sched.c 251 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/bootmem.h>
  72. #include <linux/debugfs.h>
  73. #include <linux/ctype.h>
  74. #include <linux/ftrace.h>
  75. #include <trace/sched.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include "sched_cpupri.h"
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. DEFINE_TRACE(sched_wait_task);
  113. DEFINE_TRACE(sched_wakeup);
  114. DEFINE_TRACE(sched_wakeup_new);
  115. DEFINE_TRACE(sched_switch);
  116. DEFINE_TRACE(sched_migrate_task);
  117. #ifdef CONFIG_SMP
  118. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  119. /*
  120. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  121. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  122. */
  123. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  124. {
  125. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  126. }
  127. /*
  128. * Each time a sched group cpu_power is changed,
  129. * we must compute its reciprocal value
  130. */
  131. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  132. {
  133. sg->__cpu_power += val;
  134. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  135. }
  136. #endif
  137. static inline int rt_policy(int policy)
  138. {
  139. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  140. return 1;
  141. return 0;
  142. }
  143. static inline int task_has_rt_policy(struct task_struct *p)
  144. {
  145. return rt_policy(p->policy);
  146. }
  147. /*
  148. * This is the priority-queue data structure of the RT scheduling class:
  149. */
  150. struct rt_prio_array {
  151. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  152. struct list_head queue[MAX_RT_PRIO];
  153. };
  154. struct rt_bandwidth {
  155. /* nests inside the rq lock: */
  156. spinlock_t rt_runtime_lock;
  157. ktime_t rt_period;
  158. u64 rt_runtime;
  159. struct hrtimer rt_period_timer;
  160. };
  161. static struct rt_bandwidth def_rt_bandwidth;
  162. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  163. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  164. {
  165. struct rt_bandwidth *rt_b =
  166. container_of(timer, struct rt_bandwidth, rt_period_timer);
  167. ktime_t now;
  168. int overrun;
  169. int idle = 0;
  170. for (;;) {
  171. now = hrtimer_cb_get_time(timer);
  172. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  173. if (!overrun)
  174. break;
  175. idle = do_sched_rt_period_timer(rt_b, overrun);
  176. }
  177. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  178. }
  179. static
  180. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  181. {
  182. rt_b->rt_period = ns_to_ktime(period);
  183. rt_b->rt_runtime = runtime;
  184. spin_lock_init(&rt_b->rt_runtime_lock);
  185. hrtimer_init(&rt_b->rt_period_timer,
  186. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  187. rt_b->rt_period_timer.function = sched_rt_period_timer;
  188. }
  189. static inline int rt_bandwidth_enabled(void)
  190. {
  191. return sysctl_sched_rt_runtime >= 0;
  192. }
  193. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. ktime_t now;
  196. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  197. return;
  198. if (hrtimer_active(&rt_b->rt_period_timer))
  199. return;
  200. spin_lock(&rt_b->rt_runtime_lock);
  201. for (;;) {
  202. unsigned long delta;
  203. ktime_t soft, hard;
  204. if (hrtimer_active(&rt_b->rt_period_timer))
  205. break;
  206. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  207. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  208. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  209. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  210. delta = ktime_to_ns(ktime_sub(hard, soft));
  211. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  212. HRTIMER_MODE_ABS, 0);
  213. }
  214. spin_unlock(&rt_b->rt_runtime_lock);
  215. }
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  218. {
  219. hrtimer_cancel(&rt_b->rt_period_timer);
  220. }
  221. #endif
  222. /*
  223. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  224. * detach_destroy_domains and partition_sched_domains.
  225. */
  226. static DEFINE_MUTEX(sched_domains_mutex);
  227. #ifdef CONFIG_GROUP_SCHED
  228. #include <linux/cgroup.h>
  229. struct cfs_rq;
  230. static LIST_HEAD(task_groups);
  231. /* task group related information */
  232. struct task_group {
  233. #ifdef CONFIG_CGROUP_SCHED
  234. struct cgroup_subsys_state css;
  235. #endif
  236. #ifdef CONFIG_USER_SCHED
  237. uid_t uid;
  238. #endif
  239. #ifdef CONFIG_FAIR_GROUP_SCHED
  240. /* schedulable entities of this group on each cpu */
  241. struct sched_entity **se;
  242. /* runqueue "owned" by this group on each cpu */
  243. struct cfs_rq **cfs_rq;
  244. unsigned long shares;
  245. #endif
  246. #ifdef CONFIG_RT_GROUP_SCHED
  247. struct sched_rt_entity **rt_se;
  248. struct rt_rq **rt_rq;
  249. struct rt_bandwidth rt_bandwidth;
  250. #endif
  251. struct rcu_head rcu;
  252. struct list_head list;
  253. struct task_group *parent;
  254. struct list_head siblings;
  255. struct list_head children;
  256. };
  257. #ifdef CONFIG_USER_SCHED
  258. /* Helper function to pass uid information to create_sched_user() */
  259. void set_tg_uid(struct user_struct *user)
  260. {
  261. user->tg->uid = user->uid;
  262. }
  263. /*
  264. * Root task group.
  265. * Every UID task group (including init_task_group aka UID-0) will
  266. * be a child to this group.
  267. */
  268. struct task_group root_task_group;
  269. #ifdef CONFIG_FAIR_GROUP_SCHED
  270. /* Default task group's sched entity on each cpu */
  271. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  272. /* Default task group's cfs_rq on each cpu */
  273. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  274. #endif /* CONFIG_FAIR_GROUP_SCHED */
  275. #ifdef CONFIG_RT_GROUP_SCHED
  276. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  277. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  278. #endif /* CONFIG_RT_GROUP_SCHED */
  279. #else /* !CONFIG_USER_SCHED */
  280. #define root_task_group init_task_group
  281. #endif /* CONFIG_USER_SCHED */
  282. /* task_group_lock serializes add/remove of task groups and also changes to
  283. * a task group's cpu shares.
  284. */
  285. static DEFINE_SPINLOCK(task_group_lock);
  286. #ifdef CONFIG_SMP
  287. static int root_task_group_empty(void)
  288. {
  289. return list_empty(&root_task_group.children);
  290. }
  291. #endif
  292. #ifdef CONFIG_FAIR_GROUP_SCHED
  293. #ifdef CONFIG_USER_SCHED
  294. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  295. #else /* !CONFIG_USER_SCHED */
  296. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  297. #endif /* CONFIG_USER_SCHED */
  298. /*
  299. * A weight of 0 or 1 can cause arithmetics problems.
  300. * A weight of a cfs_rq is the sum of weights of which entities
  301. * are queued on this cfs_rq, so a weight of a entity should not be
  302. * too large, so as the shares value of a task group.
  303. * (The default weight is 1024 - so there's no practical
  304. * limitation from this.)
  305. */
  306. #define MIN_SHARES 2
  307. #define MAX_SHARES (1UL << 18)
  308. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  309. #endif
  310. /* Default task group.
  311. * Every task in system belong to this group at bootup.
  312. */
  313. struct task_group init_task_group;
  314. /* return group to which a task belongs */
  315. static inline struct task_group *task_group(struct task_struct *p)
  316. {
  317. struct task_group *tg;
  318. #ifdef CONFIG_USER_SCHED
  319. rcu_read_lock();
  320. tg = __task_cred(p)->user->tg;
  321. rcu_read_unlock();
  322. #elif defined(CONFIG_CGROUP_SCHED)
  323. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  324. struct task_group, css);
  325. #else
  326. tg = &init_task_group;
  327. #endif
  328. return tg;
  329. }
  330. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  332. {
  333. #ifdef CONFIG_FAIR_GROUP_SCHED
  334. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  335. p->se.parent = task_group(p)->se[cpu];
  336. #endif
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  339. p->rt.parent = task_group(p)->rt_se[cpu];
  340. #endif
  341. }
  342. #else
  343. #ifdef CONFIG_SMP
  344. static int root_task_group_empty(void)
  345. {
  346. return 1;
  347. }
  348. #endif
  349. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  350. static inline struct task_group *task_group(struct task_struct *p)
  351. {
  352. return NULL;
  353. }
  354. #endif /* CONFIG_GROUP_SCHED */
  355. /* CFS-related fields in a runqueue */
  356. struct cfs_rq {
  357. struct load_weight load;
  358. unsigned long nr_running;
  359. u64 exec_clock;
  360. u64 min_vruntime;
  361. struct rb_root tasks_timeline;
  362. struct rb_node *rb_leftmost;
  363. struct list_head tasks;
  364. struct list_head *balance_iterator;
  365. /*
  366. * 'curr' points to currently running entity on this cfs_rq.
  367. * It is set to NULL otherwise (i.e when none are currently running).
  368. */
  369. struct sched_entity *curr, *next, *last;
  370. unsigned int nr_spread_over;
  371. #ifdef CONFIG_FAIR_GROUP_SCHED
  372. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  373. /*
  374. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  375. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  376. * (like users, containers etc.)
  377. *
  378. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  379. * list is used during load balance.
  380. */
  381. struct list_head leaf_cfs_rq_list;
  382. struct task_group *tg; /* group that "owns" this runqueue */
  383. #ifdef CONFIG_SMP
  384. /*
  385. * the part of load.weight contributed by tasks
  386. */
  387. unsigned long task_weight;
  388. /*
  389. * h_load = weight * f(tg)
  390. *
  391. * Where f(tg) is the recursive weight fraction assigned to
  392. * this group.
  393. */
  394. unsigned long h_load;
  395. /*
  396. * this cpu's part of tg->shares
  397. */
  398. unsigned long shares;
  399. /*
  400. * load.weight at the time we set shares
  401. */
  402. unsigned long rq_weight;
  403. #endif
  404. #endif
  405. };
  406. /* Real-Time classes' related field in a runqueue: */
  407. struct rt_rq {
  408. struct rt_prio_array active;
  409. unsigned long rt_nr_running;
  410. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  411. struct {
  412. int curr; /* highest queued rt task prio */
  413. #ifdef CONFIG_SMP
  414. int next; /* next highest */
  415. #endif
  416. } highest_prio;
  417. #endif
  418. #ifdef CONFIG_SMP
  419. unsigned long rt_nr_migratory;
  420. int overloaded;
  421. struct plist_head pushable_tasks;
  422. #endif
  423. int rt_throttled;
  424. u64 rt_time;
  425. u64 rt_runtime;
  426. /* Nests inside the rq lock: */
  427. spinlock_t rt_runtime_lock;
  428. #ifdef CONFIG_RT_GROUP_SCHED
  429. unsigned long rt_nr_boosted;
  430. struct rq *rq;
  431. struct list_head leaf_rt_rq_list;
  432. struct task_group *tg;
  433. struct sched_rt_entity *rt_se;
  434. #endif
  435. };
  436. #ifdef CONFIG_SMP
  437. /*
  438. * We add the notion of a root-domain which will be used to define per-domain
  439. * variables. Each exclusive cpuset essentially defines an island domain by
  440. * fully partitioning the member cpus from any other cpuset. Whenever a new
  441. * exclusive cpuset is created, we also create and attach a new root-domain
  442. * object.
  443. *
  444. */
  445. struct root_domain {
  446. atomic_t refcount;
  447. cpumask_var_t span;
  448. cpumask_var_t online;
  449. /*
  450. * The "RT overload" flag: it gets set if a CPU has more than
  451. * one runnable RT task.
  452. */
  453. cpumask_var_t rto_mask;
  454. atomic_t rto_count;
  455. #ifdef CONFIG_SMP
  456. struct cpupri cpupri;
  457. #endif
  458. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  459. /*
  460. * Preferred wake up cpu nominated by sched_mc balance that will be
  461. * used when most cpus are idle in the system indicating overall very
  462. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  463. */
  464. unsigned int sched_mc_preferred_wakeup_cpu;
  465. #endif
  466. };
  467. /*
  468. * By default the system creates a single root-domain with all cpus as
  469. * members (mimicking the global state we have today).
  470. */
  471. static struct root_domain def_root_domain;
  472. #endif
  473. /*
  474. * This is the main, per-CPU runqueue data structure.
  475. *
  476. * Locking rule: those places that want to lock multiple runqueues
  477. * (such as the load balancing or the thread migration code), lock
  478. * acquire operations must be ordered by ascending &runqueue.
  479. */
  480. struct rq {
  481. /* runqueue lock: */
  482. spinlock_t lock;
  483. /*
  484. * nr_running and cpu_load should be in the same cacheline because
  485. * remote CPUs use both these fields when doing load calculation.
  486. */
  487. unsigned long nr_running;
  488. #define CPU_LOAD_IDX_MAX 5
  489. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  490. #ifdef CONFIG_NO_HZ
  491. unsigned long last_tick_seen;
  492. unsigned char in_nohz_recently;
  493. #endif
  494. /* capture load from *all* tasks on this cpu: */
  495. struct load_weight load;
  496. unsigned long nr_load_updates;
  497. u64 nr_switches;
  498. u64 nr_migrations_in;
  499. struct cfs_rq cfs;
  500. struct rt_rq rt;
  501. #ifdef CONFIG_FAIR_GROUP_SCHED
  502. /* list of leaf cfs_rq on this cpu: */
  503. struct list_head leaf_cfs_rq_list;
  504. #endif
  505. #ifdef CONFIG_RT_GROUP_SCHED
  506. struct list_head leaf_rt_rq_list;
  507. #endif
  508. /*
  509. * This is part of a global counter where only the total sum
  510. * over all CPUs matters. A task can increase this counter on
  511. * one CPU and if it got migrated afterwards it may decrease
  512. * it on another CPU. Always updated under the runqueue lock:
  513. */
  514. unsigned long nr_uninterruptible;
  515. struct task_struct *curr, *idle;
  516. unsigned long next_balance;
  517. struct mm_struct *prev_mm;
  518. u64 clock;
  519. atomic_t nr_iowait;
  520. #ifdef CONFIG_SMP
  521. struct root_domain *rd;
  522. struct sched_domain *sd;
  523. unsigned char idle_at_tick;
  524. /* For active balancing */
  525. int active_balance;
  526. int push_cpu;
  527. /* cpu of this runqueue: */
  528. int cpu;
  529. int online;
  530. unsigned long avg_load_per_task;
  531. struct task_struct *migration_thread;
  532. struct list_head migration_queue;
  533. #endif
  534. #ifdef CONFIG_SCHED_HRTICK
  535. #ifdef CONFIG_SMP
  536. int hrtick_csd_pending;
  537. struct call_single_data hrtick_csd;
  538. #endif
  539. struct hrtimer hrtick_timer;
  540. #endif
  541. #ifdef CONFIG_SCHEDSTATS
  542. /* latency stats */
  543. struct sched_info rq_sched_info;
  544. unsigned long long rq_cpu_time;
  545. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  546. /* sys_sched_yield() stats */
  547. unsigned int yld_count;
  548. /* schedule() stats */
  549. unsigned int sched_switch;
  550. unsigned int sched_count;
  551. unsigned int sched_goidle;
  552. /* try_to_wake_up() stats */
  553. unsigned int ttwu_count;
  554. unsigned int ttwu_local;
  555. /* BKL stats */
  556. unsigned int bkl_count;
  557. #endif
  558. };
  559. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  560. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  561. {
  562. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  563. }
  564. static inline int cpu_of(struct rq *rq)
  565. {
  566. #ifdef CONFIG_SMP
  567. return rq->cpu;
  568. #else
  569. return 0;
  570. #endif
  571. }
  572. /*
  573. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  574. * See detach_destroy_domains: synchronize_sched for details.
  575. *
  576. * The domain tree of any CPU may only be accessed from within
  577. * preempt-disabled sections.
  578. */
  579. #define for_each_domain(cpu, __sd) \
  580. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  581. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  582. #define this_rq() (&__get_cpu_var(runqueues))
  583. #define task_rq(p) cpu_rq(task_cpu(p))
  584. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  585. inline void update_rq_clock(struct rq *rq)
  586. {
  587. rq->clock = sched_clock_cpu(cpu_of(rq));
  588. }
  589. /*
  590. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  591. */
  592. #ifdef CONFIG_SCHED_DEBUG
  593. # define const_debug __read_mostly
  594. #else
  595. # define const_debug static const
  596. #endif
  597. /**
  598. * runqueue_is_locked
  599. *
  600. * Returns true if the current cpu runqueue is locked.
  601. * This interface allows printk to be called with the runqueue lock
  602. * held and know whether or not it is OK to wake up the klogd.
  603. */
  604. int runqueue_is_locked(void)
  605. {
  606. int cpu = get_cpu();
  607. struct rq *rq = cpu_rq(cpu);
  608. int ret;
  609. ret = spin_is_locked(&rq->lock);
  610. put_cpu();
  611. return ret;
  612. }
  613. /*
  614. * Debugging: various feature bits
  615. */
  616. #define SCHED_FEAT(name, enabled) \
  617. __SCHED_FEAT_##name ,
  618. enum {
  619. #include "sched_features.h"
  620. };
  621. #undef SCHED_FEAT
  622. #define SCHED_FEAT(name, enabled) \
  623. (1UL << __SCHED_FEAT_##name) * enabled |
  624. const_debug unsigned int sysctl_sched_features =
  625. #include "sched_features.h"
  626. 0;
  627. #undef SCHED_FEAT
  628. #ifdef CONFIG_SCHED_DEBUG
  629. #define SCHED_FEAT(name, enabled) \
  630. #name ,
  631. static __read_mostly char *sched_feat_names[] = {
  632. #include "sched_features.h"
  633. NULL
  634. };
  635. #undef SCHED_FEAT
  636. static int sched_feat_show(struct seq_file *m, void *v)
  637. {
  638. int i;
  639. for (i = 0; sched_feat_names[i]; i++) {
  640. if (!(sysctl_sched_features & (1UL << i)))
  641. seq_puts(m, "NO_");
  642. seq_printf(m, "%s ", sched_feat_names[i]);
  643. }
  644. seq_puts(m, "\n");
  645. return 0;
  646. }
  647. static ssize_t
  648. sched_feat_write(struct file *filp, const char __user *ubuf,
  649. size_t cnt, loff_t *ppos)
  650. {
  651. char buf[64];
  652. char *cmp = buf;
  653. int neg = 0;
  654. int i;
  655. if (cnt > 63)
  656. cnt = 63;
  657. if (copy_from_user(&buf, ubuf, cnt))
  658. return -EFAULT;
  659. buf[cnt] = 0;
  660. if (strncmp(buf, "NO_", 3) == 0) {
  661. neg = 1;
  662. cmp += 3;
  663. }
  664. for (i = 0; sched_feat_names[i]; i++) {
  665. int len = strlen(sched_feat_names[i]);
  666. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  667. if (neg)
  668. sysctl_sched_features &= ~(1UL << i);
  669. else
  670. sysctl_sched_features |= (1UL << i);
  671. break;
  672. }
  673. }
  674. if (!sched_feat_names[i])
  675. return -EINVAL;
  676. filp->f_pos += cnt;
  677. return cnt;
  678. }
  679. static int sched_feat_open(struct inode *inode, struct file *filp)
  680. {
  681. return single_open(filp, sched_feat_show, NULL);
  682. }
  683. static struct file_operations sched_feat_fops = {
  684. .open = sched_feat_open,
  685. .write = sched_feat_write,
  686. .read = seq_read,
  687. .llseek = seq_lseek,
  688. .release = single_release,
  689. };
  690. static __init int sched_init_debug(void)
  691. {
  692. debugfs_create_file("sched_features", 0644, NULL, NULL,
  693. &sched_feat_fops);
  694. return 0;
  695. }
  696. late_initcall(sched_init_debug);
  697. #endif
  698. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  699. /*
  700. * Number of tasks to iterate in a single balance run.
  701. * Limited because this is done with IRQs disabled.
  702. */
  703. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  704. /*
  705. * ratelimit for updating the group shares.
  706. * default: 0.25ms
  707. */
  708. unsigned int sysctl_sched_shares_ratelimit = 250000;
  709. /*
  710. * Inject some fuzzyness into changing the per-cpu group shares
  711. * this avoids remote rq-locks at the expense of fairness.
  712. * default: 4
  713. */
  714. unsigned int sysctl_sched_shares_thresh = 4;
  715. /*
  716. * period over which we measure -rt task cpu usage in us.
  717. * default: 1s
  718. */
  719. unsigned int sysctl_sched_rt_period = 1000000;
  720. static __read_mostly int scheduler_running;
  721. /*
  722. * part of the period that we allow rt tasks to run in us.
  723. * default: 0.95s
  724. */
  725. int sysctl_sched_rt_runtime = 950000;
  726. static inline u64 global_rt_period(void)
  727. {
  728. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  729. }
  730. static inline u64 global_rt_runtime(void)
  731. {
  732. if (sysctl_sched_rt_runtime < 0)
  733. return RUNTIME_INF;
  734. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  735. }
  736. #ifndef prepare_arch_switch
  737. # define prepare_arch_switch(next) do { } while (0)
  738. #endif
  739. #ifndef finish_arch_switch
  740. # define finish_arch_switch(prev) do { } while (0)
  741. #endif
  742. static inline int task_current(struct rq *rq, struct task_struct *p)
  743. {
  744. return rq->curr == p;
  745. }
  746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. return task_current(rq, p);
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. }
  754. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  755. {
  756. #ifdef CONFIG_DEBUG_SPINLOCK
  757. /* this is a valid case when another task releases the spinlock */
  758. rq->lock.owner = current;
  759. #endif
  760. /*
  761. * If we are tracking spinlock dependencies then we have to
  762. * fix up the runqueue lock - which gets 'carried over' from
  763. * prev into current:
  764. */
  765. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  766. spin_unlock_irq(&rq->lock);
  767. }
  768. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  769. static inline int task_running(struct rq *rq, struct task_struct *p)
  770. {
  771. #ifdef CONFIG_SMP
  772. return p->oncpu;
  773. #else
  774. return task_current(rq, p);
  775. #endif
  776. }
  777. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  778. {
  779. #ifdef CONFIG_SMP
  780. /*
  781. * We can optimise this out completely for !SMP, because the
  782. * SMP rebalancing from interrupt is the only thing that cares
  783. * here.
  784. */
  785. next->oncpu = 1;
  786. #endif
  787. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  788. spin_unlock_irq(&rq->lock);
  789. #else
  790. spin_unlock(&rq->lock);
  791. #endif
  792. }
  793. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  794. {
  795. #ifdef CONFIG_SMP
  796. /*
  797. * After ->oncpu is cleared, the task can be moved to a different CPU.
  798. * We must ensure this doesn't happen until the switch is completely
  799. * finished.
  800. */
  801. smp_wmb();
  802. prev->oncpu = 0;
  803. #endif
  804. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  805. local_irq_enable();
  806. #endif
  807. }
  808. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  809. /*
  810. * __task_rq_lock - lock the runqueue a given task resides on.
  811. * Must be called interrupts disabled.
  812. */
  813. static inline struct rq *__task_rq_lock(struct task_struct *p)
  814. __acquires(rq->lock)
  815. {
  816. for (;;) {
  817. struct rq *rq = task_rq(p);
  818. spin_lock(&rq->lock);
  819. if (likely(rq == task_rq(p)))
  820. return rq;
  821. spin_unlock(&rq->lock);
  822. }
  823. }
  824. /*
  825. * task_rq_lock - lock the runqueue a given task resides on and disable
  826. * interrupts. Note the ordering: we can safely lookup the task_rq without
  827. * explicitly disabling preemption.
  828. */
  829. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. for (;;) {
  834. local_irq_save(*flags);
  835. rq = task_rq(p);
  836. spin_lock(&rq->lock);
  837. if (likely(rq == task_rq(p)))
  838. return rq;
  839. spin_unlock_irqrestore(&rq->lock, *flags);
  840. }
  841. }
  842. void task_rq_unlock_wait(struct task_struct *p)
  843. {
  844. struct rq *rq = task_rq(p);
  845. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  846. spin_unlock_wait(&rq->lock);
  847. }
  848. static void __task_rq_unlock(struct rq *rq)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock(&rq->lock);
  852. }
  853. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  854. __releases(rq->lock)
  855. {
  856. spin_unlock_irqrestore(&rq->lock, *flags);
  857. }
  858. /*
  859. * this_rq_lock - lock this runqueue and disable interrupts.
  860. */
  861. static struct rq *this_rq_lock(void)
  862. __acquires(rq->lock)
  863. {
  864. struct rq *rq;
  865. local_irq_disable();
  866. rq = this_rq();
  867. spin_lock(&rq->lock);
  868. return rq;
  869. }
  870. #ifdef CONFIG_SCHED_HRTICK
  871. /*
  872. * Use HR-timers to deliver accurate preemption points.
  873. *
  874. * Its all a bit involved since we cannot program an hrt while holding the
  875. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  876. * reschedule event.
  877. *
  878. * When we get rescheduled we reprogram the hrtick_timer outside of the
  879. * rq->lock.
  880. */
  881. /*
  882. * Use hrtick when:
  883. * - enabled by features
  884. * - hrtimer is actually high res
  885. */
  886. static inline int hrtick_enabled(struct rq *rq)
  887. {
  888. if (!sched_feat(HRTICK))
  889. return 0;
  890. if (!cpu_active(cpu_of(rq)))
  891. return 0;
  892. return hrtimer_is_hres_active(&rq->hrtick_timer);
  893. }
  894. static void hrtick_clear(struct rq *rq)
  895. {
  896. if (hrtimer_active(&rq->hrtick_timer))
  897. hrtimer_cancel(&rq->hrtick_timer);
  898. }
  899. /*
  900. * High-resolution timer tick.
  901. * Runs from hardirq context with interrupts disabled.
  902. */
  903. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  904. {
  905. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  906. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  907. spin_lock(&rq->lock);
  908. update_rq_clock(rq);
  909. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  910. spin_unlock(&rq->lock);
  911. return HRTIMER_NORESTART;
  912. }
  913. #ifdef CONFIG_SMP
  914. /*
  915. * called from hardirq (IPI) context
  916. */
  917. static void __hrtick_start(void *arg)
  918. {
  919. struct rq *rq = arg;
  920. spin_lock(&rq->lock);
  921. hrtimer_restart(&rq->hrtick_timer);
  922. rq->hrtick_csd_pending = 0;
  923. spin_unlock(&rq->lock);
  924. }
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. struct hrtimer *timer = &rq->hrtick_timer;
  933. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  934. hrtimer_set_expires(timer, time);
  935. if (rq == this_rq()) {
  936. hrtimer_restart(timer);
  937. } else if (!rq->hrtick_csd_pending) {
  938. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  939. rq->hrtick_csd_pending = 1;
  940. }
  941. }
  942. static int
  943. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  944. {
  945. int cpu = (int)(long)hcpu;
  946. switch (action) {
  947. case CPU_UP_CANCELED:
  948. case CPU_UP_CANCELED_FROZEN:
  949. case CPU_DOWN_PREPARE:
  950. case CPU_DOWN_PREPARE_FROZEN:
  951. case CPU_DEAD:
  952. case CPU_DEAD_FROZEN:
  953. hrtick_clear(cpu_rq(cpu));
  954. return NOTIFY_OK;
  955. }
  956. return NOTIFY_DONE;
  957. }
  958. static __init void init_hrtick(void)
  959. {
  960. hotcpu_notifier(hotplug_hrtick, 0);
  961. }
  962. #else
  963. /*
  964. * Called to set the hrtick timer state.
  965. *
  966. * called with rq->lock held and irqs disabled
  967. */
  968. static void hrtick_start(struct rq *rq, u64 delay)
  969. {
  970. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  971. HRTIMER_MODE_REL, 0);
  972. }
  973. static inline void init_hrtick(void)
  974. {
  975. }
  976. #endif /* CONFIG_SMP */
  977. static void init_rq_hrtick(struct rq *rq)
  978. {
  979. #ifdef CONFIG_SMP
  980. rq->hrtick_csd_pending = 0;
  981. rq->hrtick_csd.flags = 0;
  982. rq->hrtick_csd.func = __hrtick_start;
  983. rq->hrtick_csd.info = rq;
  984. #endif
  985. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  986. rq->hrtick_timer.function = hrtick;
  987. }
  988. #else /* CONFIG_SCHED_HRTICK */
  989. static inline void hrtick_clear(struct rq *rq)
  990. {
  991. }
  992. static inline void init_rq_hrtick(struct rq *rq)
  993. {
  994. }
  995. static inline void init_hrtick(void)
  996. {
  997. }
  998. #endif /* CONFIG_SCHED_HRTICK */
  999. /*
  1000. * resched_task - mark a task 'to be rescheduled now'.
  1001. *
  1002. * On UP this means the setting of the need_resched flag, on SMP it
  1003. * might also involve a cross-CPU call to trigger the scheduler on
  1004. * the target CPU.
  1005. */
  1006. #ifdef CONFIG_SMP
  1007. #ifndef tsk_is_polling
  1008. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1009. #endif
  1010. static void resched_task(struct task_struct *p)
  1011. {
  1012. int cpu;
  1013. assert_spin_locked(&task_rq(p)->lock);
  1014. if (test_tsk_need_resched(p))
  1015. return;
  1016. set_tsk_need_resched(p);
  1017. cpu = task_cpu(p);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /* NEED_RESCHED must be visible before we test polling */
  1021. smp_mb();
  1022. if (!tsk_is_polling(p))
  1023. smp_send_reschedule(cpu);
  1024. }
  1025. static void resched_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long flags;
  1029. if (!spin_trylock_irqsave(&rq->lock, flags))
  1030. return;
  1031. resched_task(cpu_curr(cpu));
  1032. spin_unlock_irqrestore(&rq->lock, flags);
  1033. }
  1034. #ifdef CONFIG_NO_HZ
  1035. /*
  1036. * When add_timer_on() enqueues a timer into the timer wheel of an
  1037. * idle CPU then this timer might expire before the next timer event
  1038. * which is scheduled to wake up that CPU. In case of a completely
  1039. * idle system the next event might even be infinite time into the
  1040. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1041. * leaves the inner idle loop so the newly added timer is taken into
  1042. * account when the CPU goes back to idle and evaluates the timer
  1043. * wheel for the next timer event.
  1044. */
  1045. void wake_up_idle_cpu(int cpu)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. if (cpu == smp_processor_id())
  1049. return;
  1050. /*
  1051. * This is safe, as this function is called with the timer
  1052. * wheel base lock of (cpu) held. When the CPU is on the way
  1053. * to idle and has not yet set rq->curr to idle then it will
  1054. * be serialized on the timer wheel base lock and take the new
  1055. * timer into account automatically.
  1056. */
  1057. if (rq->curr != rq->idle)
  1058. return;
  1059. /*
  1060. * We can set TIF_RESCHED on the idle task of the other CPU
  1061. * lockless. The worst case is that the other CPU runs the
  1062. * idle task through an additional NOOP schedule()
  1063. */
  1064. set_tsk_need_resched(rq->idle);
  1065. /* NEED_RESCHED must be visible before we test polling */
  1066. smp_mb();
  1067. if (!tsk_is_polling(rq->idle))
  1068. smp_send_reschedule(cpu);
  1069. }
  1070. #endif /* CONFIG_NO_HZ */
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. #endif /* CONFIG_SMP */
  1078. #if BITS_PER_LONG == 32
  1079. # define WMULT_CONST (~0UL)
  1080. #else
  1081. # define WMULT_CONST (1UL << 32)
  1082. #endif
  1083. #define WMULT_SHIFT 32
  1084. /*
  1085. * Shift right and round:
  1086. */
  1087. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1088. /*
  1089. * delta *= weight / lw
  1090. */
  1091. static unsigned long
  1092. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1093. struct load_weight *lw)
  1094. {
  1095. u64 tmp;
  1096. if (!lw->inv_weight) {
  1097. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1098. lw->inv_weight = 1;
  1099. else
  1100. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1101. / (lw->weight+1);
  1102. }
  1103. tmp = (u64)delta_exec * weight;
  1104. /*
  1105. * Check whether we'd overflow the 64-bit multiplication:
  1106. */
  1107. if (unlikely(tmp > WMULT_CONST))
  1108. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1109. WMULT_SHIFT/2);
  1110. else
  1111. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1112. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1113. }
  1114. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1115. {
  1116. lw->weight += inc;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1120. {
  1121. lw->weight -= dec;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 3
  1133. #define WMULT_IDLEPRIO 1431655765
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1174. /*
  1175. * runqueue iterator, to support SMP load-balancing between different
  1176. * scheduling classes, without having to expose their internal data
  1177. * structures to the load-balancing proper:
  1178. */
  1179. struct rq_iterator {
  1180. void *arg;
  1181. struct task_struct *(*start)(void *);
  1182. struct task_struct *(*next)(void *);
  1183. };
  1184. #ifdef CONFIG_SMP
  1185. static unsigned long
  1186. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1187. unsigned long max_load_move, struct sched_domain *sd,
  1188. enum cpu_idle_type idle, int *all_pinned,
  1189. int *this_best_prio, struct rq_iterator *iterator);
  1190. static int
  1191. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1192. struct sched_domain *sd, enum cpu_idle_type idle,
  1193. struct rq_iterator *iterator);
  1194. #endif
  1195. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1196. enum cpuacct_stat_index {
  1197. CPUACCT_STAT_USER, /* ... user mode */
  1198. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1199. CPUACCT_STAT_NSTATS,
  1200. };
  1201. #ifdef CONFIG_CGROUP_CPUACCT
  1202. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1203. static void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val);
  1205. #else
  1206. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1207. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1208. enum cpuacct_stat_index idx, cputime_t val) {}
  1209. #endif
  1210. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_add(&rq->load, load);
  1213. }
  1214. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1215. {
  1216. update_load_sub(&rq->load, load);
  1217. }
  1218. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1219. typedef int (*tg_visitor)(struct task_group *, void *);
  1220. /*
  1221. * Iterate the full tree, calling @down when first entering a node and @up when
  1222. * leaving it for the final time.
  1223. */
  1224. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1225. {
  1226. struct task_group *parent, *child;
  1227. int ret;
  1228. rcu_read_lock();
  1229. parent = &root_task_group;
  1230. down:
  1231. ret = (*down)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1235. parent = child;
  1236. goto down;
  1237. up:
  1238. continue;
  1239. }
  1240. ret = (*up)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. child = parent;
  1244. parent = parent->parent;
  1245. if (parent)
  1246. goto up;
  1247. out_unlock:
  1248. rcu_read_unlock();
  1249. return ret;
  1250. }
  1251. static int tg_nop(struct task_group *tg, void *data)
  1252. {
  1253. return 0;
  1254. }
  1255. #endif
  1256. #ifdef CONFIG_SMP
  1257. static unsigned long source_load(int cpu, int type);
  1258. static unsigned long target_load(int cpu, int type);
  1259. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1260. static unsigned long cpu_avg_load_per_task(int cpu)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1264. if (nr_running)
  1265. rq->avg_load_per_task = rq->load.weight / nr_running;
  1266. else
  1267. rq->avg_load_per_task = 0;
  1268. return rq->avg_load_per_task;
  1269. }
  1270. #ifdef CONFIG_FAIR_GROUP_SCHED
  1271. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1272. /*
  1273. * Calculate and set the cpu's group shares.
  1274. */
  1275. static void
  1276. update_group_shares_cpu(struct task_group *tg, int cpu,
  1277. unsigned long sd_shares, unsigned long sd_rq_weight)
  1278. {
  1279. unsigned long shares;
  1280. unsigned long rq_weight;
  1281. if (!tg->se[cpu])
  1282. return;
  1283. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1284. /*
  1285. * \Sum shares * rq_weight
  1286. * shares = -----------------------
  1287. * \Sum rq_weight
  1288. *
  1289. */
  1290. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1291. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1292. if (abs(shares - tg->se[cpu]->load.weight) >
  1293. sysctl_sched_shares_thresh) {
  1294. struct rq *rq = cpu_rq(cpu);
  1295. unsigned long flags;
  1296. spin_lock_irqsave(&rq->lock, flags);
  1297. tg->cfs_rq[cpu]->shares = shares;
  1298. __set_se_shares(tg->se[cpu], shares);
  1299. spin_unlock_irqrestore(&rq->lock, flags);
  1300. }
  1301. }
  1302. /*
  1303. * Re-compute the task group their per cpu shares over the given domain.
  1304. * This needs to be done in a bottom-up fashion because the rq weight of a
  1305. * parent group depends on the shares of its child groups.
  1306. */
  1307. static int tg_shares_up(struct task_group *tg, void *data)
  1308. {
  1309. unsigned long weight, rq_weight = 0;
  1310. unsigned long shares = 0;
  1311. struct sched_domain *sd = data;
  1312. int i;
  1313. for_each_cpu(i, sched_domain_span(sd)) {
  1314. /*
  1315. * If there are currently no tasks on the cpu pretend there
  1316. * is one of average load so that when a new task gets to
  1317. * run here it will not get delayed by group starvation.
