bnx2.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2007 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <asm/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/zlib.h>
  47. #include "bnx2.h"
  48. #include "bnx2_fw.h"
  49. #include "bnx2_fw2.h"
  50. #define DRV_MODULE_NAME "bnx2"
  51. #define PFX DRV_MODULE_NAME ": "
  52. #define DRV_MODULE_VERSION "1.5.11"
  53. #define DRV_MODULE_RELDATE "June 4, 2007"
  54. #define RUN_AT(x) (jiffies + (x))
  55. /* Time in jiffies before concluding the transmitter is hung. */
  56. #define TX_TIMEOUT (5*HZ)
  57. static const char version[] __devinitdata =
  58. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  59. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  60. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  61. MODULE_LICENSE("GPL");
  62. MODULE_VERSION(DRV_MODULE_VERSION);
  63. static int disable_msi = 0;
  64. module_param(disable_msi, int, 0);
  65. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  66. typedef enum {
  67. BCM5706 = 0,
  68. NC370T,
  69. NC370I,
  70. BCM5706S,
  71. NC370F,
  72. BCM5708,
  73. BCM5708S,
  74. BCM5709,
  75. BCM5709S,
  76. } board_t;
  77. /* indexed by board_t, above */
  78. static const struct {
  79. char *name;
  80. } board_info[] __devinitdata = {
  81. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  82. { "HP NC370T Multifunction Gigabit Server Adapter" },
  83. { "HP NC370i Multifunction Gigabit Server Adapter" },
  84. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  85. { "HP NC370F Multifunction Gigabit Server Adapter" },
  86. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  88. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  89. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  90. };
  91. static struct pci_device_id bnx2_pci_tbl[] = {
  92. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  93. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  94. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  95. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  96. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  97. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  98. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  100. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  101. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  102. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  103. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  104. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  105. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  106. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  107. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  108. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  109. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  110. { 0, }
  111. };
  112. static struct flash_spec flash_table[] =
  113. {
  114. /* Slow EEPROM */
  115. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  116. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  117. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  118. "EEPROM - slow"},
  119. /* Expansion entry 0001 */
  120. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  121. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  122. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  123. "Entry 0001"},
  124. /* Saifun SA25F010 (non-buffered flash) */
  125. /* strap, cfg1, & write1 need updates */
  126. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  127. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  128. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  129. "Non-buffered flash (128kB)"},
  130. /* Saifun SA25F020 (non-buffered flash) */
  131. /* strap, cfg1, & write1 need updates */
  132. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  133. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  134. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  135. "Non-buffered flash (256kB)"},
  136. /* Expansion entry 0100 */
  137. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  138. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  139. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  140. "Entry 0100"},
  141. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  142. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  143. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  144. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  145. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  146. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  147. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  148. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  149. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  150. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  151. /* Saifun SA25F005 (non-buffered flash) */
  152. /* strap, cfg1, & write1 need updates */
  153. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  154. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  155. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  156. "Non-buffered flash (64kB)"},
  157. /* Fast EEPROM */
  158. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  159. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  160. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  161. "EEPROM - fast"},
  162. /* Expansion entry 1001 */
  163. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  164. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  165. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  166. "Entry 1001"},
  167. /* Expansion entry 1010 */
  168. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  169. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  170. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  171. "Entry 1010"},
  172. /* ATMEL AT45DB011B (buffered flash) */
  173. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  174. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  175. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  176. "Buffered flash (128kB)"},
  177. /* Expansion entry 1100 */
  178. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  179. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  181. "Entry 1100"},
  182. /* Expansion entry 1101 */
  183. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  184. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  185. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  186. "Entry 1101"},
  187. /* Ateml Expansion entry 1110 */
  188. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  189. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  190. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1110 (Atmel)"},
  192. /* ATMEL AT45DB021B (buffered flash) */
  193. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  194. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  195. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  196. "Buffered flash (256kB)"},
  197. };
  198. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  199. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  200. {
  201. u32 diff;
  202. smp_mb();
  203. /* The ring uses 256 indices for 255 entries, one of them
  204. * needs to be skipped.
  205. */
  206. diff = bp->tx_prod - bp->tx_cons;
  207. if (unlikely(diff >= TX_DESC_CNT)) {
  208. diff &= 0xffff;
  209. if (diff == TX_DESC_CNT)
  210. diff = MAX_TX_DESC_CNT;
  211. }
  212. return (bp->tx_ring_size - diff);
  213. }
  214. static u32
  215. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  216. {
  217. u32 val;
  218. spin_lock_bh(&bp->indirect_lock);
  219. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  220. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  221. spin_unlock_bh(&bp->indirect_lock);
  222. return val;
  223. }
  224. static void
  225. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  226. {
  227. spin_lock_bh(&bp->indirect_lock);
  228. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  229. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  230. spin_unlock_bh(&bp->indirect_lock);
  231. }
  232. static void
  233. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  234. {
  235. offset += cid_addr;
  236. spin_lock_bh(&bp->indirect_lock);
  237. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  238. int i;
  239. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  240. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  241. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  242. for (i = 0; i < 5; i++) {
  243. u32 val;
  244. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  245. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  246. break;
  247. udelay(5);
  248. }
  249. } else {
  250. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  251. REG_WR(bp, BNX2_CTX_DATA, val);
  252. }
  253. spin_unlock_bh(&bp->indirect_lock);
  254. }
  255. static int
  256. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  257. {
  258. u32 val1;
  259. int i, ret;
  260. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  261. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  262. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  263. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  264. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  265. udelay(40);
  266. }
  267. val1 = (bp->phy_addr << 21) | (reg << 16) |
  268. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  269. BNX2_EMAC_MDIO_COMM_START_BUSY;
  270. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  271. for (i = 0; i < 50; i++) {
  272. udelay(10);
  273. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  274. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  275. udelay(5);
  276. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  277. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  278. break;
  279. }
  280. }
  281. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  282. *val = 0x0;
  283. ret = -EBUSY;
  284. }
  285. else {
  286. *val = val1;
  287. ret = 0;
  288. }
  289. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  290. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  291. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  292. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  293. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  294. udelay(40);
  295. }
  296. return ret;
  297. }
  298. static int
  299. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  300. {
  301. u32 val1;
  302. int i, ret;
  303. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  304. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  305. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  306. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  307. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  308. udelay(40);
  309. }
  310. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  311. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  312. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  313. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  314. for (i = 0; i < 50; i++) {
  315. udelay(10);
  316. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  317. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  318. udelay(5);
  319. break;
  320. }
  321. }
  322. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  323. ret = -EBUSY;
  324. else
  325. ret = 0;
  326. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  327. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  328. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  329. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  330. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  331. udelay(40);
  332. }
  333. return ret;
  334. }
  335. static void
  336. bnx2_disable_int(struct bnx2 *bp)
  337. {
  338. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  339. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  340. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  341. }
  342. static void
  343. bnx2_enable_int(struct bnx2 *bp)
  344. {
  345. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  346. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  347. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  348. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  349. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  350. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  351. }
  352. static void
  353. bnx2_disable_int_sync(struct bnx2 *bp)
  354. {
  355. atomic_inc(&bp->intr_sem);
  356. bnx2_disable_int(bp);
  357. synchronize_irq(bp->pdev->irq);
  358. }
  359. static void
  360. bnx2_netif_stop(struct bnx2 *bp)
  361. {
  362. bnx2_disable_int_sync(bp);
  363. if (netif_running(bp->dev)) {
  364. netif_poll_disable(bp->dev);
  365. netif_tx_disable(bp->dev);
  366. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  367. }
  368. }
  369. static void
  370. bnx2_netif_start(struct bnx2 *bp)
  371. {
  372. if (atomic_dec_and_test(&bp->intr_sem)) {
  373. if (netif_running(bp->dev)) {
  374. netif_wake_queue(bp->dev);
  375. netif_poll_enable(bp->dev);
  376. bnx2_enable_int(bp);
  377. }
  378. }
  379. }
  380. static void
  381. bnx2_free_mem(struct bnx2 *bp)
  382. {
  383. int i;
  384. for (i = 0; i < bp->ctx_pages; i++) {
  385. if (bp->ctx_blk[i]) {
  386. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  387. bp->ctx_blk[i],
  388. bp->ctx_blk_mapping[i]);
  389. bp->ctx_blk[i] = NULL;
  390. }
  391. }
  392. if (bp->status_blk) {
  393. pci_free_consistent(bp->pdev, bp->status_stats_size,
  394. bp->status_blk, bp->status_blk_mapping);
  395. bp->status_blk = NULL;
  396. bp->stats_blk = NULL;
  397. }
  398. if (bp->tx_desc_ring) {
  399. pci_free_consistent(bp->pdev,
  400. sizeof(struct tx_bd) * TX_DESC_CNT,
  401. bp->tx_desc_ring, bp->tx_desc_mapping);
  402. bp->tx_desc_ring = NULL;
  403. }
  404. kfree(bp->tx_buf_ring);
  405. bp->tx_buf_ring = NULL;
  406. for (i = 0; i < bp->rx_max_ring; i++) {
  407. if (bp->rx_desc_ring[i])
  408. pci_free_consistent(bp->pdev,
  409. sizeof(struct rx_bd) * RX_DESC_CNT,
  410. bp->rx_desc_ring[i],
  411. bp->rx_desc_mapping[i]);
  412. bp->rx_desc_ring[i] = NULL;
  413. }
  414. vfree(bp->rx_buf_ring);
  415. bp->rx_buf_ring = NULL;
  416. }
  417. static int
  418. bnx2_alloc_mem(struct bnx2 *bp)
  419. {
  420. int i, status_blk_size;
  421. bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  422. GFP_KERNEL);
  423. if (bp->tx_buf_ring == NULL)
  424. return -ENOMEM;
  425. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  426. sizeof(struct tx_bd) *
  427. TX_DESC_CNT,
  428. &bp->tx_desc_mapping);
  429. if (bp->tx_desc_ring == NULL)
  430. goto alloc_mem_err;
  431. bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
  432. bp->rx_max_ring);
  433. if (bp->rx_buf_ring == NULL)
  434. goto alloc_mem_err;
  435. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
  436. bp->rx_max_ring);
  437. for (i = 0; i < bp->rx_max_ring; i++) {
  438. bp->rx_desc_ring[i] =
  439. pci_alloc_consistent(bp->pdev,
  440. sizeof(struct rx_bd) * RX_DESC_CNT,
  441. &bp->rx_desc_mapping[i]);
  442. if (bp->rx_desc_ring[i] == NULL)
  443. goto alloc_mem_err;
  444. }
  445. /* Combine status and statistics blocks into one allocation. */
  446. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  447. bp->status_stats_size = status_blk_size +
  448. sizeof(struct statistics_block);
  449. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  450. &bp->status_blk_mapping);
  451. if (bp->status_blk == NULL)
  452. goto alloc_mem_err;
  453. memset(bp->status_blk, 0, bp->status_stats_size);
  454. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  455. status_blk_size);
  456. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  457. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  458. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  459. if (bp->ctx_pages == 0)
  460. bp->ctx_pages = 1;
  461. for (i = 0; i < bp->ctx_pages; i++) {
  462. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  463. BCM_PAGE_SIZE,
  464. &bp->ctx_blk_mapping[i]);
  465. if (bp->ctx_blk[i] == NULL)
  466. goto alloc_mem_err;
  467. }
  468. }
  469. return 0;
  470. alloc_mem_err:
  471. bnx2_free_mem(bp);
  472. return -ENOMEM;
  473. }
  474. static void
  475. bnx2_report_fw_link(struct bnx2 *bp)
  476. {
  477. u32 fw_link_status = 0;
  478. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  479. return;
  480. if (bp->link_up) {
  481. u32 bmsr;
  482. switch (bp->line_speed) {
  483. case SPEED_10:
  484. if (bp->duplex == DUPLEX_HALF)
  485. fw_link_status = BNX2_LINK_STATUS_10HALF;
  486. else
  487. fw_link_status = BNX2_LINK_STATUS_10FULL;
  488. break;
  489. case SPEED_100:
  490. if (bp->duplex == DUPLEX_HALF)
  491. fw_link_status = BNX2_LINK_STATUS_100HALF;
  492. else
  493. fw_link_status = BNX2_LINK_STATUS_100FULL;
  494. break;
  495. case SPEED_1000:
  496. if (bp->duplex == DUPLEX_HALF)
  497. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  498. else
  499. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  500. break;
  501. case SPEED_2500:
  502. if (bp->duplex == DUPLEX_HALF)
  503. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  504. else
  505. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  506. break;
  507. }
  508. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  509. if (bp->autoneg) {
  510. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  511. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  512. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  513. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  514. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  515. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  516. else
  517. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  518. }
  519. }
  520. else
  521. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  522. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  523. }
  524. static void
  525. bnx2_report_link(struct bnx2 *bp)
  526. {
  527. if (bp->link_up) {
  528. netif_carrier_on(bp->dev);
  529. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  530. printk("%d Mbps ", bp->line_speed);
  531. if (bp->duplex == DUPLEX_FULL)
  532. printk("full duplex");
  533. else
  534. printk("half duplex");
  535. if (bp->flow_ctrl) {
  536. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  537. printk(", receive ");
  538. if (bp->flow_ctrl & FLOW_CTRL_TX)
  539. printk("& transmit ");
  540. }
  541. else {
  542. printk(", transmit ");
  543. }
  544. printk("flow control ON");
  545. }
  546. printk("\n");
  547. }
  548. else {
  549. netif_carrier_off(bp->dev);
  550. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  551. }
  552. bnx2_report_fw_link(bp);
  553. }
  554. static void
  555. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  556. {
  557. u32 local_adv, remote_adv;
  558. bp->flow_ctrl = 0;
  559. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  560. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  561. if (bp->duplex == DUPLEX_FULL) {
  562. bp->flow_ctrl = bp->req_flow_ctrl;
  563. }
  564. return;
  565. }
  566. if (bp->duplex != DUPLEX_FULL) {
  567. return;
  568. }
  569. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  570. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  571. u32 val;
  572. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  573. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  574. bp->flow_ctrl |= FLOW_CTRL_TX;
  575. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  576. bp->flow_ctrl |= FLOW_CTRL_RX;
  577. return;
  578. }
  579. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  580. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  581. if (bp->phy_flags & PHY_SERDES_FLAG) {
  582. u32 new_local_adv = 0;
  583. u32 new_remote_adv = 0;
  584. if (local_adv & ADVERTISE_1000XPAUSE)
  585. new_local_adv |= ADVERTISE_PAUSE_CAP;
  586. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  587. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  588. if (remote_adv & ADVERTISE_1000XPAUSE)
  589. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  590. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  591. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  592. local_adv = new_local_adv;
  593. remote_adv = new_remote_adv;
