }
  261. static void tegra_kbc_keypress_timer(unsigned long data)
  262. {
  263. struct tegra_kbc *kbc = (struct tegra_kbc *)data;
  264. unsigned long flags;
  265. u32 val;
  266. unsigned int i;
  267. val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
  268. if (val) {
  269. unsigned long dly;
  270. tegra_kbc_report_keys(kbc);
  271. /*
  272. * If more than one keys are pressed we need not wait
  273. * for the repoll delay.
  274. */
  275. dly = (val == 1) ? kbc->repoll_dly : 1;
  276. mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
  277. } else {
  278. /* Release any pressed keys and exit the polling loop */
  279. for (i = 0; i < kbc->num_pressed_keys; i++)
  280. input_report_key(kbc->idev, kbc->current_keys[i], 0);
  281. input_sync(kbc->idev);
  282. kbc->num_pressed_keys = 0;
  283. /* All keys are released so enable the keypress interrupt */
  284. spin_lock_irqsave(&kbc->lock, flags);
  285. val = readl(kbc->mmio + KBC_CONTROL_0);
  286. val |= KBC_CONTROL_FIFO_CNT_INT_EN;
  287. writel(val, kbc->mmio + KBC_CONTROL_0);
  288. spin_unlock_irqrestore(&kbc->lock, flags);
  289. }
  290. }
  291. static irqreturn_t tegra_kbc_isr(int irq, void *args)
  292. {
  293. struct tegra_kbc *kbc = args;
  294. u32 val, ctl;
  295. /*
  296. * Until all keys are released, defer further processing to
  297. * the polling loop in tegra_kbc_keypress_timer
  298. */
  299. ctl = readl(kbc->mmio + KBC_CONTROL_0);
  300. ctl &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
  301. writel(ctl, kbc->mmio + KBC_CONTROL_0);
  302. /*
  303. * Quickly bail out & reenable interrupts if the fifo threshold
  304. * count interrupt wasn't the interrupt source
  305. */
  306. val = readl(kbc->mmio + KBC_INT_0);
  307. writel(val, kbc->mmio + KBC_INT_0);
  308. if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
  309. /*
  310. * Schedule timer to run when hardware is in continuous
  311. * polling mode.
  312. */
  313. mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
  314. } else {
  315. ctl |= KBC_CONTROL_FIFO_CNT_INT_EN;
  316. writel(ctl, kbc->mmio + KBC_CONTROL_0);
  317. }
  318. return IRQ_HANDLED;
  319. }
  320. static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
  321. {
  322. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  323. int i;
  324. unsigned int rst_val;
  325. BUG_ON(pdata->wake_cnt > KBC_MAX_KEY);
  326. rst_val = (filter && pdata->wake_cnt) ? ~0 : 0;
  327. for (i = 0; i < KBC_MAX_ROW; i++)
  328. writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
  329. if (filter) {
  330. for (i = 0; i < pdata->wake_cnt; i++) {
  331. u32 val, addr;
  332. addr = pdata->wake_cfg[i].row * 4 + KBC_ROW0_MASK_0;
  333. val = readl(kbc->mmio + addr);
  334. val &= ~(1 << pdata->wake_cfg[i].col);
  335. writel(val, kbc->mmio + addr);
  336. }
  337. }
  338. }
  339. static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
  340. {
  341. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  342. int i;
  343. for (i = 0; i < KBC_MAX_GPIO; i++) {
  344. u32 r_shft = 5 * (i % 6);
  345. u32 c_shft = 4 * (i % 8);
  346. u32 r_mask = 0x1f << r_shft;
  347. u32 c_mask = 0x0f << c_shft;
  348. u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
  349. u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
  350. u32 row_cfg = readl(kbc->mmio + r_offs);
  351. u32 col_cfg = readl(kbc->mmio + c_offs);
  352. row_cfg &= ~r_mask;
  353. col_cfg &= ~c_mask;
  354. if (pdata->pin_cfg[i].is_row)
  355. row_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << r_shft;
  356. else
  357. col_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << c_shft;
  358. writel(row_cfg, kbc->mmio + r_offs);
  359. writel(col_cfg, kbc->mmio + c_offs);
  360. }
  361. }
  362. static int tegra_kbc_start(struct tegra_kbc *kbc)
  363. {
  364. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  365. unsigned long flags;
  366. unsigned int debounce_cnt;
  367. u32 val = 0;
  368. clk_enable(kbc->clk);
  369. /* Reset the KBC controller to clear all previous status.*/
  370. tegra_periph_reset_assert(kbc->clk);
  371. udelay(100);
  372. tegra_periph_reset_deassert(kbc->clk);
  373. udelay(100);
  374. tegra_kbc_config_pins(kbc);
  375. tegra_kbc_setup_wakekeys(kbc, false);
  376. writel(pdata->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
  377. /* Keyboard debounce count is maximum of 12 bits. */
  378. debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
  379. val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
  380. val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
  381. val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */
  382. val |= KBC_CONTROL_KBC_EN; /* enable */
  383. writel(val, kbc->mmio + KBC_CONTROL_0);
  384. /*
  385. * Compute the delay(ns) from interrupt mode to continuous polling
  386. * mode so the timer routine is scheduled appropriately.