  1318. */
  1319. weight = tg->cfs_rq[i]->load.weight;
  1320. if (!weight)
  1321. weight = NICE_0_LOAD;
  1322. tg->cfs_rq[i]->rq_weight = weight;
  1323. rq_weight += weight;
  1324. shares += tg->cfs_rq[i]->shares;
  1325. }
  1326. if ((!shares && rq_weight) || shares > tg->shares)
  1327. shares = tg->shares;
  1328. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1329. shares = tg->shares;
  1330. for_each_cpu(i, sched_domain_span(sd))
  1331. update_group_shares_cpu(tg, i, shares, rq_weight);
  1332. return 0;
  1333. }
  1334. /*
  1335. * Compute the cpu's hierarchical load factor for each task group.
  1336. * This needs to be done in a top-down fashion because the load of a child
  1337. * group is a fraction of its parents load.
  1338. */
  1339. static int tg_load_down(struct task_group *tg, void *data)
  1340. {
  1341. unsigned long load;
  1342. long cpu = (long)data;
  1343. if (!tg->parent) {
  1344. load = cpu_rq(cpu)->load.weight;
  1345. } else {
  1346. load = tg->parent->cfs_rq[cpu]->h_load;
  1347. load *= tg->cfs_rq[cpu]->shares;
  1348. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1349. }
  1350. tg->cfs_rq[cpu]->h_load = load;
  1351. return 0;
  1352. }
  1353. static void update_shares(struct sched_domain *sd)
  1354. {
  1355. u64 now = cpu_clock(raw_smp_processor_id());
  1356. s64 elapsed = now - sd->last_update;
  1357. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1358. sd->last_update = now;
  1359. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1360. }
  1361. }
  1362. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1363. {
  1364. spin_unlock(&rq->lock);
  1365. update_shares(sd);
  1366. spin_lock(&rq->lock);
  1367. }
  1368. static void update_h_load(long cpu)
  1369. {
  1370. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1371. }
  1372. #else
  1373. static inline void update_shares(struct sched_domain *sd)
  1374. {
  1375. }
  1376. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1377. {
  1378. }
  1379. #endif
  1380. #ifdef CONFIG_PREEMPT
  1381. /*
  1382. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1383. * way at the expense of forcing extra atomic operations in all
  1384. * invocations. This assures that the double_lock is acquired using the
  1385. * same underlying policy as the spinlock_t on this architecture, which
  1386. * reduces latency compared to the unfair variant below. However, it
  1387. * also adds more overhead and therefore may reduce throughput.
  1388. */
  1389. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1390. __releases(this_rq->lock)
  1391. __acquires(busiest->lock)
  1392. __acquires(this_rq->lock)
  1393. {
  1394. spin_unlock(&this_rq->lock);
  1395. double_rq_lock(this_rq, busiest);
  1396. return 1;
  1397. }
  1398. #else
  1399. /*
  1400. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1401. * latency by eliminating extra atomic operations when the locks are
  1402. * already in proper order on entry. This favors lower cpu-ids and will
  1403. * grant the double lock to lower cpus over higher ids under contention,
  1404. * regardless of entry order into the function.
  1405. */
  1406. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1407. __releases(this_rq->lock)
  1408. __acquires(busiest->lock)
  1409. __acquires(this_rq->lock)
  1410. {
  1411. int ret = 0;
  1412. if (unlikely(!spin_trylock(&busiest->lock))) {
  1413. if (busiest < this_rq) {
  1414. spin_unlock(&this_rq->lock);
  1415. spin_lock(&busiest->lock);
  1416. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1417. ret = 1;
  1418. } else
  1419. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1420. }
  1421. return ret;
  1422. }
  1423. #endif /* CONFIG_PREEMPT */
  1424. /*
  1425. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1426. */
  1427. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1428. {
  1429. if (unlikely(!irqs_disabled())) {
  1430. /* printk() doesn't work good under rq->lock */
  1431. spin_unlock(&this_rq->lock);
  1432. BUG_ON(1);
  1433. }
  1434. return _double_lock_balance(this_rq, busiest);
  1435. }
  1436. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1437. __releases(busiest->lock)
  1438. {
  1439. spin_unlock(&busiest->lock);
  1440. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1441. }
  1442. #endif
  1443. #ifdef CONFIG_FAIR_GROUP_SCHED
  1444. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1445. {
  1446. #ifdef CONFIG_SMP
  1447. cfs_rq->shares = shares;
  1448. #endif
  1449. }
  1450. #endif
  1451. #include "sched_stats.h"
  1452. #include "sched_idletask.c"
  1453. #include "sched_fair.c"
  1454. #include "sched_rt.c"
  1455. #ifdef CONFIG_SCHED_DEBUG
  1456. # include "sched_debug.c"
  1457. #endif
  1458. #define sched_class_highest (&rt_sched_class)
  1459. #define for_each_class(class) \
  1460. for (class = sched_class_highest; class; class = class->next)
  1461. static void inc_nr_running(struct rq *rq)
  1462. {
  1463. rq->nr_running++;
  1464. }
  1465. static void dec_nr_running(struct rq *rq)
  1466. {
  1467. rq->nr_running--;
  1468. }
  1469. static void set_load_weight(struct task_struct *p)
  1470. {
  1471. if (task_has_rt_policy(p)) {
  1472. p->se.load.weight = prio_to_weight[0] * 2;
  1473. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1474. return;
  1475. }
  1476. /*
  1477. * SCHED_IDLE tasks get minimal weight:
  1478. */
  1479. if (p->policy == SCHED_IDLE) {
  1480. p->se.load.weight = WEIGHT_IDLEPRIO;
  1481. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1482. return;
  1483. }
  1484. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1485. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1486. }
  1487. static void update_avg(u64 *avg, u64 sample)
  1488. {
  1489. s64 diff = sample - *avg;
  1490. *avg += diff >> 3;
  1491. }
  1492. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1493. {
  1494. if (wakeup)
  1495. p->se.start_runtime = p->se.sum_exec_runtime;
  1496. sched_info_queued(p);
  1497. p->sched_class->enqueue_task(rq, p, wakeup);
  1498. p->se.on_rq = 1;
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1501. {
  1502. if (sleep) {
  1503. if (p->se.last_wakeup) {
  1504. update_avg(&p->se.avg_overlap,
  1505. p->se.sum_exec_runtime - p->se.last_wakeup);
  1506. p->se.last_wakeup = 0;
  1507. } else {
  1508. update_avg(&p->se.avg_wakeup,
  1509. sysctl_sched_wakeup_granularity);
  1510. }
  1511. }
  1512. sched_info_dequeued(p);
  1513. p->sched_class->dequeue_task(rq, p, sleep);
  1514. p->se.on_rq = 0;
  1515. }
  1516. /*
  1517. * __normal_prio - return the priority that is based on the static prio
  1518. */
  1519. static inline int __normal_prio(struct task_struct *p)
  1520. {
  1521. return p->static_prio;
  1522. }
  1523. /*
  1524. * Calculate the expected normal priority: i.e. priority
  1525. * without taking RT-inheritance into account. Might be
  1526. * boosted by interactivity modifiers. Changes upon fork,
  1527. * setprio syscalls, and whenever the interactivity
  1528. * estimator recalculates.
  1529. */
  1530. static inline int normal_prio(struct task_struct *p)
  1531. {
  1532. int prio;
  1533. if (task_has_rt_policy(p))
  1534. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1535. else
  1536. prio = __normal_prio(p);
  1537. return prio;
  1538. }
  1539. /*
  1540. * Calculate the current priority, i.e. the priority
  1541. * taken into account by the scheduler. This value might
  1542. * be boosted by RT tasks, or might be boosted by
  1543. * interactivity modifiers. Will be RT if the task got
  1544. * RT-boosted. If not then it returns p->normal_prio.
  1545. */
  1546. static int effective_prio(struct task_struct *p)
  1547. {
  1548. p->normal_prio = normal_prio(p);
  1549. /*
  1550. * If we are RT tasks or we were boosted to RT priority,
  1551. * keep the priority unchanged. Otherwise, update priority
  1552. * to the normal priority:
  1553. */
  1554. if (!rt_prio(p->prio))
  1555. return p->normal_prio;
  1556. return p->prio;
  1557. }
  1558. /*
  1559. * activate_task - move a task to the runqueue.
  1560. */
  1561. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1562. {
  1563. if (task_contributes_to_load(p))
  1564. rq->nr_uninterruptible--;
  1565. enqueue_task(rq, p, wakeup);
  1566. inc_nr_running(rq);
  1567. }
  1568. /*
  1569. * deactivate_task - remove a task from the runqueue.
  1570. */
  1571. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1572. {
  1573. if (task_contributes_to_load(p))
  1574. rq->nr_uninterruptible++;
  1575. dequeue_task(rq, p, sleep);
  1576. dec_nr_running(rq);
  1577. }
  1578. /**
  1579. * task_curr - is this task currently executing on a CPU?
  1580. * @p: the task in question.
  1581. */
  1582. inline int task_curr(const struct task_struct *p)
  1583. {
  1584. return cpu_curr(task_cpu(p)) == p;
  1585. }
  1586. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1587. {
  1588. set_task_rq(p, cpu);
  1589. #ifdef CONFIG_SMP
  1590. /*
  1591. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1592. * successfuly executed on another CPU. We must ensure that updates of
  1593. * per-task data have been completed by this moment.
  1594. */
  1595. smp_wmb();
  1596. task_thread_info(p)->cpu = cpu;
  1597. #endif
  1598. }
  1599. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1600. const struct sched_class *prev_class,
  1601. int oldprio, int running)
  1602. {
  1603. if (prev_class != p->sched_class) {
  1604. if (prev_class->switched_from)
  1605. prev_class->switched_from(rq, p, running);
  1606. p->sched_class->switched_to(rq, p, running);
  1607. } else
  1608. p->sched_class->prio_changed(rq, p, oldprio, running);
  1609. }
  1610. #ifdef CONFIG_SMP
  1611. /* Used instead of source_load when we know the type == 0 */
  1612. static unsigned long weighted_cpuload(const int cpu)
  1613. {
  1614. return cpu_rq(cpu)->load.weight;
  1615. }
  1616. /*
  1617. * Is this task likely cache-hot:
  1618. */
  1619. static int
  1620. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1621. {
  1622. s64 delta;
  1623. /*
  1624. * Buddy candidates are cache hot:
  1625. */
  1626. if (sched_feat(CACHE_HOT_BUDDY) &&
  1627. (&p->se == cfs_rq_of(&p->se)->next ||
  1628. &p->se == cfs_rq_of(&p->se)->last))
  1629. return 1;
  1630. if (p->sched_class != &fair_sched_class)
  1631. return 0;
  1632. if (sysctl_sched_migration_cost == -1)
  1633. return 1;
  1634. if (sysctl_sched_migration_cost == 0)
  1635. return 0;
  1636. delta = now - p->se.exec_start;
  1637. return delta < (s64)sysctl_sched_migration_cost;
  1638. }
  1639. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1640. {
  1641. int old_cpu = task_cpu(p);
  1642. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1643. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1644. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1645. u64 clock_offset;
  1646. clock_offset = old_rq->clock - new_rq->clock;
  1647. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1648. #ifdef CONFIG_SCHEDSTATS
  1649. if (p->se.wait_start)
  1650. p->se.wait_start -= clock_offset;
  1651. if (p->se.sleep_start)
  1652. p->se.sleep_start -= clock_offset;
  1653. if (p->se.block_start)
  1654. p->se.block_start -= clock_offset;
  1655. #endif
  1656. if (old_cpu != new_cpu) {
  1657. p->se.nr_migrations++;
  1658. new_rq->nr_migrations_in++;
  1659. #ifdef CONFIG_SCHEDSTATS
  1660. if (task_hot(p, old_rq->clock, NULL))
  1661. schedstat_inc(p, se.nr_forced2_migrations);
  1662. #endif
  1663. }
  1664. p->se.vruntime -= old_cfsrq->min_vruntime -
  1665. new_cfsrq->min_vruntime;
  1666. __set_task_cpu(p, new_cpu);
  1667. }
  1668. struct migration_req {
  1669. struct list_head list;
  1670. struct task_struct *task;
  1671. int dest_cpu;
  1672. struct completion done;
  1673. };
  1674. /*
  1675. * The task's runqueue lock must be held.
  1676. * Returns true if you have to wait for migration thread.
  1677. */
  1678. static int
  1679. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1680. {
  1681. struct rq *rq = task_rq(p);
  1682. /*
  1683. * If the task is not on a runqueue (and not running), then
  1684. * it is sufficient to simply update the task's cpu field.
  1685. */
  1686. if (!p->se.on_rq && !task_running(rq, p)) {
  1687. set_task_cpu(p, dest_cpu);
  1688. return 0;
  1689. }
  1690. init_completion(&req->done);
  1691. req->task = p;
  1692. req->dest_cpu = dest_cpu;
  1693. list_add(&req->list, &rq->migration_queue);
  1694. return 1;
  1695. }
  1696. /*
  1697. * wait_task_inactive - wait for a thread to unschedule.
  1698. *
  1699. * If @match_state is nonzero, it's the @p->state value just checked and
  1700. * not expected to change. If it changes, i.e. @p might have woken up,
  1701. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1702. * we return a positive number (its total switch count). If a second call
  1703. * a short while later returns the same number, the caller can be sure that
  1704. * @p has remained unscheduled the whole time.
  1705. *
  1706. * The caller must ensure that the task *will* unschedule sometime soon,
  1707. * else this function might spin for a *long* time. This function can't
  1708. * be called with interrupts off, or it may introduce deadlock with
  1709. * smp_call_function() if an IPI is sent by the same process we are
  1710. * waiting to become inactive.
  1711. */
  1712. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1713. {
  1714. unsigned long flags;
  1715. int running, on_rq;
  1716. unsigned long ncsw;
  1717. struct rq *rq;
  1718. for (;;) {
  1719. /*
  1720. * We do the initial early heuristics without holding
  1721. * any task-queue locks at all. We'll only try to get
  1722. * the runqueue lock when things look like they will
  1723. * work out!
  1724. */
  1725. rq = task_rq(p);
  1726. /*
  1727. * If the task is actively running on another CPU
  1728. * still, just relax and busy-wait without holding
  1729. * any locks.
  1730. *
  1731. * NOTE! Since we don't hold any locks, it's not
  1732. * even sure that "rq" stays as the right runqueue!
  1733. * But we don't care, since "task_running()" will
  1734. * return false if the runqueue has changed and p
  1735. * is actually now running somewhere else!
  1736. */
  1737. while (task_running(rq, p)) {
  1738. if (match_state && unlikely(p->state != match_state))
  1739. return 0;
  1740. cpu_relax();
  1741. }
  1742. /*
  1743. * Ok, time to look more closely! We need the rq
  1744. * lock now, to be *sure*. If we're wrong, we'll
  1745. * just go back and repeat.
  1746. */
  1747. rq = task_rq_lock(p, &flags);
  1748. trace_sched_wait_task(rq, p);
  1749. running = task_running(rq, p);
  1750. on_rq = p->se.on_rq;
  1751. ncsw = 0;
  1752. if (!match_state || p->state == match_state)
  1753. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1754. task_rq_unlock(rq, &flags);
  1755. /*
  1756. * If it changed from the expected state, bail out now.
  1757. */
  1758. if (unlikely(!ncsw))
  1759. break;
  1760. /*
  1761. * Was it really running after all now that we
  1762. * checked with the proper locks actually held?
  1763. *
  1764. * Oops. Go back and try again..
  1765. */
  1766. if (unlikely(running)) {
  1767. cpu_relax();
  1768. continue;
  1769. }
  1770. /*
  1771. * It's not enough that it's not actively running,
  1772. * it must be off the runqueue _entirely_, and not
  1773. * preempted!
  1774. *
  1775. * So if it was still runnable (but just not actively
  1776. * running right now), it's preempted, and we should
  1777. * yield - it could be a while.
  1778. */
  1779. if (unlikely(on_rq)) {
  1780. schedule_timeout_uninterruptible(1);
  1781. continue;
  1782. }
  1783. /*
  1784. * Ahh, all good. It wasn't running, and it wasn't
  1785. * runnable, which means that it will never become
  1786. * running in the future either. We're all done!
  1787. */
  1788. break;
  1789. }
  1790. return ncsw;
  1791. }
  1792. /***
  1793. * kick_process - kick a running thread to enter/exit the kernel
  1794. * @p: the to-be-kicked thread
  1795. *
  1796. * Cause a process which is running on another CPU to enter
  1797. * kernel-mode, without any delay. (to get signals handled.)
  1798. *
  1799. * NOTE: this function doesnt have to take the runqueue lock,
  1800. * because all it wants to ensure is that the remote task enters
  1801. * the kernel. If the IPI races and the task has been migrated
  1802. * to another CPU then no harm is done and the purpose has been
  1803. * achieved as well.
  1804. */
  1805. void kick_process(struct task_struct *p)
  1806. {
  1807. int cpu;
  1808. preempt_disable();
  1809. cpu = task_cpu(p);
  1810. if ((cpu != smp_processor_id()) && task_curr(p))
  1811. smp_send_reschedule(cpu);
  1812. preempt_enable();
  1813. }
  1814. /*
  1815. * Return a low guess at the load of a migration-source cpu weighted
  1816. * according to the scheduling class and "nice" value.
  1817. *
  1818. * We want to under-estimate the load of migration sources, to
  1819. * balance conservatively.
  1820. */
  1821. static unsigned long source_load(int cpu, int type)
  1822. {
  1823. struct rq *rq = cpu_rq(cpu);
  1824. unsigned long total = weighted_cpuload(cpu);
  1825. if (type == 0 || !sched_feat(LB_BIAS))
  1826. return total;
  1827. return min(rq->cpu_load[type-1], total);
  1828. }
  1829. /*
  1830. * Return a high guess at the load of a migration-target cpu weighted
  1831. * according to the scheduling class and "nice" value.
  1832. */
  1833. static unsigned long target_load(int cpu, int type)
  1834. {
  1835. struct rq *rq = cpu_rq(cpu);
  1836. unsigned long total = weighted_cpuload(cpu);
  1837. if (type == 0 || !sched_feat(LB_BIAS))
  1838. return total;
  1839. return max(rq->cpu_load[type-1], total);
  1840. }
  1841. /*
  1842. * find_idlest_group finds and returns the least busy CPU group within the
  1843. * domain.
  1844. */
  1845. static struct sched_group *
  1846. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1847. {
  1848. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1849. unsigned long min_load = ULONG_MAX, this_load = 0;
  1850. int load_idx = sd->forkexec_idx;
  1851. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1852. do {
  1853. unsigned long load, avg_load;
  1854. int local_group;
  1855. int i;
  1856. /* Skip over this group if it has no CPUs allowed */
  1857. if (!cpumask_intersects(sched_group_cpus(group),
  1858. &p->cpus_allowed))
  1859. continue;
  1860. local_group = cpumask_test_cpu(this_cpu,
  1861. sched_group_cpus(group));
  1862. /* Tally up the load of all CPUs in the group */
  1863. avg_load = 0;
  1864. for_each_cpu(i, sched_group_cpus(group)) {
  1865. /* Bias balancing toward cpus of our domain */
  1866. if (local_group)
  1867. load = source_load(i, load_idx);
  1868. else
  1869. load = target_load(i, load_idx);
  1870. avg_load += load;
  1871. }
  1872. /* Adjust by relative CPU power of the group */
  1873. avg_load = sg_div_cpu_power(group,
  1874. avg_load * SCHED_LOAD_SCALE);
  1875. if (local_group) {
  1876. this_load = avg_load;
  1877. this = group;
  1878. } else if (avg_load < min_load) {
  1879. min_load = avg_load;
  1880. idlest = group;
  1881. }
  1882. } while (group = group->next, group != sd->groups);
  1883. if (!idlest || 100*this_load < imbalance*min_load)
  1884. return NULL;
  1885. return idlest;
  1886. }
  1887. /*
  1888. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1889. */
  1890. static int
  1891. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1892. {
  1893. unsigned long load, min_load = ULONG_MAX;
  1894. int idlest = -1;
  1895. int i;
  1896. /* Traverse only the allowed CPUs */
  1897. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1898. load = weighted_cpuload(i);
  1899. if (load < min_load || (load == min_load && i == this_cpu)) {
  1900. min_load = load;
  1901. idlest = i;
  1902. }
  1903. }
  1904. return idlest;
  1905. }
  1906. /*
  1907. * sched_balance_self: balance the current task (running on cpu) in domains
  1908. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1909. * SD_BALANCE_EXEC.
  1910. *
  1911. * Balance, ie. select the least loaded group.
  1912. *
  1913. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1914. *
  1915. * preempt must be disabled.
  1916. */
  1917. static int sched_balance_self(int cpu, int flag)
  1918. {
  1919. struct task_struct *t = current;
  1920. struct sched_domain *tmp, *sd = NULL;
  1921. for_each_domain(cpu, tmp) {
  1922. /*
  1923. * If power savings logic is enabled for a domain, stop there.
  1924. */
  1925. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1926. break;
  1927. if (tmp->flags & flag)
  1928. sd = tmp;
  1929. }
  1930. if (sd)
  1931. update_shares(sd);
  1932. while (sd) {
  1933. struct sched_group *group;
  1934. int new_cpu, weight;
  1935. if (!(sd->flags & flag)) {
  1936. sd = sd->child;
  1937. continue;
  1938. }
  1939. group = find_idlest_group(sd, t, cpu);
  1940. if (!group) {
  1941. sd = sd->child;
  1942. continue;
  1943. }
  1944. new_cpu = find_idlest_cpu(group, t, cpu);
  1945. if (new_cpu == -1 || new_cpu == cpu) {
  1946. /* Now try balancing at a lower domain level of cpu */
  1947. sd = sd->child;
  1948. continue;
  1949. }
  1950. /* Now try balancing at a lower domain level of new_cpu */
  1951. cpu = new_cpu;
  1952. weight = cpumask_weight(sched_domain_span(sd));
  1953. sd = NULL;
  1954. for_each_domain(cpu, tmp) {
  1955. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1956. break;
  1957. if (tmp->flags & flag)
  1958. sd = tmp;
  1959. }
  1960. /* while loop will break here if sd == NULL */
  1961. }
  1962. return cpu;
  1963. }
  1964. #endif /* CONFIG_SMP */
  1965. /**
  1966. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1967. * @p: the task to evaluate
  1968. * @func: the function to be called
  1969. * @info: the function call argument
  1970. *
  1971. * Calls the function @func when the task is currently running. This might
  1972. * be on the current CPU, which just calls the function directly
  1973. */
  1974. void task_oncpu_function_call(struct task_struct *p,
  1975. void (*func) (void *info), void *info)
  1976. {
  1977. int cpu;
  1978. preempt_disable();
  1979. cpu = task_cpu(p);
  1980. if (task_curr(p))
  1981. smp_call_function_single(cpu, func, info, 1);
  1982. preempt_enable();
  1983. }
  1984. /***
  1985. * try_to_wake_up - wake up a thread
  1986. * @p: the to-be-woken-up thread
  1987. * @state: the mask of task states that can be woken
  1988. * @sync: do a synchronous wakeup?
  1989. *
  1990. * Put it on the run-queue if it's not already there. The "current"
  1991. * thread is always on the run-queue (except when the actual
  1992. * re-schedule is in progress), and as such you're allowed to do
  1993. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1994. * runnable without the overhead of this.
  1995. *
  1996. * returns failure only if the task is already active.
  1997. */
  1998. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1999. {
  2000. int cpu, orig_cpu, this_cpu, success = 0;
  2001. unsigned long flags;
  2002. long old_state;
  2003. struct rq *rq;
  2004. if (!sched_feat(SYNC_WAKEUPS))
  2005. sync = 0;
  2006. #ifdef CONFIG_SMP
  2007. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2008. struct sched_domain *sd;
  2009. this_cpu = raw_smp_processor_id();
  2010. cpu = task_cpu(p);
  2011. for_each_domain(this_cpu, sd) {
  2012. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2013. update_shares(sd);
  2014. break;
  2015. }
  2016. }
  2017. }
  2018. #endif
  2019. smp_wmb();
  2020. rq = task_rq_lock(p, &flags);
  2021. update_rq_clock(rq);
  2022. old_state = p->state;
  2023. if (!(old_state & state))
  2024. goto out;
  2025. if (p->se.on_rq)
  2026. goto out_running;
  2027. cpu = task_cpu(p);
  2028. orig_cpu = cpu;
  2029. this_cpu = smp_processor_id();
  2030. #ifdef CONFIG_SMP
  2031. if (unlikely(task_running(rq, p)))
  2032. goto out_activate;
  2033. cpu = p->sched_class->select_task_rq(p, sync);
  2034. if (cpu != orig_cpu) {
  2035. set_task_cpu(p, cpu);
  2036. task_rq_unlock(rq, &flags);
  2037. /* might preempt at this point */
  2038. rq = task_rq_lock(p, &flags);
  2039. old_state = p->state;
  2040. if (!(old_state & state))
  2041. goto out;
  2042. if (p->se.on_rq)
  2043. goto out_running;
  2044. this_cpu = smp_processor_id();
  2045. cpu = task_cpu(p);
  2046. }
  2047. #ifdef CONFIG_SCHEDSTATS
  2048. schedstat_inc(rq, ttwu_count);
  2049. if (cpu == this_cpu)
  2050. schedstat_inc(rq, ttwu_local);
  2051. else {
  2052. struct sched_domain *sd;
  2053. for_each_domain(this_cpu, sd) {
  2054. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2055. schedstat_inc(sd, ttwu_wake_remote);
  2056. break;
  2057. }
  2058. }
  2059. }
  2060. #endif /* CONFIG_SCHEDSTATS */
  2061. out_activate:
  2062. #endif /* CONFIG_SMP */
  2063. schedstat_inc(p, se.nr_wakeups);
  2064. if (sync)
  2065. schedstat_inc(p, se.nr_wakeups_sync);
  2066. if (orig_cpu != cpu)
  2067. schedstat_inc(p, se.nr_wakeups_migrate);
  2068. if (cpu == this_cpu)
  2069. schedstat_inc(p, se.nr_wakeups_local);
  2070. else
  2071. schedstat_inc(p, se.nr_wakeups_remote);
  2072. activate_task(rq, p, 1);
  2073. success = 1;
  2074. /*
  2075. * Only attribute actual wakeups done by this task.
  2076. */
  2077. if (!in_interrupt()) {
  2078. struct sched_entity *se = &current->se;
  2079. u64 sample = se->sum_exec_runtime;
  2080. if (se->last_wakeup)
  2081. sample -= se->last_wakeup;
  2082. else
  2083. sample -= se->start_runtime;
  2084. update_avg(&se->avg_wakeup, sample);
  2085. se->last_wakeup = se->sum_exec_runtime;
  2086. }
  2087. out_running:
  2088. trace_sched_wakeup(rq, p, success);
  2089. check_preempt_curr(rq, p, sync);
  2090. p->state = TASK_RUNNING;
  2091. #ifdef CONFIG_SMP
  2092. if (p->sched_class->task_wake_up)
  2093. p->sched_class->task_wake_up(rq, p);
  2094. #endif
  2095. out:
  2096. task_rq_unlock(rq, &flags);
  2097. return success;
  2098. }
  2099. int wake_up_process(struct task_struct *p)
  2100. {
  2101. return try_to_wake_up(p, TASK_ALL, 0);
  2102. }
  2103. EXPORT_SYMBOL(wake_up_process);
  2104. int wake_up_state(struct task_struct *p, unsigned int state)
  2105. {
  2106. return try_to_wake_up(p, state, 0);
  2107. }
  2108. /*
  2109. * Perform scheduler related setup for a newly forked process p.
  2110. * p is forked by current.
  2111. *
  2112. * __sched_fork() is basic setup used by init_idle() too:
  2113. */
  2114. static void __sched_fork(struct task_struct *p)
  2115. {
  2116. p->se.exec_start = 0;
  2117. p->se.sum_exec_runtime = 0;
  2118. p->se.prev_sum_exec_runtime = 0;
  2119. p->se.nr_migrations = 0;
  2120. p->se.last_wakeup = 0;
  2121. p->se.avg_overlap = 0;
  2122. p->se.start_runtime = 0;
  2123. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2124. #ifdef CONFIG_SCHEDSTATS
  2125. p->se.wait_start = 0;
  2126. p->se.sum_sleep_runtime = 0;
  2127. p->se.sleep_start = 0;
  2128. p->se.block_start = 0;
  2129. p->se.sleep_max = 0;
  2130. p->se.block_max = 0;
  2131. p->se.exec_max = 0;
  2132. p->se.slice_max = 0;
  2133. p->se.wait_max = 0;
  2134. #endif
  2135. INIT_LIST_HEAD(&p->rt.run_list);
  2136. p->se.on_rq = 0;
  2137. INIT_LIST_HEAD(&p->se.group_node);
  2138. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2139. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2140. #endif
  2141. /*
  2142. * We mark the process as running here, but have not actually
  2143. * inserted it onto the runqueue yet. This guarantees that
  2144. * nobody will actually run it, and a signal or other external
  2145. * event cannot wake it up and insert it on the runqueue either.
  2146. */
  2147. p->state = TASK_RUNNING;
  2148. }
  2149. /*
  2150. * fork()/clone()-time setup:
  2151. */
  2152. void sched_fork(struct task_struct *p, int clone_flags)
  2153. {
  2154. int cpu = get_cpu();
  2155. __sched_fork(p);
  2156. #ifdef CONFIG_SMP
  2157. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2158. #endif
  2159. set_task_cpu(p, cpu);
  2160. /*
  2161. * Make sure we do not leak PI boosting priority to the child:
  2162. */
  2163. p->prio = current->normal_prio;
  2164. if (!rt_prio(p->prio))
  2165. p->sched_class = &fair_sched_class;
  2166. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2167. if (likely(sched_info_on()))
  2168. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2169. #endif
  2170. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2171. p->oncpu = 0;
  2172. #endif
  2173. #ifdef CONFIG_PREEMPT
  2174. /* Want to start with kernel preemption disabled. */
  2175. task_thread_info(p)->preempt_count = 1;
  2176. #endif
  2177. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2178. put_cpu();
  2179. }
  2180. /*
  2181. * wake_up_new_task - wake up a newly created task for the first time.
  2182. *
  2183. * This function will do some initial scheduler statistics housekeeping
  2184. * that must be done for every newly created context, then puts the task
  2185. * on the runqueue and wakes it.
  2186. */
  2187. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2188. {
  2189. unsigned long flags;
  2190. struct rq *rq;
  2191. rq = task_rq_lock(p, &flags);
  2192. BUG_ON(p->state != TASK_RUNNING);
  2193. update_rq_clock(rq);
  2194. p->prio = effective_prio(p);
  2195. if (!p->sched_class->task_new || !current->se.on_rq) {
  2196. activate_task(rq, p, 0);
  2197. } else {
  2198. /*
  2199. * Let the scheduling class do new task startup
  2200. * management (if any):
  2201. */
  2202. p->sched_class->task_new(rq, p);
  2203. inc_nr_running(rq);
  2204. }
  2205. trace_sched_wakeup_new(rq, p, 1);
  2206. check_preempt_curr(rq, p, 0);
  2207. #ifdef CONFIG_SMP
  2208. if (p->sched_class->task_wake_up)
  2209. p->sched_class->task_wake_up(rq, p);
  2210. #endif
  2211. task_rq_unlock(rq, &flags);
  2212. }
  2213. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2214. /**
  2215. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2216. * @notifier: notifier struct to register
  2217. */
  2218. void preempt_notifier_register(struct preempt_notifier *notifier)
  2219. {
  2220. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2221. }
  2222. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2223. /**
  2224. * preempt_notifier_unregister - no longer interested in preemption notifications
  2225. * @notifier: notifier struct to unregister
  2226. *
  2227. * This is safe to call from within a preemption notifier.
  2228. */
  2229. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2230. {
  2231. hlist_del(&notifier->link);
  2232. }
  2233. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2234. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2235. {
  2236. struct preempt_notifier *notifier;
  2237. struct hlist_node *node;
  2238. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2239. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2240. }
  2241. static void
  2242. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2243. struct task_struct *next)
  2244. {
  2245. struct preempt_notifier *notifier;
  2246. struct hlist_node *node;
  2247. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2248. notifier->ops->sched_out(notifier, next);
  2249. }
  2250. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2251. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2252. {
  2253. }
  2254. static void
  2255. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2256. struct task_struct *next)
  2257. {
  2258. }
  2259. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2260. /**
  2261. * prepare_task_switch - prepare to switch tasks
  2262. * @rq: the runqueue preparing to switch
  2263. * @prev: the current task that is being switched out
  2264. * @next: the task we are going to switch to.
  2265. *
  2266. * This is called with the rq lock held and interrupts off. It must
  2267. * be paired with a subsequent finish_task_switch after the context
  2268. * switch.
  2269. *
  2270. * prepare_task_switch sets up locking and calls architecture specific
  2271. * hooks.
  2272. */
  2273. static inline void
  2274. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2275. struct task_struct *next)
  2276. {
  2277. fire_sched_out_preempt_notifiers(prev, next);
  2278. prepare_lock_switch(rq, next);
  2279. prepare_arch_switch(next);
  2280. }
  2281. /**
  2282. * finish_task_switch - clean up after a task-switch
  2283. * @rq: runqueue associated with task-switch
  2284. * @prev: the thread we just switched away from.
  2285. *
  2286. * finish_task_switch must be called after the context switch, paired
  2287. * with a prepare_task_switch call before the context switch.
  2288. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2289. * and do any other architecture-specific cleanup actions.
  2290. *
  2291. * Note that we may have delayed dropping an mm in context_switch(). If
  2292. * so, we finish that here outside of the runqueue lock. (Doing it
  2293. * with the lock held can cause deadlocks; see schedule() for
  2294. * details.)
  2295. */
  2296. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2297. __releases(rq->lock)
  2298. {
  2299. struct mm_struct *mm = rq->prev_mm;
  2300. long prev_state;
  2301. #ifdef CONFIG_SMP
  2302. int post_schedule = 0;
  2303. if (current->sched_class->needs_post_schedule)
  2304. post_schedule = current->sched_class->needs_post_schedule(rq);
  2305. #endif
  2306. rq->prev_mm = NULL;
  2307. /*
  2308. * A task struct has one reference for the use as "current".
  2309. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2310. * schedule one last time. The schedule call will never return, and
  2311. * the scheduled task must drop that reference.
  2312. * The test for TASK_DEAD must occur while the runqueue locks are
  2313. * still held, otherwise prev could be scheduled on another cpu, die
  2314. * there before we look at prev->state, and then the reference would
  2315. * be dropped twice.
  2316. * Manfred Spraul <manfred@colorfullife.com>
  2317. */
  2318. prev_state = prev->state;
  2319. finish_arch_switch(prev);
  2320. perf_counter_task_sched_in(current, cpu_of(rq));
  2321. finish_lock_switch(rq, prev);
  2322. #ifdef CONFIG_SMP
  2323. if (post_schedule)
  2324. current->sched_class->post_schedule(rq);
  2325. #endif
  2326. fire_sched_in_preempt_notifiers(current);
  2327. if (mm)
  2328. mmdrop(mm);
  2329. if (unlikely(prev_state == TASK_DEAD)) {
  2330. /*
  2331. * Remove function-return probe instances associated with this
  2332. * task and put them back on the free list.
  2333. */
  2334. kprobe_flush_task(prev);
  2335. put_task_struct(prev);
  2336. }
  2337. }
  2338. /**
  2339. * schedule_tail - first thing a freshly forked thread must call.
  2340. * @prev: the thread we just switched away from.
  2341. */
  2342. asmlinkage void schedule_tail(struct task_struct *prev)
  2343. __releases(rq->lock)
  2344. {
  2345. struct rq *rq = this_rq();
  2346. finish_task_switch(rq, prev);
  2347. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2348. /* In this case, finish_task_switch does not reenable preemption */
  2349. preempt_enable();
  2350. #endif
  2351. if (current->set_child_tid)
  2352. put_user(task_pid_vnr(current), current->set_child_tid);
  2353. }
  2354. /*
  2355. * context_switch - switch to the new MM and the new
  2356. * thread's register state.
  2357. */
  2358. static inline void
  2359. context_switch(struct rq *rq, struct task_struct *prev,
  2360. struct task_struct *next)
  2361. {
  2362. struct mm_struct *mm, *oldmm;
  2363. prepare_task_switch(rq, prev, next);
  2364. trace_sched_switch(rq, prev, next);
  2365. mm = next->mm;
  2366. oldmm = prev->active_mm;
  2367. /*
  2368. * For paravirt, this is coupled with an exit in switch_to to
  2369. * combine the page table reload and the switch backend into
  2370. * one hypercall.