  594. }
  595. /* See Table 28B-3 of 802.3ab-1999 spec. */
  596. if (local_adv & ADVERTISE_PAUSE_CAP) {
  597. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  598. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  599. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  600. }
  601. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  602. bp->flow_ctrl = FLOW_CTRL_RX;
  603. }
  604. }
  605. else {
  606. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  607. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  608. }
  609. }
  610. }
  611. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  612. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  613. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  614. bp->flow_ctrl = FLOW_CTRL_TX;
  615. }
  616. }
  617. }
  618. static int
  619. bnx2_5709s_linkup(struct bnx2 *bp)
  620. {
  621. u32 val, speed;
  622. bp->link_up = 1;
  623. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  624. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  625. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  626. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  627. bp->line_speed = bp->req_line_speed;
  628. bp->duplex = bp->req_duplex;
  629. return 0;
  630. }
  631. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  632. switch (speed) {
  633. case MII_BNX2_GP_TOP_AN_SPEED_10:
  634. bp->line_speed = SPEED_10;
  635. break;
  636. case MII_BNX2_GP_TOP_AN_SPEED_100:
  637. bp->line_speed = SPEED_100;
  638. break;
  639. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  640. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  641. bp->line_speed = SPEED_1000;
  642. break;
  643. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  644. bp->line_speed = SPEED_2500;
  645. break;
  646. }
  647. if (val & MII_BNX2_GP_TOP_AN_FD)
  648. bp->duplex = DUPLEX_FULL;
  649. else
  650. bp->duplex = DUPLEX_HALF;
  651. return 0;
  652. }
  653. static int
  654. bnx2_5708s_linkup(struct bnx2 *bp)
  655. {
  656. u32 val;
  657. bp->link_up = 1;
  658. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  659. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  660. case BCM5708S_1000X_STAT1_SPEED_10:
  661. bp->line_speed = SPEED_10;
  662. break;
  663. case BCM5708S_1000X_STAT1_SPEED_100:
  664. bp->line_speed = SPEED_100;
  665. break;
  666. case BCM5708S_1000X_STAT1_SPEED_1G:
  667. bp->line_speed = SPEED_1000;
  668. break;
  669. case BCM5708S_1000X_STAT1_SPEED_2G5:
  670. bp->line_speed = SPEED_2500;
  671. break;
  672. }
  673. if (val & BCM5708S_1000X_STAT1_FD)
  674. bp->duplex = DUPLEX_FULL;
  675. else
  676. bp->duplex = DUPLEX_HALF;
  677. return 0;
  678. }
  679. static int
  680. bnx2_5706s_linkup(struct bnx2 *bp)
  681. {
  682. u32 bmcr, local_adv, remote_adv, common;
  683. bp->link_up = 1;
  684. bp->line_speed = SPEED_1000;
  685. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  686. if (bmcr & BMCR_FULLDPLX) {
  687. bp->duplex = DUPLEX_FULL;
  688. }
  689. else {
  690. bp->duplex = DUPLEX_HALF;
  691. }
  692. if (!(bmcr & BMCR_ANENABLE)) {
  693. return 0;
  694. }
  695. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  696. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  697. common = local_adv & remote_adv;
  698. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  699. if (common & ADVERTISE_1000XFULL) {
  700. bp->duplex = DUPLEX_FULL;
  701. }
  702. else {
  703. bp->duplex = DUPLEX_HALF;
  704. }
  705. }
  706. return 0;
  707. }
  708. static int
  709. bnx2_copper_linkup(struct bnx2 *bp)
  710. {
  711. u32 bmcr;
  712. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  713. if (bmcr & BMCR_ANENABLE) {
  714. u32 local_adv, remote_adv, common;
  715. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  716. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  717. common = local_adv & (remote_adv >> 2);
  718. if (common & ADVERTISE_1000FULL) {
  719. bp->line_speed = SPEED_1000;
  720. bp->duplex = DUPLEX_FULL;
  721. }
  722. else if (common & ADVERTISE_1000HALF) {
  723. bp->line_speed = SPEED_1000;
  724. bp->duplex = DUPLEX_HALF;
  725. }
  726. else {
  727. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  728. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  729. common = local_adv & remote_adv;
  730. if (common & ADVERTISE_100FULL) {
  731. bp->line_speed = SPEED_100;
  732. bp->duplex = DUPLEX_FULL;
  733. }
  734. else if (common & ADVERTISE_100HALF) {
  735. bp->line_speed = SPEED_100;
  736. bp->duplex = DUPLEX_HALF;
  737. }
  738. else if (common & ADVERTISE_10FULL) {
  739. bp->line_speed = SPEED_10;
  740. bp->duplex = DUPLEX_FULL;
  741. }
  742. else if (common & ADVERTISE_10HALF) {
  743. bp->line_speed = SPEED_10;
  744. bp->duplex = DUPLEX_HALF;
  745. }
  746. else {
  747. bp->line_speed = 0;
  748. bp->link_up = 0;
  749. }
  750. }
  751. }
  752. else {
  753. if (bmcr & BMCR_SPEED100) {
  754. bp->line_speed = SPEED_100;
  755. }
  756. else {
  757. bp->line_speed = SPEED_10;
  758. }
  759. if (bmcr & BMCR_FULLDPLX) {
  760. bp->duplex = DUPLEX_FULL;
  761. }
  762. else {
  763. bp->duplex = DUPLEX_HALF;
  764. }
  765. }
  766. return 0;
  767. }
  768. static int
  769. bnx2_set_mac_link(struct bnx2 *bp)
  770. {
  771. u32 val;
  772. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  773. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  774. (bp->duplex == DUPLEX_HALF)) {
  775. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  776. }
  777. /* Configure the EMAC mode register. */
  778. val = REG_RD(bp, BNX2_EMAC_MODE);
  779. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  780. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  781. BNX2_EMAC_MODE_25G_MODE);
  782. if (bp->link_up) {
  783. switch (bp->line_speed) {
  784. case SPEED_10:
  785. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  786. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  787. break;
  788. }
  789. /* fall through */
  790. case SPEED_100:
  791. val |= BNX2_EMAC_MODE_PORT_MII;
  792. break;
  793. case SPEED_2500:
  794. val |= BNX2_EMAC_MODE_25G_MODE;
  795. /* fall through */
  796. case SPEED_1000:
  797. val |= BNX2_EMAC_MODE_PORT_GMII;
  798. break;
  799. }
  800. }
  801. else {
  802. val |= BNX2_EMAC_MODE_PORT_GMII;
  803. }
  804. /* Set the MAC to operate in the appropriate duplex mode. */
  805. if (bp->duplex == DUPLEX_HALF)
  806. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  807. REG_WR(bp, BNX2_EMAC_MODE, val);
  808. /* Enable/disable rx PAUSE. */
  809. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  810. if (bp->flow_ctrl & FLOW_CTRL_RX)
  811. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  812. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  813. /* Enable/disable tx PAUSE. */
  814. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  815. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  816. if (bp->flow_ctrl & FLOW_CTRL_TX)
  817. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  818. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  819. /* Acknowledge the interrupt. */
  820. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  821. return 0;
  822. }
  823. static void
  824. bnx2_enable_bmsr1(struct bnx2 *bp)
  825. {
  826. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  827. (CHIP_NUM(bp) == CHIP_NUM_5709))
  828. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  829. MII_BNX2_BLK_ADDR_GP_STATUS);
  830. }
  831. static void
  832. bnx2_disable_bmsr1(struct bnx2 *bp)
  833. {
  834. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  835. (CHIP_NUM(bp) == CHIP_NUM_5709))
  836. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  837. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  838. }
  839. static int
  840. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  841. {
  842. u32 up1;
  843. int ret = 1;
  844. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  845. return 0;
  846. if (bp->autoneg & AUTONEG_SPEED)
  847. bp->advertising |= ADVERTISED_2500baseX_Full;
  848. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  849. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  850. bnx2_read_phy(bp, bp->mii_up1, &up1);
  851. if (!(up1 & BCM5708S_UP1_2G5)) {
  852. up1 |= BCM5708S_UP1_2G5;
  853. bnx2_write_phy(bp, bp->mii_up1, up1);
  854. ret = 0;
  855. }
  856. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  857. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  858. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  859. return ret;
  860. }
  861. static int
  862. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  863. {
  864. u32 up1;
  865. int ret = 0;
  866. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  867. return 0;
  868. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  869. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  870. bnx2_read_phy(bp, bp->mii_up1, &up1);
  871. if (up1 & BCM5708S_UP1_2G5) {
  872. up1 &= ~BCM5708S_UP1_2G5;
  873. bnx2_write_phy(bp, bp->mii_up1, up1);
  874. ret = 1;
  875. }
  876. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  877. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  878. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  879. return ret;
  880. }
  881. static void
  882. bnx2_enable_forced_2g5(struct bnx2 *bp)
  883. {
  884. u32 bmcr;
  885. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  886. return;
  887. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  888. u32 val;
  889. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  890. MII_BNX2_BLK_ADDR_SERDES_DIG);
  891. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  892. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  893. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  894. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  895. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  896. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  897. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  898. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  899. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  900. bmcr |= BCM5708S_BMCR_FORCE_2500;
  901. }
  902. if (bp->autoneg & AUTONEG_SPEED) {
  903. bmcr &= ~BMCR_ANENABLE;
  904. if (bp->req_duplex == DUPLEX_FULL)
  905. bmcr |= BMCR_FULLDPLX;
  906. }
  907. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  908. }
  909. static void
  910. bnx2_disable_forced_2g5(struct bnx2 *bp)
  911. {
  912. u32 bmcr;
  913. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  914. return;
  915. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  916. u32 val;
  917. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  918. MII_BNX2_BLK_ADDR_SERDES_DIG);
  919. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  920. val &= ~MII_BNX2_SD_MISC1_FORCE;
  921. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  922. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  923. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  924. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  925. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  926. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  927. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  928. }
  929. if (bp->autoneg & AUTONEG_SPEED)
  930. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  931. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  932. }
  933. static int
  934. bnx2_set_link(struct bnx2 *bp)
  935. {
  936. u32 bmsr;
  937. u8 link_up;
  938. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  939. bp->link_up = 1;
  940. return 0;
  941. }
  942. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  943. return 0;
  944. link_up = bp->link_up;
  945. bnx2_enable_bmsr1(bp);
  946. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  947. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  948. bnx2_disable_bmsr1(bp);
  949. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  950. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  951. u32 val;
  952. val = REG_RD(bp, BNX2_EMAC_STATUS);
  953. if (val & BNX2_EMAC_STATUS_LINK)
  954. bmsr |= BMSR_LSTATUS;
  955. else
  956. bmsr &= ~BMSR_LSTATUS;
  957. }
  958. if (bmsr & BMSR_LSTATUS) {
  959. bp->link_up = 1;
  960. if (bp->phy_flags & PHY_SERDES_FLAG) {
  961. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  962. bnx2_5706s_linkup(bp);
  963. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  964. bnx2_5708s_linkup(bp);
  965. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  966. bnx2_5709s_linkup(bp);
  967. }
  968. else {
  969. bnx2_copper_linkup(bp);
  970. }
  971. bnx2_resolve_flow_ctrl(bp);
  972. }
  973. else {
  974. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  975. (bp->autoneg & AUTONEG_SPEED))
  976. bnx2_disable_forced_2g5(bp);
  977. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  978. bp->link_up = 0;
  979. }
  980. if (bp->link_up != link_up) {
  981. bnx2_report_link(bp);
  982. }
  983. bnx2_set_mac_link(bp);
  984. return 0;
  985. }
  986. static int
  987. bnx2_reset_phy(struct bnx2 *bp)
  988. {
  989. int i;
  990. u32 reg;
  991. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  992. #define PHY_RESET_MAX_WAIT 100
  993. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  994. udelay(10);
  995. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  996. if (!(reg & BMCR_RESET)) {
  997. udelay(20);
  998. break;
  999. }
  1000. }
  1001. if (i == PHY_RESET_MAX_WAIT) {
  1002. return -EBUSY;
  1003. }
  1004. return 0;
  1005. }
  1006. static u32
  1007. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1008. {
  1009. u32 adv = 0;
  1010. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1011. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1012. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1013. adv = ADVERTISE_1000XPAUSE;
  1014. }
  1015. else {
  1016. adv = ADVERTISE_PAUSE_CAP;
  1017. }
  1018. }
  1019. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1020. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1021. adv = ADVERTISE_1000XPSE_ASYM;
  1022. }
  1023. else {
  1024. adv = ADVERTISE_PAUSE_ASYM;
  1025. }
  1026. }
  1027. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1028. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1029. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1030. }
  1031. else {
  1032. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1033. }
  1034. }
  1035. return adv;
  1036. }
  1037. static int bnx2_fw_sync(struct bnx2 *, u32, int);
  1038. static int
  1039. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1040. {
  1041. u32 speed_arg = 0, pause_adv;
  1042. pause_adv = bnx2_phy_get_pause_adv(bp);
  1043. if (bp->autoneg & AUTONEG_SPEED) {
  1044. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1045. if (bp->advertising & ADVERTISED_10baseT_Half)
  1046. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1047. if (bp->advertising & ADVERTISED_10baseT_Full)
  1048. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1049. if (bp->advertising & ADVERTISED_100baseT_Half)
  1050. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1051. if (bp->advertising & ADVERTISED_100baseT_Full)
  1052. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1053. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1054. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1055. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1056. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1057. } else {
  1058. if (bp->req_line_speed == SPEED_2500)
  1059. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1060. else if (bp->req_line_speed == SPEED_1000)
  1061. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1062. else if (bp->req_line_speed == SPEED_100) {
  1063. if (bp->req_duplex == DUPLEX_FULL)
  1064. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1065. else
  1066. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1067. } else if (bp->req_line_speed == SPEED_10) {
  1068. if (bp->req_duplex == DUPLEX_FULL)
  1069. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1070. else
  1071. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1072. }
  1073. }
  1074. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1075. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1076. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_1000XPSE_ASYM))
  1077. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1078. if (port == PORT_TP)
  1079. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1080. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1081. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB_ARG0, speed_arg);
  1082. spin_unlock_bh(&bp->phy_lock);
  1083. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
  1084. spin_lock_bh(&bp->phy_lock);
  1085. return 0;
  1086. }
  1087. static int
  1088. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1089. {
  1090. u32 adv, bmcr;
  1091. u32 new_adv = 0;
  1092. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1093. return (bnx2_setup_remote_phy(bp, port));
  1094. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1095. u32 new_bmcr;
  1096. int force_link_down = 0;
  1097. if (bp->req_line_speed == SPEED_2500) {
  1098. if (!bnx2_test_and_enable_2g5(bp))
  1099. force_link_down = 1;
  1100. } else if (bp->req_line_speed == SPEED_1000) {
  1101. if (bnx2_test_and_disable_2g5(bp))
  1102. force_link_down = 1;
  1103. }
  1104. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1105. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1106. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1107. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1108. new_bmcr |= BMCR_SPEED1000;
  1109. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1110. if (bp->req_line_speed == SPEED_2500)
  1111. bnx2_enable_forced_2g5(bp);
  1112. else if (bp->req_line_speed == SPEED_1000) {
  1113. bnx2_disable_forced_2g5(bp);
  1114. new_bmcr &= ~0x2000;
  1115. }
  1116. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1117. if (bp->req_line_speed == SPEED_2500)
  1118. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1119. else
  1120. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1121. }
  1122. if (bp->req_duplex == DUPLEX_FULL) {
  1123. adv |= ADVERTISE_1000XFULL;
  1124. new_bmcr |= BMCR_FULLDPLX;
  1125. }
  1126. else {
  1127. adv |= ADVERTISE_1000XHALF;
  1128. new_bmcr &= ~BMCR_FULLDPLX;
  1129. }
  1130. if ((new_bmcr != bmcr) || (force_link_down)) {
  1131. /* Force a link down visible on the other side */
  1132. if (bp->link_up) {
  1133. bnx2_write_phy(bp, bp->mii_adv, adv &
  1134. ~(ADVERTISE_1000XFULL |
  1135. ADVERTISE_1000XHALF));
  1136. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1137. BMCR_ANRESTART | BMCR_ANENABLE);
  1138. bp->link_up = 0;
  1139. netif_carrier_off(bp->dev);
  1140. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1141. bnx2_report_link(bp);
  1142. }
  1143. bnx2_write_phy(bp, bp->mii_adv, adv);
  1144. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1145. } else {
  1146. bnx2_resolve_flow_ctrl(bp);
  1147. bnx2_set_mac_link(bp);
  1148. }
  1149. return 0;
  1150. }
  1151. bnx2_test_and_enable_2g5(bp);
  1152. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1153. new_adv |= ADVERTISE_1000XFULL;
  1154. new_adv |= bnx2_phy_get_pause_adv(bp);
  1155. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1156. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1157. bp->serdes_an_pending = 0;
  1158. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1159. /* Force a link down visible on the other side */
  1160. if (bp->link_up) {
  1161. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1162. spin_unlock_bh(&bp->phy_lock);
  1163. msleep(20);
  1164. spin_lock_bh(&bp->phy_lock);
  1165. }
  1166. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1167. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1168. BMCR_ANENABLE);
  1169. /* Speed up link-up time when the link partner
  1170. * does not autonegotiate which is very common
  1171. * in blade servers. Some blade servers use
  1172. * IPMI for kerboard input and it's important
  1173. * to minimize link disruptions. Autoneg. involves
  1174. * exchanging base pages plus 3 next pages and
  1175. * normally completes in about 120 msec.
