pipe_fs_i.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. #ifndef _LINUX_PIPE_FS_I_H
  2. #define _LINUX_PIPE_FS_I_H
  3. #define PIPEFS_MAGIC 0x50495045
  4. #define PIPE_DEF_BUFFERS 16
  5. #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */
  6. #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */
  7. #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */
  8. /**
  9. * struct pipe_buffer - a linux kernel pipe buffer
  10. * @page: the page containing the data for the pipe buffer
  11. * @offset: offset of data inside the @page
  12. * @len: length of data inside the @page
  13. * @ops: operations associated with this buffer. See @pipe_buf_operations.
  14. * @flags: pipe buffer flags. See above.
  15. * @private: private data owned by the ops.
  16. **/
  17. struct pipe_buffer {
  18. struct page *page;
  19. unsigned int offset, len;
  20. const struct pipe_buf_operations *ops;
  21. unsigned int flags;
  22. unsigned long private;
  23. };
  24. /**
  25. * struct pipe_inode_info - a linux kernel pipe
  26. * @wait: reader/writer wait point in case of empty/full pipe
  27. * @nrbufs: the number of non-empty pipe buffers in this pipe
  28. * @buffers: total number of buffers (should be a power of 2)
  29. * @curbuf: the current pipe buffer entry
  30. * @tmp_page: cached released page
  31. * @readers: number of current readers of this pipe
  32. * @writers: number of current writers of this pipe
  33. * @waiting_writers: number of writers blocked waiting for room
  34. * @r_counter: reader counter
  35. * @w_counter: writer counter
  36. * @fasync_readers: reader side fasync
  37. * @fasync_writers: writer side fasync
  38. * @inode: inode this pipe is attached to
  39. * @bufs: the circular array of pipe buffers
  40. **/
  41. struct pipe_inode_info {
  42. wait_queue_head_t wait;
  43. unsigned int nrbufs, curbuf, buffers;
  44. unsigned int readers;
  45. unsigned int writers;
  46. unsigned int waiting_writers;
  47. unsigned int r_counter;
  48. unsigned int w_counter;
  49. struct page *tmp_page;
  50. struct fasync_struct *fasync_readers;
  51. struct fasync_struct *fasync_writers;
  52. struct inode *inode;
  53. struct pipe_buffer *bufs;
  54. };
  55. /*
  56. * Note on the nesting of these functions:
  57. *
  58. * ->confirm()
  59. * ->steal()
  60. * ...
  61. * ->map()
  62. * ...
  63. * ->unmap()
  64. *
  65. * That is, ->map() must be called on a confirmed buffer,
  66. * same goes for ->steal(). See below for the meaning of each
  67. * operation. Also see kerneldoc in fs/pipe.c for the pipe
  68. * and generic variants of these hooks.
  69. */
  70. struct pipe_buf_operations {
  71. /*
  72. * This is set to 1, if the generic pipe read/write may coalesce
  73. * data into an existing buffer. If this is set to 0, a new pipe
  74. * page segment is always used for new data.
  75. */
  76. int can_merge;
  77. /*
  78. * ->map() returns a virtual address mapping of the pipe buffer.
  79. * The last integer flag reflects whether this should be an atomic
  80. * mapping or not. The atomic map is faster, however you can't take
  81. * page faults before calling ->unmap() again. So if you need to eg
  82. * access user data through copy_to/from_user(), then you must get
  83. * a non-atomic map. ->map() uses the KM_USER0 atomic slot for
  84. * atomic maps, so you can't map more than one pipe_buffer at once
  85. * and you have to be careful if mapping another page as source
  86. * or destination for a copy (IOW, it has to use something else
  87. * than KM_USER0).
  88. */
  89. void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int);
  90. /*
  91. * Undoes ->map(), finishes the virtual mapping of the pipe buffer.
  92. */
  93. void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *);
  94. /*
  95. * ->confirm() verifies that the data in the pipe buffer is there
  96. * and that the contents are good. If the pages in the pipe belong
  97. * to a file system, we may need to wait for IO completion in this
  98. * hook. Returns 0 for good, or a negative error value in case of
  99. * error.
  100. */
  101. int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *);
  102. /*
  103. * When the contents of this pipe buffer has been completely
  104. * consumed by a reader, ->release() is called.
  105. */
  106. void (*release)(struct pipe_inode_info *, struct pipe_buffer *);
  107. /*
  108. * Attempt to take ownership of the pipe buffer and its contents.
  109. * ->steal() returns 0 for success, in which case the contents
  110. * of the pipe (the buf->page) is locked and now completely owned
  111. * by the caller. The page may then be transferred to a different
  112. * mapping, the most often used case is insertion into different
  113. * file address space cache.
  114. */
  115. int (*steal)(struct pipe_inode_info *, struct pipe_buffer *);
  116. /*
  117. * Get a reference to the pipe buffer.
  118. */
  119. void (*get)(struct pipe_inode_info *, struct pipe_buffer *);
  120. };
  121. /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual
  122. memory allocation, whereas PIPE_BUF makes atomicity guarantees. */
  123. #define PIPE_SIZE PAGE_SIZE
  124. /* Pipe lock and unlock operations */
  125. void pipe_lock(struct pipe_inode_info *);
  126. void pipe_unlock(struct pipe_inode_info *);
  127. void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *);
  128. extern unsigned int pipe_max_size, pipe_min_size;
  129. int pipe_proc_fn(struct ctl_table *, int, void __user *, size_t *, loff_t *);
  130. /* Drop the inode semaphore and wait for a pipe event, atomically */
  131. void pipe_wait(struct pipe_inode_info *pipe);
  132. struct pipe_inode_info * alloc_pipe_info(struct inode * inode);
  133. void free_pipe_info(struct inode * inode);
  134. void __free_pipe_info(struct pipe_inode_info *);
  135. /* Generic pipe buffer ops functions */
  136. void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int);
  137. void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *);
  138. void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *);
  139. int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *);
  140. int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *);
  141. void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *);
  142. /* for F_SETPIPE_SZ and F_GETPIPE_SZ */
  143. long pipe_fcntl(struct file *, unsigned int, unsigned long arg);
  144. struct pipe_inode_info *get_pipe_info(struct file *file);
  145. #endif