  2371. */
  2372. arch_enter_lazy_cpu_mode();
  2373. if (unlikely(!mm)) {
  2374. next->active_mm = oldmm;
  2375. atomic_inc(&oldmm->mm_count);
  2376. enter_lazy_tlb(oldmm, next);
  2377. } else
  2378. switch_mm(oldmm, mm, next);
  2379. if (unlikely(!prev->mm)) {
  2380. prev->active_mm = NULL;
  2381. rq->prev_mm = oldmm;
  2382. }
  2383. /*
  2384. * Since the runqueue lock will be released by the next
  2385. * task (which is an invalid locking op but in the case
  2386. * of the scheduler it's an obvious special-case), so we
  2387. * do an early lockdep release here:
  2388. */
  2389. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2390. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2391. #endif
  2392. /* Here we just switch the register state and the stack. */
  2393. switch_to(prev, next, prev);
  2394. barrier();
  2395. /*
  2396. * this_rq must be evaluated again because prev may have moved
  2397. * CPUs since it called schedule(), thus the 'rq' on its stack
  2398. * frame will be invalid.
  2399. */
  2400. finish_task_switch(this_rq(), prev);
  2401. }
  2402. /*
  2403. * nr_running, nr_uninterruptible and nr_context_switches:
  2404. *
  2405. * externally visible scheduler statistics: current number of runnable
  2406. * threads, current number of uninterruptible-sleeping threads, total
  2407. * number of context switches performed since bootup.
  2408. */
  2409. unsigned long nr_running(void)
  2410. {
  2411. unsigned long i, sum = 0;
  2412. for_each_online_cpu(i)
  2413. sum += cpu_rq(i)->nr_running;
  2414. return sum;
  2415. }
  2416. unsigned long nr_uninterruptible(void)
  2417. {
  2418. unsigned long i, sum = 0;
  2419. for_each_possible_cpu(i)
  2420. sum += cpu_rq(i)->nr_uninterruptible;
  2421. /*
  2422. * Since we read the counters lockless, it might be slightly
  2423. * inaccurate. Do not allow it to go below zero though:
  2424. */
  2425. if (unlikely((long)sum < 0))
  2426. sum = 0;
  2427. return sum;
  2428. }
  2429. unsigned long long nr_context_switches(void)
  2430. {
  2431. int i;
  2432. unsigned long long sum = 0;
  2433. for_each_possible_cpu(i)
  2434. sum += cpu_rq(i)->nr_switches;
  2435. return sum;
  2436. }
  2437. unsigned long nr_iowait(void)
  2438. {
  2439. unsigned long i, sum = 0;
  2440. for_each_possible_cpu(i)
  2441. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2442. return sum;
  2443. }
  2444. unsigned long nr_active(void)
  2445. {
  2446. unsigned long i, running = 0, uninterruptible = 0;
  2447. for_each_online_cpu(i) {
  2448. running += cpu_rq(i)->nr_running;
  2449. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2450. }
  2451. if (unlikely((long)uninterruptible < 0))
  2452. uninterruptible = 0;
  2453. return running + uninterruptible;
  2454. }
  2455. /*
  2456. * Externally visible per-cpu scheduler statistics:
  2457. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2458. */
  2459. u64 cpu_nr_migrations(int cpu)
  2460. {
  2461. return cpu_rq(cpu)->nr_migrations_in;
  2462. }
  2463. /*
  2464. * Update rq->cpu_load[] statistics. This function is usually called every
  2465. * scheduler tick (TICK_NSEC).
  2466. */
  2467. static void update_cpu_load(struct rq *this_rq)
  2468. {
  2469. unsigned long this_load = this_rq->load.weight;
  2470. int i, scale;
  2471. this_rq->nr_load_updates++;
  2472. /* Update our load: */
  2473. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2474. unsigned long old_load, new_load;
  2475. /* scale is effectively 1 << i now, and >> i divides by scale */
  2476. old_load = this_rq->cpu_load[i];
  2477. new_load = this_load;
  2478. /*
  2479. * Round up the averaging division if load is increasing. This
  2480. * prevents us from getting stuck on 9 if the load is 10, for
  2481. * example.
  2482. */
  2483. if (new_load > old_load)
  2484. new_load += scale-1;
  2485. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2486. }
  2487. }
  2488. #ifdef CONFIG_SMP
  2489. /*
  2490. * double_rq_lock - safely lock two runqueues
  2491. *
  2492. * Note this does not disable interrupts like task_rq_lock,
  2493. * you need to do so manually before calling.
  2494. */
  2495. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2496. __acquires(rq1->lock)
  2497. __acquires(rq2->lock)
  2498. {
  2499. BUG_ON(!irqs_disabled());
  2500. if (rq1 == rq2) {
  2501. spin_lock(&rq1->lock);
  2502. __acquire(rq2->lock); /* Fake it out ;) */
  2503. } else {
  2504. if (rq1 < rq2) {
  2505. spin_lock(&rq1->lock);
  2506. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2507. } else {
  2508. spin_lock(&rq2->lock);
  2509. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2510. }
  2511. }
  2512. update_rq_clock(rq1);
  2513. update_rq_clock(rq2);
  2514. }
  2515. /*
  2516. * double_rq_unlock - safely unlock two runqueues
  2517. *
  2518. * Note this does not restore interrupts like task_rq_unlock,
  2519. * you need to do so manually after calling.
  2520. */
  2521. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2522. __releases(rq1->lock)
  2523. __releases(rq2->lock)
  2524. {
  2525. spin_unlock(&rq1->lock);
  2526. if (rq1 != rq2)
  2527. spin_unlock(&rq2->lock);
  2528. else
  2529. __release(rq2->lock);
  2530. }
  2531. /*
  2532. * If dest_cpu is allowed for this process, migrate the task to it.
  2533. * This is accomplished by forcing the cpu_allowed mask to only
  2534. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2535. * the cpu_allowed mask is restored.
  2536. */
  2537. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2538. {
  2539. struct migration_req req;
  2540. unsigned long flags;
  2541. struct rq *rq;
  2542. rq = task_rq_lock(p, &flags);
  2543. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2544. || unlikely(!cpu_active(dest_cpu)))
  2545. goto out;
  2546. /* force the process onto the specified CPU */
  2547. if (migrate_task(p, dest_cpu, &req)) {
  2548. /* Need to wait for migration thread (might exit: take ref). */
  2549. struct task_struct *mt = rq->migration_thread;
  2550. get_task_struct(mt);
  2551. task_rq_unlock(rq, &flags);
  2552. wake_up_process(mt);
  2553. put_task_struct(mt);
  2554. wait_for_completion(&req.done);
  2555. return;
  2556. }
  2557. out:
  2558. task_rq_unlock(rq, &flags);
  2559. }
  2560. /*
  2561. * sched_exec - execve() is a valuable balancing opportunity, because at
  2562. * this point the task has the smallest effective memory and cache footprint.
  2563. */
  2564. void sched_exec(void)
  2565. {
  2566. int new_cpu, this_cpu = get_cpu();
  2567. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2568. put_cpu();
  2569. if (new_cpu != this_cpu)
  2570. sched_migrate_task(current, new_cpu);
  2571. }
  2572. /*
  2573. * pull_task - move a task from a remote runqueue to the local runqueue.
  2574. * Both runqueues must be locked.
  2575. */
  2576. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2577. struct rq *this_rq, int this_cpu)
  2578. {
  2579. deactivate_task(src_rq, p, 0);
  2580. set_task_cpu(p, this_cpu);
  2581. activate_task(this_rq, p, 0);
  2582. /*
  2583. * Note that idle threads have a prio of MAX_PRIO, for this test
  2584. * to be always true for them.
  2585. */
  2586. check_preempt_curr(this_rq, p, 0);
  2587. }
  2588. /*
  2589. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2590. */
  2591. static
  2592. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2593. struct sched_domain *sd, enum cpu_idle_type idle,
  2594. int *all_pinned)
  2595. {
  2596. int tsk_cache_hot = 0;
  2597. /*
  2598. * We do not migrate tasks that are:
  2599. * 1) running (obviously), or
  2600. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2601. * 3) are cache-hot on their current CPU.
  2602. */
  2603. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2604. schedstat_inc(p, se.nr_failed_migrations_affine);
  2605. return 0;
  2606. }
  2607. *all_pinned = 0;
  2608. if (task_running(rq, p)) {
  2609. schedstat_inc(p, se.nr_failed_migrations_running);
  2610. return 0;
  2611. }
  2612. /*
  2613. * Aggressive migration if:
  2614. * 1) task is cache cold, or
  2615. * 2) too many balance attempts have failed.
  2616. */
  2617. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2618. if (!tsk_cache_hot ||
  2619. sd->nr_balance_failed > sd->cache_nice_tries) {
  2620. #ifdef CONFIG_SCHEDSTATS
  2621. if (tsk_cache_hot) {
  2622. schedstat_inc(sd, lb_hot_gained[idle]);
  2623. schedstat_inc(p, se.nr_forced_migrations);
  2624. }
  2625. #endif
  2626. return 1;
  2627. }
  2628. if (tsk_cache_hot) {
  2629. schedstat_inc(p, se.nr_failed_migrations_hot);
  2630. return 0;
  2631. }
  2632. return 1;
  2633. }
  2634. static unsigned long
  2635. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2636. unsigned long max_load_move, struct sched_domain *sd,
  2637. enum cpu_idle_type idle, int *all_pinned,
  2638. int *this_best_prio, struct rq_iterator *iterator)
  2639. {
  2640. int loops = 0, pulled = 0, pinned = 0;
  2641. struct task_struct *p;
  2642. long rem_load_move = max_load_move;
  2643. if (max_load_move == 0)
  2644. goto out;
  2645. pinned = 1;
  2646. /*
  2647. * Start the load-balancing iterator:
  2648. */
  2649. p = iterator->start(iterator->arg);
  2650. next:
  2651. if (!p || loops++ > sysctl_sched_nr_migrate)
  2652. goto out;
  2653. if ((p->se.load.weight >> 1) > rem_load_move ||
  2654. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2655. p = iterator->next(iterator->arg);
  2656. goto next;
  2657. }
  2658. pull_task(busiest, p, this_rq, this_cpu);
  2659. pulled++;
  2660. rem_load_move -= p->se.load.weight;
  2661. #ifdef CONFIG_PREEMPT
  2662. /*
  2663. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2664. * will stop after the first task is pulled to minimize the critical
  2665. * section.
  2666. */
  2667. if (idle == CPU_NEWLY_IDLE)
  2668. goto out;
  2669. #endif
  2670. /*
  2671. * We only want to steal up to the prescribed amount of weighted load.
  2672. */
  2673. if (rem_load_move > 0) {
  2674. if (p->prio < *this_best_prio)
  2675. *this_best_prio = p->prio;
  2676. p = iterator->next(iterator->arg);
  2677. goto next;
  2678. }
  2679. out:
  2680. /*
  2681. * Right now, this is one of only two places pull_task() is called,
  2682. * so we can safely collect pull_task() stats here rather than
  2683. * inside pull_task().
  2684. */
  2685. schedstat_add(sd, lb_gained[idle], pulled);
  2686. if (all_pinned)
  2687. *all_pinned = pinned;
  2688. return max_load_move - rem_load_move;
  2689. }
  2690. /*
  2691. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2692. * this_rq, as part of a balancing operation within domain "sd".
  2693. * Returns 1 if successful and 0 otherwise.
  2694. *
  2695. * Called with both runqueues locked.
  2696. */
  2697. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2698. unsigned long max_load_move,
  2699. struct sched_domain *sd, enum cpu_idle_type idle,
  2700. int *all_pinned)
  2701. {
  2702. const struct sched_class *class = sched_class_highest;
  2703. unsigned long total_load_moved = 0;
  2704. int this_best_prio = this_rq->curr->prio;
  2705. do {
  2706. total_load_moved +=
  2707. class->load_balance(this_rq, this_cpu, busiest,
  2708. max_load_move - total_load_moved,
  2709. sd, idle, all_pinned, &this_best_prio);
  2710. class = class->next;
  2711. #ifdef CONFIG_PREEMPT
  2712. /*
  2713. * NEWIDLE balancing is a source of latency, so preemptible
  2714. * kernels will stop after the first task is pulled to minimize
  2715. * the critical section.
  2716. */
  2717. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2718. break;
  2719. #endif
  2720. } while (class && max_load_move > total_load_moved);
  2721. return total_load_moved > 0;
  2722. }
  2723. static int
  2724. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2725. struct sched_domain *sd, enum cpu_idle_type idle,
  2726. struct rq_iterator *iterator)
  2727. {
  2728. struct task_struct *p = iterator->start(iterator->arg);
  2729. int pinned = 0;
  2730. while (p) {
  2731. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2732. pull_task(busiest, p, this_rq, this_cpu);
  2733. /*
  2734. * Right now, this is only the second place pull_task()
  2735. * is called, so we can safely collect pull_task()
  2736. * stats here rather than inside pull_task().
  2737. */
  2738. schedstat_inc(sd, lb_gained[idle]);
  2739. return 1;
  2740. }
  2741. p = iterator->next(iterator->arg);
  2742. }
  2743. return 0;
  2744. }
  2745. /*
  2746. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2747. * part of active balancing operations within "domain".
  2748. * Returns 1 if successful and 0 otherwise.
  2749. *
  2750. * Called with both runqueues locked.
  2751. */
  2752. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2753. struct sched_domain *sd, enum cpu_idle_type idle)
  2754. {
  2755. const struct sched_class *class;
  2756. for (class = sched_class_highest; class; class = class->next)
  2757. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2758. return 1;
  2759. return 0;
  2760. }
  2761. /********** Helpers for find_busiest_group ************************/
  2762. /*
  2763. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2764. * during load balancing.
  2765. */
  2766. struct sd_lb_stats {
  2767. struct sched_group *busiest; /* Busiest group in this sd */
  2768. struct sched_group *this; /* Local group in this sd */
  2769. unsigned long total_load; /* Total load of all groups in sd */
  2770. unsigned long total_pwr; /* Total power of all groups in sd */
  2771. unsigned long avg_load; /* Average load across all groups in sd */
  2772. /** Statistics of this group */
  2773. unsigned long this_load;
  2774. unsigned long this_load_per_task;
  2775. unsigned long this_nr_running;
  2776. /* Statistics of the busiest group */
  2777. unsigned long max_load;
  2778. unsigned long busiest_load_per_task;
  2779. unsigned long busiest_nr_running;
  2780. int group_imb; /* Is there imbalance in this sd */
  2781. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2782. int power_savings_balance; /* Is powersave balance needed for this sd */
  2783. struct sched_group *group_min; /* Least loaded group in sd */
  2784. struct sched_group *group_leader; /* Group which relieves group_min */
  2785. unsigned long min_load_per_task; /* load_per_task in group_min */
  2786. unsigned long leader_nr_running; /* Nr running of group_leader */
  2787. unsigned long min_nr_running; /* Nr running of group_min */
  2788. #endif
  2789. };
  2790. /*
  2791. * sg_lb_stats - stats of a sched_group required for load_balancing
  2792. */
  2793. struct sg_lb_stats {
  2794. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2795. unsigned long group_load; /* Total load over the CPUs of the group */
  2796. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2797. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2798. unsigned long group_capacity;
  2799. int group_imb; /* Is there an imbalance in the group ? */
  2800. };
  2801. /**
  2802. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2803. * @group: The group whose first cpu is to be returned.
  2804. */
  2805. static inline unsigned int group_first_cpu(struct sched_group *group)
  2806. {
  2807. return cpumask_first(sched_group_cpus(group));
  2808. }
  2809. /**
  2810. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2811. * @sd: The sched_domain whose load_idx is to be obtained.
  2812. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2813. */
  2814. static inline int get_sd_load_idx(struct sched_domain *sd,
  2815. enum cpu_idle_type idle)
  2816. {
  2817. int load_idx;
  2818. switch (idle) {
  2819. case CPU_NOT_IDLE:
  2820. load_idx = sd->busy_idx;
  2821. break;
  2822. case CPU_NEWLY_IDLE:
  2823. load_idx = sd->newidle_idx;
  2824. break;
  2825. default:
  2826. load_idx = sd->idle_idx;
  2827. break;
  2828. }
  2829. return load_idx;
  2830. }
  2831. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2832. /**
  2833. * init_sd_power_savings_stats - Initialize power savings statistics for
  2834. * the given sched_domain, during load balancing.
  2835. *
  2836. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2837. * @sds: Variable containing the statistics for sd.
  2838. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2839. */
  2840. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2841. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2842. {
  2843. /*
  2844. * Busy processors will not participate in power savings
  2845. * balance.
  2846. */
  2847. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2848. sds->power_savings_balance = 0;
  2849. else {
  2850. sds->power_savings_balance = 1;
  2851. sds->min_nr_running = ULONG_MAX;
  2852. sds->leader_nr_running = 0;
  2853. }
  2854. }
  2855. /**
  2856. * update_sd_power_savings_stats - Update the power saving stats for a
  2857. * sched_domain while performing load balancing.
  2858. *
  2859. * @group: sched_group belonging to the sched_domain under consideration.
  2860. * @sds: Variable containing the statistics of the sched_domain
  2861. * @local_group: Does group contain the CPU for which we're performing
  2862. * load balancing ?
  2863. * @sgs: Variable containing the statistics of the group.
  2864. */
  2865. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2866. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2867. {
  2868. if (!sds->power_savings_balance)
  2869. return;
  2870. /*
  2871. * If the local group is idle or completely loaded
  2872. * no need to do power savings balance at this domain
  2873. */
  2874. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2875. !sds->this_nr_running))
  2876. sds->power_savings_balance = 0;
  2877. /*
  2878. * If a group is already running at full capacity or idle,
  2879. * don't include that group in power savings calculations
  2880. */
  2881. if (!sds->power_savings_balance ||
  2882. sgs->sum_nr_running >= sgs->group_capacity ||
  2883. !sgs->sum_nr_running)
  2884. return;
  2885. /*
  2886. * Calculate the group which has the least non-idle load.
  2887. * This is the group from where we need to pick up the load
  2888. * for saving power
  2889. */
  2890. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2891. (sgs->sum_nr_running == sds->min_nr_running &&
  2892. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2893. sds->group_min = group;
  2894. sds->min_nr_running = sgs->sum_nr_running;
  2895. sds->min_load_per_task = sgs->sum_weighted_load /
  2896. sgs->sum_nr_running;
  2897. }
  2898. /*
  2899. * Calculate the group which is almost near its
  2900. * capacity but still has some space to pick up some load
  2901. * from other group and save more power
  2902. */
  2903. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2904. return;
  2905. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2906. (sgs->sum_nr_running == sds->leader_nr_running &&
  2907. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2908. sds->group_leader = group;
  2909. sds->leader_nr_running = sgs->sum_nr_running;
  2910. }
  2911. }
  2912. /**
  2913. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2914. * @sds: Variable containing the statistics of the sched_domain
  2915. * under consideration.
  2916. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2917. * @imbalance: Variable to store the imbalance.
  2918. *
  2919. * Description:
  2920. * Check if we have potential to perform some power-savings balance.
  2921. * If yes, set the busiest group to be the least loaded group in the
  2922. * sched_domain, so that it's CPUs can be put to idle.
  2923. *
  2924. * Returns 1 if there is potential to perform power-savings balance.
  2925. * Else returns 0.
  2926. */
  2927. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2928. int this_cpu, unsigned long *imbalance)
  2929. {
  2930. if (!sds->power_savings_balance)
  2931. return 0;
  2932. if (sds->this != sds->group_leader ||
  2933. sds->group_leader == sds->group_min)
  2934. return 0;
  2935. *imbalance = sds->min_load_per_task;
  2936. sds->busiest = sds->group_min;
  2937. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2938. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2939. group_first_cpu(sds->group_leader);
  2940. }
  2941. return 1;
  2942. }
  2943. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2944. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2945. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2946. {
  2947. return;
  2948. }
  2949. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2950. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2951. {
  2952. return;
  2953. }
  2954. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2955. int this_cpu, unsigned long *imbalance)
  2956. {
  2957. return 0;
  2958. }
  2959. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2960. /**
  2961. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2962. * @group: sched_group whose statistics are to be updated.
  2963. * @this_cpu: Cpu for which load balance is currently performed.
  2964. * @idle: Idle status of this_cpu
  2965. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2966. * @sd_idle: Idle status of the sched_domain containing group.
  2967. * @local_group: Does group contain this_cpu.
  2968. * @cpus: Set of cpus considered for load balancing.
  2969. * @balance: Should we balance.
  2970. * @sgs: variable to hold the statistics for this group.
  2971. */
  2972. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2973. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2974. int local_group, const struct cpumask *cpus,
  2975. int *balance, struct sg_lb_stats *sgs)
  2976. {
  2977. unsigned long load, max_cpu_load, min_cpu_load;
  2978. int i;
  2979. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2980. unsigned long sum_avg_load_per_task;
  2981. unsigned long avg_load_per_task;
  2982. if (local_group)
  2983. balance_cpu = group_first_cpu(group);
  2984. /* Tally up the load of all CPUs in the group */
  2985. sum_avg_load_per_task = avg_load_per_task = 0;
  2986. max_cpu_load = 0;
  2987. min_cpu_load = ~0UL;
  2988. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2989. struct rq *rq = cpu_rq(i);
  2990. if (*sd_idle && rq->nr_running)
  2991. *sd_idle = 0;
  2992. /* Bias balancing toward cpus of our domain */
  2993. if (local_group) {
  2994. if (idle_cpu(i) && !first_idle_cpu) {
  2995. first_idle_cpu = 1;
  2996. balance_cpu = i;
  2997. }
  2998. load = target_load(i, load_idx);
  2999. } else {
  3000. load = source_load(i, load_idx);
  3001. if (load > max_cpu_load)
  3002. max_cpu_load = load;
  3003. if (min_cpu_load > load)
  3004. min_cpu_load = load;
  3005. }
  3006. sgs->group_load += load;
  3007. sgs->sum_nr_running += rq->nr_running;
  3008. sgs->sum_weighted_load += weighted_cpuload(i);
  3009. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3010. }
  3011. /*
  3012. * First idle cpu or the first cpu(busiest) in this sched group
  3013. * is eligible for doing load balancing at this and above
  3014. * domains. In the newly idle case, we will allow all the cpu's
  3015. * to do the newly idle load balance.
  3016. */
  3017. if (idle != CPU_NEWLY_IDLE && local_group &&
  3018. balance_cpu != this_cpu && balance) {
  3019. *balance = 0;
  3020. return;
  3021. }
  3022. /* Adjust by relative CPU power of the group */
  3023. sgs->avg_load = sg_div_cpu_power(group,
  3024. sgs->group_load * SCHED_LOAD_SCALE);
  3025. /*
  3026. * Consider the group unbalanced when the imbalance is larger
  3027. * than the average weight of two tasks.
  3028. *
  3029. * APZ: with cgroup the avg task weight can vary wildly and
  3030. * might not be a suitable number - should we keep a
  3031. * normalized nr_running number somewhere that negates
  3032. * the hierarchy?
  3033. */
  3034. avg_load_per_task = sg_div_cpu_power(group,
  3035. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3036. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3037. sgs->group_imb = 1;
  3038. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3039. }
  3040. /**
  3041. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3042. * @sd: sched_domain whose statistics are to be updated.
  3043. * @this_cpu: Cpu for which load balance is currently performed.
  3044. * @idle: Idle status of this_cpu
  3045. * @sd_idle: Idle status of the sched_domain containing group.
  3046. * @cpus: Set of cpus considered for load balancing.
  3047. * @balance: Should we balance.
  3048. * @sds: variable to hold the statistics for this sched_domain.
  3049. */
  3050. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3051. enum cpu_idle_type idle, int *sd_idle,
  3052. const struct cpumask *cpus, int *balance,
  3053. struct sd_lb_stats *sds)
  3054. {
  3055. struct sched_group *group = sd->groups;
  3056. struct sg_lb_stats sgs;
  3057. int load_idx;
  3058. init_sd_power_savings_stats(sd, sds, idle);
  3059. load_idx = get_sd_load_idx(sd, idle);
  3060. do {
  3061. int local_group;
  3062. local_group = cpumask_test_cpu(this_cpu,
  3063. sched_group_cpus(group));
  3064. memset(&sgs, 0, sizeof(sgs));
  3065. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3066. local_group, cpus, balance, &sgs);
  3067. if (local_group && balance && !(*balance))
  3068. return;
  3069. sds->total_load += sgs.group_load;
  3070. sds->total_pwr += group->__cpu_power;
  3071. if (local_group) {
  3072. sds->this_load = sgs.avg_load;
  3073. sds->this = group;
  3074. sds->this_nr_running = sgs.sum_nr_running;
  3075. sds->this_load_per_task = sgs.sum_weighted_load;
  3076. } else if (sgs.avg_load > sds->max_load &&
  3077. (sgs.sum_nr_running > sgs.group_capacity ||
  3078. sgs.group_imb)) {
  3079. sds->max_load = sgs.avg_load;
  3080. sds->busiest = group;
  3081. sds->busiest_nr_running = sgs.sum_nr_running;
  3082. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3083. sds->group_imb = sgs.group_imb;
  3084. }
  3085. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3086. group = group->next;
  3087. } while (group != sd->groups);
  3088. }
  3089. /**
  3090. * fix_small_imbalance - Calculate the minor imbalance that exists
  3091. * amongst the groups of a sched_domain, during
  3092. * load balancing.
  3093. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3094. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3095. * @imbalance: Variable to store the imbalance.
  3096. */
  3097. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3098. int this_cpu, unsigned long *imbalance)
  3099. {
  3100. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3101. unsigned int imbn = 2;
  3102. if (sds->this_nr_running) {
  3103. sds->this_load_per_task /= sds->this_nr_running;
  3104. if (sds->busiest_load_per_task >
  3105. sds->this_load_per_task)
  3106. imbn = 1;
  3107. } else
  3108. sds->this_load_per_task =
  3109. cpu_avg_load_per_task(this_cpu);
  3110. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3111. sds->busiest_load_per_task * imbn) {
  3112. *imbalance = sds->busiest_load_per_task;
  3113. return;
  3114. }
  3115. /*
  3116. * OK, we don't have enough imbalance to justify moving tasks,
  3117. * however we may be able to increase total CPU power used by
  3118. * moving them.
  3119. */
  3120. pwr_now += sds->busiest->__cpu_power *
  3121. min(sds->busiest_load_per_task, sds->max_load);
  3122. pwr_now += sds->this->__cpu_power *
  3123. min(sds->this_load_per_task, sds->this_load);
  3124. pwr_now /= SCHED_LOAD_SCALE;
  3125. /* Amount of load we'd subtract */
  3126. tmp = sg_div_cpu_power(sds->busiest,
  3127. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3128. if (sds->max_load > tmp)
  3129. pwr_move += sds->busiest->__cpu_power *
  3130. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3131. /* Amount of load we'd add */
  3132. if (sds->max_load * sds->busiest->__cpu_power <
  3133. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3134. tmp = sg_div_cpu_power(sds->this,
  3135. sds->max_load * sds->busiest->__cpu_power);
  3136. else
  3137. tmp = sg_div_cpu_power(sds->this,
  3138. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3139. pwr_move += sds->this->__cpu_power *
  3140. min(sds->this_load_per_task, sds->this_load + tmp);
  3141. pwr_move /= SCHED_LOAD_SCALE;
  3142. /* Move if we gain throughput */
  3143. if (pwr_move > pwr_now)
  3144. *imbalance = sds->busiest_load_per_task;
  3145. }
  3146. /**
  3147. * calculate_imbalance - Calculate the amount of imbalance present within the
  3148. * groups of a given sched_domain during load balance.
  3149. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3150. * @this_cpu: Cpu for which currently load balance is being performed.
  3151. * @imbalance: The variable to store the imbalance.
  3152. */
  3153. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3154. unsigned long *imbalance)
  3155. {
  3156. unsigned long max_pull;
  3157. /*
  3158. * In the presence of smp nice balancing, certain scenarios can have
  3159. * max load less than avg load(as we skip the groups at or below
  3160. * its cpu_power, while calculating max_load..)
  3161. */
  3162. if (sds->max_load < sds->avg_load) {
  3163. *imbalance = 0;
  3164. return fix_small_imbalance(sds, this_cpu, imbalance);
  3165. }
  3166. /* Don't want to pull so many tasks that a group would go idle */
  3167. max_pull = min(sds->max_load - sds->avg_load,
  3168. sds->max_load - sds->busiest_load_per_task);
  3169. /* How much load to actually move to equalise the imbalance */
  3170. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3171. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3172. / SCHED_LOAD_SCALE;
  3173. /*
  3174. * if *imbalance is less than the average load per runnable task
  3175. * there is no gaurantee that any tasks will be moved so we'll have
  3176. * a think about bumping its value to force at least one task to be
  3177. * moved
  3178. */
  3179. if (*imbalance < sds->busiest_load_per_task)
  3180. return fix_small_imbalance(sds, this_cpu, imbalance);
  3181. }
  3182. /******* find_busiest_group() helpers end here *********************/
  3183. /**
  3184. * find_busiest_group - Returns the busiest group within the sched_domain
  3185. * if there is an imbalance. If there isn't an imbalance, and
  3186. * the user has opted for power-savings, it returns a group whose
  3187. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3188. * such a group exists.
  3189. *
  3190. * Also calculates the amount of weighted load which should be moved
  3191. * to restore balance.
  3192. *
  3193. * @sd: The sched_domain whose busiest group is to be returned.
  3194. * @this_cpu: The cpu for which load balancing is currently being performed.
  3195. * @imbalance: Variable which stores amount of weighted load which should
  3196. * be moved to restore balance/put a group to idle.
  3197. * @idle: The idle status of this_cpu.
  3198. * @sd_idle: The idleness of sd
  3199. * @cpus: The set of CPUs under consideration for load-balancing.
  3200. * @balance: Pointer to a variable indicating if this_cpu
  3201. * is the appropriate cpu to perform load balancing at this_level.
  3202. *
  3203. * Returns: - the busiest group if imbalance exists.
  3204. * - If no imbalance and user has opted for power-savings balance,
  3205. * return the least loaded group whose CPUs can be
  3206. * put to idle by rebalancing its tasks onto our group.
  3207. */
  3208. static struct sched_group *
  3209. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3210. unsigned long *imbalance, enum cpu_idle_type idle,
  3211. int *sd_idle, const struct cpumask *cpus, int *balance)
  3212. {
  3213. struct sd_lb_stats sds;
  3214. memset(&sds, 0, sizeof(sds));
  3215. /*
  3216. * Compute the various statistics relavent for load balancing at
  3217. * this level.
  3218. */
  3219. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3220. balance, &sds);
  3221. /* Cases where imbalance does not exist from POV of this_cpu */
  3222. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3223. * at this level.
  3224. * 2) There is no busy sibling group to pull from.
  3225. * 3) This group is the busiest group.
  3226. * 4) This group is more busy than the avg busieness at this
  3227. * sched_domain.
  3228. * 5) The imbalance is within the specified limit.
  3229. * 6) Any rebalance would lead to ping-pong
  3230. */
  3231. if (balance && !(*balance))
  3232. goto ret;
  3233. if (!sds.busiest || sds.busiest_nr_running == 0)
  3234. goto out_balanced;
  3235. if (sds.this_load >= sds.max_load)
  3236. goto out_balanced;
  3237. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3238. if (sds.this_load >= sds.avg_load)
  3239. goto out_balanced;
  3240. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3241. goto out_balanced;
  3242. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3243. if (sds.group_imb)
  3244. sds.busiest_load_per_task =
  3245. min(sds.busiest_load_per_task, sds.avg_load);
  3246. /*
  3247. * We're trying to get all the cpus to the average_load, so we don't
  3248. * want to push ourselves above the average load, nor do we wish to
  3249. * reduce the max loaded cpu below the average load, as either of these
  3250. * actions would just result in more rebalancing later, and ping-pong
  3251. * tasks around. Thus we look for the minimum possible imbalance.
  3252. * Negative imbalances (*we* are more loaded than anyone else) will
  3253. * be counted as no imbalance for these purposes -- we can't fix that
  3254. * by pulling tasks to us. Be careful of negative numbers as they'll
  3255. * appear as very large values with unsigned longs.
  3256. */
  3257. if (sds.max_load <= sds.busiest_load_per_task)
  3258. goto out_balanced;
  3259. /* Looks like there is an imbalance. Compute it */
  3260. calculate_imbalance(&sds, this_cpu, imbalance);
  3261. return sds.busiest;
  3262. out_balanced:
  3263. /*
  3264. * There is no obvious imbalance. But check if we can do some balancing
  3265. * to save power.
  3266. */
  3267. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3268. return sds.busiest;
  3269. ret:
  3270. *imbalance = 0;
  3271. return NULL;
  3272. }
  3273. /*
  3274. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3275. */
  3276. static struct rq *
  3277. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3278. unsigned long imbalance, const struct cpumask *cpus)
  3279. {
  3280. struct rq *busiest = NULL, *rq;
  3281. unsigned long max_load = 0;
  3282. int i;
  3283. for_each_cpu(i, sched_group_cpus(group)) {
  3284. unsigned long wl;
  3285. if (!cpumask_test_cpu(i, cpus))
  3286. continue;
  3287. rq = cpu_rq(i);
  3288. wl = weighted_cpuload(i);
  3289. if (rq->nr_running == 1 && wl > imbalance)
  3290. continue;
  3291. if (wl > max_load) {
  3292. max_load = wl;
  3293. busiest = rq;
  3294. }
  3295. }
  3296. return busiest;
  3297. }
  3298. /*
  3299. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3300. * so long as it is large enough.
  3301. */
  3302. #define MAX_PINNED_INTERVAL 512
  3303. /* Working cpumask for load_balance and load_balance_newidle. */
  3304. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3305. /*
  3306. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3307. * tasks if there is an imbalance.
  3308. */
  3309. static int load_balance(int this_cpu, struct rq *this_rq,
  3310. struct sched_domain *sd, enum cpu_idle_type idle,
  3311. int *balance)
  3312. {
  3313. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3314. struct sched_group *group;
  3315. unsigned long imbalance;
  3316. struct rq *busiest;
  3317. unsigned long flags;
  3318. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3319. cpumask_setall(cpus);
  3320. /*
  3321. * When power savings policy is enabled for the parent domain, idle
  3322. * sibling can pick up load irrespective of busy siblings. In this case,
  3323. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3324. * portraying it as CPU_NOT_IDLE.
  3325. */
  3326. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3327. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3328. sd_idle = 1;
  3329. schedstat_inc(sd, lb_count[idle]);
  3330. redo:
  3331. update_shares(sd);
  3332. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3333. cpus, balance);
  3334. if (*balance == 0)
  3335. goto out_balanced;
  3336. if (!group) {
  3337. schedstat_inc(sd, lb_nobusyg[idle]);
  3338. goto out_balanced;
  3339. }
  3340. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3341. if (!busiest) {
  3342. schedstat_inc(sd, lb_nobusyq[idle]);
  3343. goto out_balanced;
  3344. }
  3345. BUG_ON(busiest == this_rq);
  3346. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3347. ld_moved = 0;
  3348. if (busiest->nr_running > 1) {
  3349. /*
  3350. * Attempt to move tasks. If find_busiest_group has found
  3351. * an imbalance but busiest->nr_running <= 1, the group is
  3352. * still unbalanced. ld_moved simply stays zero, so it is
  3353. * correctly treated as an imbalance.
  3354. */
  3355. local_irq_save(flags);
  3356. double_rq_lock(this_rq, busiest);
  3357. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3358. imbalance, sd, idle, &all_pinned);
  3359. double_rq_unlock(this_rq, busiest);
  3360. local_irq_restore(flags);
  3361. /*
  3362. * some other cpu did the load balance for us.
  3363. */
  3364. if (ld_moved && this_cpu != smp_processor_id())
  3365. resched_cpu(this_cpu);
  3366. /* All tasks on this runqueue were pinned by CPU affinity */
  3367. if (unlikely(all_pinned)) {
  3368. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3369. if (!cpumask_empty(cpus))
  3370. goto redo;
  3371. goto out_balanced;
  3372. }
  3373. }
  3374. if (!ld_moved) {
  3375. schedstat_inc(sd, lb_failed[idle]);
  3376. sd->nr_balance_failed++;
  3377. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3378. spin_lock_irqsave(&busiest->lock, flags);
  3379. /* don't kick the migration_thread, if the curr
  3380. * task on busiest cpu can't be moved to this_cpu
  3381. */
  3382. if (!cpumask_test_cpu(this_cpu,
  3383. &busiest->curr->cpus_allowed)) {
  3384. spin_unlock_irqrestore(&busiest->lock, flags);
  3385. all_pinned = 1;
  3386. goto out_one_pinned;
  3387. }
  3388. if (!busiest->active_balance) {
  3389. busiest->active_balance = 1;
  3390. busiest->push_cpu = this_cpu;
  3391. active_balance = 1;
  3392. }
  3393. spin_unlock_irqrestore(&busiest->lock, flags);
  3394. if (active_balance)
  3395. wake_up_process(busiest->migration_thread);
  3396. /*
  3397. * We've kicked active balancing, reset the failure
  3398. * counter.