  1176. */
  1177. bp->current_interval = SERDES_AN_TIMEOUT;
  1178. bp->serdes_an_pending = 1;
  1179. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1180. } else {
  1181. bnx2_resolve_flow_ctrl(bp);
  1182. bnx2_set_mac_link(bp);
  1183. }
  1184. return 0;
  1185. }
  1186. #define ETHTOOL_ALL_FIBRE_SPEED \
  1187. (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ? \
  1188. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1189. (ADVERTISED_1000baseT_Full)
  1190. #define ETHTOOL_ALL_COPPER_SPEED \
  1191. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1192. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1193. ADVERTISED_1000baseT_Full)
  1194. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1195. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1196. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1197. static void
  1198. bnx2_set_default_remote_link(struct bnx2 *bp)
  1199. {
  1200. u32 link;
  1201. if (bp->phy_port == PORT_TP)
  1202. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_COPPER_LINK);
  1203. else
  1204. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_SERDES_LINK);
  1205. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1206. bp->req_line_speed = 0;
  1207. bp->autoneg |= AUTONEG_SPEED;
  1208. bp->advertising = ADVERTISED_Autoneg;
  1209. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1210. bp->advertising |= ADVERTISED_10baseT_Half;
  1211. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1212. bp->advertising |= ADVERTISED_10baseT_Full;
  1213. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1214. bp->advertising |= ADVERTISED_100baseT_Half;
  1215. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1216. bp->advertising |= ADVERTISED_100baseT_Full;
  1217. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1218. bp->advertising |= ADVERTISED_1000baseT_Full;
  1219. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1220. bp->advertising |= ADVERTISED_2500baseX_Full;
  1221. } else {
  1222. bp->autoneg = 0;
  1223. bp->advertising = 0;
  1224. bp->req_duplex = DUPLEX_FULL;
  1225. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1226. bp->req_line_speed = SPEED_10;
  1227. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1228. bp->req_duplex = DUPLEX_HALF;
  1229. }
  1230. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1231. bp->req_line_speed = SPEED_100;
  1232. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1233. bp->req_duplex = DUPLEX_HALF;
  1234. }
  1235. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1236. bp->req_line_speed = SPEED_1000;
  1237. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1238. bp->req_line_speed = SPEED_2500;
  1239. }
  1240. }
  1241. static void
  1242. bnx2_set_default_link(struct bnx2 *bp)
  1243. {
  1244. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1245. return bnx2_set_default_remote_link(bp);
  1246. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1247. bp->req_line_speed = 0;
  1248. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1249. u32 reg;
  1250. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1251. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  1252. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1253. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1254. bp->autoneg = 0;
  1255. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1256. bp->req_duplex = DUPLEX_FULL;
  1257. }
  1258. } else
  1259. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1260. }
  1261. static void
  1262. bnx2_remote_phy_event(struct bnx2 *bp)
  1263. {
  1264. u32 msg;
  1265. u8 link_up = bp->link_up;
  1266. u8 old_port;
  1267. msg = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  1268. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1269. bp->link_up = 0;
  1270. else {
  1271. u32 speed;
  1272. bp->link_up = 1;
  1273. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1274. bp->duplex = DUPLEX_FULL;
  1275. switch (speed) {
  1276. case BNX2_LINK_STATUS_10HALF:
  1277. bp->duplex = DUPLEX_HALF;
  1278. case BNX2_LINK_STATUS_10FULL:
  1279. bp->line_speed = SPEED_10;
  1280. break;
  1281. case BNX2_LINK_STATUS_100HALF:
  1282. bp->duplex = DUPLEX_HALF;
  1283. case BNX2_LINK_STATUS_100BASE_T4:
  1284. case BNX2_LINK_STATUS_100FULL:
  1285. bp->line_speed = SPEED_100;
  1286. break;
  1287. case BNX2_LINK_STATUS_1000HALF:
  1288. bp->duplex = DUPLEX_HALF;
  1289. case BNX2_LINK_STATUS_1000FULL:
  1290. bp->line_speed = SPEED_1000;
  1291. break;
  1292. case BNX2_LINK_STATUS_2500HALF:
  1293. bp->duplex = DUPLEX_HALF;
  1294. case BNX2_LINK_STATUS_2500FULL:
  1295. bp->line_speed = SPEED_2500;
  1296. break;
  1297. default:
  1298. bp->line_speed = 0;
  1299. break;
  1300. }
  1301. spin_lock(&bp->phy_lock);
  1302. bp->flow_ctrl = 0;
  1303. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1304. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1305. if (bp->duplex == DUPLEX_FULL)
  1306. bp->flow_ctrl = bp->req_flow_ctrl;
  1307. } else {
  1308. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1309. bp->flow_ctrl |= FLOW_CTRL_TX;
  1310. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1311. bp->flow_ctrl |= FLOW_CTRL_RX;
  1312. }
  1313. old_port = bp->phy_port;
  1314. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1315. bp->phy_port = PORT_FIBRE;
  1316. else
  1317. bp->phy_port = PORT_TP;
  1318. if (old_port != bp->phy_port)
  1319. bnx2_set_default_link(bp);
  1320. spin_unlock(&bp->phy_lock);
  1321. }
  1322. if (bp->link_up != link_up)
  1323. bnx2_report_link(bp);
  1324. bnx2_set_mac_link(bp);
  1325. }
  1326. static int
  1327. bnx2_set_remote_link(struct bnx2 *bp)
  1328. {
  1329. u32 evt_code;
  1330. evt_code = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_EVT_CODE_MB);
  1331. switch (evt_code) {
  1332. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1333. bnx2_remote_phy_event(bp);
  1334. break;
  1335. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1336. default:
  1337. break;
  1338. }
  1339. return 0;
  1340. }
  1341. static int
  1342. bnx2_setup_copper_phy(struct bnx2 *bp)
  1343. {
  1344. u32 bmcr;
  1345. u32 new_bmcr;
  1346. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1347. if (bp->autoneg & AUTONEG_SPEED) {
  1348. u32 adv_reg, adv1000_reg;
  1349. u32 new_adv_reg = 0;
  1350. u32 new_adv1000_reg = 0;
  1351. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1352. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1353. ADVERTISE_PAUSE_ASYM);
  1354. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1355. adv1000_reg &= PHY_ALL_1000_SPEED;
  1356. if (bp->advertising & ADVERTISED_10baseT_Half)
  1357. new_adv_reg |= ADVERTISE_10HALF;
  1358. if (bp->advertising & ADVERTISED_10baseT_Full)
  1359. new_adv_reg |= ADVERTISE_10FULL;
  1360. if (bp->advertising & ADVERTISED_100baseT_Half)
  1361. new_adv_reg |= ADVERTISE_100HALF;
  1362. if (bp->advertising & ADVERTISED_100baseT_Full)
  1363. new_adv_reg |= ADVERTISE_100FULL;
  1364. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1365. new_adv1000_reg |= ADVERTISE_1000FULL;
  1366. new_adv_reg |= ADVERTISE_CSMA;
  1367. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1368. if ((adv1000_reg != new_adv1000_reg) ||
  1369. (adv_reg != new_adv_reg) ||
  1370. ((bmcr & BMCR_ANENABLE) == 0)) {
  1371. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1372. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1373. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1374. BMCR_ANENABLE);
  1375. }
  1376. else if (bp->link_up) {
  1377. /* Flow ctrl may have changed from auto to forced */
  1378. /* or vice-versa. */
  1379. bnx2_resolve_flow_ctrl(bp);
  1380. bnx2_set_mac_link(bp);
  1381. }
  1382. return 0;
  1383. }
  1384. new_bmcr = 0;
  1385. if (bp->req_line_speed == SPEED_100) {
  1386. new_bmcr |= BMCR_SPEED100;
  1387. }
  1388. if (bp->req_duplex == DUPLEX_FULL) {
  1389. new_bmcr |= BMCR_FULLDPLX;
  1390. }
  1391. if (new_bmcr != bmcr) {
  1392. u32 bmsr;
  1393. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1394. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1395. if (bmsr & BMSR_LSTATUS) {
  1396. /* Force link down */
  1397. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1398. spin_unlock_bh(&bp->phy_lock);
  1399. msleep(50);
  1400. spin_lock_bh(&bp->phy_lock);
  1401. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1402. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1403. }
  1404. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1405. /* Normally, the new speed is setup after the link has
  1406. * gone down and up again. In some cases, link will not go
  1407. * down so we need to set up the new speed here.