  387. */
  388. val = readl(kbc->mmio + KBC_INIT_DLY_0);
  389. kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
  390. kbc->num_pressed_keys = 0;
  391. /*
  392. * Atomically clear out any remaining entries in the key FIFO
  393. * and enable keyboard interrupts.
  394. */
  395. spin_lock_irqsave(&kbc->lock, flags);
  396. while (1) {
  397. val = readl(kbc->mmio + KBC_INT_0);
  398. val >>= 4;
  399. if (!val)
  400. break;
  401. val = readl(kbc->mmio + KBC_KP_ENT0_0);
  402. val = readl(kbc->mmio + KBC_KP_ENT1_0);
  403. }
  404. writel(0x7, kbc->mmio + KBC_INT_0);
  405. spin_unlock_irqrestore(&kbc->lock, flags);
  406. enable_irq(kbc->irq);
  407. return 0;
  408. }
  409. static void tegra_kbc_stop(struct tegra_kbc *kbc)
  410. {
  411. unsigned long flags;
  412. u32 val;
  413. spin_lock_irqsave(&kbc->lock, flags);
  414. val = readl(kbc->mmio + KBC_CONTROL_0);
  415. val &= ~1;
  416. writel(val, kbc->mmio + KBC_CONTROL_0);
  417. spin_unlock_irqrestore(&kbc->lock, flags);
  418. disable_irq(kbc->irq);
  419. del_timer_sync(&kbc->timer);
  420. clk_disable(kbc->clk);
  421. }
  422. static int tegra_kbc_open(struct input_dev *dev)
  423. {
  424. struct tegra_kbc *kbc = input_get_drvdata(dev);
  425. return tegra_kbc_start(kbc);
  426. }
  427. static void tegra_kbc_close(struct input_dev *dev)
  428. {
  429. struct tegra_kbc *kbc = input_get_drvdata(dev);
  430. return tegra_kbc_stop(kbc);
  431. }
  432. static bool __devinit
  433. tegra_kbc_check_pin_cfg(const struct tegra_kbc_platform_data *pdata,
  434. struct device *dev, unsigned int *num_rows)
  435. {
  436. int i;
  437. *num_rows = 0;
  438. for (i = 0; i < KBC_MAX_GPIO; i++) {
  439. const struct tegra_kbc_pin_cfg *pin_cfg = &pdata->pin_cfg[i];
  440. if (pin_cfg->is_row) {
  441. if (pin_cfg->num >= KBC_MAX_ROW) {
  442. dev_err(dev,
  443. "pin_cfg[%d]: invalid row number %d\n",
  444. i, pin_cfg->num);
  445. return false;
  446. }
  447. (*num_rows)++;
  448. } else {
  449. if (pin_cfg->num >= KBC_MAX_COL) {
  450. dev_err(dev,
  451. "pin_cfg[%d]: invalid column number %d\n",
  452. i, pin_cfg->num);
  453. return false;
  454. }
  455. }
  456. }
  457. return true;
  458. }
  459. static int __devinit tegra_kbc_probe(struct platform_device *pdev)
  460. {