  3399. */
  3400. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3401. }
  3402. } else
  3403. sd->nr_balance_failed = 0;
  3404. if (likely(!active_balance)) {
  3405. /* We were unbalanced, so reset the balancing interval */
  3406. sd->balance_interval = sd->min_interval;
  3407. } else {
  3408. /*
  3409. * If we've begun active balancing, start to back off. This
  3410. * case may not be covered by the all_pinned logic if there
  3411. * is only 1 task on the busy runqueue (because we don't call
  3412. * move_tasks).
  3413. */
  3414. if (sd->balance_interval < sd->max_interval)
  3415. sd->balance_interval *= 2;
  3416. }
  3417. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3418. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3419. ld_moved = -1;
  3420. goto out;
  3421. out_balanced:
  3422. schedstat_inc(sd, lb_balanced[idle]);
  3423. sd->nr_balance_failed = 0;
  3424. out_one_pinned:
  3425. /* tune up the balancing interval */
  3426. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3427. (sd->balance_interval < sd->max_interval))
  3428. sd->balance_interval *= 2;
  3429. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3430. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3431. ld_moved = -1;
  3432. else
  3433. ld_moved = 0;
  3434. out:
  3435. if (ld_moved)
  3436. update_shares(sd);
  3437. return ld_moved;
  3438. }
  3439. /*
  3440. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3441. * tasks if there is an imbalance.
  3442. *
  3443. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3444. * this_rq is locked.
  3445. */
  3446. static int
  3447. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3448. {
  3449. struct sched_group *group;
  3450. struct rq *busiest = NULL;
  3451. unsigned long imbalance;
  3452. int ld_moved = 0;
  3453. int sd_idle = 0;
  3454. int all_pinned = 0;
  3455. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3456. cpumask_setall(cpus);
  3457. /*
  3458. * When power savings policy is enabled for the parent domain, idle
  3459. * sibling can pick up load irrespective of busy siblings. In this case,
  3460. * let the state of idle sibling percolate up as IDLE, instead of
  3461. * portraying it as CPU_NOT_IDLE.
  3462. */
  3463. if (sd->flags & SD_SHARE_CPUPOWER &&
  3464. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3465. sd_idle = 1;
  3466. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3467. redo:
  3468. update_shares_locked(this_rq, sd);
  3469. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3470. &sd_idle, cpus, NULL);
  3471. if (!group) {
  3472. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3473. goto out_balanced;
  3474. }
  3475. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3476. if (!busiest) {
  3477. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3478. goto out_balanced;
  3479. }
  3480. BUG_ON(busiest == this_rq);
  3481. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3482. ld_moved = 0;
  3483. if (busiest->nr_running > 1) {
  3484. /* Attempt to move tasks */
  3485. double_lock_balance(this_rq, busiest);
  3486. /* this_rq->clock is already updated */
  3487. update_rq_clock(busiest);
  3488. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3489. imbalance, sd, CPU_NEWLY_IDLE,
  3490. &all_pinned);
  3491. double_unlock_balance(this_rq, busiest);
  3492. if (unlikely(all_pinned)) {
  3493. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3494. if (!cpumask_empty(cpus))
  3495. goto redo;
  3496. }
  3497. }
  3498. if (!ld_moved) {
  3499. int active_balance = 0;
  3500. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3501. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3502. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3503. return -1;
  3504. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3505. return -1;
  3506. if (sd->nr_balance_failed++ < 2)
  3507. return -1;
  3508. /*
  3509. * The only task running in a non-idle cpu can be moved to this
  3510. * cpu in an attempt to completely freeup the other CPU
  3511. * package. The same method used to move task in load_balance()
  3512. * have been extended for load_balance_newidle() to speedup
  3513. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3514. *
  3515. * The package power saving logic comes from
  3516. * find_busiest_group(). If there are no imbalance, then
  3517. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3518. * f_b_g() will select a group from which a running task may be
  3519. * pulled to this cpu in order to make the other package idle.
  3520. * If there is no opportunity to make a package idle and if
  3521. * there are no imbalance, then f_b_g() will return NULL and no
  3522. * action will be taken in load_balance_newidle().
  3523. *
  3524. * Under normal task pull operation due to imbalance, there
  3525. * will be more than one task in the source run queue and
  3526. * move_tasks() will succeed. ld_moved will be true and this
  3527. * active balance code will not be triggered.
  3528. */
  3529. /* Lock busiest in correct order while this_rq is held */
  3530. double_lock_balance(this_rq, busiest);
  3531. /*
  3532. * don't kick the migration_thread, if the curr
  3533. * task on busiest cpu can't be moved to this_cpu
  3534. */
  3535. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3536. double_unlock_balance(this_rq, busiest);
  3537. all_pinned = 1;
  3538. return ld_moved;
  3539. }
  3540. if (!busiest->active_balance) {
  3541. busiest->active_balance = 1;
  3542. busiest->push_cpu = this_cpu;
  3543. active_balance = 1;
  3544. }
  3545. double_unlock_balance(this_rq, busiest);
  3546. /*
  3547. * Should not call ttwu while holding a rq->lock
  3548. */
  3549. spin_unlock(&this_rq->lock);
  3550. if (active_balance)
  3551. wake_up_process(busiest->migration_thread);
  3552. spin_lock(&this_rq->lock);
  3553. } else
  3554. sd->nr_balance_failed = 0;
  3555. update_shares_locked(this_rq, sd);
  3556. return ld_moved;
  3557. out_balanced:
  3558. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3559. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3560. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3561. return -1;
  3562. sd->nr_balance_failed = 0;
  3563. return 0;
  3564. }
  3565. /*
  3566. * idle_balance is called by schedule() if this_cpu is about to become
  3567. * idle. Attempts to pull tasks from other CPUs.
  3568. */
  3569. static void idle_balance(int this_cpu, struct rq *this_rq)
  3570. {
  3571. struct sched_domain *sd;
  3572. int pulled_task = 0;
  3573. unsigned long next_balance = jiffies + HZ;
  3574. for_each_domain(this_cpu, sd) {
  3575. unsigned long interval;
  3576. if (!(sd->flags & SD_LOAD_BALANCE))
  3577. continue;
  3578. if (sd->flags & SD_BALANCE_NEWIDLE)
  3579. /* If we've pulled tasks over stop searching: */
  3580. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3581. sd);
  3582. interval = msecs_to_jiffies(sd->balance_interval);
  3583. if (time_after(next_balance, sd->last_balance + interval))
  3584. next_balance = sd->last_balance + interval;
  3585. if (pulled_task)
  3586. break;
  3587. }
  3588. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3589. /*
  3590. * We are going idle. next_balance may be set based on
  3591. * a busy processor. So reset next_balance.
  3592. */
  3593. this_rq->next_balance = next_balance;
  3594. }
  3595. }
  3596. /*
  3597. * active_load_balance is run by migration threads. It pushes running tasks
  3598. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3599. * running on each physical CPU where possible, and avoids physical /
  3600. * logical imbalances.
  3601. *
  3602. * Called with busiest_rq locked.
  3603. */
  3604. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3605. {
  3606. int target_cpu = busiest_rq->push_cpu;
  3607. struct sched_domain *sd;
  3608. struct rq *target_rq;
  3609. /* Is there any task to move? */
  3610. if (busiest_rq->nr_running <= 1)
  3611. return;
  3612. target_rq = cpu_rq(target_cpu);
  3613. /*
  3614. * This condition is "impossible", if it occurs
  3615. * we need to fix it. Originally reported by
  3616. * Bjorn Helgaas on a 128-cpu setup.
  3617. */
  3618. BUG_ON(busiest_rq == target_rq);
  3619. /* move a task from busiest_rq to target_rq */
  3620. double_lock_balance(busiest_rq, target_rq);
  3621. update_rq_clock(busiest_rq);
  3622. update_rq_clock(target_rq);
  3623. /* Search for an sd spanning us and the target CPU. */
  3624. for_each_domain(target_cpu, sd) {
  3625. if ((sd->flags & SD_LOAD_BALANCE) &&
  3626. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3627. break;
  3628. }
  3629. if (likely(sd)) {
  3630. schedstat_inc(sd, alb_count);
  3631. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3632. sd, CPU_IDLE))
  3633. schedstat_inc(sd, alb_pushed);
  3634. else
  3635. schedstat_inc(sd, alb_failed);
  3636. }
  3637. double_unlock_balance(busiest_rq, target_rq);
  3638. }
  3639. #ifdef CONFIG_NO_HZ
  3640. static struct {
  3641. atomic_t load_balancer;
  3642. cpumask_var_t cpu_mask;
  3643. } nohz ____cacheline_aligned = {
  3644. .load_balancer = ATOMIC_INIT(-1),
  3645. };
  3646. /*
  3647. * This routine will try to nominate the ilb (idle load balancing)
  3648. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3649. * load balancing on behalf of all those cpus. If all the cpus in the system
  3650. * go into this tickless mode, then there will be no ilb owner (as there is
  3651. * no need for one) and all the cpus will sleep till the next wakeup event
  3652. * arrives...
  3653. *
  3654. * For the ilb owner, tick is not stopped. And this tick will be used
  3655. * for idle load balancing. ilb owner will still be part of
  3656. * nohz.cpu_mask..
  3657. *
  3658. * While stopping the tick, this cpu will become the ilb owner if there
  3659. * is no other owner. And will be the owner till that cpu becomes busy
  3660. * or if all cpus in the system stop their ticks at which point
  3661. * there is no need for ilb owner.
  3662. *
  3663. * When the ilb owner becomes busy, it nominates another owner, during the
  3664. * next busy scheduler_tick()
  3665. */
  3666. int select_nohz_load_balancer(int stop_tick)
  3667. {
  3668. int cpu = smp_processor_id();
  3669. if (stop_tick) {
  3670. cpu_rq(cpu)->in_nohz_recently = 1;
  3671. if (!cpu_active(cpu)) {
  3672. if (atomic_read(&nohz.load_balancer) != cpu)
  3673. return 0;
  3674. /*
  3675. * If we are going offline and still the leader,
  3676. * give up!
  3677. */
  3678. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3679. BUG();
  3680. return 0;
  3681. }
  3682. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3683. /* time for ilb owner also to sleep */
  3684. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3685. if (atomic_read(&nohz.load_balancer) == cpu)
  3686. atomic_set(&nohz.load_balancer, -1);
  3687. return 0;
  3688. }
  3689. if (atomic_read(&nohz.load_balancer) == -1) {
  3690. /* make me the ilb owner */
  3691. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3692. return 1;
  3693. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3694. return 1;
  3695. } else {
  3696. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3697. return 0;
  3698. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3699. if (atomic_read(&nohz.load_balancer) == cpu)
  3700. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3701. BUG();
  3702. }
  3703. return 0;
  3704. }
  3705. #endif
  3706. static DEFINE_SPINLOCK(balancing);
  3707. /*
  3708. * It checks each scheduling domain to see if it is due to be balanced,
  3709. * and initiates a balancing operation if so.
  3710. *
  3711. * Balancing parameters are set up in arch_init_sched_domains.
  3712. */
  3713. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3714. {
  3715. int balance = 1;
  3716. struct rq *rq = cpu_rq(cpu);
  3717. unsigned long interval;
  3718. struct sched_domain *sd;
  3719. /* Earliest time when we have to do rebalance again */
  3720. unsigned long next_balance = jiffies + 60*HZ;
  3721. int update_next_balance = 0;
  3722. int need_serialize;
  3723. for_each_domain(cpu, sd) {
  3724. if (!(sd->flags & SD_LOAD_BALANCE))
  3725. continue;
  3726. interval = sd->balance_interval;
  3727. if (idle != CPU_IDLE)
  3728. interval *= sd->busy_factor;
  3729. /* scale ms to jiffies */
  3730. interval = msecs_to_jiffies(interval);
  3731. if (unlikely(!interval))
  3732. interval = 1;
  3733. if (interval > HZ*NR_CPUS/10)
  3734. interval = HZ*NR_CPUS/10;
  3735. need_serialize = sd->flags & SD_SERIALIZE;
  3736. if (need_serialize) {
  3737. if (!spin_trylock(&balancing))
  3738. goto out;
  3739. }
  3740. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3741. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3742. /*
  3743. * We've pulled tasks over so either we're no
  3744. * longer idle, or one of our SMT siblings is
  3745. * not idle.
  3746. */
  3747. idle = CPU_NOT_IDLE;
  3748. }
  3749. sd->last_balance = jiffies;
  3750. }
  3751. if (need_serialize)
  3752. spin_unlock(&balancing);
  3753. out:
  3754. if (time_after(next_balance, sd->last_balance + interval)) {
  3755. next_balance = sd->last_balance + interval;
  3756. update_next_balance = 1;
  3757. }
  3758. /*
  3759. * Stop the load balance at this level. There is another
  3760. * CPU in our sched group which is doing load balancing more
  3761. * actively.
  3762. */
  3763. if (!balance)
  3764. break;
  3765. }
  3766. /*
  3767. * next_balance will be updated only when there is a need.
  3768. * When the cpu is attached to null domain for ex, it will not be
  3769. * updated.
  3770. */
  3771. if (likely(update_next_balance))
  3772. rq->next_balance = next_balance;
  3773. }
  3774. /*
  3775. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3776. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3777. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3778. */
  3779. static void run_rebalance_domains(struct softirq_action *h)
  3780. {
  3781. int this_cpu = smp_processor_id();
  3782. struct rq *this_rq = cpu_rq(this_cpu);
  3783. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3784. CPU_IDLE : CPU_NOT_IDLE;
  3785. rebalance_domains(this_cpu, idle);
  3786. #ifdef CONFIG_NO_HZ
  3787. /*
  3788. * If this cpu is the owner for idle load balancing, then do the
  3789. * balancing on behalf of the other idle cpus whose ticks are
  3790. * stopped.
  3791. */
  3792. if (this_rq->idle_at_tick &&
  3793. atomic_read(&nohz.load_balancer) == this_cpu) {
  3794. struct rq *rq;
  3795. int balance_cpu;
  3796. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3797. if (balance_cpu == this_cpu)
  3798. continue;
  3799. /*
  3800. * If this cpu gets work to do, stop the load balancing
  3801. * work being done for other cpus. Next load
  3802. * balancing owner will pick it up.
  3803. */
  3804. if (need_resched())
  3805. break;
  3806. rebalance_domains(balance_cpu, CPU_IDLE);
  3807. rq = cpu_rq(balance_cpu);
  3808. if (time_after(this_rq->next_balance, rq->next_balance))
  3809. this_rq->next_balance = rq->next_balance;
  3810. }
  3811. }
  3812. #endif
  3813. }
  3814. static inline int on_null_domain(int cpu)
  3815. {
  3816. return !rcu_dereference(cpu_rq(cpu)->sd);
  3817. }
  3818. /*
  3819. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3820. *
  3821. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3822. * idle load balancing owner or decide to stop the periodic load balancing,
  3823. * if the whole system is idle.
  3824. */
  3825. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3826. {
  3827. #ifdef CONFIG_NO_HZ
  3828. /*
  3829. * If we were in the nohz mode recently and busy at the current
  3830. * scheduler tick, then check if we need to nominate new idle
  3831. * load balancer.
  3832. */
  3833. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3834. rq->in_nohz_recently = 0;
  3835. if (atomic_read(&nohz.load_balancer) == cpu) {
  3836. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3837. atomic_set(&nohz.load_balancer, -1);
  3838. }
  3839. if (atomic_read(&nohz.load_balancer) == -1) {
  3840. /*
  3841. * simple selection for now: Nominate the
  3842. * first cpu in the nohz list to be the next
  3843. * ilb owner.
  3844. *
  3845. * TBD: Traverse the sched domains and nominate
  3846. * the nearest cpu in the nohz.cpu_mask.
  3847. */
  3848. int ilb = cpumask_first(nohz.cpu_mask);
  3849. if (ilb < nr_cpu_ids)
  3850. resched_cpu(ilb);
  3851. }
  3852. }
  3853. /*
  3854. * If this cpu is idle and doing idle load balancing for all the
  3855. * cpus with ticks stopped, is it time for that to stop?
  3856. */
  3857. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3858. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3859. resched_cpu(cpu);
  3860. return;
  3861. }
  3862. /*
  3863. * If this cpu is idle and the idle load balancing is done by
  3864. * someone else, then no need raise the SCHED_SOFTIRQ
  3865. */
  3866. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3867. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3868. return;
  3869. #endif
  3870. /* Don't need to rebalance while attached to NULL domain */
  3871. if (time_after_eq(jiffies, rq->next_balance) &&
  3872. likely(!on_null_domain(cpu)))
  3873. raise_softirq(SCHED_SOFTIRQ);
  3874. }
  3875. #else /* CONFIG_SMP */
  3876. /*
  3877. * on UP we do not need to balance between CPUs:
  3878. */
  3879. static inline void idle_balance(int cpu, struct rq *rq)
  3880. {
  3881. }
  3882. #endif
  3883. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3884. EXPORT_PER_CPU_SYMBOL(kstat);
  3885. /*
  3886. * Return any ns on the sched_clock that have not yet been accounted in
  3887. * @p in case that task is currently running.
  3888. *
  3889. * Called with task_rq_lock() held on @rq.
  3890. */
  3891. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3892. {
  3893. u64 ns = 0;
  3894. if (task_current(rq, p)) {
  3895. update_rq_clock(rq);
  3896. ns = rq->clock - p->se.exec_start;
  3897. if ((s64)ns < 0)
  3898. ns = 0;
  3899. }
  3900. return ns;
  3901. }
  3902. unsigned long long task_delta_exec(struct task_struct *p)
  3903. {
  3904. unsigned long flags;
  3905. struct rq *rq;
  3906. u64 ns = 0;
  3907. rq = task_rq_lock(p, &flags);
  3908. ns = do_task_delta_exec(p, rq);
  3909. task_rq_unlock(rq, &flags);
  3910. return ns;
  3911. }
  3912. /*
  3913. * Return accounted runtime for the task.
  3914. * In case the task is currently running, return the runtime plus current's
  3915. * pending runtime that have not been accounted yet.
  3916. */
  3917. unsigned long long task_sched_runtime(struct task_struct *p)
  3918. {
  3919. unsigned long flags;
  3920. struct rq *rq;
  3921. u64 ns = 0;
  3922. rq = task_rq_lock(p, &flags);
  3923. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3924. task_rq_unlock(rq, &flags);
  3925. return ns;
  3926. }
  3927. /*
  3928. * Return sum_exec_runtime for the thread group.
  3929. * In case the task is currently running, return the sum plus current's
  3930. * pending runtime that have not been accounted yet.
  3931. *
  3932. * Note that the thread group might have other running tasks as well,
  3933. * so the return value not includes other pending runtime that other
  3934. * running tasks might have.
  3935. */
  3936. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3937. {
  3938. struct task_cputime totals;
  3939. unsigned long flags;
  3940. struct rq *rq;
  3941. u64 ns;
  3942. rq = task_rq_lock(p, &flags);
  3943. thread_group_cputime(p, &totals);
  3944. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3945. task_rq_unlock(rq, &flags);
  3946. return ns;
  3947. }
  3948. /*
  3949. * Account user cpu time to a process.
  3950. * @p: the process that the cpu time gets accounted to
  3951. * @cputime: the cpu time spent in user space since the last update
  3952. * @cputime_scaled: cputime scaled by cpu frequency
  3953. */
  3954. void account_user_time(struct task_struct *p, cputime_t cputime,
  3955. cputime_t cputime_scaled)
  3956. {
  3957. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3958. cputime64_t tmp;
  3959. /* Add user time to process. */
  3960. p->utime = cputime_add(p->utime, cputime);
  3961. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3962. account_group_user_time(p, cputime);
  3963. /* Add user time to cpustat. */
  3964. tmp = cputime_to_cputime64(cputime);
  3965. if (TASK_NICE(p) > 0)
  3966. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3967. else
  3968. cpustat->user = cputime64_add(cpustat->user, tmp);
  3969. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3970. /* Account for user time used */
  3971. acct_update_integrals(p);
  3972. }
  3973. /*
  3974. * Account guest cpu time to a process.
  3975. * @p: the process that the cpu time gets accounted to
  3976. * @cputime: the cpu time spent in virtual machine since the last update
  3977. * @cputime_scaled: cputime scaled by cpu frequency
  3978. */
  3979. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3980. cputime_t cputime_scaled)
  3981. {
  3982. cputime64_t tmp;
  3983. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3984. tmp = cputime_to_cputime64(cputime);
  3985. /* Add guest time to process. */
  3986. p->utime = cputime_add(p->utime, cputime);
  3987. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3988. account_group_user_time(p, cputime);
  3989. p->gtime = cputime_add(p->gtime, cputime);
  3990. /* Add guest time to cpustat. */
  3991. cpustat->user = cputime64_add(cpustat->user, tmp);
  3992. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3993. }
  3994. /*
  3995. * Account system cpu time to a process.
  3996. * @p: the process that the cpu time gets accounted to
  3997. * @hardirq_offset: the offset to subtract from hardirq_count()
  3998. * @cputime: the cpu time spent in kernel space since the last update
  3999. * @cputime_scaled: cputime scaled by cpu frequency
  4000. */
  4001. void account_system_time(struct task_struct *p, int hardirq_offset,
  4002. cputime_t cputime, cputime_t cputime_scaled)
  4003. {
  4004. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4005. cputime64_t tmp;
  4006. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4007. account_guest_time(p, cputime, cputime_scaled);
  4008. return;
  4009. }
  4010. /* Add system time to process. */
  4011. p->stime = cputime_add(p->stime, cputime);
  4012. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4013. account_group_system_time(p, cputime);
  4014. /* Add system time to cpustat. */
  4015. tmp = cputime_to_cputime64(cputime);
  4016. if (hardirq_count() - hardirq_offset)
  4017. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4018. else if (softirq_count())
  4019. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4020. else
  4021. cpustat->system = cputime64_add(cpustat->system, tmp);
  4022. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4023. /* Account for system time used */
  4024. acct_update_integrals(p);
  4025. }
  4026. /*
  4027. * Account for involuntary wait time.
  4028. * @steal: the cpu time spent in involuntary wait
  4029. */
  4030. void account_steal_time(cputime_t cputime)
  4031. {
  4032. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4033. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4034. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4035. }
  4036. /*
  4037. * Account for idle time.
  4038. * @cputime: the cpu time spent in idle wait
  4039. */
  4040. void account_idle_time(cputime_t cputime)
  4041. {
  4042. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4043. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4044. struct rq *rq = this_rq();
  4045. if (atomic_read(&rq->nr_iowait) > 0)
  4046. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4047. else
  4048. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4049. }
  4050. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4051. /*
  4052. * Account a single tick of cpu time.
  4053. * @p: the process that the cpu time gets accounted to
  4054. * @user_tick: indicates if the tick is a user or a system tick
  4055. */
  4056. void account_process_tick(struct task_struct *p, int user_tick)
  4057. {
  4058. cputime_t one_jiffy = jiffies_to_cputime(1);
  4059. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4060. struct rq *rq = this_rq();
  4061. if (user_tick)
  4062. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4063. else if (p != rq->idle)
  4064. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4065. one_jiffy_scaled);
  4066. else
  4067. account_idle_time(one_jiffy);
  4068. }
  4069. /*
  4070. * Account multiple ticks of steal time.
  4071. * @p: the process from which the cpu time has been stolen
  4072. * @ticks: number of stolen ticks
  4073. */
  4074. void account_steal_ticks(unsigned long ticks)
  4075. {
  4076. account_steal_time(jiffies_to_cputime(ticks));
  4077. }
  4078. /*
  4079. * Account multiple ticks of idle time.
  4080. * @ticks: number of stolen ticks
  4081. */
  4082. void account_idle_ticks(unsigned long ticks)
  4083. {
  4084. account_idle_time(jiffies_to_cputime(ticks));
  4085. }
  4086. #endif
  4087. /*
  4088. * Use precise platform statistics if available:
  4089. */
  4090. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4091. cputime_t task_utime(struct task_struct *p)
  4092. {
  4093. return p->utime;
  4094. }
  4095. cputime_t task_stime(struct task_struct *p)
  4096. {
  4097. return p->stime;
  4098. }
  4099. #else
  4100. cputime_t task_utime(struct task_struct *p)
  4101. {
  4102. clock_t utime = cputime_to_clock_t(p->utime),
  4103. total = utime + cputime_to_clock_t(p->stime);
  4104. u64 temp;
  4105. /*
  4106. * Use CFS's precise accounting:
  4107. */
  4108. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4109. if (total) {
  4110. temp *= utime;
  4111. do_div(temp, total);
  4112. }
  4113. utime = (clock_t)temp;
  4114. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4115. return p->prev_utime;
  4116. }
  4117. cputime_t task_stime(struct task_struct *p)
  4118. {
  4119. clock_t stime;
  4120. /*
  4121. * Use CFS's precise accounting. (we subtract utime from
  4122. * the total, to make sure the total observed by userspace
  4123. * grows monotonically - apps rely on that):
  4124. */
  4125. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4126. cputime_to_clock_t(task_utime(p));
  4127. if (stime >= 0)
  4128. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4129. return p->prev_stime;
  4130. }
  4131. #endif
  4132. inline cputime_t task_gtime(struct task_struct *p)
  4133. {
  4134. return p->gtime;
  4135. }
  4136. /*
  4137. * This function gets called by the timer code, with HZ frequency.
  4138. * We call it with interrupts disabled.
  4139. *
  4140. * It also gets called by the fork code, when changing the parent's
  4141. * timeslices.
  4142. */
  4143. void scheduler_tick(void)
  4144. {
  4145. int cpu = smp_processor_id();
  4146. struct rq *rq = cpu_rq(cpu);
  4147. struct task_struct *curr = rq->curr;
  4148. sched_clock_tick();
  4149. spin_lock(&rq->lock);
  4150. update_rq_clock(rq);
  4151. update_cpu_load(rq);
  4152. curr->sched_class->task_tick(rq, curr, 0);
  4153. perf_counter_task_tick(curr, cpu);
  4154. spin_unlock(&rq->lock);
  4155. #ifdef CONFIG_SMP
  4156. rq->idle_at_tick = idle_cpu(cpu);
  4157. trigger_load_balance(rq, cpu);
  4158. #endif
  4159. }
  4160. notrace unsigned long get_parent_ip(unsigned long addr)
  4161. {
  4162. if (in_lock_functions(addr)) {
  4163. addr = CALLER_ADDR2;
  4164. if (in_lock_functions(addr))
  4165. addr = CALLER_ADDR3;
  4166. }
  4167. return addr;
  4168. }
  4169. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4170. defined(CONFIG_PREEMPT_TRACER))
  4171. void __kprobes add_preempt_count(int val)
  4172. {
  4173. #ifdef CONFIG_DEBUG_PREEMPT
  4174. /*
  4175. * Underflow?
  4176. */
  4177. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4178. return;
  4179. #endif
  4180. preempt_count() += val;
  4181. #ifdef CONFIG_DEBUG_PREEMPT
  4182. /*
  4183. * Spinlock count overflowing soon?
  4184. */
  4185. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4186. PREEMPT_MASK - 10);
  4187. #endif
  4188. if (preempt_count() == val)
  4189. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4190. }
  4191. EXPORT_SYMBOL(add_preempt_count);
  4192. void __kprobes sub_preempt_count(int val)
  4193. {
  4194. #ifdef CONFIG_DEBUG_PREEMPT
  4195. /*
  4196. * Underflow?
  4197. */
  4198. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4199. return;
  4200. /*
  4201. * Is the spinlock portion underflowing?
  4202. */
  4203. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4204. !(preempt_count() & PREEMPT_MASK)))
  4205. return;
  4206. #endif
  4207. if (preempt_count() == val)
  4208. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4209. preempt_count() -= val;
  4210. }
  4211. EXPORT_SYMBOL(sub_preempt_count);
  4212. #endif
  4213. /*
  4214. * Print scheduling while atomic bug:
  4215. */
  4216. static noinline void __schedule_bug(struct task_struct *prev)
  4217. {
  4218. struct pt_regs *regs = get_irq_regs();
  4219. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4220. prev->comm, prev->pid, preempt_count());
  4221. debug_show_held_locks(prev);
  4222. print_modules();
  4223. if (irqs_disabled())
  4224. print_irqtrace_events(prev);
  4225. if (regs)
  4226. show_regs(regs);
  4227. else
  4228. dump_stack();
  4229. }
  4230. /*
  4231. * Various schedule()-time debugging checks and statistics:
  4232. */
  4233. static inline void schedule_debug(struct task_struct *prev)
  4234. {
  4235. /*
  4236. * Test if we are atomic. Since do_exit() needs to call into
  4237. * schedule() atomically, we ignore that path for now.
  4238. * Otherwise, whine if we are scheduling when we should not be.
  4239. */
  4240. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4241. __schedule_bug(prev);
  4242. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4243. schedstat_inc(this_rq(), sched_count);
  4244. #ifdef CONFIG_SCHEDSTATS
  4245. if (unlikely(prev->lock_depth >= 0)) {
  4246. schedstat_inc(this_rq(), bkl_count);
  4247. schedstat_inc(prev, sched_info.bkl_count);
  4248. }
  4249. #endif
  4250. }
  4251. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4252. {
  4253. if (prev->state == TASK_RUNNING) {
  4254. u64 runtime = prev->se.sum_exec_runtime;
  4255. runtime -= prev->se.prev_sum_exec_runtime;
  4256. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4257. /*
  4258. * In order to avoid avg_overlap growing stale when we are
  4259. * indeed overlapping and hence not getting put to sleep, grow
  4260. * the avg_overlap on preemption.
  4261. *
  4262. * We use the average preemption runtime because that
  4263. * correlates to the amount of cache footprint a task can
  4264. * build up.
  4265. */
  4266. update_avg(&prev->se.avg_overlap, runtime);
  4267. }
  4268. prev->sched_class->put_prev_task(rq, prev);
  4269. }
  4270. /*
  4271. * Pick up the highest-prio task:
  4272. */
  4273. static inline struct task_struct *
  4274. pick_next_task(struct rq *rq)
  4275. {
  4276. const struct sched_class *class;
  4277. struct task_struct *p;
  4278. /*
  4279. * Optimization: we know that if all tasks are in
  4280. * the fair class we can call that function directly:
  4281. */
  4282. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4283. p = fair_sched_class.pick_next_task(rq);
  4284. if (likely(p))
  4285. return p;
  4286. }
  4287. class = sched_class_highest;
  4288. for ( ; ; ) {
  4289. p = class->pick_next_task(rq);
  4290. if (p)
  4291. return p;
  4292. /*
  4293. * Will never be NULL as the idle class always
  4294. * returns a non-NULL p:
  4295. */
  4296. class = class->next;
  4297. }
  4298. }
  4299. /*
  4300. * schedule() is the main scheduler function.
  4301. */
  4302. asmlinkage void __sched __schedule(void)
  4303. {
  4304. struct task_struct *prev, *next;
  4305. unsigned long *switch_count;
  4306. struct rq *rq;
  4307. int cpu;
  4308. cpu = smp_processor_id();
  4309. rq = cpu_rq(cpu);
  4310. rcu_qsctr_inc(cpu);
  4311. prev = rq->curr;
  4312. switch_count = &prev->nivcsw;
  4313. release_kernel_lock(prev);
  4314. need_resched_nonpreemptible:
  4315. schedule_debug(prev);
  4316. if (sched_feat(HRTICK))
  4317. hrtick_clear(rq);
  4318. spin_lock_irq(&rq->lock);
  4319. update_rq_clock(rq);
  4320. clear_tsk_need_resched(prev);
  4321. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4322. if (unlikely(signal_pending_state(prev->state, prev)))
  4323. prev->state = TASK_RUNNING;
  4324. else
  4325. deactivate_task(rq, prev, 1);
  4326. switch_count = &prev->nvcsw;
  4327. }
  4328. #ifdef CONFIG_SMP
  4329. if (prev->sched_class->pre_schedule)
  4330. prev->sched_class->pre_schedule(rq, prev);
  4331. #endif
  4332. if (unlikely(!rq->nr_running))
  4333. idle_balance(cpu, rq);
  4334. put_prev_task(rq, prev);
  4335. next = pick_next_task(rq);
  4336. if (likely(prev != next)) {
  4337. sched_info_switch(prev, next);
  4338. perf_counter_task_sched_out(prev, cpu);
  4339. rq->nr_switches++;
  4340. rq->curr = next;
  4341. ++*switch_count;
  4342. context_switch(rq, prev, next); /* unlocks the rq */
  4343. /*
  4344. * the context switch might have flipped the stack from under
  4345. * us, hence refresh the local variables.
  4346. */
  4347. cpu = smp_processor_id();
  4348. rq = cpu_rq(cpu);
  4349. } else
  4350. spin_unlock_irq(&rq->lock);
  4351. if (unlikely(reacquire_kernel_lock(current) < 0))
  4352. goto need_resched_nonpreemptible;
  4353. }
  4354. asmlinkage void __sched schedule(void)
  4355. {
  4356. need_resched:
  4357. preempt_disable();
  4358. __schedule();
  4359. preempt_enable_no_resched();
  4360. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4361. goto need_resched;
  4362. }
  4363. EXPORT_SYMBOL(schedule);
  4364. #ifdef CONFIG_SMP
  4365. /*
  4366. * Look out! "owner" is an entirely speculative pointer
  4367. * access and not reliable.
  4368. */
  4369. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4370. {
  4371. unsigned int cpu;
  4372. struct rq *rq;
  4373. if (!sched_feat(OWNER_SPIN))
  4374. return 0;
  4375. #ifdef CONFIG_DEBUG_PAGEALLOC
  4376. /*
  4377. * Need to access the cpu field knowing that
  4378. * DEBUG_PAGEALLOC could have unmapped it if
  4379. * the mutex owner just released it and exited.
  4380. */
  4381. if (probe_kernel_address(&owner->cpu, cpu))
  4382. goto out;
  4383. #else
  4384. cpu = owner->cpu;
  4385. #endif
  4386. /*
  4387. * Even if the access succeeded (likely case),
  4388. * the cpu field may no longer be valid.
  4389. */
  4390. if (cpu >= nr_cpumask_bits)
  4391. goto out;
  4392. /*
  4393. * We need to validate that we can do a
  4394. * get_cpu() and that we have the percpu area.
  4395. */
  4396. if (!cpu_online(cpu))
  4397. goto out;
  4398. rq = cpu_rq(cpu);
  4399. for (;;) {
  4400. /*
  4401. * Owner changed, break to re-assess state.
  4402. */
  4403. if (lock->owner != owner)
  4404. break;
  4405. /*
  4406. * Is that owner really running on that cpu?
  4407. */
  4408. if (task_thread_info(rq->curr) != owner || need_resched())
  4409. return 0;
  4410. cpu_relax();
  4411. }
  4412. out:
  4413. return 1;
  4414. }
  4415. #endif
  4416. #ifdef CONFIG_PREEMPT
  4417. /*
  4418. * this is the entry point to schedule() from in-kernel preemption
  4419. * off of preempt_enable. Kernel preemptions off return from interrupt
  4420. * occur there and call schedule directly.
  4421. */
  4422. asmlinkage void __sched preempt_schedule(void)
  4423. {
  4424. struct thread_info *ti = current_thread_info();
  4425. /*
  4426. * If there is a non-zero preempt_count or interrupts are disabled,
  4427. * we do not want to preempt the current task. Just return..
  4428. */
  4429. if (likely(ti->preempt_count || irqs_disabled()))
  4430. return;
  4431. do {
  4432. add_preempt_count(PREEMPT_ACTIVE);
  4433. schedule();
  4434. sub_preempt_count(PREEMPT_ACTIVE);
  4435. /*
  4436. * Check again in case we missed a preemption opportunity
  4437. * between schedule and now.
  4438. */
  4439. barrier();
  4440. } while (need_resched());
  4441. }
  4442. EXPORT_SYMBOL(preempt_schedule);
  4443. /*
  4444. * this is the entry point to schedule() from kernel preemption
  4445. * off of irq context.
  4446. * Note, that this is called and return with irqs disabled. This will
  4447. * protect us against recursive calling from irq.