  1408. */
  1409. if (bmsr & BMSR_LSTATUS) {
  1410. bp->line_speed = bp->req_line_speed;
  1411. bp->duplex = bp->req_duplex;
  1412. bnx2_resolve_flow_ctrl(bp);
  1413. bnx2_set_mac_link(bp);
  1414. }
  1415. } else {
  1416. bnx2_resolve_flow_ctrl(bp);
  1417. bnx2_set_mac_link(bp);
  1418. }
  1419. return 0;
  1420. }
  1421. static int
  1422. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1423. {
  1424. if (bp->loopback == MAC_LOOPBACK)
  1425. return 0;
  1426. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1427. return (bnx2_setup_serdes_phy(bp, port));
  1428. }
  1429. else {
  1430. return (bnx2_setup_copper_phy(bp));
  1431. }
  1432. }
  1433. static int
  1434. bnx2_init_5709s_phy(struct bnx2 *bp)
  1435. {
  1436. u32 val;
  1437. bp->mii_bmcr = MII_BMCR + 0x10;
  1438. bp->mii_bmsr = MII_BMSR + 0x10;
  1439. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1440. bp->mii_adv = MII_ADVERTISE + 0x10;
  1441. bp->mii_lpa = MII_LPA + 0x10;
  1442. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1443. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1444. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1445. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1446. bnx2_reset_phy(bp);
  1447. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1448. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1449. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1450. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1451. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1452. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1453. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1454. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  1455. val |= BCM5708S_UP1_2G5;
  1456. else
  1457. val &= ~BCM5708S_UP1_2G5;
  1458. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1459. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1460. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1461. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1462. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1463. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1464. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1465. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1466. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1467. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1468. return 0;
  1469. }
  1470. static int
  1471. bnx2_init_5708s_phy(struct bnx2 *bp)
  1472. {
  1473. u32 val;
  1474. bnx2_reset_phy(bp);
  1475. bp->mii_up1 = BCM5708S_UP1;
  1476. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1477. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1478. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1479. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1480. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1481. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1482. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1483. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1484. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1485. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  1486. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1487. val |= BCM5708S_UP1_2G5;
  1488. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1489. }
  1490. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1491. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1492. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1493. /* increase tx signal amplitude */
  1494. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1495. BCM5708S_BLK_ADDR_TX_MISC);
  1496. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1497. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1498. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1499. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1500. }
  1501. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1502. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1503. if (val) {
  1504. u32 is_backplane;
  1505. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1506. BNX2_SHARED_HW_CFG_CONFIG);
  1507. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1508. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1509. BCM5708S_BLK_ADDR_TX_MISC);
  1510. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1511. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1512. BCM5708S_BLK_ADDR_DIG);
  1513. }
  1514. }
  1515. return 0;
  1516. }
  1517. static int
  1518. bnx2_init_5706s_phy(struct bnx2 *bp)
  1519. {
  1520. bnx2_reset_phy(bp);
  1521. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1522. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1523. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1524. if (bp->dev->mtu > 1500) {
  1525. u32 val;
  1526. /* Set extended packet length bit */
  1527. bnx2_write_phy(bp, 0x18, 0x7);
  1528. bnx2_read_phy(bp, 0x18, &val);
  1529. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1530. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1531. bnx2_read_phy(bp, 0x1c, &val);
  1532. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1533. }
  1534. else {
  1535. u32 val;
  1536. bnx2_write_phy(bp, 0x18, 0x7);
  1537. bnx2_read_phy(bp, 0x18, &val);
  1538. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1539. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1540. bnx2_read_phy(bp, 0x1c, &val);
  1541. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1542. }
  1543. return 0;
  1544. }
  1545. static int
  1546. bnx2_init_copper_phy(struct bnx2 *bp)
  1547. {
  1548. u32 val;
  1549. bnx2_reset_phy(bp);
  1550. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1551. bnx2_write_phy(bp, 0x18, 0x0c00);
  1552. bnx2_write_phy(bp, 0x17, 0x000a);
  1553. bnx2_write_phy(bp, 0x15, 0x310b);
  1554. bnx2_write_phy(bp, 0x17, 0x201f);
  1555. bnx2_write_phy(bp, 0x15, 0x9506);
  1556. bnx2_write_phy(bp, 0x17, 0x401f);
  1557. bnx2_write_phy(bp, 0x15, 0x14e2);
  1558. bnx2_write_phy(bp, 0x18, 0x0400);
  1559. }
  1560. if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
  1561. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1562. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1563. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1564. val &= ~(1 << 8);
  1565. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1566. }
  1567. if (bp->dev->mtu > 1500) {
  1568. /* Set extended packet length bit */
  1569. bnx2_write_phy(bp, 0x18, 0x7);
  1570. bnx2_read_phy(bp, 0x18, &val);
  1571. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1572. bnx2_read_phy(bp, 0x10, &val);
  1573. bnx2_write_phy(bp, 0x10, val | 0x1);
  1574. }
  1575. else {
  1576. bnx2_write_phy(bp, 0x18, 0x7);
  1577. bnx2_read_phy(bp, 0x18, &val);
  1578. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1579. bnx2_read_phy(bp, 0x10, &val);
  1580. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1581. }
  1582. /* ethernet@wirespeed */
  1583. bnx2_write_phy(bp, 0x18, 0x7007);
  1584. bnx2_read_phy(bp, 0x18, &val);
  1585. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1586. return 0;
  1587. }
  1588. static int
  1589. bnx2_init_phy(struct bnx2 *bp)
  1590. {
  1591. u32 val;
  1592. int rc = 0;
  1593. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1594. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1595. bp->mii_bmcr = MII_BMCR;
  1596. bp->mii_bmsr = MII_BMSR;
  1597. bp->mii_bmsr1 = MII_BMSR;
  1598. bp->mii_adv = MII_ADVERTISE;
  1599. bp->mii_lpa = MII_LPA;
  1600. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1601. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1602. goto setup_phy;
  1603. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1604. bp->phy_id = val << 16;
  1605. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1606. bp->phy_id |= val & 0xffff;
  1607. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1608. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1609. rc = bnx2_init_5706s_phy(bp);
  1610. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1611. rc = bnx2_init_5708s_phy(bp);
  1612. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1613. rc = bnx2_init_5709s_phy(bp);
  1614. }
  1615. else {
  1616. rc = bnx2_init_copper_phy(bp);
  1617. }
  1618. setup_phy:
  1619. if (!rc)
  1620. rc = bnx2_setup_phy(bp, bp->phy_port);
  1621. return rc;
  1622. }
  1623. static int
  1624. bnx2_set_mac_loopback(struct bnx2 *bp)
  1625. {
  1626. u32 mac_mode;
  1627. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1628. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1629. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1630. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1631. bp->link_up = 1;
  1632. return 0;
  1633. }
  1634. static int bnx2_test_link(struct bnx2 *);
  1635. static int
  1636. bnx2_set_phy_loopback(struct bnx2 *bp)
  1637. {
  1638. u32 mac_mode;
  1639. int rc, i;
  1640. spin_lock_bh(&bp->phy_lock);
  1641. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1642. BMCR_SPEED1000);
  1643. spin_unlock_bh(&bp->phy_lock);
  1644. if (rc)
  1645. return rc;
  1646. for (i = 0; i < 10; i++) {
  1647. if (bnx2_test_link(bp) == 0)
  1648. break;
  1649. msleep(100);
  1650. }
  1651. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1652. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1653. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1654. BNX2_EMAC_MODE_25G_MODE);
  1655. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1656. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1657. bp->link_up = 1;
  1658. return 0;
  1659. }
  1660. static int
  1661. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1662. {
  1663. int i;
  1664. u32 val;
  1665. bp->fw_wr_seq++;
  1666. msg_data |= bp->fw_wr_seq;
  1667. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1668. /* wait for an acknowledgement. */
  1669. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1670. msleep(10);
  1671. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1672. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1673. break;
  1674. }
  1675. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1676. return 0;
  1677. /* If we timed out, inform the firmware that this is the case. */
  1678. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1679. if (!silent)
  1680. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1681. "%x\n", msg_data);
  1682. msg_data &= ~BNX2_DRV_MSG_CODE;
  1683. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1684. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1685. return -EBUSY;
  1686. }
  1687. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1688. return -EIO;
  1689. return 0;
  1690. }
  1691. static int
  1692. bnx2_init_5709_context(struct bnx2 *bp)
  1693. {
  1694. int i, ret = 0;
  1695. u32 val;
  1696. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1697. val |= (BCM_PAGE_BITS - 8) << 16;
  1698. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1699. for (i = 0; i < 10; i++) {
  1700. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1701. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1702. break;
  1703. udelay(2);
  1704. }
  1705. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1706. return -EBUSY;
  1707. for (i = 0; i < bp->ctx_pages; i++) {
  1708. int j;
  1709. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1710. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1711. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1712. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1713. (u64) bp->ctx_blk_mapping[i] >> 32);
  1714. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1715. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1716. for (j = 0; j < 10; j++) {
  1717. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1718. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1719. break;
  1720. udelay(5);
  1721. }
  1722. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1723. ret = -EBUSY;
  1724. break;
  1725. }
  1726. }
  1727. return ret;
  1728. }
  1729. static void
  1730. bnx2_init_context(struct bnx2 *bp)
  1731. {
  1732. u32 vcid;
  1733. vcid = 96;
  1734. while (vcid) {
  1735. u32 vcid_addr, pcid_addr, offset;
  1736. int i;
  1737. vcid--;
  1738. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1739. u32 new_vcid;
  1740. vcid_addr = GET_PCID_ADDR(vcid);
  1741. if (vcid & 0x8) {
  1742. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1743. }
  1744. else {
  1745. new_vcid = vcid;
  1746. }
  1747. pcid_addr = GET_PCID_ADDR(new_vcid);
  1748. }
  1749. else {
  1750. vcid_addr = GET_CID_ADDR(vcid);
  1751. pcid_addr = vcid_addr;
  1752. }
  1753. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  1754. vcid_addr += (i << PHY_CTX_SHIFT);
  1755. pcid_addr += (i << PHY_CTX_SHIFT);
  1756. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1757. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1758. /* Zero out the context. */
  1759. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  1760. CTX_WR(bp, 0x00, offset, 0);
  1761. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1762. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1763. }
  1764. }
  1765. }
  1766. static int
  1767. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1768. {
  1769. u16 *good_mbuf;
  1770. u32 good_mbuf_cnt;
  1771. u32 val;
  1772. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1773. if (good_mbuf == NULL) {
  1774. printk(KERN_ERR PFX "Failed to allocate memory in "
  1775. "bnx2_alloc_bad_rbuf\n");
  1776. return -ENOMEM;
  1777. }
  1778. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1779. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1780. good_mbuf_cnt = 0;
  1781. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1782. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1783. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1784. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1785. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1786. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1787. /* The addresses with Bit 9 set are bad memory blocks. */
  1788. if (!(val & (1 << 9))) {
  1789. good_mbuf[good_mbuf_cnt] = (u16) val;
  1790. good_mbuf_cnt++;
  1791. }
  1792. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1793. }
  1794. /* Free the good ones back to the mbuf pool thus discarding
  1795. * all the bad ones. */
  1796. while (good_mbuf_cnt) {
  1797. good_mbuf_cnt--;
  1798. val = good_mbuf[good_mbuf_cnt];
  1799. val = (val << 9) | val | 1;
  1800. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1801. }
  1802. kfree(good_mbuf);
  1803. return 0;
  1804. }
  1805. static void
  1806. bnx2_set_mac_addr(struct bnx2 *bp)
  1807. {
  1808. u32 val;
  1809. u8 *mac_addr = bp->dev->dev_addr;
  1810. val = (mac_addr[0] << 8) | mac_addr[1];
  1811. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1812. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1813. (mac_addr[4] << 8) | mac_addr[5];
  1814. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1815. }
  1816. static inline int
  1817. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1818. {
  1819. struct sk_buff *skb;
  1820. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1821. dma_addr_t mapping;
  1822. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  1823. unsigned long align;
  1824. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  1825. if (skb == NULL) {
  1826. return -ENOMEM;
  1827. }
  1828. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  1829. skb_reserve(skb, BNX2_RX_ALIGN - align);
  1830. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1831. PCI_DMA_FROMDEVICE);
  1832. rx_buf->skb = skb;
  1833. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1834. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1835. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1836. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1837. return 0;
  1838. }
  1839. static int
  1840. bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
  1841. {
  1842. struct status_block *sblk = bp->status_blk;
  1843. u32 new_link_state, old_link_state;
  1844. int is_set = 1;
  1845. new_link_state = sblk->status_attn_bits & event;
  1846. old_link_state = sblk->status_attn_bits_ack & event;
  1847. if (new_link_state != old_link_state) {
  1848. if (new_link_state)
  1849. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  1850. else
  1851. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  1852. } else
  1853. is_set = 0;
  1854. return is_set;
  1855. }
  1856. static void
  1857. bnx2_phy_int(struct bnx2 *bp)
  1858. {
  1859. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
  1860. spin_lock(&bp->phy_lock);
  1861. bnx2_set_link(bp);
  1862. spin_unlock(&bp->phy_lock);
  1863. }
  1864. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_TIMER_ABORT))
  1865. bnx2_set_remote_link(bp);
  1866. }
  1867. static void
  1868. bnx2_tx_int(struct bnx2 *bp)
  1869. {
  1870. struct status_block *sblk = bp->status_blk;
  1871. u16 hw_cons, sw_cons, sw_ring_cons;
  1872. int tx_free_bd = 0;
  1873. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1874. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1875. hw_cons++;
  1876. }
  1877. sw_cons = bp->tx_cons;
  1878. while (sw_cons != hw_cons) {
  1879. struct sw_bd *tx_buf;
  1880. struct sk_buff *skb;
  1881. int i, last;
  1882. sw_ring_cons = TX_RING_IDX(sw_cons);
  1883. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1884. skb = tx_buf->skb;
  1885. /* partial BD completions possible with TSO packets */
  1886. if (skb_is_gso(skb)) {
  1887. u16 last_idx, last_ring_idx;
  1888. last_idx = sw_cons +
  1889. skb_shinfo(skb)->nr_frags + 1;
  1890. last_ring_idx = sw_ring_cons +
  1891. skb_shinfo(skb)->nr_frags + 1;
  1892. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1893. last_idx++;
  1894. }
  1895. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1896. break;
  1897. }
  1898. }
  1899. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1900. skb_headlen(skb), PCI_DMA_TODEVICE);
  1901. tx_buf->skb = NULL;
  1902. last = skb_shinfo(skb)->nr_frags;
  1903. for (i = 0; i < last; i++) {
  1904. sw_cons = NEXT_TX_BD(sw_cons);
  1905. pci_unmap_page(bp->pdev,
  1906. pci_unmap_addr(
  1907. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1908. mapping),
  1909. skb_shinfo(skb)->frags[i].size,
  1910. PCI_DMA_TODEVICE);
  1911. }
  1912. sw_cons = NEXT_TX_BD(sw_cons);
  1913. tx_free_bd += last + 1;
  1914. dev_kfree_skb(skb);
  1915. hw_cons = bp->hw_tx_cons =
  1916. sblk->status_tx_quick_consumer_index0;
  1917. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1918. hw_cons++;
  1919. }
  1920. }
  1921. bp->tx_cons = sw_cons;
  1922. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  1923. * before checking for netif_queue_stopped(). Without the
  1924. * memory barrier, there is a small possibility that bnx2_start_xmit()
  1925. * will miss it and cause the queue to be stopped forever.