  461. const struct tegra_kbc_platform_data *pdata = pdev->dev.platform_data;
  462. const struct matrix_keymap_data *keymap_data;
  463. struct tegra_kbc *kbc;
  464. struct input_dev *input_dev;
  465. struct resource *res;
  466. int irq;
  467. int err;
  468. int i;
  469. int num_rows = 0;
  470. unsigned int debounce_cnt;
  471. unsigned int scan_time_rows;
  472. if (!pdata)
  473. return -EINVAL;
  474. if (!tegra_kbc_check_pin_cfg(pdata, &pdev->dev, &num_rows))
  475. return -EINVAL;
  476. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  477. if (!res) {
  478. dev_err(&pdev->dev, "failed to get I/O memory\n");
  479. return -ENXIO;
  480. }
  481. irq = platform_get_irq(pdev, 0);
  482. if (irq < 0) {
  483. dev_err(&pdev->dev, "failed to get keyboard IRQ\n");
  484. return -ENXIO;
  485. }
  486. kbc = kzalloc(sizeof(*kbc), GFP_KERNEL);
  487. input_dev = input_allocate_device();
  488. if (!kbc || !input_dev) {
  489. err = -ENOMEM;
  490. goto err_free_mem;
  491. }
  492. kbc->pdata = pdata;
  493. kbc->idev = input_dev;
  494. kbc->irq = irq;
  495. spin_lock_init(&kbc->lock);
  496. setup_timer(&kbc->timer, tegra_kbc_keypress_timer, (unsigned long)kbc);
  497. res = request_mem_region(res->start, resource_size(res), pdev->name);
  498. if (!res) {
  499. dev_err(&pdev->dev, "failed to request I/O memory\n");
  500. err = -EBUSY;
  501. goto err_free_mem;
  502. }
  503. kbc->mmio = ioremap(res->start, resource_size(res));
  504. if (!kbc->mmio) {
  505. dev_err(&pdev->dev, "failed to remap I/O memory\n");
  506. err = -ENXIO;
  507. goto err_free_mem_region;
  508. }
  509. kbc->clk = clk_get(&pdev->dev, NULL);
  510. if (IS_ERR(kbc->clk)) {
  511. dev_err(&pdev->dev, "failed to get keyboard clock\n");
  512. err = PTR_ERR(kbc->clk);
  513. goto err_iounmap;
  514. }
  515. kbc->wake_enable_rows = 0;
  516. kbc->wake_enable_cols = 0;
  517. for (i = 0; i < pdata->wake_cnt; i++) {
  518. kbc->wake_enable_rows |= (1 << pdata->wake_cfg[i].row);
  519. kbc->wake_enable_cols |= (1 << pdata->wake_cfg[i].col);
  520. }
  521. /*
  522. * The time delay between two consecutive reads of the FIFO is
  523. * the sum of the repeat time and the time taken for scanning
  524. * the rows. There is an additional delay before the row scanning
  525. * starts. The repoll delay is computed in milliseconds.