  4448. */
  4449. asmlinkage void __sched preempt_schedule_irq(void)
  4450. {
  4451. struct thread_info *ti = current_thread_info();
  4452. /* Catch callers which need to be fixed */
  4453. BUG_ON(ti->preempt_count || !irqs_disabled());
  4454. do {
  4455. add_preempt_count(PREEMPT_ACTIVE);
  4456. local_irq_enable();
  4457. schedule();
  4458. local_irq_disable();
  4459. sub_preempt_count(PREEMPT_ACTIVE);
  4460. /*
  4461. * Check again in case we missed a preemption opportunity
  4462. * between schedule and now.
  4463. */
  4464. barrier();
  4465. } while (need_resched());
  4466. }
  4467. #endif /* CONFIG_PREEMPT */
  4468. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4469. void *key)
  4470. {
  4471. return try_to_wake_up(curr->private, mode, sync);
  4472. }
  4473. EXPORT_SYMBOL(default_wake_function);
  4474. /*
  4475. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4476. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4477. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4478. *
  4479. * There are circumstances in which we can try to wake a task which has already
  4480. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4481. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4482. */
  4483. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4484. int nr_exclusive, int sync, void *key)
  4485. {
  4486. wait_queue_t *curr, *next;
  4487. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4488. unsigned flags = curr->flags;
  4489. if (curr->func(curr, mode, sync, key) &&
  4490. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4491. break;
  4492. }
  4493. }
  4494. /**
  4495. * __wake_up - wake up threads blocked on a waitqueue.
  4496. * @q: the waitqueue
  4497. * @mode: which threads
  4498. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4499. * @key: is directly passed to the wakeup function
  4500. */
  4501. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4502. int nr_exclusive, void *key)
  4503. {
  4504. unsigned long flags;
  4505. spin_lock_irqsave(&q->lock, flags);
  4506. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4507. spin_unlock_irqrestore(&q->lock, flags);
  4508. }
  4509. EXPORT_SYMBOL(__wake_up);
  4510. /*
  4511. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4512. */
  4513. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4514. {
  4515. __wake_up_common(q, mode, 1, 0, NULL);
  4516. }
  4517. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4518. {
  4519. __wake_up_common(q, mode, 1, 0, key);
  4520. }
  4521. /**
  4522. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4523. * @q: the waitqueue
  4524. * @mode: which threads
  4525. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4526. * @key: opaque value to be passed to wakeup targets
  4527. *
  4528. * The sync wakeup differs that the waker knows that it will schedule
  4529. * away soon, so while the target thread will be woken up, it will not
  4530. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4531. * with each other. This can prevent needless bouncing between CPUs.
  4532. *
  4533. * On UP it can prevent extra preemption.
  4534. */
  4535. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4536. int nr_exclusive, void *key)
  4537. {
  4538. unsigned long flags;
  4539. int sync = 1;
  4540. if (unlikely(!q))
  4541. return;
  4542. if (unlikely(!nr_exclusive))
  4543. sync = 0;
  4544. spin_lock_irqsave(&q->lock, flags);
  4545. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4546. spin_unlock_irqrestore(&q->lock, flags);
  4547. }
  4548. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4549. /*
  4550. * __wake_up_sync - see __wake_up_sync_key()
  4551. */
  4552. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4553. {
  4554. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4555. }
  4556. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4557. /**
  4558. * complete: - signals a single thread waiting on this completion
  4559. * @x: holds the state of this particular completion
  4560. *
  4561. * This will wake up a single thread waiting on this completion. Threads will be
  4562. * awakened in the same order in which they were queued.
  4563. *
  4564. * See also complete_all(), wait_for_completion() and related routines.
  4565. */
  4566. void complete(struct completion *x)
  4567. {
  4568. unsigned long flags;
  4569. spin_lock_irqsave(&x->wait.lock, flags);
  4570. x->done++;
  4571. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4572. spin_unlock_irqrestore(&x->wait.lock, flags);
  4573. }
  4574. EXPORT_SYMBOL(complete);
  4575. /**
  4576. * complete_all: - signals all threads waiting on this completion
  4577. * @x: holds the state of this particular completion
  4578. *
  4579. * This will wake up all threads waiting on this particular completion event.
  4580. */
  4581. void complete_all(struct completion *x)
  4582. {
  4583. unsigned long flags;
  4584. spin_lock_irqsave(&x->wait.lock, flags);
  4585. x->done += UINT_MAX/2;
  4586. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4587. spin_unlock_irqrestore(&x->wait.lock, flags);
  4588. }
  4589. EXPORT_SYMBOL(complete_all);
  4590. static inline long __sched
  4591. do_wait_for_common(struct completion *x, long timeout, int state)
  4592. {
  4593. if (!x->done) {
  4594. DECLARE_WAITQUEUE(wait, current);
  4595. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4596. __add_wait_queue_tail(&x->wait, &wait);
  4597. do {
  4598. if (signal_pending_state(state, current)) {
  4599. timeout = -ERESTARTSYS;
  4600. break;
  4601. }
  4602. __set_current_state(state);
  4603. spin_unlock_irq(&x->wait.lock);
  4604. timeout = schedule_timeout(timeout);
  4605. spin_lock_irq(&x->wait.lock);
  4606. } while (!x->done && timeout);
  4607. __remove_wait_queue(&x->wait, &wait);
  4608. if (!x->done)
  4609. return timeout;
  4610. }
  4611. x->done--;
  4612. return timeout ?: 1;
  4613. }
  4614. static long __sched
  4615. wait_for_common(struct completion *x, long timeout, int state)
  4616. {
  4617. might_sleep();
  4618. spin_lock_irq(&x->wait.lock);
  4619. timeout = do_wait_for_common(x, timeout, state);
  4620. spin_unlock_irq(&x->wait.lock);
  4621. return timeout;
  4622. }
  4623. /**
  4624. * wait_for_completion: - waits for completion of a task
  4625. * @x: holds the state of this particular completion
  4626. *
  4627. * This waits to be signaled for completion of a specific task. It is NOT
  4628. * interruptible and there is no timeout.
  4629. *
  4630. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4631. * and interrupt capability. Also see complete().
  4632. */
  4633. void __sched wait_for_completion(struct completion *x)
  4634. {
  4635. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4636. }
  4637. EXPORT_SYMBOL(wait_for_completion);
  4638. /**
  4639. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4640. * @x: holds the state of this particular completion
  4641. * @timeout: timeout value in jiffies
  4642. *
  4643. * This waits for either a completion of a specific task to be signaled or for a
  4644. * specified timeout to expire. The timeout is in jiffies. It is not
  4645. * interruptible.
  4646. */
  4647. unsigned long __sched
  4648. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4649. {
  4650. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4651. }
  4652. EXPORT_SYMBOL(wait_for_completion_timeout);
  4653. /**
  4654. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4655. * @x: holds the state of this particular completion
  4656. *
  4657. * This waits for completion of a specific task to be signaled. It is
  4658. * interruptible.
  4659. */
  4660. int __sched wait_for_completion_interruptible(struct completion *x)
  4661. {
  4662. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4663. if (t == -ERESTARTSYS)
  4664. return t;
  4665. return 0;
  4666. }
  4667. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4668. /**
  4669. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4670. * @x: holds the state of this particular completion
  4671. * @timeout: timeout value in jiffies
  4672. *
  4673. * This waits for either a completion of a specific task to be signaled or for a
  4674. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4675. */
  4676. unsigned long __sched
  4677. wait_for_completion_interruptible_timeout(struct completion *x,
  4678. unsigned long timeout)
  4679. {
  4680. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4681. }
  4682. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4683. /**
  4684. * wait_for_completion_killable: - waits for completion of a task (killable)
  4685. * @x: holds the state of this particular completion
  4686. *
  4687. * This waits to be signaled for completion of a specific task. It can be
  4688. * interrupted by a kill signal.
  4689. */
  4690. int __sched wait_for_completion_killable(struct completion *x)
  4691. {
  4692. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4693. if (t == -ERESTARTSYS)
  4694. return t;
  4695. return 0;
  4696. }
  4697. EXPORT_SYMBOL(wait_for_completion_killable);
  4698. /**
  4699. * try_wait_for_completion - try to decrement a completion without blocking
  4700. * @x: completion structure
  4701. *
  4702. * Returns: 0 if a decrement cannot be done without blocking
  4703. * 1 if a decrement succeeded.
  4704. *
  4705. * If a completion is being used as a counting completion,
  4706. * attempt to decrement the counter without blocking. This
  4707. * enables us to avoid waiting if the resource the completion
  4708. * is protecting is not available.
  4709. */
  4710. bool try_wait_for_completion(struct completion *x)
  4711. {
  4712. int ret = 1;
  4713. spin_lock_irq(&x->wait.lock);
  4714. if (!x->done)
  4715. ret = 0;
  4716. else
  4717. x->done--;
  4718. spin_unlock_irq(&x->wait.lock);
  4719. return ret;
  4720. }
  4721. EXPORT_SYMBOL(try_wait_for_completion);
  4722. /**
  4723. * completion_done - Test to see if a completion has any waiters
  4724. * @x: completion structure
  4725. *
  4726. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4727. * 1 if there are no waiters.
  4728. *
  4729. */
  4730. bool completion_done(struct completion *x)
  4731. {
  4732. int ret = 1;
  4733. spin_lock_irq(&x->wait.lock);
  4734. if (!x->done)
  4735. ret = 0;
  4736. spin_unlock_irq(&x->wait.lock);
  4737. return ret;
  4738. }
  4739. EXPORT_SYMBOL(completion_done);
  4740. static long __sched
  4741. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4742. {
  4743. unsigned long flags;
  4744. wait_queue_t wait;
  4745. init_waitqueue_entry(&wait, current);
  4746. __set_current_state(state);
  4747. spin_lock_irqsave(&q->lock, flags);
  4748. __add_wait_queue(q, &wait);
  4749. spin_unlock(&q->lock);
  4750. timeout = schedule_timeout(timeout);
  4751. spin_lock_irq(&q->lock);
  4752. __remove_wait_queue(q, &wait);
  4753. spin_unlock_irqrestore(&q->lock, flags);
  4754. return timeout;
  4755. }
  4756. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4757. {
  4758. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4759. }
  4760. EXPORT_SYMBOL(interruptible_sleep_on);
  4761. long __sched
  4762. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4763. {
  4764. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4765. }
  4766. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4767. void __sched sleep_on(wait_queue_head_t *q)
  4768. {
  4769. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4770. }
  4771. EXPORT_SYMBOL(sleep_on);
  4772. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4773. {
  4774. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4775. }
  4776. EXPORT_SYMBOL(sleep_on_timeout);
  4777. #ifdef CONFIG_RT_MUTEXES
  4778. /*
  4779. * rt_mutex_setprio - set the current priority of a task
  4780. * @p: task
  4781. * @prio: prio value (kernel-internal form)
  4782. *
  4783. * This function changes the 'effective' priority of a task. It does
  4784. * not touch ->normal_prio like __setscheduler().
  4785. *
  4786. * Used by the rt_mutex code to implement priority inheritance logic.
  4787. */
  4788. void rt_mutex_setprio(struct task_struct *p, int prio)
  4789. {
  4790. unsigned long flags;
  4791. int oldprio, on_rq, running;
  4792. struct rq *rq;
  4793. const struct sched_class *prev_class = p->sched_class;
  4794. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4795. rq = task_rq_lock(p, &flags);
  4796. update_rq_clock(rq);
  4797. oldprio = p->prio;
  4798. on_rq = p->se.on_rq;
  4799. running = task_current(rq, p);
  4800. if (on_rq)
  4801. dequeue_task(rq, p, 0);
  4802. if (running)
  4803. p->sched_class->put_prev_task(rq, p);
  4804. if (rt_prio(prio))
  4805. p->sched_class = &rt_sched_class;
  4806. else
  4807. p->sched_class = &fair_sched_class;
  4808. p->prio = prio;
  4809. if (running)
  4810. p->sched_class->set_curr_task(rq);
  4811. if (on_rq) {
  4812. enqueue_task(rq, p, 0);
  4813. check_class_changed(rq, p, prev_class, oldprio, running);
  4814. }
  4815. task_rq_unlock(rq, &flags);
  4816. }
  4817. #endif
  4818. void set_user_nice(struct task_struct *p, long nice)
  4819. {
  4820. int old_prio, delta, on_rq;
  4821. unsigned long flags;
  4822. struct rq *rq;
  4823. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4824. return;
  4825. /*
  4826. * We have to be careful, if called from sys_setpriority(),
  4827. * the task might be in the middle of scheduling on another CPU.
  4828. */
  4829. rq = task_rq_lock(p, &flags);
  4830. update_rq_clock(rq);
  4831. /*
  4832. * The RT priorities are set via sched_setscheduler(), but we still
  4833. * allow the 'normal' nice value to be set - but as expected
  4834. * it wont have any effect on scheduling until the task is
  4835. * SCHED_FIFO/SCHED_RR:
  4836. */
  4837. if (task_has_rt_policy(p)) {
  4838. p->static_prio = NICE_TO_PRIO(nice);
  4839. goto out_unlock;
  4840. }
  4841. on_rq = p->se.on_rq;
  4842. if (on_rq)
  4843. dequeue_task(rq, p, 0);
  4844. p->static_prio = NICE_TO_PRIO(nice);
  4845. set_load_weight(p);
  4846. old_prio = p->prio;
  4847. p->prio = effective_prio(p);
  4848. delta = p->prio - old_prio;
  4849. if (on_rq) {
  4850. enqueue_task(rq, p, 0);
  4851. /*
  4852. * If the task increased its priority or is running and
  4853. * lowered its priority, then reschedule its CPU:
  4854. */
  4855. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4856. resched_task(rq->curr);
  4857. }
  4858. out_unlock:
  4859. task_rq_unlock(rq, &flags);
  4860. }
  4861. EXPORT_SYMBOL(set_user_nice);
  4862. /*
  4863. * can_nice - check if a task can reduce its nice value
  4864. * @p: task
  4865. * @nice: nice value
  4866. */
  4867. int can_nice(const struct task_struct *p, const int nice)
  4868. {
  4869. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4870. int nice_rlim = 20 - nice;
  4871. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4872. capable(CAP_SYS_NICE));
  4873. }
  4874. #ifdef __ARCH_WANT_SYS_NICE
  4875. /*
  4876. * sys_nice - change the priority of the current process.
  4877. * @increment: priority increment
  4878. *
  4879. * sys_setpriority is a more generic, but much slower function that
  4880. * does similar things.
  4881. */
  4882. SYSCALL_DEFINE1(nice, int, increment)
  4883. {
  4884. long nice, retval;
  4885. /*
  4886. * Setpriority might change our priority at the same moment.
  4887. * We don't have to worry. Conceptually one call occurs first
  4888. * and we have a single winner.
  4889. */
  4890. if (increment < -40)
  4891. increment = -40;
  4892. if (increment > 40)
  4893. increment = 40;
  4894. nice = TASK_NICE(current) + increment;
  4895. if (nice < -20)
  4896. nice = -20;
  4897. if (nice > 19)
  4898. nice = 19;
  4899. if (increment < 0 && !can_nice(current, nice))
  4900. return -EPERM;
  4901. retval = security_task_setnice(current, nice);
  4902. if (retval)
  4903. return retval;
  4904. set_user_nice(current, nice);
  4905. return 0;
  4906. }
  4907. #endif
  4908. /**
  4909. * task_prio - return the priority value of a given task.
  4910. * @p: the task in question.
  4911. *
  4912. * This is the priority value as seen by users in /proc.
  4913. * RT tasks are offset by -200. Normal tasks are centered
  4914. * around 0, value goes from -16 to +15.
  4915. */
  4916. int task_prio(const struct task_struct *p)
  4917. {
  4918. return p->prio - MAX_RT_PRIO;
  4919. }
  4920. /**
  4921. * task_nice - return the nice value of a given task.
  4922. * @p: the task in question.
  4923. */
  4924. int task_nice(const struct task_struct *p)
  4925. {
  4926. return TASK_NICE(p);
  4927. }
  4928. EXPORT_SYMBOL(task_nice);
  4929. /**
  4930. * idle_cpu - is a given cpu idle currently?
  4931. * @cpu: the processor in question.
  4932. */
  4933. int idle_cpu(int cpu)
  4934. {
  4935. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4936. }
  4937. /**
  4938. * idle_task - return the idle task for a given cpu.
  4939. * @cpu: the processor in question.
  4940. */
  4941. struct task_struct *idle_task(int cpu)
  4942. {
  4943. return cpu_rq(cpu)->idle;
  4944. }
  4945. /**
  4946. * find_process_by_pid - find a process with a matching PID value.
  4947. * @pid: the pid in question.
  4948. */
  4949. static struct task_struct *find_process_by_pid(pid_t pid)
  4950. {
  4951. return pid ? find_task_by_vpid(pid) : current;
  4952. }
  4953. /* Actually do priority change: must hold rq lock. */
  4954. static void
  4955. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4956. {
  4957. BUG_ON(p->se.on_rq);
  4958. p->policy = policy;
  4959. switch (p->policy) {
  4960. case SCHED_NORMAL:
  4961. case SCHED_BATCH:
  4962. case SCHED_IDLE:
  4963. p->sched_class = &fair_sched_class;
  4964. break;
  4965. case SCHED_FIFO:
  4966. case SCHED_RR:
  4967. p->sched_class = &rt_sched_class;
  4968. break;
  4969. }
  4970. p->rt_priority = prio;
  4971. p->normal_prio = normal_prio(p);
  4972. /* we are holding p->pi_lock already */
  4973. p->prio = rt_mutex_getprio(p);
  4974. set_load_weight(p);
  4975. }
  4976. /*
  4977. * check the target process has a UID that matches the current process's
  4978. */
  4979. static bool check_same_owner(struct task_struct *p)
  4980. {
  4981. const struct cred *cred = current_cred(), *pcred;
  4982. bool match;
  4983. rcu_read_lock();
  4984. pcred = __task_cred(p);
  4985. match = (cred->euid == pcred->euid ||
  4986. cred->euid == pcred->uid);
  4987. rcu_read_unlock();
  4988. return match;
  4989. }
  4990. static int __sched_setscheduler(struct task_struct *p, int policy,
  4991. struct sched_param *param, bool user)
  4992. {
  4993. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4994. unsigned long flags;
  4995. const struct sched_class *prev_class = p->sched_class;
  4996. struct rq *rq;
  4997. /* may grab non-irq protected spin_locks */
  4998. BUG_ON(in_interrupt());
  4999. recheck:
  5000. /* double check policy once rq lock held */
  5001. if (policy < 0)
  5002. policy = oldpolicy = p->policy;
  5003. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5004. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5005. policy != SCHED_IDLE)
  5006. return -EINVAL;
  5007. /*
  5008. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5009. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5010. * SCHED_BATCH and SCHED_IDLE is 0.
  5011. */
  5012. if (param->sched_priority < 0 ||
  5013. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5014. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5015. return -EINVAL;
  5016. if (rt_policy(policy) != (param->sched_priority != 0))
  5017. return -EINVAL;
  5018. /*
  5019. * Allow unprivileged RT tasks to decrease priority:
  5020. */
  5021. if (user && !capable(CAP_SYS_NICE)) {
  5022. if (rt_policy(policy)) {
  5023. unsigned long rlim_rtprio;
  5024. if (!lock_task_sighand(p, &flags))
  5025. return -ESRCH;
  5026. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5027. unlock_task_sighand(p, &flags);
  5028. /* can't set/change the rt policy */
  5029. if (policy != p->policy && !rlim_rtprio)
  5030. return -EPERM;
  5031. /* can't increase priority */
  5032. if (param->sched_priority > p->rt_priority &&
  5033. param->sched_priority > rlim_rtprio)
  5034. return -EPERM;
  5035. }
  5036. /*
  5037. * Like positive nice levels, dont allow tasks to
  5038. * move out of SCHED_IDLE either:
  5039. */
  5040. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5041. return -EPERM;
  5042. /* can't change other user's priorities */
  5043. if (!check_same_owner(p))
  5044. return -EPERM;
  5045. }
  5046. if (user) {
  5047. #ifdef CONFIG_RT_GROUP_SCHED
  5048. /*
  5049. * Do not allow realtime tasks into groups that have no runtime
  5050. * assigned.
  5051. */
  5052. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5053. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5054. return -EPERM;
  5055. #endif
  5056. retval = security_task_setscheduler(p, policy, param);
  5057. if (retval)
  5058. return retval;
  5059. }
  5060. /*
  5061. * make sure no PI-waiters arrive (or leave) while we are
  5062. * changing the priority of the task:
  5063. */
  5064. spin_lock_irqsave(&p->pi_lock, flags);
  5065. /*
  5066. * To be able to change p->policy safely, the apropriate
  5067. * runqueue lock must be held.
  5068. */
  5069. rq = __task_rq_lock(p);
  5070. /* recheck policy now with rq lock held */
  5071. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5072. policy = oldpolicy = -1;
  5073. __task_rq_unlock(rq);
  5074. spin_unlock_irqrestore(&p->pi_lock, flags);
  5075. goto recheck;
  5076. }
  5077. update_rq_clock(rq);
  5078. on_rq = p->se.on_rq;
  5079. running = task_current(rq, p);
  5080. if (on_rq)
  5081. deactivate_task(rq, p, 0);
  5082. if (running)
  5083. p->sched_class->put_prev_task(rq, p);
  5084. oldprio = p->prio;
  5085. __setscheduler(rq, p, policy, param->sched_priority);
  5086. if (running)
  5087. p->sched_class->set_curr_task(rq);
  5088. if (on_rq) {
  5089. activate_task(rq, p, 0);
  5090. check_class_changed(rq, p, prev_class, oldprio, running);
  5091. }
  5092. __task_rq_unlock(rq);
  5093. spin_unlock_irqrestore(&p->pi_lock, flags);
  5094. rt_mutex_adjust_pi(p);
  5095. return 0;
  5096. }
  5097. /**
  5098. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5099. * @p: the task in question.
  5100. * @policy: new policy.
  5101. * @param: structure containing the new RT priority.
  5102. *
  5103. * NOTE that the task may be already dead.
  5104. */
  5105. int sched_setscheduler(struct task_struct *p, int policy,
  5106. struct sched_param *param)
  5107. {
  5108. return __sched_setscheduler(p, policy, param, true);
  5109. }
  5110. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5111. /**
  5112. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5113. * @p: the task in question.
  5114. * @policy: new policy.
  5115. * @param: structure containing the new RT priority.
  5116. *
  5117. * Just like sched_setscheduler, only don't bother checking if the
  5118. * current context has permission. For example, this is needed in
  5119. * stop_machine(): we create temporary high priority worker threads,
  5120. * but our caller might not have that capability.
  5121. */
  5122. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5123. struct sched_param *param)
  5124. {
  5125. return __sched_setscheduler(p, policy, param, false);
  5126. }
  5127. static int
  5128. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5129. {
  5130. struct sched_param lparam;
  5131. struct task_struct *p;
  5132. int retval;
  5133. if (!param || pid < 0)
  5134. return -EINVAL;
  5135. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5136. return -EFAULT;
  5137. rcu_read_lock();
  5138. retval = -ESRCH;
  5139. p = find_process_by_pid(pid);
  5140. if (p != NULL)
  5141. retval = sched_setscheduler(p, policy, &lparam);
  5142. rcu_read_unlock();
  5143. return retval;
  5144. }
  5145. /**
  5146. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5147. * @pid: the pid in question.
  5148. * @policy: new policy.
  5149. * @param: structure containing the new RT priority.
  5150. */
  5151. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5152. struct sched_param __user *, param)
  5153. {
  5154. /* negative values for policy are not valid */
  5155. if (policy < 0)
  5156. return -EINVAL;
  5157. return do_sched_setscheduler(pid, policy, param);
  5158. }
  5159. /**
  5160. * sys_sched_setparam - set/change the RT priority of a thread
  5161. * @pid: the pid in question.
  5162. * @param: structure containing the new RT priority.
  5163. */
  5164. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5165. {
  5166. return do_sched_setscheduler(pid, -1, param);
  5167. }
  5168. /**
  5169. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5170. * @pid: the pid in question.
  5171. */
  5172. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5173. {
  5174. struct task_struct *p;
  5175. int retval;
  5176. if (pid < 0)
  5177. return -EINVAL;
  5178. retval = -ESRCH;
  5179. read_lock(&tasklist_lock);
  5180. p = find_process_by_pid(pid);
  5181. if (p) {
  5182. retval = security_task_getscheduler(p);
  5183. if (!retval)
  5184. retval = p->policy;
  5185. }
  5186. read_unlock(&tasklist_lock);
  5187. return retval;
  5188. }
  5189. /**
  5190. * sys_sched_getscheduler - get the RT priority of a thread
  5191. * @pid: the pid in question.
  5192. * @param: structure containing the RT priority.
  5193. */
  5194. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5195. {
  5196. struct sched_param lp;
  5197. struct task_struct *p;
  5198. int retval;
  5199. if (!param || pid < 0)
  5200. return -EINVAL;
  5201. read_lock(&tasklist_lock);
  5202. p = find_process_by_pid(pid);
  5203. retval = -ESRCH;
  5204. if (!p)
  5205. goto out_unlock;
  5206. retval = security_task_getscheduler(p);
  5207. if (retval)
  5208. goto out_unlock;
  5209. lp.sched_priority = p->rt_priority;
  5210. read_unlock(&tasklist_lock);
  5211. /*
  5212. * This one might sleep, we cannot do it with a spinlock held ...
  5213. */
  5214. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5215. return retval;
  5216. out_unlock:
  5217. read_unlock(&tasklist_lock);
  5218. return retval;
  5219. }
  5220. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5221. {
  5222. cpumask_var_t cpus_allowed, new_mask;
  5223. struct task_struct *p;
  5224. int retval;
  5225. get_online_cpus();
  5226. read_lock(&tasklist_lock);
  5227. p = find_process_by_pid(pid);
  5228. if (!p) {
  5229. read_unlock(&tasklist_lock);
  5230. put_online_cpus();
  5231. return -ESRCH;
  5232. }
  5233. /*
  5234. * It is not safe to call set_cpus_allowed with the
  5235. * tasklist_lock held. We will bump the task_struct's
  5236. * usage count and then drop tasklist_lock.
  5237. */
  5238. get_task_struct(p);
  5239. read_unlock(&tasklist_lock);
  5240. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5241. retval = -ENOMEM;
  5242. goto out_put_task;
  5243. }
  5244. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5245. retval = -ENOMEM;
  5246. goto out_free_cpus_allowed;
  5247. }
  5248. retval = -EPERM;
  5249. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5250. goto out_unlock;
  5251. retval = security_task_setscheduler(p, 0, NULL);
  5252. if (retval)
  5253. goto out_unlock;
  5254. cpuset_cpus_allowed(p, cpus_allowed);
  5255. cpumask_and(new_mask, in_mask, cpus_allowed);
  5256. again:
  5257. retval = set_cpus_allowed_ptr(p, new_mask);
  5258. if (!retval) {
  5259. cpuset_cpus_allowed(p, cpus_allowed);
  5260. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5261. /*
  5262. * We must have raced with a concurrent cpuset
  5263. * update. Just reset the cpus_allowed to the
  5264. * cpuset's cpus_allowed
  5265. */
  5266. cpumask_copy(new_mask, cpus_allowed);
  5267. goto again;
  5268. }
  5269. }
  5270. out_unlock:
  5271. free_cpumask_var(new_mask);
  5272. out_free_cpus_allowed:
  5273. free_cpumask_var(cpus_allowed);
  5274. out_put_task:
  5275. put_task_struct(p);
  5276. put_online_cpus();
  5277. return retval;
  5278. }
  5279. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5280. struct cpumask *new_mask)
  5281. {
  5282. if (len < cpumask_size())
  5283. cpumask_clear(new_mask);
  5284. else if (len > cpumask_size())
  5285. len = cpumask_size();
  5286. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5287. }
  5288. /**
  5289. * sys_sched_setaffinity - set the cpu affinity of a process
  5290. * @pid: pid of the process
  5291. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5292. * @user_mask_ptr: user-space pointer to the new cpu mask
  5293. */
  5294. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5295. unsigned long __user *, user_mask_ptr)
  5296. {
  5297. cpumask_var_t new_mask;
  5298. int retval;
  5299. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5300. return -ENOMEM;
  5301. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5302. if (retval == 0)
  5303. retval = sched_setaffinity(pid, new_mask);
  5304. free_cpumask_var(new_mask);
  5305. return retval;
  5306. }
  5307. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5308. {
  5309. struct task_struct *p;
  5310. int retval;
  5311. get_online_cpus();
  5312. read_lock(&tasklist_lock);
  5313. retval = -ESRCH;
  5314. p = find_process_by_pid(pid);
  5315. if (!p)
  5316. goto out_unlock;
  5317. retval = security_task_getscheduler(p);
  5318. if (retval)
  5319. goto out_unlock;
  5320. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5321. out_unlock:
  5322. read_unlock(&tasklist_lock);
  5323. put_online_cpus();
  5324. return retval;
  5325. }
  5326. /**
  5327. * sys_sched_getaffinity - get the cpu affinity of a process
  5328. * @pid: pid of the process
  5329. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5330. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5331. */
  5332. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5333. unsigned long __user *, user_mask_ptr)
  5334. {
  5335. int ret;
  5336. cpumask_var_t mask;
  5337. if (len < cpumask_size())
  5338. return -EINVAL;
  5339. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5340. return -ENOMEM;
  5341. ret = sched_getaffinity(pid, mask);
  5342. if (ret == 0) {
  5343. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5344. ret = -EFAULT;
  5345. else
  5346. ret = cpumask_size();
  5347. }
  5348. free_cpumask_var(mask);
  5349. return ret;
  5350. }
  5351. /**
  5352. * sys_sched_yield - yield the current processor to other threads.
  5353. *
  5354. * This function yields the current CPU to other tasks. If there are no
  5355. * other threads running on this CPU then this function will return.
  5356. */
  5357. SYSCALL_DEFINE0(sched_yield)
  5358. {
  5359. struct rq *rq = this_rq_lock();
  5360. schedstat_inc(rq, yld_count);
  5361. current->sched_class->yield_task(rq);
  5362. /*
  5363. * Since we are going to call schedule() anyway, there's
  5364. * no need to preempt or enable interrupts:
  5365. */
  5366. __release(rq->lock);
  5367. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5368. _raw_spin_unlock(&rq->lock);
  5369. preempt_enable_no_resched();
  5370. schedule();
  5371. return 0;
  5372. }
  5373. static void __cond_resched(void)
  5374. {
  5375. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5376. __might_sleep(__FILE__, __LINE__);
  5377. #endif
  5378. /*
  5379. * The BKS might be reacquired before we have dropped
  5380. * PREEMPT_ACTIVE, which could trigger a second
  5381. * cond_resched() call.
  5382. */
  5383. do {
  5384. add_preempt_count(PREEMPT_ACTIVE);
  5385. schedule();
  5386. sub_preempt_count(PREEMPT_ACTIVE);
  5387. } while (need_resched());
  5388. }
  5389. int __sched _cond_resched(void)
  5390. {
  5391. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5392. system_state == SYSTEM_RUNNING) {
  5393. __cond_resched();
  5394. return 1;
  5395. }
  5396. return 0;
  5397. }
  5398. EXPORT_SYMBOL(_cond_resched);
  5399. /*
  5400. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5401. * call schedule, and on return reacquire the lock.
  5402. *
  5403. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5404. * operations here to prevent schedule() from being called twice (once via
  5405. * spin_unlock(), once by hand).
  5406. */
  5407. int cond_resched_lock(spinlock_t *lock)
  5408. {
  5409. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5410. int ret = 0;
  5411. if (spin_needbreak(lock) || resched) {
  5412. spin_unlock(lock);
  5413. if (resched && need_resched())
  5414. __cond_resched();
  5415. else
  5416. cpu_relax();
  5417. ret = 1;
  5418. spin_lock(lock);
  5419. }
  5420. return ret;
  5421. }
  5422. EXPORT_SYMBOL(cond_resched_lock);
  5423. int __sched cond_resched_softirq(void)
  5424. {
  5425. BUG_ON(!in_softirq());
  5426. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5427. local_bh_enable();
  5428. __cond_resched();
  5429. local_bh_disable();
  5430. return 1;
  5431. }
  5432. return 0;
  5433. }
  5434. EXPORT_SYMBOL(cond_resched_softirq);
  5435. /**
  5436. * yield - yield the current processor to other threads.
  5437. *
  5438. * This is a shortcut for kernel-space yielding - it marks the
  5439. * thread runnable and calls sys_sched_yield().
  5440. */
  5441. void __sched yield(void)
  5442. {
  5443. set_current_state(TASK_RUNNING);
  5444. sys_sched_yield();
  5445. }
  5446. EXPORT_SYMBOL(yield);
  5447. /*
  5448. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5449. * that process accounting knows that this is a task in IO wait state.
  5450. *
  5451. * But don't do that if it is a deliberate, throttling IO wait (this task
  5452. * has set its backing_dev_info: the queue against which it should throttle)
  5453. */
  5454. void __sched io_schedule(void)
  5455. {
  5456. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5457. delayacct_blkio_start();
  5458. atomic_inc(&rq->nr_iowait);
  5459. schedule();
  5460. atomic_dec(&rq->nr_iowait);
  5461. delayacct_blkio_end();
  5462. }
  5463. EXPORT_SYMBOL(io_schedule);
  5464. long __sched io_schedule_timeout(long timeout)
  5465. {
  5466. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5467. long ret;
  5468. delayacct_blkio_start();
  5469. atomic_inc(&rq->nr_iowait);
  5470. ret = schedule_timeout(timeout);
  5471. atomic_dec(&rq->nr_iowait);
  5472. delayacct_blkio_end();
  5473. return ret;
  5474. }
  5475. /**
  5476. * sys_sched_get_priority_max - return maximum RT priority.
  5477. * @policy: scheduling class.
  5478. *
  5479. * this syscall returns the maximum rt_priority that can be used
  5480. * by a given scheduling class.
  5481. */
  5482. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5483. {
  5484. int ret = -EINVAL;
  5485. switch (policy) {
  5486. case SCHED_FIFO:
  5487. case SCHED_RR:
  5488. ret = MAX_USER_RT_PRIO-1;
  5489. break;
  5490. case SCHED_NORMAL:
  5491. case SCHED_BATCH:
  5492. case SCHED_IDLE:
  5493. ret = 0;
  5494. break;
  5495. }
  5496. return ret;
  5497. }
  5498. /**
  5499. * sys_sched_get_priority_min - return minimum RT priority.
  5500. * @policy: scheduling class.
  5501. *
  5502. * this syscall returns the minimum rt_priority that can be used
  5503. * by a given scheduling class.
  5504. */
  5505. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5506. {
  5507. int ret = -EINVAL;
  5508. switch (policy) {
  5509. case SCHED_FIFO:
  5510. case SCHED_RR:
  5511. ret = 1;
  5512. break;
  5513. case SCHED_NORMAL:
  5514. case SCHED_BATCH:
  5515. case SCHED_IDLE:
  5516. ret = 0;
  5517. }
  5518. return ret;
  5519. }
  5520. /**
  5521. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5522. * @pid: pid of the process.
  5523. * @interval: userspace pointer to the timeslice value.
  5524. *
  5525. * this syscall writes the default timeslice value of a given process
  5526. * into the user-space timespec buffer. A value of '0' means infinity.