  1926. */
  1927. smp_mb();
  1928. if (unlikely(netif_queue_stopped(bp->dev)) &&
  1929. (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
  1930. netif_tx_lock(bp->dev);
  1931. if ((netif_queue_stopped(bp->dev)) &&
  1932. (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
  1933. netif_wake_queue(bp->dev);
  1934. netif_tx_unlock(bp->dev);
  1935. }
  1936. }
  1937. static inline void
  1938. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1939. u16 cons, u16 prod)
  1940. {
  1941. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1942. struct rx_bd *cons_bd, *prod_bd;
  1943. cons_rx_buf = &bp->rx_buf_ring[cons];
  1944. prod_rx_buf = &bp->rx_buf_ring[prod];
  1945. pci_dma_sync_single_for_device(bp->pdev,
  1946. pci_unmap_addr(cons_rx_buf, mapping),
  1947. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1948. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1949. prod_rx_buf->skb = skb;
  1950. if (cons == prod)
  1951. return;
  1952. pci_unmap_addr_set(prod_rx_buf, mapping,
  1953. pci_unmap_addr(cons_rx_buf, mapping));
  1954. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  1955. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  1956. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1957. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1958. }
  1959. static int
  1960. bnx2_rx_int(struct bnx2 *bp, int budget)
  1961. {
  1962. struct status_block *sblk = bp->status_blk;
  1963. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1964. struct l2_fhdr *rx_hdr;
  1965. int rx_pkt = 0;
  1966. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  1967. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1968. hw_cons++;
  1969. }
  1970. sw_cons = bp->rx_cons;
  1971. sw_prod = bp->rx_prod;
  1972. /* Memory barrier necessary as speculative reads of the rx
  1973. * buffer can be ahead of the index in the status block
  1974. */
  1975. rmb();
  1976. while (sw_cons != hw_cons) {
  1977. unsigned int len;
  1978. u32 status;
  1979. struct sw_bd *rx_buf;
  1980. struct sk_buff *skb;
  1981. dma_addr_t dma_addr;
  1982. sw_ring_cons = RX_RING_IDX(sw_cons);
  1983. sw_ring_prod = RX_RING_IDX(sw_prod);
  1984. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1985. skb = rx_buf->skb;
  1986. rx_buf->skb = NULL;
  1987. dma_addr = pci_unmap_addr(rx_buf, mapping);
  1988. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  1989. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1990. rx_hdr = (struct l2_fhdr *) skb->data;
  1991. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1992. if ((status = rx_hdr->l2_fhdr_status) &
  1993. (L2_FHDR_ERRORS_BAD_CRC |
  1994. L2_FHDR_ERRORS_PHY_DECODE |
  1995. L2_FHDR_ERRORS_ALIGNMENT |
  1996. L2_FHDR_ERRORS_TOO_SHORT |
  1997. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1998. goto reuse_rx;
  1999. }
  2000. /* Since we don't have a jumbo ring, copy small packets
  2001. * if mtu > 1500
  2002. */
  2003. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  2004. struct sk_buff *new_skb;
  2005. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  2006. if (new_skb == NULL)
  2007. goto reuse_rx;
  2008. /* aligned copy */
  2009. skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
  2010. new_skb->data, len + 2);
  2011. skb_reserve(new_skb, 2);
  2012. skb_put(new_skb, len);
  2013. bnx2_reuse_rx_skb(bp, skb,
  2014. sw_ring_cons, sw_ring_prod);
  2015. skb = new_skb;
  2016. }
  2017. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  2018. pci_unmap_single(bp->pdev, dma_addr,
  2019. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2020. skb_reserve(skb, bp->rx_offset);
  2021. skb_put(skb, len);
  2022. }
  2023. else {
  2024. reuse_rx:
  2025. bnx2_reuse_rx_skb(bp, skb,
  2026. sw_ring_cons, sw_ring_prod);
  2027. goto next_rx;
  2028. }
  2029. skb->protocol = eth_type_trans(skb, bp->dev);
  2030. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2031. (ntohs(skb->protocol) != 0x8100)) {
  2032. dev_kfree_skb(skb);
  2033. goto next_rx;
  2034. }
  2035. skb->ip_summed = CHECKSUM_NONE;
  2036. if (bp->rx_csum &&
  2037. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2038. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2039. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2040. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2041. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2042. }
  2043. #ifdef BCM_VLAN
  2044. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  2045. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  2046. rx_hdr->l2_fhdr_vlan_tag);
  2047. }
  2048. else
  2049. #endif
  2050. netif_receive_skb(skb);
  2051. bp->dev->last_rx = jiffies;
  2052. rx_pkt++;
  2053. next_rx:
  2054. sw_cons = NEXT_RX_BD(sw_cons);
  2055. sw_prod = NEXT_RX_BD(sw_prod);
  2056. if ((rx_pkt == budget))
  2057. break;
  2058. /* Refresh hw_cons to see if there is new work */
  2059. if (sw_cons == hw_cons) {
  2060. hw_cons = bp->hw_rx_cons =
  2061. sblk->status_rx_quick_consumer_index0;
  2062. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  2063. hw_cons++;
  2064. rmb();
  2065. }
  2066. }
  2067. bp->rx_cons = sw_cons;
  2068. bp->rx_prod = sw_prod;
  2069. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  2070. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2071. mmiowb();
  2072. return rx_pkt;
  2073. }
  2074. /* MSI ISR - The only difference between this and the INTx ISR
  2075. * is that the MSI interrupt is always serviced.
  2076. */
  2077. static irqreturn_t
  2078. bnx2_msi(int irq, void *dev_instance)
  2079. {
  2080. struct net_device *dev = dev_instance;
  2081. struct bnx2 *bp = netdev_priv(dev);
  2082. prefetch(bp->status_blk);
  2083. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2084. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2085. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2086. /* Return here if interrupt is disabled. */
  2087. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2088. return IRQ_HANDLED;
  2089. netif_rx_schedule(dev);
  2090. return IRQ_HANDLED;
  2091. }
  2092. static irqreturn_t
  2093. bnx2_msi_1shot(int irq, void *dev_instance)
  2094. {
  2095. struct net_device *dev = dev_instance;
  2096. struct bnx2 *bp = netdev_priv(dev);
  2097. prefetch(bp->status_blk);
  2098. /* Return here if interrupt is disabled. */
  2099. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2100. return IRQ_HANDLED;
  2101. netif_rx_schedule(dev);
  2102. return IRQ_HANDLED;
  2103. }
  2104. static irqreturn_t
  2105. bnx2_interrupt(int irq, void *dev_instance)
  2106. {
  2107. struct net_device *dev = dev_instance;
  2108. struct bnx2 *bp = netdev_priv(dev);
  2109. /* When using INTx, it is possible for the interrupt to arrive
  2110. * at the CPU before the status block posted prior to the
  2111. * interrupt. Reading a register will flush the status block.
  2112. * When using MSI, the MSI message will always complete after
  2113. * the status block write.
  2114. */
  2115. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  2116. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2117. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2118. return IRQ_NONE;
  2119. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2120. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2121. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2122. /* Return here if interrupt is shared and is disabled. */
  2123. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2124. return IRQ_HANDLED;
  2125. netif_rx_schedule(dev);
  2126. return IRQ_HANDLED;
  2127. }
  2128. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2129. STATUS_ATTN_BITS_TIMER_ABORT)
  2130. static inline int
  2131. bnx2_has_work(struct bnx2 *bp)
  2132. {
  2133. struct status_block *sblk = bp->status_blk;
  2134. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  2135. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  2136. return 1;
  2137. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2138. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2139. return 1;
  2140. return 0;
  2141. }
  2142. static int
  2143. bnx2_poll(struct net_device *dev, int *budget)
  2144. {
  2145. struct bnx2 *bp = netdev_priv(dev);
  2146. struct status_block *sblk = bp->status_blk;
  2147. u32 status_attn_bits = sblk->status_attn_bits;
  2148. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2149. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2150. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2151. bnx2_phy_int(bp);
  2152. /* This is needed to take care of transient status
  2153. * during link changes.
  2154. */
  2155. REG_WR(bp, BNX2_HC_COMMAND,
  2156. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2157. REG_RD(bp, BNX2_HC_COMMAND);
  2158. }
  2159. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  2160. bnx2_tx_int(bp);
  2161. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
  2162. int orig_budget = *budget;
  2163. int work_done;
  2164. if (orig_budget > dev->quota)
  2165. orig_budget = dev->quota;
  2166. work_done = bnx2_rx_int(bp, orig_budget);
  2167. *budget -= work_done;
  2168. dev->quota -= work_done;
  2169. }
  2170. bp->last_status_idx = bp->status_blk->status_idx;
  2171. rmb();
  2172. if (!bnx2_has_work(bp)) {
  2173. netif_rx_complete(dev);
  2174. if (likely(bp->flags & USING_MSI_FLAG)) {
  2175. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2176. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2177. bp->last_status_idx);
  2178. return 0;
  2179. }
  2180. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2181. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2182. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2183. bp->last_status_idx);
  2184. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2185. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2186. bp->last_status_idx);
  2187. return 0;
  2188. }
  2189. return 1;
  2190. }
  2191. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2192. * from set_multicast.
  2193. */
  2194. static void
  2195. bnx2_set_rx_mode(struct net_device *dev)
  2196. {
  2197. struct bnx2 *bp = netdev_priv(dev);
  2198. u32 rx_mode, sort_mode;
  2199. int i;
  2200. spin_lock_bh(&bp->phy_lock);
  2201. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2202. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2203. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2204. #ifdef BCM_VLAN
  2205. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  2206. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2207. #else
  2208. if (!(bp->flags & ASF_ENABLE_FLAG))
  2209. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2210. #endif
  2211. if (dev->flags & IFF_PROMISC) {
  2212. /* Promiscuous mode. */
  2213. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2214. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2215. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2216. }
  2217. else if (dev->flags & IFF_ALLMULTI) {
  2218. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2219. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2220. 0xffffffff);
  2221. }
  2222. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2223. }
  2224. else {
  2225. /* Accept one or more multicast(s). */
  2226. struct dev_mc_list *mclist;
  2227. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2228. u32 regidx;
  2229. u32 bit;
  2230. u32 crc;
  2231. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2232. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2233. i++, mclist = mclist->next) {
  2234. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2235. bit = crc & 0xff;
  2236. regidx = (bit & 0xe0) >> 5;
  2237. bit &= 0x1f;
  2238. mc_filter[regidx] |= (1 << bit);
  2239. }
  2240. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2241. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2242. mc_filter[i]);
  2243. }
  2244. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2245. }
  2246. if (rx_mode != bp->rx_mode) {
  2247. bp->rx_mode = rx_mode;
  2248. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2249. }
  2250. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2251. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2252. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2253. spin_unlock_bh(&bp->phy_lock);
  2254. }
  2255. #define FW_BUF_SIZE 0x8000
  2256. static int
  2257. bnx2_gunzip_init(struct bnx2 *bp)
  2258. {
  2259. if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
  2260. goto gunzip_nomem1;
  2261. if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
  2262. goto gunzip_nomem2;
  2263. bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
  2264. if (bp->strm->workspace == NULL)
  2265. goto gunzip_nomem3;
  2266. return 0;
  2267. gunzip_nomem3:
  2268. kfree(bp->strm);
  2269. bp->strm = NULL;
  2270. gunzip_nomem2:
  2271. vfree(bp->gunzip_buf);
  2272. bp->gunzip_buf = NULL;
  2273. gunzip_nomem1:
  2274. printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
  2275. "uncompression.\n", bp->dev->name);
  2276. return -ENOMEM;
  2277. }
  2278. static void
  2279. bnx2_gunzip_end(struct bnx2 *bp)
  2280. {
  2281. kfree(bp->strm->workspace);
  2282. kfree(bp->strm);
  2283. bp->strm = NULL;
  2284. if (bp->gunzip_buf) {
  2285. vfree(bp->gunzip_buf);
  2286. bp->gunzip_buf = NULL;
  2287. }
  2288. }
  2289. static int
  2290. bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
  2291. {
  2292. int n, rc;
  2293. /* check gzip header */
  2294. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
  2295. return -EINVAL;
  2296. n = 10;
  2297. #define FNAME 0x8
  2298. if (zbuf[3] & FNAME)
  2299. while ((zbuf[n++] != 0) && (n < len));
  2300. bp->strm->next_in = zbuf + n;
  2301. bp->strm->avail_in = len - n;
  2302. bp->strm->next_out = bp->gunzip_buf;
  2303. bp->strm->avail_out = FW_BUF_SIZE;
  2304. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  2305. if (rc != Z_OK)
  2306. return rc;
  2307. rc = zlib_inflate(bp->strm, Z_FINISH);
  2308. *outlen = FW_BUF_SIZE - bp->strm->avail_out;
  2309. *outbuf = bp->gunzip_buf;
  2310. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  2311. printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
  2312. bp->dev->name, bp->strm->msg);
  2313. zlib_inflateEnd(bp->strm);
  2314. if (rc == Z_STREAM_END)
  2315. return 0;
  2316. return rc;
  2317. }
  2318. static void
  2319. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  2320. u32 rv2p_proc)
  2321. {
  2322. int i;
  2323. u32 val;
  2324. for (i = 0; i < rv2p_code_len; i += 8) {
  2325. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
  2326. rv2p_code++;
  2327. REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
  2328. rv2p_code++;
  2329. if (rv2p_proc == RV2P_PROC1) {
  2330. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2331. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  2332. }
  2333. else {
  2334. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2335. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  2336. }
  2337. }
  2338. /* Reset the processor, un-stall is done later. */
  2339. if (rv2p_proc == RV2P_PROC1) {
  2340. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2341. }
  2342. else {
  2343. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2344. }
  2345. }
  2346. static int
  2347. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  2348. {
  2349. u32 offset;
  2350. u32 val;
  2351. int rc;
  2352. /* Halt the CPU. */
  2353. val = REG_RD_IND(bp, cpu_reg->mode);
  2354. val |= cpu_reg->mode_value_halt;
  2355. REG_WR_IND(bp, cpu_reg->mode, val);
  2356. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2357. /* Load the Text area. */
  2358. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  2359. if (fw->gz_text) {
  2360. u32 text_len;
  2361. void *text;
  2362. rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
  2363. &text_len);
  2364. if (rc)
  2365. return rc;
  2366. fw->text = text;
  2367. }
  2368. if (fw->gz_text) {
  2369. int j;
  2370. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  2371. REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
  2372. }
  2373. }
  2374. /* Load the Data area. */
  2375. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  2376. if (fw->data) {
  2377. int j;
  2378. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  2379. REG_WR_IND(bp, offset, fw->data[j]);
  2380. }
  2381. }
  2382. /* Load the SBSS area. */
  2383. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  2384. if (fw->sbss) {
  2385. int j;
  2386. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  2387. REG_WR_IND(bp, offset, fw->sbss[j]);
  2388. }
  2389. }
  2390. /* Load the BSS area. */
  2391. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  2392. if (fw->bss) {
  2393. int j;
  2394. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  2395. REG_WR_IND(bp, offset, fw->bss[j]);
  2396. }
  2397. }
  2398. /* Load the Read-Only area. */
  2399. offset = cpu_reg->spad_base +
  2400. (fw->rodata_addr - cpu_reg->mips_view_base);
  2401. if (fw->rodata) {
  2402. int j;
  2403. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  2404. REG_WR_IND(bp, offset, fw->rodata[j]);
  2405. }
  2406. }
  2407. /* Clear the pre-fetch instruction. */
  2408. REG_WR_IND(bp, cpu_reg->inst, 0);
  2409. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  2410. /* Start the CPU. */
  2411. val = REG_RD_IND(bp, cpu_reg->mode);
  2412. val &= ~cpu_reg->mode_value_halt;
  2413. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2414. REG_WR_IND(bp, cpu_reg->mode, val);
  2415. return 0;
  2416. }
  2417. static int
  2418. bnx2_init_cpus(struct bnx2 *bp)
  2419. {
  2420. struct cpu_reg cpu_reg;
  2421. struct fw_info *fw;
  2422. int rc = 0;
  2423. void *text;
  2424. u32 text_len;
  2425. if ((rc = bnx2_gunzip_init(bp)) != 0)
  2426. return rc;
  2427. /* Initialize the RV2P processor. */
  2428. rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
  2429. &text_len);
  2430. if (rc)
  2431. goto init_cpu_err;
  2432. load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
  2433. rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
  2434. &text_len);
  2435. if (rc)
  2436. goto init_cpu_err;
  2437. load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
  2438. /* Initialize the RX Processor. */
  2439. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  2440. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  2441. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  2442. cpu_reg.state = BNX2_RXP_CPU_STATE;
  2443. cpu_reg.state_value_clear = 0xffffff;
  2444. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  2445. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  2446. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  2447. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  2448. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  2449. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  2450. cpu_reg.mips_view_base = 0x8000000;
  2451. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2452. fw = &bnx2_rxp_fw_09;
  2453. else
  2454. fw = &bnx2_rxp_fw_06;
  2455. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2456. if (rc)
  2457. goto init_cpu_err;
  2458. /* Initialize the TX Processor. */
  2459. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2460. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2461. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2462. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2463. cpu_reg.state_value_clear = 0xffffff;