  526. */
  527. debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
  528. scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
  529. kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + pdata->repeat_cnt;
  530. kbc->repoll_dly = ((kbc->repoll_dly * KBC_CYCLE_USEC) + 999) / 1000;
  531. input_dev->name = pdev->name;
  532. input_dev->id.bustype = BUS_HOST;
  533. input_dev->dev.parent = &pdev->dev;
  534. input_dev->open = tegra_kbc_open;
  535. input_dev->close = tegra_kbc_close;
  536. input_set_drvdata(input_dev, kbc);
  537. input_dev->evbit[0] = BIT_MASK(EV_KEY);
  538. input_set_capability(input_dev, EV_MSC, MSC_SCAN);
  539. input_dev->keycode = kbc->keycode;
  540. input_dev->keycodesize = sizeof(kbc->keycode[0]);
  541. input_dev->keycodemax = KBC_MAX_KEY;
  542. if (pdata->use_fn_map)
  543. input_dev->keycodemax *= 2;
  544. kbc->use_fn_map = pdata->use_fn_map;
  545. keymap_data = pdata->keymap_data ?: &tegra_kbc_default_keymap_data;
  546. matrix_keypad_build_keymap(keymap_data, KBC_ROW_SHIFT,
  547. input_dev->keycode, input_dev->keybit);
  548. err = request_irq(kbc->irq, tegra_kbc_isr, IRQF_TRIGGER_HIGH,
  549. pdev->name, kbc);
  550. if (err) {
  551. dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
  552. goto err_put_clk;
  553. }
  554. disable_irq(kbc->irq);
  555. err = input_register_device(kbc->idev);
  556. if (err) {
  557. dev_err(&pdev->dev, "failed to register input device\n");
  558. goto err_free_irq;
  559. }
  560. platform_set_drvdata(pdev, kbc);
  561. device_init_wakeup(&pdev->dev, pdata->wakeup);
  562. return 0;
  563. err_free_irq:
  564. free_irq(kbc->irq, pdev);
  565. err_put_clk:
  566. clk_put(kbc->clk);
  567. err_iounmap:
  568. iounmap(kbc->mmio);
  569. err_free_mem_region:
  570. release_mem_region(res->start, resource_size(res));
  571. err_free_mem:
  572. input_free_device(kbc->idev);
  573. kfree(kbc);
  574. return err;
  575. }
  576. static int __devexit tegra_kbc_remove(struct platform_device *pdev)
  577. {
  578. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  579. struct resource *res;
  580. free_irq(kbc->irq, pdev);
  581. clk_put(kbc->clk);
  582. input_unregister_device(kbc->idev);
  583. iounmap(kbc->mmio);
  584. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  585. release_mem_region(res->start, resource_size(res));
  586. kfree(kbc);
  587. platform_set_drvdata(pdev, NULL);
  588. return 0;
  589. }
  590. #ifdef CONFIG_PM_SLEEP
  591. static int tegra_kbc_suspend(struct device *dev)
  592. {
  593. struct platform_device *pdev = to_platform_device(dev);
  594. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  595. if (device_may_wakeup(&pdev->dev)) {
  596. tegra_kbc_setup_wakekeys(kbc, true);
  597. enable_irq_wake(kbc->irq);
  598. /* Forcefully clear the interrupt status */
  599. writel(0x7, kbc->mmio + KBC_INT_0);
  600. msleep(30);
  601. } else {
  602. mutex_lock(&kbc->idev->mutex);
  603. if (kbc->idev->users)
  604. tegra_kbc_stop(kbc);
  605. mutex_unlock(&kbc->idev->mutex);
  606. }
  607. return 0;
  608. }
  609. static int tegra_kbc_resume(struct device *dev)
  610. {
  611. struct platform_device *pdev = to_platform_device(dev);
  612. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  613. int err = 0;
  614. if (device_may_wakeup(&pdev->dev)) {
  615. disable_irq_wake(kbc->irq);
  616. tegra_kbc_setup_wakekeys(kbc, false);
  617. } else {
  618. mutex_lock(&kbc->idev->mutex);
  619. if (kbc->idev->users)
  620. err = tegra_kbc_start(kbc);
  621. mutex_unlock(&kbc->idev->mutex);
  622. }
  623. return err;
  624. }
  625. #endif
  626. static SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops, tegra_kbc_suspend, tegra_kbc_resume);
  627. static struct platform_driver tegra_kbc_driver = {
  628. .probe = tegra_kbc_probe,
  629. .remove = __devexit_p(tegra_kbc_remove),
  630. .driver = {
  631. .name = "tegra-kbc",
  632. .owner = THIS_MODULE,
  633. .pm = &tegra_kbc_pm_ops,
  634. },
  635. };
  636. static void __exit tegra_kbc_exit(void)
  637. {
  638. platform_driver_unregister(&tegra_kbc_driver);
  639. }
  640. module_exit(tegra_kbc_exit);
  641. static int __init tegra_kbc_init(void)
  642. {
  643. return platform_driver_register(&tegra_kbc_driver);
  644. }
  645. module_init(tegra_kbc_init);
  646. MODULE_LICENSE("GPL");
  647. MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
  648. MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
  649. MODULE_ALIAS("platform:tegra-kbc");