  5527. */
  5528. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5529. struct timespec __user *, interval)
  5530. {
  5531. struct task_struct *p;
  5532. unsigned int time_slice;
  5533. int retval;
  5534. struct timespec t;
  5535. if (pid < 0)
  5536. return -EINVAL;
  5537. retval = -ESRCH;
  5538. read_lock(&tasklist_lock);
  5539. p = find_process_by_pid(pid);
  5540. if (!p)
  5541. goto out_unlock;
  5542. retval = security_task_getscheduler(p);
  5543. if (retval)
  5544. goto out_unlock;
  5545. /*
  5546. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5547. * tasks that are on an otherwise idle runqueue:
  5548. */
  5549. time_slice = 0;
  5550. if (p->policy == SCHED_RR) {
  5551. time_slice = DEF_TIMESLICE;
  5552. } else if (p->policy != SCHED_FIFO) {
  5553. struct sched_entity *se = &p->se;
  5554. unsigned long flags;
  5555. struct rq *rq;
  5556. rq = task_rq_lock(p, &flags);
  5557. if (rq->cfs.load.weight)
  5558. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5559. task_rq_unlock(rq, &flags);
  5560. }
  5561. read_unlock(&tasklist_lock);
  5562. jiffies_to_timespec(time_slice, &t);
  5563. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5564. return retval;
  5565. out_unlock:
  5566. read_unlock(&tasklist_lock);
  5567. return retval;
  5568. }
  5569. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5570. void sched_show_task(struct task_struct *p)
  5571. {
  5572. unsigned long free = 0;
  5573. unsigned state;
  5574. state = p->state ? __ffs(p->state) + 1 : 0;
  5575. printk(KERN_INFO "%-13.13s %c", p->comm,
  5576. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5577. #if BITS_PER_LONG == 32
  5578. if (state == TASK_RUNNING)
  5579. printk(KERN_CONT " running ");
  5580. else
  5581. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5582. #else
  5583. if (state == TASK_RUNNING)
  5584. printk(KERN_CONT " running task ");
  5585. else
  5586. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5587. #endif
  5588. #ifdef CONFIG_DEBUG_STACK_USAGE
  5589. free = stack_not_used(p);
  5590. #endif
  5591. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5592. task_pid_nr(p), task_pid_nr(p->real_parent));
  5593. show_stack(p, NULL);
  5594. }
  5595. void show_state_filter(unsigned long state_filter)
  5596. {
  5597. struct task_struct *g, *p;
  5598. #if BITS_PER_LONG == 32
  5599. printk(KERN_INFO
  5600. " task PC stack pid father\n");
  5601. #else
  5602. printk(KERN_INFO
  5603. " task PC stack pid father\n");
  5604. #endif
  5605. read_lock(&tasklist_lock);
  5606. do_each_thread(g, p) {
  5607. /*
  5608. * reset the NMI-timeout, listing all files on a slow
  5609. * console might take alot of time:
  5610. */
  5611. touch_nmi_watchdog();
  5612. if (!state_filter || (p->state & state_filter))
  5613. sched_show_task(p);
  5614. } while_each_thread(g, p);
  5615. touch_all_softlockup_watchdogs();
  5616. #ifdef CONFIG_SCHED_DEBUG
  5617. sysrq_sched_debug_show();
  5618. #endif
  5619. read_unlock(&tasklist_lock);
  5620. /*
  5621. * Only show locks if all tasks are dumped:
  5622. */
  5623. if (state_filter == -1)
  5624. debug_show_all_locks();
  5625. }
  5626. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5627. {
  5628. idle->sched_class = &idle_sched_class;
  5629. }
  5630. /**
  5631. * init_idle - set up an idle thread for a given CPU
  5632. * @idle: task in question
  5633. * @cpu: cpu the idle task belongs to
  5634. *
  5635. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5636. * flag, to make booting more robust.
  5637. */
  5638. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5639. {
  5640. struct rq *rq = cpu_rq(cpu);
  5641. unsigned long flags;
  5642. spin_lock_irqsave(&rq->lock, flags);
  5643. __sched_fork(idle);
  5644. idle->se.exec_start = sched_clock();
  5645. idle->prio = idle->normal_prio = MAX_PRIO;
  5646. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5647. __set_task_cpu(idle, cpu);
  5648. rq->curr = rq->idle = idle;
  5649. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5650. idle->oncpu = 1;
  5651. #endif
  5652. spin_unlock_irqrestore(&rq->lock, flags);
  5653. /* Set the preempt count _outside_ the spinlocks! */
  5654. #if defined(CONFIG_PREEMPT)
  5655. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5656. #else
  5657. task_thread_info(idle)->preempt_count = 0;
  5658. #endif
  5659. /*
  5660. * The idle tasks have their own, simple scheduling class:
  5661. */
  5662. idle->sched_class = &idle_sched_class;
  5663. ftrace_graph_init_task(idle);
  5664. }
  5665. /*
  5666. * In a system that switches off the HZ timer nohz_cpu_mask
  5667. * indicates which cpus entered this state. This is used
  5668. * in the rcu update to wait only for active cpus. For system
  5669. * which do not switch off the HZ timer nohz_cpu_mask should
  5670. * always be CPU_BITS_NONE.
  5671. */
  5672. cpumask_var_t nohz_cpu_mask;
  5673. /*
  5674. * Increase the granularity value when there are more CPUs,
  5675. * because with more CPUs the 'effective latency' as visible
  5676. * to users decreases. But the relationship is not linear,
  5677. * so pick a second-best guess by going with the log2 of the
  5678. * number of CPUs.
  5679. *
  5680. * This idea comes from the SD scheduler of Con Kolivas:
  5681. */
  5682. static inline void sched_init_granularity(void)
  5683. {
  5684. unsigned int factor = 1 + ilog2(num_online_cpus());
  5685. const unsigned long limit = 200000000;
  5686. sysctl_sched_min_granularity *= factor;
  5687. if (sysctl_sched_min_granularity > limit)
  5688. sysctl_sched_min_granularity = limit;
  5689. sysctl_sched_latency *= factor;
  5690. if (sysctl_sched_latency > limit)
  5691. sysctl_sched_latency = limit;
  5692. sysctl_sched_wakeup_granularity *= factor;
  5693. sysctl_sched_shares_ratelimit *= factor;
  5694. }
  5695. #ifdef CONFIG_SMP
  5696. /*
  5697. * This is how migration works:
  5698. *
  5699. * 1) we queue a struct migration_req structure in the source CPU's
  5700. * runqueue and wake up that CPU's migration thread.
  5701. * 2) we down() the locked semaphore => thread blocks.
  5702. * 3) migration thread wakes up (implicitly it forces the migrated
  5703. * thread off the CPU)
  5704. * 4) it gets the migration request and checks whether the migrated
  5705. * task is still in the wrong runqueue.
  5706. * 5) if it's in the wrong runqueue then the migration thread removes
  5707. * it and puts it into the right queue.
  5708. * 6) migration thread up()s the semaphore.
  5709. * 7) we wake up and the migration is done.
  5710. */
  5711. /*
  5712. * Change a given task's CPU affinity. Migrate the thread to a
  5713. * proper CPU and schedule it away if the CPU it's executing on
  5714. * is removed from the allowed bitmask.
  5715. *
  5716. * NOTE: the caller must have a valid reference to the task, the
  5717. * task must not exit() & deallocate itself prematurely. The
  5718. * call is not atomic; no spinlocks may be held.
  5719. */
  5720. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5721. {
  5722. struct migration_req req;
  5723. unsigned long flags;
  5724. struct rq *rq;
  5725. int ret = 0;
  5726. rq = task_rq_lock(p, &flags);
  5727. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5728. ret = -EINVAL;
  5729. goto out;
  5730. }
  5731. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5732. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5733. ret = -EINVAL;
  5734. goto out;
  5735. }
  5736. if (p->sched_class->set_cpus_allowed)
  5737. p->sched_class->set_cpus_allowed(p, new_mask);
  5738. else {
  5739. cpumask_copy(&p->cpus_allowed, new_mask);
  5740. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5741. }
  5742. /* Can the task run on the task's current CPU? If so, we're done */
  5743. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5744. goto out;
  5745. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5746. /* Need help from migration thread: drop lock and wait. */
  5747. task_rq_unlock(rq, &flags);
  5748. wake_up_process(rq->migration_thread);
  5749. wait_for_completion(&req.done);
  5750. tlb_migrate_finish(p->mm);
  5751. return 0;
  5752. }
  5753. out:
  5754. task_rq_unlock(rq, &flags);
  5755. return ret;
  5756. }
  5757. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5758. /*
  5759. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5760. * this because either it can't run here any more (set_cpus_allowed()
  5761. * away from this CPU, or CPU going down), or because we're
  5762. * attempting to rebalance this task on exec (sched_exec).
  5763. *
  5764. * So we race with normal scheduler movements, but that's OK, as long
  5765. * as the task is no longer on this CPU.
  5766. *
  5767. * Returns non-zero if task was successfully migrated.
  5768. */
  5769. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5770. {
  5771. struct rq *rq_dest, *rq_src;
  5772. int ret = 0, on_rq;
  5773. if (unlikely(!cpu_active(dest_cpu)))
  5774. return ret;
  5775. rq_src = cpu_rq(src_cpu);
  5776. rq_dest = cpu_rq(dest_cpu);
  5777. double_rq_lock(rq_src, rq_dest);
  5778. /* Already moved. */
  5779. if (task_cpu(p) != src_cpu)
  5780. goto done;
  5781. /* Affinity changed (again). */
  5782. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5783. goto fail;
  5784. on_rq = p->se.on_rq;
  5785. if (on_rq)
  5786. deactivate_task(rq_src, p, 0);
  5787. set_task_cpu(p, dest_cpu);
  5788. if (on_rq) {
  5789. activate_task(rq_dest, p, 0);
  5790. check_preempt_curr(rq_dest, p, 0);
  5791. }
  5792. done:
  5793. ret = 1;
  5794. fail:
  5795. double_rq_unlock(rq_src, rq_dest);
  5796. return ret;
  5797. }
  5798. /*
  5799. * migration_thread - this is a highprio system thread that performs
  5800. * thread migration by bumping thread off CPU then 'pushing' onto
  5801. * another runqueue.
  5802. */
  5803. static int migration_thread(void *data)
  5804. {
  5805. int cpu = (long)data;
  5806. struct rq *rq;
  5807. rq = cpu_rq(cpu);
  5808. BUG_ON(rq->migration_thread != current);
  5809. set_current_state(TASK_INTERRUPTIBLE);
  5810. while (!kthread_should_stop()) {
  5811. struct migration_req *req;
  5812. struct list_head *head;
  5813. spin_lock_irq(&rq->lock);
  5814. if (cpu_is_offline(cpu)) {
  5815. spin_unlock_irq(&rq->lock);
  5816. goto wait_to_die;
  5817. }
  5818. if (rq->active_balance) {
  5819. active_load_balance(rq, cpu);
  5820. rq->active_balance = 0;
  5821. }
  5822. head = &rq->migration_queue;
  5823. if (list_empty(head)) {
  5824. spin_unlock_irq(&rq->lock);
  5825. schedule();
  5826. set_current_state(TASK_INTERRUPTIBLE);
  5827. continue;
  5828. }
  5829. req = list_entry(head->next, struct migration_req, list);
  5830. list_del_init(head->next);
  5831. spin_unlock(&rq->lock);
  5832. __migrate_task(req->task, cpu, req->dest_cpu);
  5833. local_irq_enable();
  5834. complete(&req->done);
  5835. }
  5836. __set_current_state(TASK_RUNNING);
  5837. return 0;
  5838. wait_to_die:
  5839. /* Wait for kthread_stop */
  5840. set_current_state(TASK_INTERRUPTIBLE);
  5841. while (!kthread_should_stop()) {
  5842. schedule();
  5843. set_current_state(TASK_INTERRUPTIBLE);
  5844. }
  5845. __set_current_state(TASK_RUNNING);
  5846. return 0;
  5847. }
  5848. #ifdef CONFIG_HOTPLUG_CPU
  5849. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5850. {
  5851. int ret;
  5852. local_irq_disable();
  5853. ret = __migrate_task(p, src_cpu, dest_cpu);
  5854. local_irq_enable();
  5855. return ret;
  5856. }
  5857. /*
  5858. * Figure out where task on dead CPU should go, use force if necessary.
  5859. */
  5860. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5861. {
  5862. int dest_cpu;
  5863. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5864. again:
  5865. /* Look for allowed, online CPU in same node. */
  5866. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5867. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5868. goto move;
  5869. /* Any allowed, online CPU? */
  5870. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5871. if (dest_cpu < nr_cpu_ids)
  5872. goto move;
  5873. /* No more Mr. Nice Guy. */
  5874. if (dest_cpu >= nr_cpu_ids) {
  5875. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5876. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5877. /*
  5878. * Don't tell them about moving exiting tasks or
  5879. * kernel threads (both mm NULL), since they never
  5880. * leave kernel.
  5881. */
  5882. if (p->mm && printk_ratelimit()) {
  5883. printk(KERN_INFO "process %d (%s) no "
  5884. "longer affine to cpu%d\n",
  5885. task_pid_nr(p), p->comm, dead_cpu);
  5886. }
  5887. }
  5888. move:
  5889. /* It can have affinity changed while we were choosing. */
  5890. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5891. goto again;
  5892. }
  5893. /*
  5894. * While a dead CPU has no uninterruptible tasks queued at this point,
  5895. * it might still have a nonzero ->nr_uninterruptible counter, because
  5896. * for performance reasons the counter is not stricly tracking tasks to
  5897. * their home CPUs. So we just add the counter to another CPU's counter,
  5898. * to keep the global sum constant after CPU-down:
  5899. */
  5900. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5901. {
  5902. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5903. unsigned long flags;
  5904. local_irq_save(flags);
  5905. double_rq_lock(rq_src, rq_dest);
  5906. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5907. rq_src->nr_uninterruptible = 0;
  5908. double_rq_unlock(rq_src, rq_dest);
  5909. local_irq_restore(flags);
  5910. }
  5911. /* Run through task list and migrate tasks from the dead cpu. */
  5912. static void migrate_live_tasks(int src_cpu)
  5913. {
  5914. struct task_struct *p, *t;
  5915. read_lock(&tasklist_lock);
  5916. do_each_thread(t, p) {
  5917. if (p == current)
  5918. continue;
  5919. if (task_cpu(p) == src_cpu)
  5920. move_task_off_dead_cpu(src_cpu, p);
  5921. } while_each_thread(t, p);
  5922. read_unlock(&tasklist_lock);
  5923. }
  5924. /*
  5925. * Schedules idle task to be the next runnable task on current CPU.
  5926. * It does so by boosting its priority to highest possible.
  5927. * Used by CPU offline code.
  5928. */
  5929. void sched_idle_next(void)
  5930. {
  5931. int this_cpu = smp_processor_id();
  5932. struct rq *rq = cpu_rq(this_cpu);
  5933. struct task_struct *p = rq->idle;
  5934. unsigned long flags;
  5935. /* cpu has to be offline */
  5936. BUG_ON(cpu_online(this_cpu));
  5937. /*
  5938. * Strictly not necessary since rest of the CPUs are stopped by now
  5939. * and interrupts disabled on the current cpu.
  5940. */
  5941. spin_lock_irqsave(&rq->lock, flags);
  5942. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5943. update_rq_clock(rq);
  5944. activate_task(rq, p, 0);
  5945. spin_unlock_irqrestore(&rq->lock, flags);
  5946. }
  5947. /*
  5948. * Ensures that the idle task is using init_mm right before its cpu goes
  5949. * offline.
  5950. */
  5951. void idle_task_exit(void)
  5952. {
  5953. struct mm_struct *mm = current->active_mm;
  5954. BUG_ON(cpu_online(smp_processor_id()));
  5955. if (mm != &init_mm)
  5956. switch_mm(mm, &init_mm, current);
  5957. mmdrop(mm);
  5958. }
  5959. /* called under rq->lock with disabled interrupts */
  5960. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5961. {
  5962. struct rq *rq = cpu_rq(dead_cpu);
  5963. /* Must be exiting, otherwise would be on tasklist. */
  5964. BUG_ON(!p->exit_state);
  5965. /* Cannot have done final schedule yet: would have vanished. */
  5966. BUG_ON(p->state == TASK_DEAD);
  5967. get_task_struct(p);
  5968. /*
  5969. * Drop lock around migration; if someone else moves it,
  5970. * that's OK. No task can be added to this CPU, so iteration is
  5971. * fine.
  5972. */
  5973. spin_unlock_irq(&rq->lock);
  5974. move_task_off_dead_cpu(dead_cpu, p);
  5975. spin_lock_irq(&rq->lock);
  5976. put_task_struct(p);
  5977. }
  5978. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5979. static void migrate_dead_tasks(unsigned int dead_cpu)
  5980. {
  5981. struct rq *rq = cpu_rq(dead_cpu);
  5982. struct task_struct *next;
  5983. for ( ; ; ) {
  5984. if (!rq->nr_running)
  5985. break;
  5986. update_rq_clock(rq);
  5987. next = pick_next_task(rq);
  5988. if (!next)
  5989. break;
  5990. next->sched_class->put_prev_task(rq, next);
  5991. migrate_dead(dead_cpu, next);
  5992. }
  5993. }
  5994. #endif /* CONFIG_HOTPLUG_CPU */
  5995. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5996. static struct ctl_table sd_ctl_dir[] = {
  5997. {
  5998. .procname = "sched_domain",
  5999. .mode = 0555,
  6000. },
  6001. {0, },
  6002. };
  6003. static struct ctl_table sd_ctl_root[] = {
  6004. {
  6005. .ctl_name = CTL_KERN,
  6006. .procname = "kernel",
  6007. .mode = 0555,
  6008. .child = sd_ctl_dir,
  6009. },
  6010. {0, },
  6011. };
  6012. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6013. {
  6014. struct ctl_table *entry =
  6015. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6016. return entry;
  6017. }
  6018. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6019. {
  6020. struct ctl_table *entry;
  6021. /*
  6022. * In the intermediate directories, both the child directory and
  6023. * procname are dynamically allocated and could fail but the mode
  6024. * will always be set. In the lowest directory the names are
  6025. * static strings and all have proc handlers.
  6026. */
  6027. for (entry = *tablep; entry->mode; entry++) {
  6028. if (entry->child)
  6029. sd_free_ctl_entry(&entry->child);
  6030. if (entry->proc_handler == NULL)
  6031. kfree(entry->procname);
  6032. }
  6033. kfree(*tablep);
  6034. *tablep = NULL;
  6035. }
  6036. static void
  6037. set_table_entry(struct ctl_table *entry,
  6038. const char *procname, void *data, int maxlen,
  6039. mode_t mode, proc_handler *proc_handler)
  6040. {
  6041. entry->procname = procname;
  6042. entry->data = data;
  6043. entry->maxlen = maxlen;
  6044. entry->mode = mode;
  6045. entry->proc_handler = proc_handler;
  6046. }
  6047. static struct ctl_table *
  6048. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6049. {
  6050. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6051. if (table == NULL)
  6052. return NULL;
  6053. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6054. sizeof(long), 0644, proc_doulongvec_minmax);
  6055. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6056. sizeof(long), 0644, proc_doulongvec_minmax);
  6057. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6058. sizeof(int), 0644, proc_dointvec_minmax);
  6059. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6060. sizeof(int), 0644, proc_dointvec_minmax);
  6061. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6062. sizeof(int), 0644, proc_dointvec_minmax);
  6063. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6064. sizeof(int), 0644, proc_dointvec_minmax);
  6065. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6066. sizeof(int), 0644, proc_dointvec_minmax);
  6067. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6068. sizeof(int), 0644, proc_dointvec_minmax);
  6069. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6070. sizeof(int), 0644, proc_dointvec_minmax);
  6071. set_table_entry(&table[9], "cache_nice_tries",
  6072. &sd->cache_nice_tries,
  6073. sizeof(int), 0644, proc_dointvec_minmax);
  6074. set_table_entry(&table[10], "flags", &sd->flags,
  6075. sizeof(int), 0644, proc_dointvec_minmax);
  6076. set_table_entry(&table[11], "name", sd->name,
  6077. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6078. /* &table[12] is terminator */
  6079. return table;
  6080. }
  6081. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6082. {
  6083. struct ctl_table *entry, *table;
  6084. struct sched_domain *sd;
  6085. int domain_num = 0, i;
  6086. char buf[32];
  6087. for_each_domain(cpu, sd)
  6088. domain_num++;
  6089. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6090. if (table == NULL)
  6091. return NULL;
  6092. i = 0;
  6093. for_each_domain(cpu, sd) {
  6094. snprintf(buf, 32, "domain%d", i);
  6095. entry->procname = kstrdup(buf, GFP_KERNEL);
  6096. entry->mode = 0555;
  6097. entry->child = sd_alloc_ctl_domain_table(sd);
  6098. entry++;
  6099. i++;
  6100. }
  6101. return table;
  6102. }
  6103. static struct ctl_table_header *sd_sysctl_header;
  6104. static void register_sched_domain_sysctl(void)
  6105. {
  6106. int i, cpu_num = num_online_cpus();
  6107. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6108. char buf[32];
  6109. WARN_ON(sd_ctl_dir[0].child);
  6110. sd_ctl_dir[0].child = entry;
  6111. if (entry == NULL)
  6112. return;
  6113. for_each_online_cpu(i) {
  6114. snprintf(buf, 32, "cpu%d", i);
  6115. entry->procname = kstrdup(buf, GFP_KERNEL);
  6116. entry->mode = 0555;
  6117. entry->child = sd_alloc_ctl_cpu_table(i);
  6118. entry++;
  6119. }
  6120. WARN_ON(sd_sysctl_header);
  6121. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6122. }
  6123. /* may be called multiple times per register */
  6124. static void unregister_sched_domain_sysctl(void)
  6125. {
  6126. if (sd_sysctl_header)
  6127. unregister_sysctl_table(sd_sysctl_header);
  6128. sd_sysctl_header = NULL;
  6129. if (sd_ctl_dir[0].child)
  6130. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6131. }
  6132. #else
  6133. static void register_sched_domain_sysctl(void)
  6134. {
  6135. }
  6136. static void unregister_sched_domain_sysctl(void)
  6137. {
  6138. }
  6139. #endif
  6140. static void set_rq_online(struct rq *rq)
  6141. {
  6142. if (!rq->online) {
  6143. const struct sched_class *class;
  6144. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6145. rq->online = 1;
  6146. for_each_class(class) {
  6147. if (class->rq_online)
  6148. class->rq_online(rq);
  6149. }
  6150. }
  6151. }
  6152. static void set_rq_offline(struct rq *rq)
  6153. {
  6154. if (rq->online) {
  6155. const struct sched_class *class;
  6156. for_each_class(class) {
  6157. if (class->rq_offline)
  6158. class->rq_offline(rq);
  6159. }
  6160. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6161. rq->online = 0;
  6162. }
  6163. }
  6164. /*
  6165. * migration_call - callback that gets triggered when a CPU is added.
  6166. * Here we can start up the necessary migration thread for the new CPU.
  6167. */
  6168. static int __cpuinit
  6169. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6170. {
  6171. struct task_struct *p;
  6172. int cpu = (long)hcpu;
  6173. unsigned long flags;
  6174. struct rq *rq;
  6175. switch (action) {
  6176. case CPU_UP_PREPARE:
  6177. case CPU_UP_PREPARE_FROZEN:
  6178. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6179. if (IS_ERR(p))
  6180. return NOTIFY_BAD;
  6181. kthread_bind(p, cpu);
  6182. /* Must be high prio: stop_machine expects to yield to it. */
  6183. rq = task_rq_lock(p, &flags);
  6184. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6185. task_rq_unlock(rq, &flags);
  6186. cpu_rq(cpu)->migration_thread = p;
  6187. break;
  6188. case CPU_ONLINE:
  6189. case CPU_ONLINE_FROZEN:
  6190. /* Strictly unnecessary, as first user will wake it. */
  6191. wake_up_process(cpu_rq(cpu)->migration_thread);
  6192. /* Update our root-domain */
  6193. rq = cpu_rq(cpu);
  6194. spin_lock_irqsave(&rq->lock, flags);
  6195. if (rq->rd) {
  6196. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6197. set_rq_online(rq);
  6198. }
  6199. spin_unlock_irqrestore(&rq->lock, flags);
  6200. break;
  6201. #ifdef CONFIG_HOTPLUG_CPU
  6202. case CPU_UP_CANCELED:
  6203. case CPU_UP_CANCELED_FROZEN:
  6204. if (!cpu_rq(cpu)->migration_thread)
  6205. break;
  6206. /* Unbind it from offline cpu so it can run. Fall thru. */
  6207. kthread_bind(cpu_rq(cpu)->migration_thread,
  6208. cpumask_any(cpu_online_mask));
  6209. kthread_stop(cpu_rq(cpu)->migration_thread);
  6210. cpu_rq(cpu)->migration_thread = NULL;
  6211. break;
  6212. case CPU_DEAD:
  6213. case CPU_DEAD_FROZEN:
  6214. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6215. migrate_live_tasks(cpu);
  6216. rq = cpu_rq(cpu);
  6217. kthread_stop(rq->migration_thread);
  6218. rq->migration_thread = NULL;
  6219. /* Idle task back to normal (off runqueue, low prio) */
  6220. spin_lock_irq(&rq->lock);
  6221. update_rq_clock(rq);
  6222. deactivate_task(rq, rq->idle, 0);
  6223. rq->idle->static_prio = MAX_PRIO;
  6224. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6225. rq->idle->sched_class = &idle_sched_class;
  6226. migrate_dead_tasks(cpu);
  6227. spin_unlock_irq(&rq->lock);
  6228. cpuset_unlock();
  6229. migrate_nr_uninterruptible(rq);
  6230. BUG_ON(rq->nr_running != 0);
  6231. /*
  6232. * No need to migrate the tasks: it was best-effort if
  6233. * they didn't take sched_hotcpu_mutex. Just wake up
  6234. * the requestors.
  6235. */
  6236. spin_lock_irq(&rq->lock);
  6237. while (!list_empty(&rq->migration_queue)) {
  6238. struct migration_req *req;
  6239. req = list_entry(rq->migration_queue.next,
  6240. struct migration_req, list);
  6241. list_del_init(&req->list);
  6242. spin_unlock_irq(&rq->lock);
  6243. complete(&req->done);
  6244. spin_lock_irq(&rq->lock);
  6245. }
  6246. spin_unlock_irq(&rq->lock);
  6247. break;
  6248. case CPU_DYING:
  6249. case CPU_DYING_FROZEN:
  6250. /* Update our root-domain */
  6251. rq = cpu_rq(cpu);
  6252. spin_lock_irqsave(&rq->lock, flags);
  6253. if (rq->rd) {
  6254. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6255. set_rq_offline(rq);
  6256. }
  6257. spin_unlock_irqrestore(&rq->lock, flags);
  6258. break;
  6259. #endif
  6260. }
  6261. return NOTIFY_OK;
  6262. }
  6263. /* Register at highest priority so that task migration (migrate_all_tasks)
  6264. * happens before everything else.
  6265. */
  6266. static struct notifier_block __cpuinitdata migration_notifier = {
  6267. .notifier_call = migration_call,
  6268. .priority = 10
  6269. };
  6270. static int __init migration_init(void)
  6271. {
  6272. void *cpu = (void *)(long)smp_processor_id();
  6273. int err;
  6274. /* Start one for the boot CPU: */
  6275. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6276. BUG_ON(err == NOTIFY_BAD);
  6277. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6278. register_cpu_notifier(&migration_notifier);
  6279. return err;
  6280. }
  6281. early_initcall(migration_init);
  6282. #endif
  6283. #ifdef CONFIG_SMP
  6284. #ifdef CONFIG_SCHED_DEBUG
  6285. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6286. struct cpumask *groupmask)
  6287. {
  6288. struct sched_group *group = sd->groups;
  6289. char str[256];
  6290. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6291. cpumask_clear(groupmask);
  6292. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6293. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6294. printk("does not load-balance\n");
  6295. if (sd->parent)
  6296. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6297. " has parent");
  6298. return -1;
  6299. }
  6300. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6301. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6302. printk(KERN_ERR "ERROR: domain->span does not contain "
  6303. "CPU%d\n", cpu);
  6304. }
  6305. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6306. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6307. " CPU%d\n", cpu);
  6308. }
  6309. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6310. do {
  6311. if (!group) {
  6312. printk("\n");
  6313. printk(KERN_ERR "ERROR: group is NULL\n");
  6314. break;
  6315. }
  6316. if (!group->__cpu_power) {
  6317. printk(KERN_CONT "\n");
  6318. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6319. "set\n");
  6320. break;
  6321. }
  6322. if (!cpumask_weight(sched_group_cpus(group))) {
  6323. printk(KERN_CONT "\n");
  6324. printk(KERN_ERR "ERROR: empty group\n");
  6325. break;
  6326. }
  6327. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6328. printk(KERN_CONT "\n");
  6329. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6330. break;
  6331. }
  6332. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6333. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6334. printk(KERN_CONT " %s", str);
  6335. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6336. printk(KERN_CONT " (__cpu_power = %d)",
  6337. group->__cpu_power);
  6338. }
  6339. group = group->next;
  6340. } while (group != sd->groups);
  6341. printk(KERN_CONT "\n");
  6342. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6343. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6344. if (sd->parent &&
  6345. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6346. printk(KERN_ERR "ERROR: parent span is not a superset "
  6347. "of domain->span\n");
  6348. return 0;
  6349. }
  6350. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6351. {
  6352. cpumask_var_t groupmask;
  6353. int level = 0;
  6354. if (!sd) {
  6355. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6356. return;
  6357. }
  6358. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6359. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6360. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6361. return;
  6362. }
  6363. for (;;) {
  6364. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6365. break;
  6366. level++;
  6367. sd = sd->parent;
  6368. if (!sd)
  6369. break;
  6370. }
  6371. free_cpumask_var(groupmask);
  6372. }
  6373. #else /* !CONFIG_SCHED_DEBUG */
  6374. # define sched_domain_debug(sd, cpu) do { } while (0)
  6375. #endif /* CONFIG_SCHED_DEBUG */
  6376. static int sd_degenerate(struct sched_domain *sd)
  6377. {
  6378. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6379. return 1;
  6380. /* Following flags need at least 2 groups */
  6381. if (sd->flags & (SD_LOAD_BALANCE |
  6382. SD_BALANCE_NEWIDLE |
  6383. SD_BALANCE_FORK |
  6384. SD_BALANCE_EXEC |
  6385. SD_SHARE_CPUPOWER |
  6386. SD_SHARE_PKG_RESOURCES)) {
  6387. if (sd->groups != sd->groups->next)
  6388. return 0;
  6389. }
  6390. /* Following flags don't use groups */
  6391. if (sd->flags & (SD_WAKE_IDLE |
  6392. SD_WAKE_AFFINE |
  6393. SD_WAKE_BALANCE))
  6394. return 0;
  6395. return 1;
  6396. }
  6397. static int
  6398. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6399. {
  6400. unsigned long cflags = sd->flags, pflags = parent->flags;
  6401. if (sd_degenerate(parent))
  6402. return 1;
  6403. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6404. return 0;
  6405. /* Does parent contain flags not in child? */
  6406. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6407. if (cflags & SD_WAKE_AFFINE)
  6408. pflags &= ~SD_WAKE_BALANCE;
  6409. /* Flags needing groups don't count if only 1 group in parent */
  6410. if (parent->groups == parent->groups->next) {
  6411. pflags &= ~(SD_LOAD_BALANCE |
  6412. SD_BALANCE_NEWIDLE |
  6413. SD_BALANCE_FORK |
  6414. SD_BALANCE_EXEC |
  6415. SD_SHARE_CPUPOWER |
  6416. SD_SHARE_PKG_RESOURCES);
  6417. if (nr_node_ids == 1)
  6418. pflags &= ~SD_SERIALIZE;
  6419. }
  6420. if (~cflags & pflags)
  6421. return 0;
  6422. return 1;
  6423. }
  6424. static void free_rootdomain(struct root_domain *rd)
  6425. {
  6426. cpupri_cleanup(&rd->cpupri);
  6427. free_cpumask_var(rd->rto_mask);
  6428. free_cpumask_var(rd->online);
  6429. free_cpumask_var(rd->span);
  6430. kfree(rd);
  6431. }
  6432. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6433. {
  6434. struct root_domain *old_rd = NULL;
  6435. unsigned long flags;
  6436. spin_lock_irqsave(&rq->lock, flags);
  6437. if (rq->rd) {
  6438. old_rd = rq->rd;
  6439. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6440. set_rq_offline(rq);
  6441. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6442. /*
  6443. * If we dont want to free the old_rt yet then
  6444. * set old_rd to NULL to skip the freeing later
  6445. * in this function:
  6446. */
  6447. if (!atomic_dec_and_test(&old_rd->refcount))
  6448. old_rd = NULL;
  6449. }
  6450. atomic_inc(&rd->refcount);
  6451. rq->rd = rd;
  6452. cpumask_set_cpu(rq->cpu, rd->span);
  6453. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6454. set_rq_online(rq);
  6455. spin_unlock_irqrestore(&rq->lock, flags);
  6456. if (old_rd)
  6457. free_rootdomain(old_rd);
  6458. }
  6459. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6460. {
  6461. memset(rd, 0, sizeof(*rd));
  6462. if (bootmem) {
  6463. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6464. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6465. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6466. cpupri_init(&rd->cpupri, true);
  6467. return 0;
  6468. }
  6469. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6470. goto out;
  6471. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6472. goto free_span;
  6473. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6474. goto free_online;
  6475. if (cpupri_init(&rd->cpupri, false) != 0)
  6476. goto free_rto_mask;
  6477. return 0;
  6478. free_rto_mask:
  6479. free_cpumask_var(rd->rto_mask);
  6480. free_online:
  6481. free_cpumask_var(rd->online);
  6482. free_span:
  6483. free_cpumask_var(rd->span);
  6484. out:
  6485. return -ENOMEM;
  6486. }
  6487. static void init_defrootdomain(void)
  6488. {
  6489. init_rootdomain(&def_root_domain, true);
  6490. atomic_set(&def_root_domain.refcount, 1);
  6491. }
  6492. static struct root_domain *alloc_rootdomain(void)
  6493. {
  6494. struct root_domain *rd;
  6495. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6496. if (!rd)
  6497. return NULL;
  6498. if (init_rootdomain(rd, false) != 0) {
  6499. kfree(rd);
  6500. return NULL;
  6501. }
  6502. return rd;
  6503. }
  6504. /*
  6505. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6506. * hold the hotplug lock.
  6507. */
  6508. static void
  6509. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6510. {
  6511. struct rq *rq = cpu_rq(cpu);
  6512. struct sched_domain *tmp;
  6513. /* Remove the sched domains which do not contribute to scheduling. */
  6514. for (tmp = sd; tmp; ) {
  6515. struct sched_domain *parent = tmp->parent;
  6516. if (!parent)
  6517. break;
  6518. if (sd_parent_degenerate(tmp, parent)) {
  6519. tmp->parent = parent->parent;
  6520. if (parent->parent)
  6521. parent->parent->child = tmp;
  6522. } else
  6523. tmp = tmp->parent;
  6524. }
  6525. if (sd && sd_degenerate(sd)) {
  6526. sd = sd->parent;
  6527. if (sd)
  6528. sd->child = NULL;
  6529. }
  6530. sched_domain_debug(sd, cpu);
  6531. rq_attach_root(rq, rd);
  6532. rcu_assign_pointer(rq->sd, sd);
  6533. }
  6534. /* cpus with isolated domains */
  6535. static cpumask_var_t cpu_isolated_map;
  6536. /* Setup the mask of cpus configured for isolated domains */
  6537. static int __init isolated_cpu_setup(char *str)
  6538. {
  6539. cpulist_parse(str, cpu_isolated_map);
  6540. return 1;
  6541. }
  6542. __setup("isolcpus=", isolated_cpu_setup);
  6543. /*
  6544. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6545. * to a function which identifies what group(along with sched group) a CPU
  6546. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6547. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6548. *
  6549. * init_sched_build_groups will build a circular linked list of the groups
  6550. * covered by the given span, and will set each group's ->cpumask correctly,
  6551. * and ->cpu_power to 0.
  6552. */
  6553. static void
  6554. init_sched_build_groups(const struct cpumask *span,
  6555. const struct cpumask *cpu_map,
  6556. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6557. struct sched_group **sg,
  6558. struct cpumask *tmpmask),
  6559. struct cpumask *covered, struct cpumask *tmpmask)
  6560. {
  6561. struct sched_group *first = NULL, *last = NULL;
  6562. int i;
  6563. cpumask_clear(covered);
  6564. for_each_cpu(i, span) {
  6565. struct sched_group *sg;
  6566. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6567. int j;
  6568. if (cpumask_test_cpu(i, covered))
  6569. continue;
  6570. cpumask_clear(sched_group_cpus(sg));
  6571. sg->__cpu_power = 0;
  6572. for_each_cpu(j, span) {
  6573. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6574. continue;
  6575. cpumask_set_cpu(j, covered);
  6576. cpumask_set_cpu(j, sched_group_cpus(sg));
  6577. }
  6578. if (!first)
  6579. first = sg;
  6580. if (last)
  6581. last->next = sg;
  6582. last = sg;
  6583. }
  6584. last->next = first;
  6585. }
  6586. #define SD_NODES_PER_DOMAIN 16
  6587. #ifdef CONFIG_NUMA
  6588. /**
  6589. * find_next_best_node - find the next node to include in a sched_domain
  6590. * @node: node whose sched_domain we're building
  6591. * @used_nodes: nodes already in the sched_domain
  6592. *
  6593. * Find the next node to include in a given scheduling domain. Simply
  6594. * finds the closest node not already in the @used_nodes map.
  6595. *
  6596. * Should use nodemask_t.