  2464. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2465. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2466. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2467. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2468. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2469. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2470. cpu_reg.mips_view_base = 0x8000000;
  2471. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2472. fw = &bnx2_txp_fw_09;
  2473. else
  2474. fw = &bnx2_txp_fw_06;
  2475. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2476. if (rc)
  2477. goto init_cpu_err;
  2478. /* Initialize the TX Patch-up Processor. */
  2479. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2480. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2481. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2482. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2483. cpu_reg.state_value_clear = 0xffffff;
  2484. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2485. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2486. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2487. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2488. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2489. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2490. cpu_reg.mips_view_base = 0x8000000;
  2491. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2492. fw = &bnx2_tpat_fw_09;
  2493. else
  2494. fw = &bnx2_tpat_fw_06;
  2495. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2496. if (rc)
  2497. goto init_cpu_err;
  2498. /* Initialize the Completion Processor. */
  2499. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2500. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2501. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2502. cpu_reg.state = BNX2_COM_CPU_STATE;
  2503. cpu_reg.state_value_clear = 0xffffff;
  2504. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2505. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2506. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2507. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2508. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2509. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2510. cpu_reg.mips_view_base = 0x8000000;
  2511. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2512. fw = &bnx2_com_fw_09;
  2513. else
  2514. fw = &bnx2_com_fw_06;
  2515. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2516. if (rc)
  2517. goto init_cpu_err;
  2518. /* Initialize the Command Processor. */
  2519. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2520. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2521. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2522. cpu_reg.state = BNX2_CP_CPU_STATE;
  2523. cpu_reg.state_value_clear = 0xffffff;
  2524. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2525. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2526. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2527. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2528. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2529. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2530. cpu_reg.mips_view_base = 0x8000000;
  2531. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2532. fw = &bnx2_cp_fw_09;
  2533. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2534. if (rc)
  2535. goto init_cpu_err;
  2536. }
  2537. init_cpu_err:
  2538. bnx2_gunzip_end(bp);
  2539. return rc;
  2540. }
  2541. static int
  2542. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2543. {
  2544. u16 pmcsr;
  2545. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2546. switch (state) {
  2547. case PCI_D0: {
  2548. u32 val;
  2549. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2550. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2551. PCI_PM_CTRL_PME_STATUS);
  2552. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2553. /* delay required during transition out of D3hot */
  2554. msleep(20);
  2555. val = REG_RD(bp, BNX2_EMAC_MODE);
  2556. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2557. val &= ~BNX2_EMAC_MODE_MPKT;
  2558. REG_WR(bp, BNX2_EMAC_MODE, val);
  2559. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2560. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2561. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2562. break;
  2563. }
  2564. case PCI_D3hot: {
  2565. int i;
  2566. u32 val, wol_msg;
  2567. if (bp->wol) {
  2568. u32 advertising;
  2569. u8 autoneg;
  2570. autoneg = bp->autoneg;
  2571. advertising = bp->advertising;
  2572. bp->autoneg = AUTONEG_SPEED;
  2573. bp->advertising = ADVERTISED_10baseT_Half |
  2574. ADVERTISED_10baseT_Full |
  2575. ADVERTISED_100baseT_Half |
  2576. ADVERTISED_100baseT_Full |
  2577. ADVERTISED_Autoneg;
  2578. bnx2_setup_copper_phy(bp);
  2579. bp->autoneg = autoneg;
  2580. bp->advertising = advertising;
  2581. bnx2_set_mac_addr(bp);
  2582. val = REG_RD(bp, BNX2_EMAC_MODE);
  2583. /* Enable port mode. */
  2584. val &= ~BNX2_EMAC_MODE_PORT;
  2585. val |= BNX2_EMAC_MODE_PORT_MII |
  2586. BNX2_EMAC_MODE_MPKT_RCVD |
  2587. BNX2_EMAC_MODE_ACPI_RCVD |
  2588. BNX2_EMAC_MODE_MPKT;
  2589. REG_WR(bp, BNX2_EMAC_MODE, val);
  2590. /* receive all multicast */
  2591. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2592. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2593. 0xffffffff);
  2594. }
  2595. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2596. BNX2_EMAC_RX_MODE_SORT_MODE);
  2597. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2598. BNX2_RPM_SORT_USER0_MC_EN;
  2599. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2600. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2601. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2602. BNX2_RPM_SORT_USER0_ENA);
  2603. /* Need to enable EMAC and RPM for WOL. */
  2604. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2605. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2606. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2607. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2608. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2609. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2610. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2611. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2612. }
  2613. else {
  2614. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2615. }
  2616. if (!(bp->flags & NO_WOL_FLAG))
  2617. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2618. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2619. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2620. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2621. if (bp->wol)
  2622. pmcsr |= 3;
  2623. }
  2624. else {
  2625. pmcsr |= 3;
  2626. }
  2627. if (bp->wol) {
  2628. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2629. }
  2630. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2631. pmcsr);
  2632. /* No more memory access after this point until
  2633. * device is brought back to D0.
  2634. */
  2635. udelay(50);
  2636. break;
  2637. }
  2638. default:
  2639. return -EINVAL;
  2640. }
  2641. return 0;
  2642. }
  2643. static int
  2644. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2645. {
  2646. u32 val;
  2647. int j;
  2648. /* Request access to the flash interface. */
  2649. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2650. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2651. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2652. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2653. break;
  2654. udelay(5);
  2655. }
  2656. if (j >= NVRAM_TIMEOUT_COUNT)
  2657. return -EBUSY;
  2658. return 0;
  2659. }
  2660. static int
  2661. bnx2_release_nvram_lock(struct bnx2 *bp)
  2662. {
  2663. int j;
  2664. u32 val;
  2665. /* Relinquish nvram interface. */
  2666. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2667. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2668. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2669. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2670. break;
  2671. udelay(5);
  2672. }
  2673. if (j >= NVRAM_TIMEOUT_COUNT)
  2674. return -EBUSY;
  2675. return 0;
  2676. }
  2677. static int
  2678. bnx2_enable_nvram_write(struct bnx2 *bp)
  2679. {
  2680. u32 val;
  2681. val = REG_RD(bp, BNX2_MISC_CFG);
  2682. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2683. if (!bp->flash_info->buffered) {
  2684. int j;
  2685. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2686. REG_WR(bp, BNX2_NVM_COMMAND,
  2687. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2688. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2689. udelay(5);
  2690. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2691. if (val & BNX2_NVM_COMMAND_DONE)
  2692. break;
  2693. }
  2694. if (j >= NVRAM_TIMEOUT_COUNT)
  2695. return -EBUSY;
  2696. }
  2697. return 0;
  2698. }
  2699. static void
  2700. bnx2_disable_nvram_write(struct bnx2 *bp)
  2701. {
  2702. u32 val;
  2703. val = REG_RD(bp, BNX2_MISC_CFG);
  2704. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2705. }
  2706. static void
  2707. bnx2_enable_nvram_access(struct bnx2 *bp)
  2708. {
  2709. u32 val;
  2710. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2711. /* Enable both bits, even on read. */
  2712. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2713. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2714. }
  2715. static void
  2716. bnx2_disable_nvram_access(struct bnx2 *bp)
  2717. {
  2718. u32 val;
  2719. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2720. /* Disable both bits, even after read. */
  2721. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2722. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2723. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2724. }
  2725. static int
  2726. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2727. {
  2728. u32 cmd;
  2729. int j;
  2730. if (bp->flash_info->buffered)
  2731. /* Buffered flash, no erase needed */
  2732. return 0;
  2733. /* Build an erase command */
  2734. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2735. BNX2_NVM_COMMAND_DOIT;
  2736. /* Need to clear DONE bit separately. */
  2737. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2738. /* Address of the NVRAM to read from. */
  2739. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2740. /* Issue an erase command. */
  2741. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2742. /* Wait for completion. */
  2743. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2744. u32 val;
  2745. udelay(5);
  2746. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2747. if (val & BNX2_NVM_COMMAND_DONE)
  2748. break;
  2749. }
  2750. if (j >= NVRAM_TIMEOUT_COUNT)
  2751. return -EBUSY;
  2752. return 0;
  2753. }
  2754. static int
  2755. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2756. {
  2757. u32 cmd;
  2758. int j;
  2759. /* Build the command word. */
  2760. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2761. /* Calculate an offset of a buffered flash. */
  2762. if (bp->flash_info->buffered) {
  2763. offset = ((offset / bp->flash_info->page_size) <<
  2764. bp->flash_info->page_bits) +
  2765. (offset % bp->flash_info->page_size);
  2766. }
  2767. /* Need to clear DONE bit separately. */
  2768. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2769. /* Address of the NVRAM to read from. */
  2770. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2771. /* Issue a read command. */
  2772. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2773. /* Wait for completion. */
  2774. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2775. u32 val;
  2776. udelay(5);
  2777. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2778. if (val & BNX2_NVM_COMMAND_DONE) {
  2779. val = REG_RD(bp, BNX2_NVM_READ);
  2780. val = be32_to_cpu(val);
  2781. memcpy(ret_val, &val, 4);
  2782. break;
  2783. }
  2784. }
  2785. if (j >= NVRAM_TIMEOUT_COUNT)
  2786. return -EBUSY;
  2787. return 0;
  2788. }
  2789. static int
  2790. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2791. {
  2792. u32 cmd, val32;
  2793. int j;
  2794. /* Build the command word. */
  2795. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2796. /* Calculate an offset of a buffered flash. */
  2797. if (bp->flash_info->buffered) {
  2798. offset = ((offset / bp->flash_info->page_size) <<
  2799. bp->flash_info->page_bits) +
  2800. (offset % bp->flash_info->page_size);
  2801. }
  2802. /* Need to clear DONE bit separately. */
  2803. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2804. memcpy(&val32, val, 4);
  2805. val32 = cpu_to_be32(val32);
  2806. /* Write the data. */
  2807. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2808. /* Address of the NVRAM to write to. */
  2809. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2810. /* Issue the write command. */
  2811. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2812. /* Wait for completion. */
  2813. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2814. udelay(5);
  2815. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2816. break;
  2817. }
  2818. if (j >= NVRAM_TIMEOUT_COUNT)
  2819. return -EBUSY;
  2820. return 0;
  2821. }
  2822. static int
  2823. bnx2_init_nvram(struct bnx2 *bp)
  2824. {
  2825. u32 val;
  2826. int j, entry_count, rc;
  2827. struct flash_spec *flash;
  2828. /* Determine the selected interface. */
  2829. val = REG_RD(bp, BNX2_NVM_CFG1);
  2830. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2831. rc = 0;
  2832. if (val & 0x40000000) {
  2833. /* Flash interface has been reconfigured */
  2834. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2835. j++, flash++) {
  2836. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2837. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2838. bp->flash_info = flash;
  2839. break;
  2840. }
  2841. }
  2842. }
  2843. else {
  2844. u32 mask;
  2845. /* Not yet been reconfigured */
  2846. if (val & (1 << 23))
  2847. mask = FLASH_BACKUP_STRAP_MASK;
  2848. else
  2849. mask = FLASH_STRAP_MASK;
  2850. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2851. j++, flash++) {
  2852. if ((val & mask) == (flash->strapping & mask)) {
  2853. bp->flash_info = flash;
  2854. /* Request access to the flash interface. */
  2855. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2856. return rc;
  2857. /* Enable access to flash interface */
  2858. bnx2_enable_nvram_access(bp);
  2859. /* Reconfigure the flash interface */
  2860. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2861. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2862. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2863. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2864. /* Disable access to flash interface */
  2865. bnx2_disable_nvram_access(bp);
  2866. bnx2_release_nvram_lock(bp);
  2867. break;
  2868. }
  2869. }
  2870. } /* if (val & 0x40000000) */
  2871. if (j == entry_count) {
  2872. bp->flash_info = NULL;
  2873. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2874. return -ENODEV;
  2875. }
  2876. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2877. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2878. if (val)
  2879. bp->flash_size = val;
  2880. else
  2881. bp->flash_size = bp->flash_info->total_size;
  2882. return rc;
  2883. }
  2884. static int
  2885. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2886. int buf_size)
  2887. {
  2888. int rc = 0;
  2889. u32 cmd_flags, offset32, len32, extra;
  2890. if (buf_size == 0)
  2891. return 0;
  2892. /* Request access to the flash interface. */
  2893. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2894. return rc;
  2895. /* Enable access to flash interface */
  2896. bnx2_enable_nvram_access(bp);
  2897. len32 = buf_size;
  2898. offset32 = offset;
  2899. extra = 0;
  2900. cmd_flags = 0;
  2901. if (offset32 & 3) {
  2902. u8 buf[4];
  2903. u32 pre_len;
  2904. offset32 &= ~3;
  2905. pre_len = 4 - (offset & 3);
  2906. if (pre_len >= len32) {
  2907. pre_len = len32;
  2908. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2909. BNX2_NVM_COMMAND_LAST;
  2910. }
  2911. else {
  2912. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2913. }
  2914. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2915. if (rc)
  2916. return rc;
  2917. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2918. offset32 += 4;
  2919. ret_buf += pre_len;
  2920. len32 -= pre_len;
  2921. }
  2922. if (len32 & 3) {
  2923. extra = 4 - (len32 & 3);
  2924. len32 = (len32 + 4) & ~3;
  2925. }
  2926. if (len32 == 4) {
  2927. u8 buf[4];
  2928. if (cmd_flags)
  2929. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2930. else
  2931. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2932. BNX2_NVM_COMMAND_LAST;
  2933. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2934. memcpy(ret_buf, buf, 4 - extra);
  2935. }
  2936. else if (len32 > 0) {
  2937. u8 buf[4];
  2938. /* Read the first word. */
  2939. if (cmd_flags)
  2940. cmd_flags = 0;
  2941. else
  2942. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2943. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2944. /* Advance to the next dword. */
  2945. offset32 += 4;
  2946. ret_buf += 4;
  2947. len32 -= 4;
  2948. while (len32 > 4 && rc == 0) {
  2949. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2950. /* Advance to the next dword. */
  2951. offset32 += 4;
  2952. ret_buf += 4;
  2953. len32 -= 4;
  2954. }
  2955. if (rc)
  2956. return rc;
  2957. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2958. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2959. memcpy(ret_buf, buf, 4 - extra);
  2960. }
  2961. /* Disable access to flash interface */
  2962. bnx2_disable_nvram_access(bp);
  2963. bnx2_release_nvram_lock(bp);
  2964. return rc;
  2965. }
  2966. static int
  2967. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2968. int buf_size)
  2969. {
  2970. u32 written, offset32, len32;
  2971. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  2972. int rc = 0;
  2973. int align_start, align_end;
  2974. buf = data_buf;
  2975. offset32 = offset;
  2976. len32 = buf_size;
  2977. align_start = align_end = 0;
  2978. if ((align_start = (offset32 & 3))) {
  2979. offset32 &= ~3;
  2980. len32 += align_start;
  2981. if (len32 < 4)
  2982. len32 = 4;
  2983. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2984. return rc;
  2985. }
  2986. if (len32 & 3) {
  2987. align_end = 4 - (len32 & 3);
  2988. len32 += align_end;
  2989. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  2990. return rc;
  2991. }
  2992. if (align_start || align_end) {
  2993. align_buf = kmalloc(len32, GFP_KERNEL);
  2994. if (align_buf == NULL)
  2995. return -ENOMEM;
  2996. if (align_start) {
  2997. memcpy(align_buf, start, 4);
  2998. }
  2999. if (align_end) {
  3000. memcpy(align_buf + len32 - 4, end, 4);
  3001. }
  3002. memcpy(align_buf + align_start, data_buf, buf_size);
  3003. buf = align_buf;
  3004. }
  3005. if (bp->flash_info->buffered == 0) {
  3006. flash_buffer = kmalloc(264, GFP_KERNEL);
  3007. if (flash_buffer == NULL) {
  3008. rc = -ENOMEM;
  3009. goto nvram_write_end;
  3010. }
  3011. }
  3012. written = 0;
  3013. while ((written < len32) && (rc == 0)) {
  3014. u32 page_start, page_end, data_start, data_end;
  3015. u32 addr, cmd_flags;
  3016. int i;
  3017. /* Find the page_start addr */
  3018. page_start = offset32 + written;
  3019. page_start -= (page_start % bp->flash_info->page_size);
  3020. /* Find the page_end addr */
  3021. page_end = page_start + bp->flash_info->page_size;
  3022. /* Find the data_start addr */
  3023. data_start = (written == 0) ? offset32 : page_start;
  3024. /* Find the data_end addr */
  3025. data_end = (page_end > offset32 + len32) ?