  6597. */
  6598. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6599. {
  6600. int i, n, val, min_val, best_node = 0;
  6601. min_val = INT_MAX;
  6602. for (i = 0; i < nr_node_ids; i++) {
  6603. /* Start at @node */
  6604. n = (node + i) % nr_node_ids;
  6605. if (!nr_cpus_node(n))
  6606. continue;
  6607. /* Skip already used nodes */
  6608. if (node_isset(n, *used_nodes))
  6609. continue;
  6610. /* Simple min distance search */
  6611. val = node_distance(node, n);
  6612. if (val < min_val) {
  6613. min_val = val;
  6614. best_node = n;
  6615. }
  6616. }
  6617. node_set(best_node, *used_nodes);
  6618. return best_node;
  6619. }
  6620. /**
  6621. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6622. * @node: node whose cpumask we're constructing
  6623. * @span: resulting cpumask
  6624. *
  6625. * Given a node, construct a good cpumask for its sched_domain to span. It
  6626. * should be one that prevents unnecessary balancing, but also spreads tasks
  6627. * out optimally.
  6628. */
  6629. static void sched_domain_node_span(int node, struct cpumask *span)
  6630. {
  6631. nodemask_t used_nodes;
  6632. int i;
  6633. cpumask_clear(span);
  6634. nodes_clear(used_nodes);
  6635. cpumask_or(span, span, cpumask_of_node(node));
  6636. node_set(node, used_nodes);
  6637. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6638. int next_node = find_next_best_node(node, &used_nodes);
  6639. cpumask_or(span, span, cpumask_of_node(next_node));
  6640. }
  6641. }
  6642. #endif /* CONFIG_NUMA */
  6643. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6644. /*
  6645. * The cpus mask in sched_group and sched_domain hangs off the end.
  6646. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6647. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6648. */
  6649. struct static_sched_group {
  6650. struct sched_group sg;
  6651. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6652. };
  6653. struct static_sched_domain {
  6654. struct sched_domain sd;
  6655. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6656. };
  6657. /*
  6658. * SMT sched-domains:
  6659. */
  6660. #ifdef CONFIG_SCHED_SMT
  6661. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6662. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6663. static int
  6664. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6665. struct sched_group **sg, struct cpumask *unused)
  6666. {
  6667. if (sg)
  6668. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6669. return cpu;
  6670. }
  6671. #endif /* CONFIG_SCHED_SMT */
  6672. /*
  6673. * multi-core sched-domains:
  6674. */
  6675. #ifdef CONFIG_SCHED_MC
  6676. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6677. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6678. #endif /* CONFIG_SCHED_MC */
  6679. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6680. static int
  6681. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6682. struct sched_group **sg, struct cpumask *mask)
  6683. {
  6684. int group;
  6685. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6686. group = cpumask_first(mask);
  6687. if (sg)
  6688. *sg = &per_cpu(sched_group_core, group).sg;
  6689. return group;
  6690. }
  6691. #elif defined(CONFIG_SCHED_MC)
  6692. static int
  6693. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6694. struct sched_group **sg, struct cpumask *unused)
  6695. {
  6696. if (sg)
  6697. *sg = &per_cpu(sched_group_core, cpu).sg;
  6698. return cpu;
  6699. }
  6700. #endif
  6701. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6702. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6703. static int
  6704. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6705. struct sched_group **sg, struct cpumask *mask)
  6706. {
  6707. int group;
  6708. #ifdef CONFIG_SCHED_MC
  6709. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6710. group = cpumask_first(mask);
  6711. #elif defined(CONFIG_SCHED_SMT)
  6712. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6713. group = cpumask_first(mask);
  6714. #else
  6715. group = cpu;
  6716. #endif
  6717. if (sg)
  6718. *sg = &per_cpu(sched_group_phys, group).sg;
  6719. return group;
  6720. }
  6721. #ifdef CONFIG_NUMA
  6722. /*
  6723. * The init_sched_build_groups can't handle what we want to do with node
  6724. * groups, so roll our own. Now each node has its own list of groups which
  6725. * gets dynamically allocated.
  6726. */
  6727. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6728. static struct sched_group ***sched_group_nodes_bycpu;
  6729. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6730. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6731. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6732. struct sched_group **sg,
  6733. struct cpumask *nodemask)
  6734. {
  6735. int group;
  6736. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6737. group = cpumask_first(nodemask);
  6738. if (sg)
  6739. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6740. return group;
  6741. }
  6742. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6743. {
  6744. struct sched_group *sg = group_head;
  6745. int j;
  6746. if (!sg)
  6747. return;
  6748. do {
  6749. for_each_cpu(j, sched_group_cpus(sg)) {
  6750. struct sched_domain *sd;
  6751. sd = &per_cpu(phys_domains, j).sd;
  6752. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6753. /*
  6754. * Only add "power" once for each
  6755. * physical package.
  6756. */
  6757. continue;
  6758. }
  6759. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6760. }
  6761. sg = sg->next;
  6762. } while (sg != group_head);
  6763. }
  6764. #endif /* CONFIG_NUMA */
  6765. #ifdef CONFIG_NUMA
  6766. /* Free memory allocated for various sched_group structures */
  6767. static void free_sched_groups(const struct cpumask *cpu_map,
  6768. struct cpumask *nodemask)
  6769. {
  6770. int cpu, i;
  6771. for_each_cpu(cpu, cpu_map) {
  6772. struct sched_group **sched_group_nodes
  6773. = sched_group_nodes_bycpu[cpu];
  6774. if (!sched_group_nodes)
  6775. continue;
  6776. for (i = 0; i < nr_node_ids; i++) {
  6777. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6778. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6779. if (cpumask_empty(nodemask))
  6780. continue;
  6781. if (sg == NULL)
  6782. continue;
  6783. sg = sg->next;
  6784. next_sg:
  6785. oldsg = sg;
  6786. sg = sg->next;
  6787. kfree(oldsg);
  6788. if (oldsg != sched_group_nodes[i])
  6789. goto next_sg;
  6790. }
  6791. kfree(sched_group_nodes);
  6792. sched_group_nodes_bycpu[cpu] = NULL;
  6793. }
  6794. }
  6795. #else /* !CONFIG_NUMA */
  6796. static void free_sched_groups(const struct cpumask *cpu_map,
  6797. struct cpumask *nodemask)
  6798. {
  6799. }
  6800. #endif /* CONFIG_NUMA */
  6801. /*
  6802. * Initialize sched groups cpu_power.
  6803. *
  6804. * cpu_power indicates the capacity of sched group, which is used while
  6805. * distributing the load between different sched groups in a sched domain.
  6806. * Typically cpu_power for all the groups in a sched domain will be same unless
  6807. * there are asymmetries in the topology. If there are asymmetries, group
  6808. * having more cpu_power will pickup more load compared to the group having
  6809. * less cpu_power.
  6810. *
  6811. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6812. * the maximum number of tasks a group can handle in the presence of other idle
  6813. * or lightly loaded groups in the same sched domain.
  6814. */
  6815. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6816. {
  6817. struct sched_domain *child;
  6818. struct sched_group *group;
  6819. WARN_ON(!sd || !sd->groups);
  6820. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6821. return;
  6822. child = sd->child;
  6823. sd->groups->__cpu_power = 0;
  6824. /*
  6825. * For perf policy, if the groups in child domain share resources
  6826. * (for example cores sharing some portions of the cache hierarchy
  6827. * or SMT), then set this domain groups cpu_power such that each group
  6828. * can handle only one task, when there are other idle groups in the
  6829. * same sched domain.
  6830. */
  6831. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6832. (child->flags &
  6833. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6834. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6835. return;
  6836. }
  6837. /*
  6838. * add cpu_power of each child group to this groups cpu_power
  6839. */
  6840. group = child->groups;
  6841. do {
  6842. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6843. group = group->next;
  6844. } while (group != child->groups);
  6845. }
  6846. /*
  6847. * Initializers for schedule domains
  6848. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6849. */
  6850. #ifdef CONFIG_SCHED_DEBUG
  6851. # define SD_INIT_NAME(sd, type) sd->name = #type
  6852. #else
  6853. # define SD_INIT_NAME(sd, type) do { } while (0)
  6854. #endif
  6855. #define SD_INIT(sd, type) sd_init_##type(sd)
  6856. #define SD_INIT_FUNC(type) \
  6857. static noinline void sd_init_##type(struct sched_domain *sd) \
  6858. { \
  6859. memset(sd, 0, sizeof(*sd)); \
  6860. *sd = SD_##type##_INIT; \
  6861. sd->level = SD_LV_##type; \
  6862. SD_INIT_NAME(sd, type); \
  6863. }
  6864. SD_INIT_FUNC(CPU)
  6865. #ifdef CONFIG_NUMA
  6866. SD_INIT_FUNC(ALLNODES)
  6867. SD_INIT_FUNC(NODE)
  6868. #endif
  6869. #ifdef CONFIG_SCHED_SMT
  6870. SD_INIT_FUNC(SIBLING)
  6871. #endif
  6872. #ifdef CONFIG_SCHED_MC
  6873. SD_INIT_FUNC(MC)
  6874. #endif
  6875. static int default_relax_domain_level = -1;
  6876. static int __init setup_relax_domain_level(char *str)
  6877. {
  6878. unsigned long val;
  6879. val = simple_strtoul(str, NULL, 0);
  6880. if (val < SD_LV_MAX)
  6881. default_relax_domain_level = val;
  6882. return 1;
  6883. }
  6884. __setup("relax_domain_level=", setup_relax_domain_level);
  6885. static void set_domain_attribute(struct sched_domain *sd,
  6886. struct sched_domain_attr *attr)
  6887. {
  6888. int request;
  6889. if (!attr || attr->relax_domain_level < 0) {
  6890. if (default_relax_domain_level < 0)
  6891. return;
  6892. else
  6893. request = default_relax_domain_level;
  6894. } else
  6895. request = attr->relax_domain_level;
  6896. if (request < sd->level) {
  6897. /* turn off idle balance on this domain */
  6898. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6899. } else {
  6900. /* turn on idle balance on this domain */
  6901. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6902. }
  6903. }
  6904. /*
  6905. * Build sched domains for a given set of cpus and attach the sched domains
  6906. * to the individual cpus
  6907. */
  6908. static int __build_sched_domains(const struct cpumask *cpu_map,
  6909. struct sched_domain_attr *attr)
  6910. {
  6911. int i, err = -ENOMEM;
  6912. struct root_domain *rd;
  6913. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6914. tmpmask;
  6915. #ifdef CONFIG_NUMA
  6916. cpumask_var_t domainspan, covered, notcovered;
  6917. struct sched_group **sched_group_nodes = NULL;
  6918. int sd_allnodes = 0;
  6919. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6920. goto out;
  6921. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6922. goto free_domainspan;
  6923. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6924. goto free_covered;
  6925. #endif
  6926. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6927. goto free_notcovered;
  6928. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6929. goto free_nodemask;
  6930. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6931. goto free_this_sibling_map;
  6932. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6933. goto free_this_core_map;
  6934. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6935. goto free_send_covered;
  6936. #ifdef CONFIG_NUMA
  6937. /*
  6938. * Allocate the per-node list of sched groups
  6939. */
  6940. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6941. GFP_KERNEL);
  6942. if (!sched_group_nodes) {
  6943. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6944. goto free_tmpmask;
  6945. }
  6946. #endif
  6947. rd = alloc_rootdomain();
  6948. if (!rd) {
  6949. printk(KERN_WARNING "Cannot alloc root domain\n");
  6950. goto free_sched_groups;
  6951. }
  6952. #ifdef CONFIG_NUMA
  6953. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6954. #endif
  6955. /*
  6956. * Set up domains for cpus specified by the cpu_map.
  6957. */
  6958. for_each_cpu(i, cpu_map) {
  6959. struct sched_domain *sd = NULL, *p;
  6960. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6961. #ifdef CONFIG_NUMA
  6962. if (cpumask_weight(cpu_map) >
  6963. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6964. sd = &per_cpu(allnodes_domains, i).sd;
  6965. SD_INIT(sd, ALLNODES);
  6966. set_domain_attribute(sd, attr);
  6967. cpumask_copy(sched_domain_span(sd), cpu_map);
  6968. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6969. p = sd;
  6970. sd_allnodes = 1;
  6971. } else
  6972. p = NULL;
  6973. sd = &per_cpu(node_domains, i).sd;
  6974. SD_INIT(sd, NODE);
  6975. set_domain_attribute(sd, attr);
  6976. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6977. sd->parent = p;
  6978. if (p)
  6979. p->child = sd;
  6980. cpumask_and(sched_domain_span(sd),
  6981. sched_domain_span(sd), cpu_map);
  6982. #endif
  6983. p = sd;
  6984. sd = &per_cpu(phys_domains, i).sd;
  6985. SD_INIT(sd, CPU);
  6986. set_domain_attribute(sd, attr);
  6987. cpumask_copy(sched_domain_span(sd), nodemask);
  6988. sd->parent = p;
  6989. if (p)
  6990. p->child = sd;
  6991. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6992. #ifdef CONFIG_SCHED_MC
  6993. p = sd;
  6994. sd = &per_cpu(core_domains, i).sd;
  6995. SD_INIT(sd, MC);
  6996. set_domain_attribute(sd, attr);
  6997. cpumask_and(sched_domain_span(sd), cpu_map,
  6998. cpu_coregroup_mask(i));
  6999. sd->parent = p;
  7000. p->child = sd;
  7001. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7002. #endif
  7003. #ifdef CONFIG_SCHED_SMT
  7004. p = sd;
  7005. sd = &per_cpu(cpu_domains, i).sd;
  7006. SD_INIT(sd, SIBLING);
  7007. set_domain_attribute(sd, attr);
  7008. cpumask_and(sched_domain_span(sd),
  7009. topology_thread_cpumask(i), cpu_map);
  7010. sd->parent = p;
  7011. p->child = sd;
  7012. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7013. #endif
  7014. }
  7015. #ifdef CONFIG_SCHED_SMT
  7016. /* Set up CPU (sibling) groups */
  7017. for_each_cpu(i, cpu_map) {
  7018. cpumask_and(this_sibling_map,
  7019. topology_thread_cpumask(i), cpu_map);
  7020. if (i != cpumask_first(this_sibling_map))
  7021. continue;
  7022. init_sched_build_groups(this_sibling_map, cpu_map,
  7023. &cpu_to_cpu_group,
  7024. send_covered, tmpmask);
  7025. }
  7026. #endif
  7027. #ifdef CONFIG_SCHED_MC
  7028. /* Set up multi-core groups */
  7029. for_each_cpu(i, cpu_map) {
  7030. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7031. if (i != cpumask_first(this_core_map))
  7032. continue;
  7033. init_sched_build_groups(this_core_map, cpu_map,
  7034. &cpu_to_core_group,
  7035. send_covered, tmpmask);
  7036. }
  7037. #endif
  7038. /* Set up physical groups */
  7039. for (i = 0; i < nr_node_ids; i++) {
  7040. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7041. if (cpumask_empty(nodemask))
  7042. continue;
  7043. init_sched_build_groups(nodemask, cpu_map,
  7044. &cpu_to_phys_group,
  7045. send_covered, tmpmask);
  7046. }
  7047. #ifdef CONFIG_NUMA
  7048. /* Set up node groups */
  7049. if (sd_allnodes) {
  7050. init_sched_build_groups(cpu_map, cpu_map,
  7051. &cpu_to_allnodes_group,
  7052. send_covered, tmpmask);
  7053. }
  7054. for (i = 0; i < nr_node_ids; i++) {
  7055. /* Set up node groups */
  7056. struct sched_group *sg, *prev;
  7057. int j;
  7058. cpumask_clear(covered);
  7059. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7060. if (cpumask_empty(nodemask)) {
  7061. sched_group_nodes[i] = NULL;
  7062. continue;
  7063. }
  7064. sched_domain_node_span(i, domainspan);
  7065. cpumask_and(domainspan, domainspan, cpu_map);
  7066. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7067. GFP_KERNEL, i);
  7068. if (!sg) {
  7069. printk(KERN_WARNING "Can not alloc domain group for "
  7070. "node %d\n", i);
  7071. goto error;
  7072. }
  7073. sched_group_nodes[i] = sg;
  7074. for_each_cpu(j, nodemask) {
  7075. struct sched_domain *sd;
  7076. sd = &per_cpu(node_domains, j).sd;
  7077. sd->groups = sg;
  7078. }
  7079. sg->__cpu_power = 0;
  7080. cpumask_copy(sched_group_cpus(sg), nodemask);
  7081. sg->next = sg;
  7082. cpumask_or(covered, covered, nodemask);
  7083. prev = sg;
  7084. for (j = 0; j < nr_node_ids; j++) {
  7085. int n = (i + j) % nr_node_ids;
  7086. cpumask_complement(notcovered, covered);
  7087. cpumask_and(tmpmask, notcovered, cpu_map);
  7088. cpumask_and(tmpmask, tmpmask, domainspan);
  7089. if (cpumask_empty(tmpmask))
  7090. break;
  7091. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7092. if (cpumask_empty(tmpmask))
  7093. continue;
  7094. sg = kmalloc_node(sizeof(struct sched_group) +
  7095. cpumask_size(),
  7096. GFP_KERNEL, i);
  7097. if (!sg) {
  7098. printk(KERN_WARNING
  7099. "Can not alloc domain group for node %d\n", j);
  7100. goto error;
  7101. }
  7102. sg->__cpu_power = 0;
  7103. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7104. sg->next = prev->next;
  7105. cpumask_or(covered, covered, tmpmask);
  7106. prev->next = sg;
  7107. prev = sg;
  7108. }
  7109. }
  7110. #endif
  7111. /* Calculate CPU power for physical packages and nodes */
  7112. #ifdef CONFIG_SCHED_SMT
  7113. for_each_cpu(i, cpu_map) {
  7114. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7115. init_sched_groups_power(i, sd);
  7116. }
  7117. #endif
  7118. #ifdef CONFIG_SCHED_MC
  7119. for_each_cpu(i, cpu_map) {
  7120. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7121. init_sched_groups_power(i, sd);
  7122. }
  7123. #endif
  7124. for_each_cpu(i, cpu_map) {
  7125. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7126. init_sched_groups_power(i, sd);
  7127. }
  7128. #ifdef CONFIG_NUMA
  7129. for (i = 0; i < nr_node_ids; i++)
  7130. init_numa_sched_groups_power(sched_group_nodes[i]);
  7131. if (sd_allnodes) {
  7132. struct sched_group *sg;
  7133. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7134. tmpmask);
  7135. init_numa_sched_groups_power(sg);
  7136. }
  7137. #endif
  7138. /* Attach the domains */
  7139. for_each_cpu(i, cpu_map) {
  7140. struct sched_domain *sd;
  7141. #ifdef CONFIG_SCHED_SMT
  7142. sd = &per_cpu(cpu_domains, i).sd;
  7143. #elif defined(CONFIG_SCHED_MC)
  7144. sd = &per_cpu(core_domains, i).sd;
  7145. #else
  7146. sd = &per_cpu(phys_domains, i).sd;
  7147. #endif
  7148. cpu_attach_domain(sd, rd, i);
  7149. }
  7150. err = 0;
  7151. free_tmpmask:
  7152. free_cpumask_var(tmpmask);
  7153. free_send_covered:
  7154. free_cpumask_var(send_covered);
  7155. free_this_core_map:
  7156. free_cpumask_var(this_core_map);
  7157. free_this_sibling_map:
  7158. free_cpumask_var(this_sibling_map);
  7159. free_nodemask:
  7160. free_cpumask_var(nodemask);
  7161. free_notcovered:
  7162. #ifdef CONFIG_NUMA
  7163. free_cpumask_var(notcovered);
  7164. free_covered:
  7165. free_cpumask_var(covered);
  7166. free_domainspan:
  7167. free_cpumask_var(domainspan);
  7168. out:
  7169. #endif
  7170. return err;
  7171. free_sched_groups:
  7172. #ifdef CONFIG_NUMA
  7173. kfree(sched_group_nodes);
  7174. #endif
  7175. goto free_tmpmask;
  7176. #ifdef CONFIG_NUMA
  7177. error:
  7178. free_sched_groups(cpu_map, tmpmask);
  7179. free_rootdomain(rd);
  7180. goto free_tmpmask;
  7181. #endif
  7182. }
  7183. static int build_sched_domains(const struct cpumask *cpu_map)
  7184. {
  7185. return __build_sched_domains(cpu_map, NULL);
  7186. }
  7187. static struct cpumask *doms_cur; /* current sched domains */
  7188. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7189. static struct sched_domain_attr *dattr_cur;
  7190. /* attribues of custom domains in 'doms_cur' */
  7191. /*
  7192. * Special case: If a kmalloc of a doms_cur partition (array of
  7193. * cpumask) fails, then fallback to a single sched domain,
  7194. * as determined by the single cpumask fallback_doms.
  7195. */
  7196. static cpumask_var_t fallback_doms;
  7197. /*
  7198. * arch_update_cpu_topology lets virtualized architectures update the
  7199. * cpu core maps. It is supposed to return 1 if the topology changed
  7200. * or 0 if it stayed the same.
  7201. */
  7202. int __attribute__((weak)) arch_update_cpu_topology(void)
  7203. {
  7204. return 0;
  7205. }
  7206. /*
  7207. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7208. * For now this just excludes isolated cpus, but could be used to
  7209. * exclude other special cases in the future.
  7210. */
  7211. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7212. {
  7213. int err;
  7214. arch_update_cpu_topology();
  7215. ndoms_cur = 1;
  7216. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7217. if (!doms_cur)
  7218. doms_cur = fallback_doms;
  7219. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7220. dattr_cur = NULL;
  7221. err = build_sched_domains(doms_cur);
  7222. register_sched_domain_sysctl();
  7223. return err;
  7224. }
  7225. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7226. struct cpumask *tmpmask)
  7227. {
  7228. free_sched_groups(cpu_map, tmpmask);
  7229. }
  7230. /*
  7231. * Detach sched domains from a group of cpus specified in cpu_map
  7232. * These cpus will now be attached to the NULL domain
  7233. */
  7234. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7235. {
  7236. /* Save because hotplug lock held. */
  7237. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7238. int i;
  7239. for_each_cpu(i, cpu_map)
  7240. cpu_attach_domain(NULL, &def_root_domain, i);
  7241. synchronize_sched();
  7242. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7243. }
  7244. /* handle null as "default" */
  7245. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7246. struct sched_domain_attr *new, int idx_new)
  7247. {
  7248. struct sched_domain_attr tmp;
  7249. /* fast path */
  7250. if (!new && !cur)
  7251. return 1;
  7252. tmp = SD_ATTR_INIT;
  7253. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7254. new ? (new + idx_new) : &tmp,
  7255. sizeof(struct sched_domain_attr));
  7256. }
  7257. /*
  7258. * Partition sched domains as specified by the 'ndoms_new'
  7259. * cpumasks in the array doms_new[] of cpumasks. This compares
  7260. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7261. * It destroys each deleted domain and builds each new domain.
  7262. *
  7263. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7264. * The masks don't intersect (don't overlap.) We should setup one
  7265. * sched domain for each mask. CPUs not in any of the cpumasks will
  7266. * not be load balanced. If the same cpumask appears both in the
  7267. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7268. * it as it is.
  7269. *
  7270. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7271. * ownership of it and will kfree it when done with it. If the caller
  7272. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7273. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7274. * the single partition 'fallback_doms', it also forces the domains
  7275. * to be rebuilt.
  7276. *
  7277. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7278. * ndoms_new == 0 is a special case for destroying existing domains,
  7279. * and it will not create the default domain.
  7280. *
  7281. * Call with hotplug lock held
  7282. */
  7283. /* FIXME: Change to struct cpumask *doms_new[] */
  7284. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7285. struct sched_domain_attr *dattr_new)
  7286. {
  7287. int i, j, n;
  7288. int new_topology;
  7289. mutex_lock(&sched_domains_mutex);
  7290. /* always unregister in case we don't destroy any domains */
  7291. unregister_sched_domain_sysctl();
  7292. /* Let architecture update cpu core mappings. */
  7293. new_topology = arch_update_cpu_topology();
  7294. n = doms_new ? ndoms_new : 0;
  7295. /* Destroy deleted domains */
  7296. for (i = 0; i < ndoms_cur; i++) {
  7297. for (j = 0; j < n && !new_topology; j++) {
  7298. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7299. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7300. goto match1;
  7301. }
  7302. /* no match - a current sched domain not in new doms_new[] */
  7303. detach_destroy_domains(doms_cur + i);
  7304. match1:
  7305. ;
  7306. }
  7307. if (doms_new == NULL) {
  7308. ndoms_cur = 0;
  7309. doms_new = fallback_doms;
  7310. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7311. WARN_ON_ONCE(dattr_new);
  7312. }
  7313. /* Build new domains */
  7314. for (i = 0; i < ndoms_new; i++) {
  7315. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7316. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7317. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7318. goto match2;
  7319. }
  7320. /* no match - add a new doms_new */
  7321. __build_sched_domains(doms_new + i,
  7322. dattr_new ? dattr_new + i : NULL);
  7323. match2:
  7324. ;
  7325. }
  7326. /* Remember the new sched domains */
  7327. if (doms_cur != fallback_doms)
  7328. kfree(doms_cur);
  7329. kfree(dattr_cur); /* kfree(NULL) is safe */
  7330. doms_cur = doms_new;
  7331. dattr_cur = dattr_new;
  7332. ndoms_cur = ndoms_new;
  7333. register_sched_domain_sysctl();
  7334. mutex_unlock(&sched_domains_mutex);
  7335. }
  7336. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7337. static void arch_reinit_sched_domains(void)
  7338. {
  7339. get_online_cpus();
  7340. /* Destroy domains first to force the rebuild */
  7341. partition_sched_domains(0, NULL, NULL);
  7342. rebuild_sched_domains();
  7343. put_online_cpus();
  7344. }
  7345. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7346. {
  7347. unsigned int level = 0;
  7348. if (sscanf(buf, "%u", &level) != 1)
  7349. return -EINVAL;
  7350. /*
  7351. * level is always be positive so don't check for
  7352. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7353. * What happens on 0 or 1 byte write,
  7354. * need to check for count as well?
  7355. */
  7356. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7357. return -EINVAL;
  7358. if (smt)
  7359. sched_smt_power_savings = level;
  7360. else
  7361. sched_mc_power_savings = level;
  7362. arch_reinit_sched_domains();
  7363. return count;
  7364. }
  7365. #ifdef CONFIG_SCHED_MC
  7366. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7367. char *page)
  7368. {
  7369. return sprintf(page, "%u\n", sched_mc_power_savings);
  7370. }
  7371. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7372. const char *buf, size_t count)
  7373. {
  7374. return sched_power_savings_store(buf, count, 0);
  7375. }
  7376. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7377. sched_mc_power_savings_show,
  7378. sched_mc_power_savings_store);
  7379. #endif
  7380. #ifdef CONFIG_SCHED_SMT
  7381. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7382. char *page)
  7383. {
  7384. return sprintf(page, "%u\n", sched_smt_power_savings);
  7385. }
  7386. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7387. const char *buf, size_t count)
  7388. {
  7389. return sched_power_savings_store(buf, count, 1);
  7390. }
  7391. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7392. sched_smt_power_savings_show,
  7393. sched_smt_power_savings_store);
  7394. #endif
  7395. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7396. {
  7397. int err = 0;
  7398. #ifdef CONFIG_SCHED_SMT
  7399. if (smt_capable())
  7400. err = sysfs_create_file(&cls->kset.kobj,
  7401. &attr_sched_smt_power_savings.attr);
  7402. #endif
  7403. #ifdef CONFIG_SCHED_MC
  7404. if (!err && mc_capable())
  7405. err = sysfs_create_file(&cls->kset.kobj,
  7406. &attr_sched_mc_power_savings.attr);
  7407. #endif
  7408. return err;
  7409. }
  7410. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7411. #ifndef CONFIG_CPUSETS
  7412. /*
  7413. * Add online and remove offline CPUs from the scheduler domains.
  7414. * When cpusets are enabled they take over this function.
  7415. */
  7416. static int update_sched_domains(struct notifier_block *nfb,
  7417. unsigned long action, void *hcpu)
  7418. {
  7419. switch (action) {
  7420. case CPU_ONLINE:
  7421. case CPU_ONLINE_FROZEN:
  7422. case CPU_DEAD:
  7423. case CPU_DEAD_FROZEN:
  7424. partition_sched_domains(1, NULL, NULL);
  7425. return NOTIFY_OK;
  7426. default:
  7427. return NOTIFY_DONE;
  7428. }
  7429. }
  7430. #endif
  7431. static int update_runtime(struct notifier_block *nfb,
  7432. unsigned long action, void *hcpu)
  7433. {
  7434. int cpu = (int)(long)hcpu;
  7435. switch (action) {
  7436. case CPU_DOWN_PREPARE:
  7437. case CPU_DOWN_PREPARE_FROZEN:
  7438. disable_runtime(cpu_rq(cpu));
  7439. return NOTIFY_OK;
  7440. case CPU_DOWN_FAILED:
  7441. case CPU_DOWN_FAILED_FROZEN:
  7442. case CPU_ONLINE:
  7443. case CPU_ONLINE_FROZEN:
  7444. enable_runtime(cpu_rq(cpu));
  7445. return NOTIFY_OK;
  7446. default:
  7447. return NOTIFY_DONE;
  7448. }
  7449. }
  7450. void __init sched_init_smp(void)
  7451. {
  7452. cpumask_var_t non_isolated_cpus;
  7453. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7454. #if defined(CONFIG_NUMA)
  7455. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7456. GFP_KERNEL);
  7457. BUG_ON(sched_group_nodes_bycpu == NULL);
  7458. #endif
  7459. get_online_cpus();
  7460. mutex_lock(&sched_domains_mutex);
  7461. arch_init_sched_domains(cpu_online_mask);
  7462. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7463. if (cpumask_empty(non_isolated_cpus))
  7464. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7465. mutex_unlock(&sched_domains_mutex);
  7466. put_online_cpus();
  7467. #ifndef CONFIG_CPUSETS
  7468. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7469. hotcpu_notifier(update_sched_domains, 0);
  7470. #endif
  7471. /* RT runtime code needs to handle some hotplug events */
  7472. hotcpu_notifier(update_runtime, 0);
  7473. init_hrtick();
  7474. /* Move init over to a non-isolated CPU */
  7475. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7476. BUG();
  7477. sched_init_granularity();
  7478. free_cpumask_var(non_isolated_cpus);
  7479. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7480. init_sched_rt_class();
  7481. }
  7482. #else
  7483. void __init sched_init_smp(void)
  7484. {
  7485. sched_init_granularity();
  7486. }
  7487. #endif /* CONFIG_SMP */
  7488. int in_sched_functions(unsigned long addr)
  7489. {
  7490. return in_lock_functions(addr) ||
  7491. (addr >= (unsigned long)__sched_text_start
  7492. && addr < (unsigned long)__sched_text_end);
  7493. }
  7494. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7495. {
  7496. cfs_rq->tasks_timeline = RB_ROOT;
  7497. INIT_LIST_HEAD(&cfs_rq->tasks);
  7498. #ifdef CONFIG_FAIR_GROUP_SCHED
  7499. cfs_rq->rq = rq;
  7500. #endif
  7501. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7502. }
  7503. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7504. {
  7505. struct rt_prio_array *array;
  7506. int i;
  7507. array = &rt_rq->active;
  7508. for (i = 0; i < MAX_RT_PRIO; i++) {
  7509. INIT_LIST_HEAD(array->queue + i);
  7510. __clear_bit(i, array->bitmap);
  7511. }
  7512. /* delimiter for bitsearch: */
  7513. __set_bit(MAX_RT_PRIO, array->bitmap);
  7514. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7515. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7516. #ifdef CONFIG_SMP
  7517. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7518. #endif
  7519. #endif
  7520. #ifdef CONFIG_SMP
  7521. rt_rq->rt_nr_migratory = 0;
  7522. rt_rq->overloaded = 0;
  7523. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7524. #endif
  7525. rt_rq->rt_time = 0;
  7526. rt_rq->rt_throttled = 0;
  7527. rt_rq->rt_runtime = 0;
  7528. spin_lock_init(&rt_rq->rt_runtime_lock);
  7529. #ifdef CONFIG_RT_GROUP_SCHED
  7530. rt_rq->rt_nr_boosted = 0;
  7531. rt_rq->rq = rq;
  7532. #endif
  7533. }
  7534. #ifdef CONFIG_FAIR_GROUP_SCHED
  7535. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7536. struct sched_entity *se, int cpu, int add,
  7537. struct sched_entity *parent)
  7538. {
  7539. struct rq *rq = cpu_rq(cpu);
  7540. tg->cfs_rq[cpu] = cfs_rq;
  7541. init_cfs_rq(cfs_rq, rq);
  7542. cfs_rq->tg = tg;
  7543. if (add)
  7544. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7545. tg->se[cpu] = se;
  7546. /* se could be NULL for init_task_group */
  7547. if (!se)
  7548. return;
  7549. if (!parent)
  7550. se->cfs_rq = &rq->cfs;
  7551. else
  7552. se->cfs_rq = parent->my_q;
  7553. se->my_q = cfs_rq;
  7554. se->load.weight = tg->shares;
  7555. se->load.inv_weight = 0;
  7556. se->parent = parent;
  7557. }
  7558. #endif
  7559. #ifdef CONFIG_RT_GROUP_SCHED
  7560. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7561. struct sched_rt_entity *rt_se, int cpu, int add,
  7562. struct sched_rt_entity *parent)
  7563. {
  7564. struct rq *rq = cpu_rq(cpu);
  7565. tg->rt_rq[cpu] = rt_rq;
  7566. init_rt_rq(rt_rq, rq);
  7567. rt_rq->tg = tg;
  7568. rt_rq->rt_se = rt_se;
  7569. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7570. if (add)
  7571. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7572. tg->rt_se[cpu] = rt_se;
  7573. if (!rt_se)
  7574. return;
  7575. if (!parent)
  7576. rt_se->rt_rq = &rq->rt;
  7577. else
  7578. rt_se->rt_rq = parent->my_q;
  7579. rt_se->my_q = rt_rq;
  7580. rt_se->parent = parent;
  7581. INIT_LIST_HEAD(&rt_se->run_list);
  7582. }
  7583. #endif
  7584. void __init sched_init(void)
  7585. {
  7586. int i, j;
  7587. unsigned long alloc_size = 0, ptr;
  7588. #ifdef CONFIG_FAIR_GROUP_SCHED
  7589. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7590. #endif
  7591. #ifdef CONFIG_RT_GROUP_SCHED
  7592. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7593. #endif
  7594. #ifdef CONFIG_USER_SCHED
  7595. alloc_size *= 2;
  7596. #endif
  7597. #ifdef CONFIG_CPUMASK_OFFSTACK
  7598. alloc_size += num_possible_cpus() * cpumask_size();
  7599. #endif
  7600. /*
  7601. * As sched_init() is called before page_alloc is setup,
  7602. * we use alloc_bootmem().
  7603. */
  7604. if (alloc_size) {
  7605. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7606. #ifdef CONFIG_FAIR_GROUP_SCHED
  7607. init_task_group.se = (struct sched_entity **)ptr;
  7608. ptr += nr_cpu_ids * sizeof(void **);
  7609. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7610. ptr += nr_cpu_ids * sizeof(void **);
  7611. #ifdef CONFIG_USER_SCHED
  7612. root_task_group.se = (struct sched_entity **)ptr;
  7613. ptr += nr_cpu_ids * sizeof(void **);
  7614. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7615. ptr += nr_cpu_ids * sizeof(void **);
  7616. #endif /* CONFIG_USER_SCHED */
  7617. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7618. #ifdef CONFIG_RT_GROUP_SCHED
  7619. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7620. ptr += nr_cpu_ids * sizeof(void **);
  7621. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7622. ptr += nr_cpu_ids * sizeof(void **);
  7623. #ifdef CONFIG_USER_SCHED
  7624. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7625. ptr += nr_cpu_ids * sizeof(void **);
  7626. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7627. ptr += nr_cpu_ids * sizeof(void **);
  7628. #endif /* CONFIG_USER_SCHED */
  7629. #endif /* CONFIG_RT_GROUP_SCHED */
  7630. #ifdef CONFIG_CPUMASK_OFFSTACK
  7631. for_each_possible_cpu(i) {
  7632. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7633. ptr += cpumask_size();
  7634. }
  7635. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7636. }
  7637. #ifdef CONFIG_SMP
  7638. init_defrootdomain();
  7639. #endif
  7640. init_rt_bandwidth(&def_rt_bandwidth,
  7641. global_rt_period(), global_rt_runtime());
  7642. #ifdef CONFIG_RT_GROUP_SCHED
  7643. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7644. global_rt_period(), global_rt_runtime());
  7645. #ifdef CONFIG_USER_SCHED
  7646. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7647. global_rt_period(), RUNTIME_INF);
  7648. #endif /* CONFIG_USER_SCHED */
  7649. #endif /* CONFIG_RT_GROUP_SCHED */
  7650. #ifdef CONFIG_GROUP_SCHED
  7651. list_add(&init_task_group.list, &task_groups);
  7652. INIT_LIST_HEAD(&init_task_group.children);
  7653. #ifdef CONFIG_USER_SCHED
  7654. INIT_LIST_HEAD(&root_task_group.children);
  7655. init_task_group.parent = &root_task_group;
  7656. list_add(&init_task_group.siblings, &root_task_group.children);
  7657. #endif /* CONFIG_USER_SCHED */
  7658. #endif /* CONFIG_GROUP_SCHED */
  7659. for_each_possible_cpu(i) {
  7660. struct rq *rq;
  7661. rq = cpu_rq(i);
  7662. spin_lock_init(&rq->lock);
  7663. rq->nr_running = 0;
  7664. init_cfs_rq(&rq->cfs, rq);
  7665. init_rt_rq(&rq->rt, rq);
  7666. #ifdef CONFIG_FAIR_GROUP_SCHED
  7667. init_task_group.shares = init_task_group_load;
  7668. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7669. #ifdef CONFIG_CGROUP_SCHED
  7670. /*
  7671. * How much cpu bandwidth does init_task_group get?
  7672. *
  7673. * In case of task-groups formed thr' the cgroup filesystem, it
  7674. * gets 100% of the cpu resources in the system. This overall
  7675. * system cpu resource is divided among the tasks of
  7676. * init_task_group and its child task-groups in a fair manner,
  7677. * based on each entity's (task or task-group's) weight
  7678. * (se->load.weight).
  7679. *
  7680. * In other words, if init_task_group has 10 tasks of weight
  7681. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7682. * then A0's share of the cpu resource is:
  7683. *
  7684. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7685. *
  7686. * We achieve this by letting init_task_group's tasks sit
  7687. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7688. */
  7689. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7690. #elif defined CONFIG_USER_SCHED
  7691. root_task_group.shares = NICE_0_LOAD;
  7692. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7693. /*
  7694. * In case of task-groups formed thr' the user id of tasks,
  7695. * init_task_group represents tasks belonging to root user.
  7696. * Hence it forms a sibling of all subsequent groups formed.
  7697. * In this case, init_task_group gets only a fraction of overall
  7698. * system cpu resource, based on the weight assigned to root
  7699. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7700. * by letting tasks of init_task_group sit in a separate cfs_rq
  7701. * (init_cfs_rq) and having one entity represent this group of
  7702. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7703. */
  7704. init_tg_cfs_entry(&init_task_group,
  7705. &per_cpu(init_cfs_rq, i),
  7706. &per_cpu(init_sched_entity, i), i, 1,
  7707. root_task_group.se[i]);
  7708. #endif
  7709. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7710. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7711. #ifdef CONFIG_RT_GROUP_SCHED
  7712. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7713. #ifdef CONFIG_CGROUP_SCHED
  7714. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7715. #elif defined CONFIG_USER_SCHED
  7716. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7717. init_tg_rt_entry(&init_task_group,
  7718. &per_cpu(init_rt_rq, i),
  7719. &per_cpu(init_sched_rt_entity, i), i, 1,
  7720. root_task_group.rt_se[i]);
  7721. #endif
  7722. #endif
  7723. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7724. rq->cpu_load[j] = 0;
  7725. #ifdef CONFIG_SMP
  7726. rq->sd = NULL;
  7727. rq->rd = NULL;
  7728. rq->active_balance = 0;
  7729. rq->next_balance = jiffies;
  7730. rq->push_cpu = 0;
  7731. rq->cpu = i;
  7732. rq->online = 0;
  7733. rq->migration_thread = NULL;
  7734. INIT_LIST_HEAD(&rq->migration_queue);
  7735. rq_attach_root(rq, &def_root_domain);
  7736. #endif
  7737. init_rq_hrtick(rq);
  7738. atomic_set(&rq->nr_iowait, 0);
  7739. }
  7740. set_load_weight(&init_task);
  7741. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7742. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7743. #endif
  7744. #ifdef CONFIG_SMP
  7745. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7746. #endif
  7747. #ifdef CONFIG_RT_MUTEXES
  7748. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7749. #endif
  7750. /*
  7751. * The boot idle thread does lazy MMU switching as well:
  7752. */
  7753. atomic_inc(&init_mm.mm_count);
  7754. enter_lazy_tlb(&init_mm, current);
  7755. /*
  7756. * Make us the idle thread. Technically, schedule() should not be
  7757. * called from this thread, however somewhere below it might be,
  7758. * but because we are the idle thread, we just pick up running again
  7759. * when this runqueue becomes "idle".
  7760. */
  7761. init_idle(current, smp_processor_id());
  7762. /*
  7763. * During early bootup we pretend to be a normal task:
  7764. */
  7765. current->sched_class = &fair_sched_class;
  7766. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7767. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7768. #ifdef CONFIG_SMP
  7769. #ifdef CONFIG_NO_HZ
  7770. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7771. #endif
  7772. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7773. #endif /* SMP */
  7774. perf_counter_init();
  7775. scheduler_running = 1;
  7776. }
  7777. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7778. void __might_sleep(char *file, int line)
  7779. {
  7780. #ifdef in_atomic
  7781. static unsigned long prev_jiffy; /* ratelimiting */
  7782. if ((!in_atomic() && !irqs_disabled()) ||
  7783. system_state != SYSTEM_RUNNING || oops_in_progress)
  7784. return;
  7785. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7786. return;
  7787. prev_jiffy = jiffies;
  7788. printk(KERN_ERR
  7789. "BUG: sleeping function called from invalid context at %s:%d\n",
  7790. file, line);
  7791. printk(KERN_ERR
  7792. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7793. in_atomic(), irqs_disabled(),
  7794. current->pid, current->comm);
  7795. debug_show_held_locks(current);
  7796. if (irqs_disabled())
  7797. print_irqtrace_events(current);
  7798. dump_stack();
  7799. #endif
  7800. }
  7801. EXPORT_SYMBOL(__might_sleep);
  7802. #endif
  7803. #ifdef CONFIG_MAGIC_SYSRQ
  7804. static void normalize_task(struct rq *rq, struct task_struct *p)
  7805. {
  7806. int on_rq;
  7807. update_rq_clock(rq);
  7808. on_rq = p->se.on_rq;
  7809. if (on_rq)
  7810. deactivate_task(rq, p, 0);
  7811. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7812. if (on_rq) {
  7813. activate_task(rq, p, 0);
  7814. resched_task(rq->curr);
  7815. }
  7816. }
  7817. void normalize_rt_tasks(void)
  7818. {
  7819. struct task_struct *g, *p;
  7820. unsigned long flags;
  7821. struct rq *rq;
  7822. read_lock_irqsave(&tasklist_lock, flags);
  7823. do_each_thread(g, p) {
  7824. /*
  7825. * Only normalize user tasks:
  7826. */
  7827. if (!p->mm)
  7828. continue;
  7829. p->se.exec_start = 0;
  7830. #ifdef CONFIG_SCHEDSTATS
  7831. p->se.wait_start = 0;
  7832. p->se.sleep_start = 0;
  7833. p->se.block_start = 0;
  7834. #endif
  7835. if (!rt_task(p)) {
  7836. /*
  7837. * Renice negative nice level userspace
  7838. * tasks back to 0:
  7839. */
  7840. if (TASK_NICE(p) < 0 && p->mm)
  7841. set_user_nice(p, 0);
  7842. continue;
  7843. }
  7844. spin_lock(&p->pi_lock);
  7845. rq = __task_rq_lock(p);
  7846. normalize_task(rq, p);
  7847. __task_rq_unlock(rq);
  7848. spin_unlock(&p->pi_lock);
  7849. } while_each_thread(g, p);
  7850. read_unlock_irqrestore(&tasklist_lock, flags);
  7851. }
  7852. #endif /* CONFIG_MAGIC_SYSRQ */
  7853. #ifdef CONFIG_IA64
  7854. /*
  7855. * These functions are only useful for the IA64 MCA handling.
  7856. *
  7857. * They can only be called when the whole system has been
  7858. * stopped - every CPU needs to be quiescent, and no scheduling
  7859. * activity can take place. Using them for anything else would
  7860. * be a serious bug, and as a result, they aren't even visible
  7861. * under any other configuration.
  7862. */
  7863. /**
  7864. * curr_task - return the current task for a given cpu.
  7865. * @cpu: the processor in question.
  7866. *
  7867. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7868. */
  7869. struct task_struct *curr_task(int cpu)
  7870. {
  7871. return cpu_curr(cpu);
  7872. }
  7873. /**
  7874. * set_curr_task - set the current task for a given cpu.
  7875. * @cpu: the processor in question.
  7876. * @p: the task pointer to set.
  7877. *
  7878. * Description: This function must only be used when non-maskable interrupts
  7879. * are serviced on a separate stack. It allows the architecture to switch the
  7880. * notion of the current task on a cpu in a non-blocking manner. This function
  7881. * must be called with all CPU's synchronized, and interrupts disabled, the
  7882. * and caller must save the original value of the current task (see
  7883. * curr_task() above) and restore that value before reenabling interrupts and
  7884. * re-starting the system.
  7885. *
  7886. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7887. */
  7888. void set_curr_task(int cpu, struct task_struct *p)
  7889. {
  7890. cpu_curr(cpu) = p;
  7891. }
  7892. #endif
  7893. #ifdef CONFIG_FAIR_GROUP_SCHED
  7894. static void free_fair_sched_group(struct task_group *tg)
  7895. {
  7896. int i;
  7897. for_each_possible_cpu(i) {
  7898. if (tg->cfs_rq)
  7899. kfree(tg->cfs_rq[i]);
  7900. if (tg->se)
  7901. kfree(tg->se[i]);
  7902. }
  7903. kfree(tg->cfs_rq);
  7904. kfree(tg->se);
  7905. }
  7906. static
  7907. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7908. {
  7909. struct cfs_rq *cfs_rq;
  7910. struct sched_entity *se;
  7911. struct rq *rq;
  7912. int i;
  7913. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7914. if (!tg->cfs_rq)
  7915. goto err;
  7916. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7917. if (!tg->se)
  7918. goto err;
  7919. tg->shares = NICE_0_LOAD;
  7920. for_each_possible_cpu(i) {
  7921. rq = cpu_rq(i);
  7922. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7923. GFP_KERNEL, cpu_to_node(i));
  7924. if (!cfs_rq)
  7925. goto err;
  7926. se = kzalloc_node(sizeof(struct sched_entity),
  7927. GFP_KERNEL, cpu_to_node(i));
  7928. if (!se)
  7929. goto err;
  7930. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7931. }
  7932. return 1;
  7933. err:
  7934. return 0;
  7935. }
  7936. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7937. {
  7938. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7939. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7940. }
  7941. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7942. {
  7943. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7944. }
  7945. #else /* !CONFG_FAIR_GROUP_SCHED */
  7946. static inline void free_fair_sched_group(struct task_group *tg)
  7947. {
  7948. }
  7949. static inline
  7950. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7951. {
  7952. return 1;
  7953. }
  7954. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7955. {
  7956. }
  7957. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7958. {
  7959. }
  7960. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7961. #ifdef CONFIG_RT_GROUP_SCHED
  7962. static void free_rt_sched_group(struct task_group *tg)
  7963. {
  7964. int i;
  7965. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7966. for_each_possible_cpu(i) {
  7967. if (tg->rt_rq)
  7968. kfree(tg->rt_rq[i]);
  7969. if (tg->rt_se)
  7970. kfree(tg->rt_se[i]);
  7971. }
  7972. kfree(tg->rt_rq);
  7973. kfree(tg->rt_se);
  7974. }
  7975. static
  7976. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7977. {
  7978. struct rt_rq *rt_rq;
  7979. struct sched_rt_entity *rt_se;
  7980. struct rq *rq;
  7981. int i;
  7982. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7983. if (!tg->rt_rq)
  7984. goto err;
  7985. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7986. if (!tg->rt_se)
  7987. goto err;
  7988. init_rt_bandwidth(&tg->rt_bandwidth,
  7989. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7990. for_each_possible_cpu(i) {
  7991. rq = cpu_rq(i);
  7992. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7993. GFP_KERNEL, cpu_to_node(i));
  7994. if (!rt_rq)
  7995. goto err;
  7996. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7997. GFP_KERNEL, cpu_to_node(i));
  7998. if (!rt_se)
  7999. goto err;
  8000. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8001. }
  8002. return 1;
  8003. err:
  8004. return 0;
  8005. }
  8006. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8007. {
  8008. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8009. &cpu_rq(cpu)->leaf_rt_rq_list);
  8010. }
  8011. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8012. {
  8013. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8014. }
  8015. #else /* !CONFIG_RT_GROUP_SCHED */
  8016. static inline void free_rt_sched_group(struct task_group *tg)
  8017. {
  8018. }
  8019. static inline
  8020. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8021. {
  8022. return 1;
  8023. }
  8024. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8025. {
  8026. }
  8027. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8028. {
  8029. }
  8030. #endif /* CONFIG_RT_GROUP_SCHED */
  8031. #ifdef CONFIG_GROUP_SCHED
  8032. static void free_sched_group(struct task_group *tg)
  8033. {
  8034. free_fair_sched_group(tg);
  8035. free_rt_sched_group(tg);
  8036. kfree(tg);
  8037. }
  8038. /* allocate runqueue etc for a new task group */
  8039. struct task_group *sched_create_group(struct task_group *parent)
  8040. {
  8041. struct task_group *tg;
  8042. unsigned long flags;
  8043. int i;
  8044. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8045. if (!tg)
  8046. return ERR_PTR(-ENOMEM);
  8047. if (!alloc_fair_sched_group(tg, parent))
  8048. goto err;
  8049. if (!alloc_rt_sched_group(tg, parent))
  8050. goto err;
  8051. spin_lock_irqsave(&task_group_lock, flags);
  8052. for_each_possible_cpu(i) {
  8053. register_fair_sched_group(tg, i);
  8054. register_rt_sched_group(tg, i);
  8055. }
  8056. list_add_rcu(&tg->list, &task_groups);
  8057. WARN_ON(!parent); /* root should already exist */
  8058. tg->parent = parent;
  8059. INIT_LIST_HEAD(&tg->children);
  8060. list_add_rcu(&tg->siblings, &parent->children);
  8061. spin_unlock_irqrestore(&task_group_lock, flags);
  8062. return tg;
  8063. err:
  8064. free_sched_group(tg);
  8065. return ERR_PTR(-ENOMEM);
  8066. }
  8067. /* rcu callback to free various structures associated with a task group */
  8068. static void free_sched_group_rcu(struct rcu_head *rhp)
  8069. {
  8070. /* now it should be safe to free those cfs_rqs */
  8071. free_sched_group(container_of(rhp, struct task_group, rcu));
  8072. }
  8073. /* Destroy runqueue etc associated with a task group */
  8074. void sched_destroy_group(struct task_group *tg)
  8075. {
  8076. unsigned long flags;
  8077. int i;
  8078. spin_lock_irqsave(&task_group_lock, flags);
  8079. for_each_possible_cpu(i) {
  8080. unregister_fair_sched_group(tg, i);
  8081. unregister_rt_sched_group(tg, i);
  8082. }
  8083. list_del_rcu(&tg->list);
  8084. list_del_rcu(&tg->siblings);
  8085. spin_unlock_irqrestore(&task_group_lock, flags);
  8086. /* wait for possible concurrent references to cfs_rqs complete */
  8087. call_rcu(&tg->rcu, free_sched_group_rcu);
  8088. }
  8089. /* change task's runqueue when it moves between groups.
  8090. * The caller of this function should have put the task in its new group
  8091. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8092. * reflect its new group.
  8093. */
  8094. void sched_move_task(struct task_struct *tsk)
  8095. {
  8096. int on_rq, running;
  8097. unsigned long flags;
  8098. struct rq *rq;
  8099. rq = task_rq_lock(tsk, &flags);
  8100. update_rq_clock(rq);
  8101. running = task_current(rq, tsk);
  8102. on_rq = tsk->se.on_rq;
  8103. if (on_rq)
  8104. dequeue_task(rq, tsk, 0);
  8105. if (unlikely(running))
  8106. tsk->sched_class->put_prev_task(rq, tsk);
  8107. set_task_rq(tsk, task_cpu(tsk));
  8108. #ifdef CONFIG_FAIR_GROUP_SCHED
  8109. if (tsk->sched_class->moved_group)
  8110. tsk->sched_class->moved_group(tsk);
  8111. #endif
  8112. if (unlikely(running))
  8113. tsk->sched_class->set_curr_task(rq);
  8114. if (on_rq)
  8115. enqueue_task(rq, tsk, 0);
  8116. task_rq_unlock(rq, &flags);
  8117. }
  8118. #endif /* CONFIG_GROUP_SCHED */
  8119. #ifdef CONFIG_FAIR_GROUP_SCHED
  8120. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8121. {
  8122. struct cfs_rq *cfs_rq = se->cfs_rq;
  8123. int on_rq;
  8124. on_rq = se->on_rq;
  8125. if (on_rq)
  8126. dequeue_entity(cfs_rq, se, 0);
  8127. se->load.weight = shares;
  8128. se->load.inv_weight = 0;
  8129. if (on_rq)
  8130. enqueue_entity(cfs_rq, se, 0);
  8131. }
  8132. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8133. {
  8134. struct cfs_rq *cfs_rq = se->cfs_rq;
  8135. struct rq *rq = cfs_rq->rq;
  8136. unsigned long flags;
  8137. spin_lock_irqsave(&rq->lock, flags);
  8138. __set_se_shares(se, shares);
  8139. spin_unlock_irqrestore(&rq->lock, flags);
  8140. }
  8141. static DEFINE_MUTEX(shares_mutex);
  8142. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8143. {
  8144. int i;
  8145. unsigned long flags;
  8146. /*
  8147. * We can't change the weight of the root cgroup.
  8148. */
  8149. if (!tg->se[0])
  8150. return -EINVAL;
  8151. if (shares < MIN_SHARES)
  8152. shares = MIN_SHARES;
  8153. else if (shares > MAX_SHARES)
  8154. shares = MAX_SHARES;
  8155. mutex_lock(&shares_mutex);
  8156. if (tg->shares == shares)
  8157. goto done;
  8158. spin_lock_irqsave(&task_group_lock, flags);
  8159. for_each_possible_cpu(i)
  8160. unregister_fair_sched_group(tg, i);
  8161. list_del_rcu(&tg->siblings);
  8162. spin_unlock_irqrestore(&task_group_lock, flags);
  8163. /* wait for any ongoing reference to this group to finish */
  8164. synchronize_sched();
  8165. /*
  8166. * Now we are free to modify the group's share on each cpu
  8167. * w/o tripping rebalance_share or load_balance_fair.
  8168. */
  8169. tg->shares = shares;
  8170. for_each_possible_cpu(i) {
  8171. /*
  8172. * force a rebalance
  8173. */
  8174. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8175. set_se_shares(tg->se[i], shares);
  8176. }
  8177. /*
  8178. * Enable load balance activity on this group, by inserting it back on
  8179. * each cpu's rq->leaf_cfs_rq_list.
  8180. */
  8181. spin_lock_irqsave(&task_group_lock, flags);
  8182. for_each_possible_cpu(i)
  8183. register_fair_sched_group(tg, i);
  8184. list_add_rcu(&tg->siblings, &tg->parent->children);
  8185. spin_unlock_irqrestore(&task_group_lock, flags);
  8186. done:
  8187. mutex_unlock(&shares_mutex);
  8188. return 0;
  8189. }
  8190. unsigned long sched_group_shares(struct task_group *tg)
  8191. {
  8192. return tg->shares;
  8193. }
  8194. #endif
  8195. #ifdef CONFIG_RT_GROUP_SCHED
  8196. /*
  8197. * Ensure that the real time constraints are schedulable.
  8198. */
  8199. static DEFINE_MUTEX(rt_constraints_mutex);
  8200. static unsigned long to_ratio(u64 period, u64 runtime)
  8201. {
  8202. if (runtime == RUNTIME_INF)
  8203. return 1ULL << 20;
  8204. return div64_u64(runtime << 20, period);
  8205. }
  8206. /* Must be called with tasklist_lock held */
  8207. static inline int tg_has_rt_tasks(struct task_group *tg)
  8208. {
  8209. struct task_struct *g, *p;
  8210. do_each_thread(g, p) {
  8211. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8212. return 1;
  8213. } while_each_thread(g, p);
  8214. return 0;
  8215. }
  8216. struct rt_schedulable_data {
  8217. struct task_group *tg;
  8218. u64 rt_period;
  8219. u64 rt_runtime;
  8220. };
  8221. static int tg_schedulable(struct task_group *tg, void *data)
  8222. {
  8223. struct rt_schedulable_data *d = data;
  8224. struct task_group *child;
  8225. unsigned long total, sum = 0;
  8226. u64 period, runtime;
  8227. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8228. runtime = tg->rt_bandwidth.rt_runtime;
  8229. if (tg == d->tg) {
  8230. period = d->rt_period;
  8231. runtime = d->rt_runtime;
  8232. }
  8233. #ifdef CONFIG_USER_SCHED
  8234. if (tg == &root_task_group) {
  8235. period = global_rt_period();
  8236. runtime = global_rt_runtime();
  8237. }
  8238. #endif
  8239. /*
  8240. * Cannot have more runtime than the period.
  8241. */
  8242. if (runtime > period && runtime != RUNTIME_INF)
  8243. return -EINVAL;
  8244. /*
  8245. * Ensure we don't starve existing RT tasks.
  8246. */
  8247. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8248. return -EBUSY;
  8249. total = to_ratio(period, runtime);
  8250. /*
  8251. * Nobody can have more than the global setting allows.
  8252. */
  8253. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8254. return -EINVAL;
  8255. /*
  8256. * The sum of our children's runtime should not exceed our own.
  8257. */
  8258. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8259. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8260. runtime = child->rt_bandwidth.rt_runtime;
  8261. if (child == d->tg) {
  8262. period = d->rt_period;
  8263. runtime = d->rt_runtime;
  8264. }
  8265. sum += to_ratio(period, runtime);
  8266. }
  8267. if (sum > total)
  8268. return -EINVAL;
  8269. return 0;
  8270. }
  8271. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8272. {
  8273. struct rt_schedulable_data data = {
  8274. .tg = tg,
  8275. .rt_period = period,
  8276. .rt_runtime = runtime,
  8277. };
  8278. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8279. }
  8280. static int tg_set_bandwidth(struct task_group *tg,
  8281. u64 rt_period, u64 rt_runtime)
  8282. {
  8283. int i, err = 0;
  8284. mutex_lock(&rt_constraints_mutex);
  8285. read_lock(&tasklist_lock);
  8286. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8287. if (err)
  8288. goto unlock;
  8289. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8290. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8291. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8292. for_each_possible_cpu(i) {
  8293. struct rt_rq *rt_rq = tg->rt_rq[i];
  8294. spin_lock(&rt_rq->rt_runtime_lock);
  8295. rt_rq->rt_runtime = rt_runtime;
  8296. spin_unlock(&rt_rq->rt_runtime_lock);
  8297. }
  8298. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8299. unlock:
  8300. read_unlock(&tasklist_lock);
  8301. mutex_unlock(&rt_constraints_mutex);
  8302. return err;
  8303. }
  8304. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8305. {
  8306. u64 rt_runtime, rt_period;
  8307. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8308. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8309. if (rt_runtime_us < 0)
  8310. rt_runtime = RUNTIME_INF;
  8311. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8312. }
  8313. long sched_group_rt_runtime(struct task_group *tg)
  8314. {
  8315. u64 rt_runtime_us;
  8316. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8317. return -1;
  8318. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8319. do_div(rt_runtime_us, NSEC_PER_USEC);
  8320. return rt_runtime_us;
  8321. }
  8322. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8323. {
  8324. u64 rt_runtime, rt_period;
  8325. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8326. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8327. if (rt_period == 0)
  8328. return -EINVAL;
  8329. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8330. }
  8331. long sched_group_rt_period(struct task_group *tg)
  8332. {
  8333. u64 rt_period_us;
  8334. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8335. do_div(rt_period_us, NSEC_PER_USEC);
  8336. return rt_period_us;
  8337. }
  8338. static int sched_rt_global_constraints(void)
  8339. {
  8340. u64 runtime, period;
  8341. int ret = 0;
  8342. if (sysctl_sched_rt_period <= 0)
  8343. return -EINVAL;
  8344. runtime = global_rt_runtime();
  8345. period = global_rt_period();
  8346. /*
  8347. * Sanity check on the sysctl variables.
  8348. */
  8349. if (runtime > period && runtime != RUNTIME_INF)
  8350. return -EINVAL;
  8351. mutex_lock(&rt_constraints_mutex);
  8352. read_lock(&tasklist_lock);
  8353. ret = __rt_schedulable(NULL, 0, 0);
  8354. read_unlock(&tasklist_lock);
  8355. mutex_unlock(&rt_constraints_mutex);
  8356. return ret;
  8357. }
  8358. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8359. {
  8360. /* Don't accept realtime tasks when there is no way for them to run */
  8361. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8362. return 0;
  8363. return 1;
  8364. }
  8365. #else /* !CONFIG_RT_GROUP_SCHED */
  8366. static int sched_rt_global_constraints(void)
  8367. {
  8368. unsigned long flags;
  8369. int i;
  8370. if (sysctl_sched_rt_period <= 0)
  8371. return -EINVAL;
  8372. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8373. for_each_possible_cpu(i) {
  8374. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8375. spin_lock(&rt_rq->rt_runtime_lock);
  8376. rt_rq->rt_runtime = global_rt_runtime();
  8377. spin_unlock(&rt_rq->rt_runtime_lock);
  8378. }
  8379. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8380. return 0;
  8381. }
  8382. #endif /* CONFIG_RT_GROUP_SCHED */
  8383. int sched_rt_handler(struct ctl_table *table, int write,
  8384. struct file *filp, void __user *buffer, size_t *lenp,
  8385. loff_t *ppos)
  8386. {
  8387. int ret;
  8388. int old_period, old_runtime;
  8389. static DEFINE_MUTEX(mutex);
  8390. mutex_lock(&mutex);
  8391. old_period = sysctl_sched_rt_period;
  8392. old_runtime = sysctl_sched_rt_runtime;
  8393. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8394. if (!ret && write) {
  8395. ret = sched_rt_global_constraints();
  8396. if (ret) {
  8397. sysctl_sched_rt_period = old_period;
  8398. sysctl_sched_rt_runtime = old_runtime;
  8399. } else {
  8400. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8401. def_rt_bandwidth.rt_period =
  8402. ns_to_ktime(global_rt_period());
  8403. }
  8404. }
  8405. mutex_unlock(&mutex);
  8406. return ret;
  8407. }
  8408. #ifdef CONFIG_CGROUP_SCHED
  8409. /* return corresponding task_group object of a cgroup */
  8410. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8411. {
  8412. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8413. struct task_group, css);
  8414. }
  8415. static struct cgroup_subsys_state *
  8416. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8417. {
  8418. struct task_group *tg, *parent;
  8419. if (!cgrp->parent) {
  8420. /* This is early initialization for the top cgroup */
  8421. return &init_task_group.css;
  8422. }
  8423. parent = cgroup_tg(cgrp->parent);
  8424. tg = sched_create_group(parent);
  8425. if (IS_ERR(tg))
  8426. return ERR_PTR(-ENOMEM);
  8427. return &tg->css;
  8428. }
  8429. static void
  8430. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8431. {
  8432. struct task_group *tg = cgroup_tg(cgrp);
  8433. sched_destroy_group(tg);
  8434. }
  8435. static int
  8436. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8437. struct task_struct *tsk)
  8438. {
  8439. #ifdef CONFIG_RT_GROUP_SCHED
  8440. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8441. return -EINVAL;
  8442. #else
  8443. /* We don't support RT-tasks being in separate groups */
  8444. if (tsk->sched_class != &fair_sched_class)
  8445. return -EINVAL;
  8446. #endif
  8447. return 0;
  8448. }
  8449. static void
  8450. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8451. struct cgroup *old_cont, struct task_struct *tsk)
  8452. {
  8453. sched_move_task(tsk);
  8454. }
  8455. #ifdef CONFIG_FAIR_GROUP_SCHED
  8456. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8457. u64 shareval)
  8458. {
  8459. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8460. }
  8461. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8462. {
  8463. struct task_group *tg = cgroup_tg(cgrp);
  8464. return (u64) tg->shares;
  8465. }
  8466. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8467. #ifdef CONFIG_RT_GROUP_SCHED
  8468. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8469. s64 val)
  8470. {
  8471. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8472. }
  8473. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8474. {
  8475. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8476. }
  8477. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8478. u64 rt_period_us)
  8479. {
  8480. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8481. }
  8482. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8483. {
  8484. return sched_group_rt_period(cgroup_tg(cgrp));
  8485. }
  8486. #endif /* CONFIG_RT_GROUP_SCHED */
  8487. static struct cftype cpu_files[] = {
  8488. #ifdef CONFIG_FAIR_GROUP_SCHED
  8489. {
  8490. .name = "shares",
  8491. .read_u64 = cpu_shares_read_u64,
  8492. .write_u64 = cpu_shares_write_u64,
  8493. },
  8494. #endif
  8495. #ifdef CONFIG_RT_GROUP_SCHED
  8496. {
  8497. .name = "rt_runtime_us",
  8498. .read_s64 = cpu_rt_runtime_read,
  8499. .write_s64 = cpu_rt_runtime_write,
  8500. },
  8501. {
  8502. .name = "rt_period_us",
  8503. .read_u64 = cpu_rt_period_read_uint,
  8504. .write_u64 = cpu_rt_period_write_uint,
  8505. },
  8506. #endif
  8507. };
  8508. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8509. {
  8510. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8511. }
  8512. struct cgroup_subsys cpu_cgroup_subsys = {
  8513. .name = "cpu",
  8514. .create = cpu_cgroup_create,
  8515. .destroy = cpu_cgroup_destroy,
  8516. .can_attach = cpu_cgroup_can_attach,
  8517. .attach = cpu_cgroup_attach,
  8518. .populate = cpu_cgroup_populate,
  8519. .subsys_id = cpu_cgroup_subsys_id,
  8520. .early_init = 1,
  8521. };
  8522. #endif /* CONFIG_CGROUP_SCHED */
  8523. #ifdef CONFIG_CGROUP_CPUACCT
  8524. /*
  8525. * CPU accounting code for task groups.
  8526. *
  8527. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8528. * (balbir@in.ibm.com).
  8529. */
  8530. /* track cpu usage of a group of tasks and its child groups */
  8531. struct cpuacct {
  8532. struct cgroup_subsys_state css;
  8533. /* cpuusage holds pointer to a u64-type object on every cpu */
  8534. u64 *cpuusage;
  8535. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8536. struct cpuacct *parent;
  8537. };
  8538. struct cgroup_subsys cpuacct_subsys;
  8539. /* return cpu accounting group corresponding to this container */
  8540. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8541. {
  8542. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8543. struct cpuacct, css);
  8544. }
  8545. /* return cpu accounting group to which this task belongs */
  8546. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8547. {
  8548. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8549. struct cpuacct, css);
  8550. }
  8551. /* create a new cpu accounting group */
  8552. static struct cgroup_subsys_state *cpuacct_create(
  8553. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8554. {
  8555. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8556. int i;
  8557. if (!ca)
  8558. goto out;
  8559. ca->cpuusage = alloc_percpu(u64);
  8560. if (!ca->cpuusage)
  8561. goto out_free_ca;
  8562. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8563. if (percpu_counter_init(&ca->cpustat[i], 0))
  8564. goto out_free_counters;
  8565. if (cgrp->parent)
  8566. ca->parent = cgroup_ca(cgrp->parent);
  8567. return &ca->css;
  8568. out_free_counters:
  8569. while (--i >= 0)
  8570. percpu_counter_destroy(&ca->cpustat[i]);
  8571. free_percpu(ca->cpuusage);
  8572. out_free_ca:
  8573. kfree(ca);
  8574. out:
  8575. return ERR_PTR(-ENOMEM);
  8576. }
  8577. /* destroy an existing cpu accounting group */
  8578. static void
  8579. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8580. {
  8581. struct cpuacct *ca = cgroup_ca(cgrp);
  8582. int i;
  8583. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8584. percpu_counter_destroy(&ca->cpustat[i]);
  8585. free_percpu(ca->cpuusage);
  8586. kfree(ca);
  8587. }
  8588. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8589. {
  8590. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8591. u64 data;
  8592. #ifndef CONFIG_64BIT
  8593. /*
  8594. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8595. */
  8596. spin_lock_irq(&cpu_rq(cpu)->lock);
  8597. data = *cpuusage;
  8598. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8599. #else
  8600. data = *cpuusage;
  8601. #endif
  8602. return data;
  8603. }
  8604. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8605. {
  8606. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8607. #ifndef CONFIG_64BIT
  8608. /*
  8609. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8610. */
  8611. spin_lock_irq(&cpu_rq(cpu)->lock);
  8612. *cpuusage = val;
  8613. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8614. #else
  8615. *cpuusage = val;
  8616. #endif
  8617. }
  8618. /* return total cpu usage (in nanoseconds) of a group */
  8619. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8620. {
  8621. struct cpuacct *ca = cgroup_ca(cgrp);
  8622. u64 totalcpuusage = 0;
  8623. int i;
  8624. for_each_present_cpu(i)
  8625. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8626. return totalcpuusage;
  8627. }
  8628. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8629. u64 reset)
  8630. {
  8631. struct cpuacct *ca = cgroup_ca(cgrp);
  8632. int err = 0;
  8633. int i;
  8634. if (reset) {
  8635. err = -EINVAL;
  8636. goto out;
  8637. }
  8638. for_each_present_cpu(i)
  8639. cpuacct_cpuusage_write(ca, i, 0);
  8640. out:
  8641. return err;
  8642. }
  8643. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8644. struct seq_file *m)
  8645. {
  8646. struct cpuacct *ca = cgroup_ca(cgroup);
  8647. u64 percpu;
  8648. int i;
  8649. for_each_present_cpu(i) {
  8650. percpu = cpuacct_cpuusage_read(ca, i);
  8651. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8652. }
  8653. seq_printf(m, "\n");
  8654. return 0;
  8655. }
  8656. static const char *cpuacct_stat_desc[] = {
  8657. [CPUACCT_STAT_USER] = "user",
  8658. [CPUACCT_STAT_SYSTEM] = "system",
  8659. };
  8660. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8661. struct cgroup_map_cb *cb)
  8662. {
  8663. struct cpuacct *ca = cgroup_ca(cgrp);
  8664. int i;
  8665. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8666. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8667. val = cputime64_to_clock_t(val);
  8668. cb->fill(cb, cpuacct_stat_desc[i], val);
  8669. }
  8670. return 0;
  8671. }
  8672. static struct cftype files[] = {
  8673. {
  8674. .name = "usage",
  8675. .read_u64 = cpuusage_read,
  8676. .write_u64 = cpuusage_write,
  8677. },
  8678. {
  8679. .name = "usage_percpu",
  8680. .read_seq_string = cpuacct_percpu_seq_read,
  8681. },
  8682. {
  8683. .name = "stat",
  8684. .read_map = cpuacct_stats_show,
  8685. },
  8686. };
  8687. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8688. {
  8689. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8690. }
  8691. /*
  8692. * charge this task's execution time to its accounting group.
  8693. *
  8694. * called with rq->lock held.
  8695. */
  8696. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8697. {
  8698. struct cpuacct *ca;
  8699. int cpu;
  8700. if (unlikely(!cpuacct_subsys.active))
  8701. return;
  8702. cpu = task_cpu(tsk);
  8703. rcu_read_lock();
  8704. ca = task_ca(tsk);
  8705. for (; ca; ca = ca->parent) {
  8706. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8707. *cpuusage += cputime;
  8708. }
  8709. rcu_read_unlock();
  8710. }
  8711. /*
  8712. * Charge the system/user time to the task's accounting group.
  8713. */
  8714. static void cpuacct_update_stats(struct task_struct *tsk,
  8715. enum cpuacct_stat_index idx, cputime_t val)
  8716. {
  8717. struct cpuacct *ca;
  8718. if (unlikely(!cpuacct_subsys.active))
  8719. return;
  8720. rcu_read_lock();
  8721. ca = task_ca(tsk);
  8722. do {
  8723. percpu_counter_add(&ca->cpustat[idx], val);
  8724. ca = ca->parent;
  8725. } while (ca);
  8726. rcu_read_unlock();
  8727. }
  8728. struct cgroup_subsys cpuacct_subsys = {
  8729. .name = "cpuacct",
  8730. .create = cpuacct_create,
  8731. .destroy = cpuacct_destroy,
  8732. .populate = cpuacct_populate,
  8733. .subsys_id = cpuacct_subsys_id,
  8734. };
  8735. #endif /* CONFIG_CGROUP_CPUACCT */