  3026. (offset32 + len32) : page_end;
  3027. /* Request access to the flash interface. */
  3028. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3029. goto nvram_write_end;
  3030. /* Enable access to flash interface */
  3031. bnx2_enable_nvram_access(bp);
  3032. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3033. if (bp->flash_info->buffered == 0) {
  3034. int j;
  3035. /* Read the whole page into the buffer
  3036. * (non-buffer flash only) */
  3037. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3038. if (j == (bp->flash_info->page_size - 4)) {
  3039. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3040. }
  3041. rc = bnx2_nvram_read_dword(bp,
  3042. page_start + j,
  3043. &flash_buffer[j],
  3044. cmd_flags);
  3045. if (rc)
  3046. goto nvram_write_end;
  3047. cmd_flags = 0;
  3048. }
  3049. }
  3050. /* Enable writes to flash interface (unlock write-protect) */
  3051. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3052. goto nvram_write_end;
  3053. /* Loop to write back the buffer data from page_start to
  3054. * data_start */
  3055. i = 0;
  3056. if (bp->flash_info->buffered == 0) {
  3057. /* Erase the page */
  3058. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3059. goto nvram_write_end;
  3060. /* Re-enable the write again for the actual write */
  3061. bnx2_enable_nvram_write(bp);
  3062. for (addr = page_start; addr < data_start;
  3063. addr += 4, i += 4) {
  3064. rc = bnx2_nvram_write_dword(bp, addr,
  3065. &flash_buffer[i], cmd_flags);
  3066. if (rc != 0)
  3067. goto nvram_write_end;
  3068. cmd_flags = 0;
  3069. }
  3070. }
  3071. /* Loop to write the new data from data_start to data_end */
  3072. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3073. if ((addr == page_end - 4) ||
  3074. ((bp->flash_info->buffered) &&
  3075. (addr == data_end - 4))) {
  3076. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3077. }
  3078. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3079. cmd_flags);
  3080. if (rc != 0)
  3081. goto nvram_write_end;
  3082. cmd_flags = 0;
  3083. buf += 4;
  3084. }
  3085. /* Loop to write back the buffer data from data_end
  3086. * to page_end */
  3087. if (bp->flash_info->buffered == 0) {
  3088. for (addr = data_end; addr < page_end;
  3089. addr += 4, i += 4) {
  3090. if (addr == page_end-4) {
  3091. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3092. }
  3093. rc = bnx2_nvram_write_dword(bp, addr,
  3094. &flash_buffer[i], cmd_flags);
  3095. if (rc != 0)
  3096. goto nvram_write_end;
  3097. cmd_flags = 0;
  3098. }
  3099. }
  3100. /* Disable writes to flash interface (lock write-protect) */
  3101. bnx2_disable_nvram_write(bp);
  3102. /* Disable access to flash interface */
  3103. bnx2_disable_nvram_access(bp);
  3104. bnx2_release_nvram_lock(bp);
  3105. /* Increment written */
  3106. written += data_end - data_start;
  3107. }
  3108. nvram_write_end:
  3109. kfree(flash_buffer);
  3110. kfree(align_buf);
  3111. return rc;
  3112. }
  3113. static void
  3114. bnx2_init_remote_phy(struct bnx2 *bp)
  3115. {
  3116. u32 val;
  3117. bp->phy_flags &= ~REMOTE_PHY_CAP_FLAG;
  3118. if (!(bp->phy_flags & PHY_SERDES_FLAG))
  3119. return;
  3120. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_CAP_MB);
  3121. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3122. return;
  3123. if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
  3124. if (netif_running(bp->dev)) {
  3125. val = BNX2_DRV_ACK_CAP_SIGNATURE |
  3126. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3127. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_ACK_CAP_MB,
  3128. val);
  3129. }
  3130. bp->phy_flags |= REMOTE_PHY_CAP_FLAG;
  3131. val = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  3132. if (val & BNX2_LINK_STATUS_SERDES_LINK)
  3133. bp->phy_port = PORT_FIBRE;
  3134. else
  3135. bp->phy_port = PORT_TP;
  3136. }
  3137. }
  3138. static int
  3139. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3140. {
  3141. u32 val;
  3142. int i, rc = 0;
  3143. /* Wait for the current PCI transaction to complete before
  3144. * issuing a reset. */
  3145. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3146. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3147. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3148. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3149. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3150. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3151. udelay(5);
  3152. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3153. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  3154. /* Deposit a driver reset signature so the firmware knows that
  3155. * this is a soft reset. */
  3156. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  3157. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3158. /* Do a dummy read to force the chip to complete all current transaction
  3159. * before we issue a reset. */
  3160. val = REG_RD(bp, BNX2_MISC_ID);
  3161. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3162. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3163. REG_RD(bp, BNX2_MISC_COMMAND);
  3164. udelay(5);
  3165. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3166. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3167. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3168. } else {
  3169. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3170. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3171. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3172. /* Chip reset. */
  3173. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3174. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3175. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3176. current->state = TASK_UNINTERRUPTIBLE;
  3177. schedule_timeout(HZ / 50);
  3178. }
  3179. /* Reset takes approximate 30 usec */
  3180. for (i = 0; i < 10; i++) {
  3181. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3182. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3183. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3184. break;
  3185. udelay(10);
  3186. }
  3187. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3188. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3189. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3190. return -EBUSY;
  3191. }
  3192. }
  3193. /* Make sure byte swapping is properly configured. */
  3194. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3195. if (val != 0x01020304) {
  3196. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3197. return -ENODEV;
  3198. }
  3199. /* Wait for the firmware to finish its initialization. */
  3200. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  3201. if (rc)
  3202. return rc;
  3203. spin_lock_bh(&bp->phy_lock);
  3204. bnx2_init_remote_phy(bp);
  3205. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3206. bnx2_set_default_remote_link(bp);
  3207. spin_unlock_bh(&bp->phy_lock);
  3208. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3209. /* Adjust the voltage regular to two steps lower. The default
  3210. * of this register is 0x0000000e. */
  3211. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3212. /* Remove bad rbuf memory from the free pool. */
  3213. rc = bnx2_alloc_bad_rbuf(bp);
  3214. }
  3215. return rc;
  3216. }
  3217. static int
  3218. bnx2_init_chip(struct bnx2 *bp)
  3219. {
  3220. u32 val;
  3221. int rc;
  3222. /* Make sure the interrupt is not active. */
  3223. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3224. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3225. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3226. #ifdef __BIG_ENDIAN
  3227. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3228. #endif
  3229. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3230. DMA_READ_CHANS << 12 |
  3231. DMA_WRITE_CHANS << 16;
  3232. val |= (0x2 << 20) | (1 << 11);
  3233. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  3234. val |= (1 << 23);
  3235. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3236. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  3237. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3238. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3239. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3240. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3241. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3242. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3243. }
  3244. if (bp->flags & PCIX_FLAG) {
  3245. u16 val16;
  3246. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3247. &val16);
  3248. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3249. val16 & ~PCI_X_CMD_ERO);
  3250. }
  3251. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3252. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3253. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3254. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3255. /* Initialize context mapping and zero out the quick contexts. The
  3256. * context block must have already been enabled. */
  3257. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3258. rc = bnx2_init_5709_context(bp);
  3259. if (rc)
  3260. return rc;
  3261. } else
  3262. bnx2_init_context(bp);
  3263. if ((rc = bnx2_init_cpus(bp)) != 0)
  3264. return rc;
  3265. bnx2_init_nvram(bp);
  3266. bnx2_set_mac_addr(bp);
  3267. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3268. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3269. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3270. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3271. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3272. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3273. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3274. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3275. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3276. val = (BCM_PAGE_BITS - 8) << 24;
  3277. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3278. /* Configure page size. */
  3279. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3280. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3281. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3282. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3283. val = bp->mac_addr[0] +
  3284. (bp->mac_addr[1] << 8) +
  3285. (bp->mac_addr[2] << 16) +
  3286. bp->mac_addr[3] +
  3287. (bp->mac_addr[4] << 8) +
  3288. (bp->mac_addr[5] << 16);
  3289. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3290. /* Program the MTU. Also include 4 bytes for CRC32. */
  3291. val = bp->dev->mtu + ETH_HLEN + 4;
  3292. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3293. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3294. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3295. bp->last_status_idx = 0;
  3296. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3297. /* Set up how to generate a link change interrupt. */
  3298. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3299. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3300. (u64) bp->status_blk_mapping & 0xffffffff);
  3301. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3302. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3303. (u64) bp->stats_blk_mapping & 0xffffffff);
  3304. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3305. (u64) bp->stats_blk_mapping >> 32);
  3306. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3307. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3308. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3309. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3310. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3311. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3312. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3313. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3314. REG_WR(bp, BNX2_HC_COM_TICKS,
  3315. (bp->com_ticks_int << 16) | bp->com_ticks);
  3316. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3317. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3318. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3319. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  3320. else
  3321. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  3322. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3323. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3324. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3325. else {
  3326. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3327. BNX2_HC_CONFIG_COLLECT_STATS;
  3328. }
  3329. if (bp->flags & ONE_SHOT_MSI_FLAG)
  3330. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3331. REG_WR(bp, BNX2_HC_CONFIG, val);
  3332. /* Clear internal stats counters. */
  3333. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3334. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3335. if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
  3336. BNX2_PORT_FEATURE_ASF_ENABLED)
  3337. bp->flags |= ASF_ENABLE_FLAG;
  3338. /* Initialize the receive filter. */
  3339. bnx2_set_rx_mode(bp->dev);
  3340. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3341. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3342. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3343. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3344. }
  3345. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3346. 0);
  3347. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  3348. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3349. udelay(20);
  3350. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3351. return rc;
  3352. }
  3353. static void
  3354. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  3355. {
  3356. u32 val, offset0, offset1, offset2, offset3;
  3357. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3358. offset0 = BNX2_L2CTX_TYPE_XI;
  3359. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3360. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3361. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3362. } else {
  3363. offset0 = BNX2_L2CTX_TYPE;
  3364. offset1 = BNX2_L2CTX_CMD_TYPE;
  3365. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3366. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3367. }
  3368. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3369. CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
  3370. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3371. CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
  3372. val = (u64) bp->tx_desc_mapping >> 32;
  3373. CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
  3374. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  3375. CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
  3376. }
  3377. static void
  3378. bnx2_init_tx_ring(struct bnx2 *bp)
  3379. {
  3380. struct tx_bd *txbd;
  3381. u32 cid;
  3382. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3383. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  3384. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  3385. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  3386. bp->tx_prod = 0;
  3387. bp->tx_cons = 0;
  3388. bp->hw_tx_cons = 0;
  3389. bp->tx_prod_bseq = 0;
  3390. cid = TX_CID;
  3391. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3392. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3393. bnx2_init_tx_context(bp, cid);
  3394. }
  3395. static void
  3396. bnx2_init_rx_ring(struct bnx2 *bp)
  3397. {
  3398. struct rx_bd *rxbd;
  3399. int i;
  3400. u16 prod, ring_prod;
  3401. u32 val;
  3402. /* 8 for CRC and VLAN */
  3403. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  3404. /* hw alignment */
  3405. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  3406. ring_prod = prod = bp->rx_prod = 0;
  3407. bp->rx_cons = 0;
  3408. bp->hw_rx_cons = 0;
  3409. bp->rx_prod_bseq = 0;
  3410. for (i = 0; i < bp->rx_max_ring; i++) {
  3411. int j;
  3412. rxbd = &bp->rx_desc_ring[i][0];
  3413. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3414. rxbd->rx_bd_len = bp->rx_buf_use_size;
  3415. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3416. }
  3417. if (i == (bp->rx_max_ring - 1))
  3418. j = 0;
  3419. else
  3420. j = i + 1;
  3421. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
  3422. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
  3423. 0xffffffff;
  3424. }
  3425. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  3426. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  3427. val |= 0x02 << 8;
  3428. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  3429. val = (u64) bp->rx_desc_mapping[0] >> 32;
  3430. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  3431. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  3432. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  3433. for (i = 0; i < bp->rx_ring_size; i++) {
  3434. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  3435. break;
  3436. }
  3437. prod = NEXT_RX_BD(prod);
  3438. ring_prod = RX_RING_IDX(prod);
  3439. }
  3440. bp->rx_prod = prod;
  3441. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  3442. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  3443. }
  3444. static void
  3445. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  3446. {
  3447. u32 num_rings, max;
  3448. bp->rx_ring_size = size;
  3449. num_rings = 1;
  3450. while (size > MAX_RX_DESC_CNT) {
  3451. size -= MAX_RX_DESC_CNT;
  3452. num_rings++;
  3453. }
  3454. /* round to next power of 2 */
  3455. max = MAX_RX_RINGS;
  3456. while ((max & num_rings) == 0)
  3457. max >>= 1;
  3458. if (num_rings != max)
  3459. max <<= 1;
  3460. bp->rx_max_ring = max;
  3461. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  3462. }
  3463. static void
  3464. bnx2_free_tx_skbs(struct bnx2 *bp)
  3465. {
  3466. int i;
  3467. if (bp->tx_buf_ring == NULL)
  3468. return;
  3469. for (i = 0; i < TX_DESC_CNT; ) {
  3470. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  3471. struct sk_buff *skb = tx_buf->skb;
  3472. int j, last;
  3473. if (skb == NULL) {
  3474. i++;
  3475. continue;
  3476. }
  3477. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  3478. skb_headlen(skb), PCI_DMA_TODEVICE);
  3479. tx_buf->skb = NULL;
  3480. last = skb_shinfo(skb)->nr_frags;
  3481. for (j = 0; j < last; j++) {
  3482. tx_buf = &bp->tx_buf_ring[i + j + 1];
  3483. pci_unmap_page(bp->pdev,
  3484. pci_unmap_addr(tx_buf, mapping),
  3485. skb_shinfo(skb)->frags[j].size,
  3486. PCI_DMA_TODEVICE);
  3487. }
  3488. dev_kfree_skb(skb);
  3489. i += j + 1;
  3490. }
  3491. }
  3492. static void
  3493. bnx2_free_rx_skbs(struct bnx2 *bp)
  3494. {
  3495. int i;
  3496. if (bp->rx_buf_ring == NULL)
  3497. return;
  3498. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  3499. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3500. struct sk_buff *skb = rx_buf->skb;
  3501. if (skb == NULL)
  3502. continue;
  3503. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3504. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3505. rx_buf->skb = NULL;
  3506. dev_kfree_skb(skb);
  3507. }
  3508. }
  3509. static void
  3510. bnx2_free_skbs(struct bnx2 *bp)
  3511. {
  3512. bnx2_free_tx_skbs(bp);
  3513. bnx2_free_rx_skbs(bp);
  3514. }
  3515. static int
  3516. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3517. {
  3518. int rc;
  3519. rc = bnx2_reset_chip(bp, reset_code);
  3520. bnx2_free_skbs(bp);
  3521. if (rc)
  3522. return rc;
  3523. if ((rc = bnx2_init_chip(bp)) != 0)
  3524. return rc;
  3525. bnx2_init_tx_ring(bp);
  3526. bnx2_init_rx_ring(bp);
  3527. return 0;
  3528. }
  3529. static int
  3530. bnx2_init_nic(struct bnx2 *bp)
  3531. {
  3532. int rc;
  3533. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3534. return rc;
  3535. spin_lock_bh(&bp->phy_lock);
  3536. bnx2_init_phy(bp);
  3537. bnx2_set_link(bp);
  3538. spin_unlock_bh(&bp->phy_lock);
  3539. return 0;
  3540. }
  3541. static int
  3542. bnx2_test_registers(struct bnx2 *bp)
  3543. {
  3544. int ret;
  3545. int i, is_5709;
  3546. static const struct {
  3547. u16 offset;
  3548. u16 flags;
  3549. #define BNX2_FL_NOT_5709 1
  3550. u32 rw_mask;
  3551. u32 ro_mask;
  3552. } reg_tbl[] = {
  3553. { 0x006c, 0, 0x00000000, 0x0000003f },
  3554. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3555. { 0x0094, 0, 0x00000000, 0x00000000 },
  3556. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  3557. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3558. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3559. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  3560. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  3561. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3562. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  3563. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3564. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3565. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3566. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3567. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3568. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3569. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3570. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3571. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3572. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  3573. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  3574. { 0x1000, 0, 0x00000000, 0x00000001 },
  3575. { 0x1004, 0, 0x00000000, 0x000f0001 },
  3576. { 0x1408, 0, 0x01c00800, 0x00000000 },
  3577. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  3578. { 0x14a8, 0, 0x00000000, 0x000001ff },
  3579. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  3580. { 0x14b0, 0, 0x00000002, 0x00000001 },
  3581. { 0x14b8, 0, 0x00000000, 0x00000000 },
  3582. { 0x14c0, 0, 0x00000000, 0x00000009 },
  3583. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  3584. { 0x14cc, 0, 0x00000000, 0x00000001 },
  3585. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  3586. { 0x1800, 0, 0x00000000, 0x00000001 },
  3587. { 0x1804, 0, 0x00000000, 0x00000003 },
  3588. { 0x2800, 0, 0x00000000, 0x00000001 },
  3589. { 0x2804, 0, 0x00000000, 0x00003f01 },
  3590. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  3591. { 0x2810, 0, 0xffff0000, 0x00000000 },
  3592. { 0x2814, 0, 0xffff0000, 0x00000000 },
  3593. { 0x2818, 0, 0xffff0000, 0x00000000 },
  3594. { 0x281c, 0, 0xffff0000, 0x00000000 },
  3595. { 0x2834, 0, 0xffffffff, 0x00000000 },
  3596. { 0x2840, 0, 0x00000000, 0xffffffff },
  3597. { 0x2844, 0, 0x00000000, 0xffffffff },
  3598. { 0x2848, 0, 0xffffffff, 0x00000000 },
  3599. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  3600. { 0x2c00, 0, 0x00000000, 0x00000011 },
  3601. { 0x2c04, 0, 0x00000000, 0x00030007 },
  3602. { 0x3c00, 0, 0x00000000, 0x00000001 },
  3603. { 0x3c04, 0, 0x00000000, 0x00070000 },
  3604. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  3605. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  3606. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  3607. { 0x3c14, 0, 0x00000000, 0xffffffff },
  3608. { 0x3c18, 0, 0x00000000, 0xffffffff },
  3609. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  3610. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  3611. { 0x5004, 0, 0x00000000, 0x0000007f },
  3612. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3613. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3614. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3615. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3616. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3617. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3618. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3619. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3620. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3621. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3622. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3623. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3624. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3625. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3626. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3627. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3628. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3629. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3630. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3631. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3632. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3633. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3634. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3635. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3636. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3637. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3638. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3639. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3640. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3641. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3642. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3643. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3644. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3645. { 0xffff, 0, 0x00000000, 0x00000000 },
  3646. };
  3647. ret = 0;
  3648. is_5709 = 0;
  3649. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3650. is_5709 = 1;
  3651. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3652. u32 offset, rw_mask, ro_mask, save_val, val;
  3653. u16 flags = reg_tbl[i].flags;
  3654. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  3655. continue;
  3656. offset = (u32) reg_tbl[i].offset;
  3657. rw_mask = reg_tbl[i].rw_mask;
  3658. ro_mask = reg_tbl[i].ro_mask;
  3659. save_val = readl(bp->regview + offset);
  3660. writel(0, bp->regview + offset);
  3661. val = readl(bp->regview + offset);
  3662. if ((val & rw_mask) != 0) {
  3663. goto reg_test_err;
  3664. }
  3665. if ((val & ro_mask) != (save_val & ro_mask)) {
  3666. goto reg_test_err;
  3667. }
  3668. writel(0xffffffff, bp->regview + offset);
  3669. val = readl(bp->regview + offset);
  3670. if ((val & rw_mask) != rw_mask) {
  3671. goto reg_test_err;
  3672. }
  3673. if ((val & ro_mask) != (save_val & ro_mask)) {
  3674. goto reg_test_err;
  3675. }
  3676. writel(save_val, bp->regview + offset);
  3677. continue;
  3678. reg_test_err:
  3679. writel(save_val, bp->regview + offset);
  3680. ret = -ENODEV;
  3681. break;
  3682. }
  3683. return ret;
  3684. }
  3685. static int
  3686. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3687. {
  3688. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3689. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3690. int i;
  3691. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3692. u32 offset;
  3693. for (offset = 0; offset < size; offset += 4) {
  3694. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3695. if (REG_RD_IND(bp, start + offset) !=
  3696. test_pattern[i]) {
  3697. return -ENODEV;
  3698. }
  3699. }
  3700. }
  3701. return 0;
  3702. }
  3703. static int
  3704. bnx2_test_memory(struct bnx2 *bp)
  3705. {
  3706. int ret = 0;
  3707. int i;
  3708. static struct mem_entry {
  3709. u32 offset;
  3710. u32 len;
  3711. } mem_tbl_5706[] = {
  3712. { 0x60000, 0x4000 },
  3713. { 0xa0000, 0x3000 },
  3714. { 0xe0000, 0x4000 },
  3715. { 0x120000, 0x4000 },
  3716. { 0x1a0000, 0x4000 },
  3717. { 0x160000, 0x4000 },
  3718. { 0xffffffff, 0 },
  3719. },
  3720. mem_tbl_5709[] = {
  3721. { 0x60000, 0x4000 },
  3722. { 0xa0000, 0x3000 },
  3723. { 0xe0000, 0x4000 },
  3724. { 0x120000, 0x4000 },
  3725. { 0x1a0000, 0x4000 },
  3726. { 0xffffffff, 0 },
  3727. };
  3728. struct mem_entry *mem_tbl;
  3729. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3730. mem_tbl = mem_tbl_5709;
  3731. else
  3732. mem_tbl = mem_tbl_5706;
  3733. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3734. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3735. mem_tbl[i].len)) != 0) {
  3736. return ret;
  3737. }
  3738. }
  3739. return ret;
  3740. }
  3741. #define BNX2_MAC_LOOPBACK 0
  3742. #define BNX2_PHY_LOOPBACK 1
  3743. static int
  3744. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  3745. {
  3746. unsigned int pkt_size, num_pkts, i;
  3747. struct sk_buff *skb, *rx_skb;
  3748. unsigned char *packet;
  3749. u16 rx_start_idx, rx_idx;
  3750. dma_addr_t map;
  3751. struct tx_bd *txbd;
  3752. struct sw_bd *rx_buf;
  3753. struct l2_fhdr *rx_hdr;
  3754. int ret = -ENODEV;
  3755. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3756. bp->loopback = MAC_LOOPBACK;
  3757. bnx2_set_mac_loopback(bp);
  3758. }
  3759. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3760. bp->loopback = PHY_LOOPBACK;
  3761. bnx2_set_phy_loopback(bp);
  3762. }
  3763. else
  3764. return -EINVAL;
  3765. pkt_size = 1514;
  3766. skb = netdev_alloc_skb(bp->dev, pkt_size);
  3767. if (!skb)
  3768. return -ENOMEM;
  3769. packet = skb_put(skb, pkt_size);
  3770. memcpy(packet, bp->dev->dev_addr, 6);
  3771. memset(packet + 6, 0x0, 8);
  3772. for (i = 14; i < pkt_size; i++)
  3773. packet[i] = (unsigned char) (i & 0xff);
  3774. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3775. PCI_DMA_TODEVICE);
  3776. REG_WR(bp, BNX2_HC_COMMAND,
  3777. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3778. REG_RD(bp, BNX2_HC_COMMAND);
  3779. udelay(5);
  3780. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3781. num_pkts = 0;
  3782. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3783. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3784. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3785. txbd->tx_bd_mss_nbytes = pkt_size;
  3786. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3787. num_pkts++;
  3788. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3789. bp->tx_prod_bseq += pkt_size;
  3790. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  3791. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3792. udelay(100);
  3793. REG_WR(bp, BNX2_HC_COMMAND,
  3794. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3795. REG_RD(bp, BNX2_HC_COMMAND);
  3796. udelay(5);
  3797. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3798. dev_kfree_skb(skb);
  3799. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3800. goto loopback_test_done;
  3801. }
  3802. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3803. if (rx_idx != rx_start_idx + num_pkts) {
  3804. goto loopback_test_done;
  3805. }
  3806. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3807. rx_skb = rx_buf->skb;
  3808. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3809. skb_reserve(rx_skb, bp->rx_offset);
  3810. pci_dma_sync_single_for_cpu(bp->pdev,
  3811. pci_unmap_addr(rx_buf, mapping),
  3812. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3813. if (rx_hdr->l2_fhdr_status &
  3814. (L2_FHDR_ERRORS_BAD_CRC |
  3815. L2_FHDR_ERRORS_PHY_DECODE |
  3816. L2_FHDR_ERRORS_ALIGNMENT |
  3817. L2_FHDR_ERRORS_TOO_SHORT |
  3818. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3819. goto loopback_test_done;
  3820. }
  3821. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3822. goto loopback_test_done;
  3823. }
  3824. for (i = 14; i < pkt_size; i++) {
  3825. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3826. goto loopback_test_done;
  3827. }
  3828. }
  3829. ret = 0;
  3830. loopback_test_done:
  3831. bp->loopback = 0;
  3832. return ret;
  3833. }
  3834. #define BNX2_MAC_LOOPBACK_FAILED 1
  3835. #define BNX2_PHY_LOOPBACK_FAILED 2
  3836. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3837. BNX2_PHY_LOOPBACK_FAILED)
  3838. static int
  3839. bnx2_test_loopback(struct bnx2 *bp)
  3840. {
  3841. int rc = 0;
  3842. if (!netif_running(bp->dev))
  3843. return BNX2_LOOPBACK_FAILED;
  3844. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3845. spin_lock_bh(&bp->phy_lock);
  3846. bnx2_init_phy(bp);
  3847. spin_unlock_bh(&bp->phy_lock);
  3848. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3849. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3850. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3851. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3852. return rc;
  3853. }
  3854. #define NVRAM_SIZE 0x200
  3855. #define CRC32_RESIDUAL 0xdebb20e3
  3856. static int
  3857. bnx2_test_nvram(struct bnx2 *bp)
  3858. {
  3859. u32 buf[NVRAM_SIZE / 4];
  3860. u8 *data = (u8 *) buf;
  3861. int rc = 0;
  3862. u32 magic, csum;
  3863. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3864. goto test_nvram_done;
  3865. magic = be32_to_cpu(buf[0]);
  3866. if (magic != 0x669955aa) {
  3867. rc = -ENODEV;
  3868. goto test_nvram_done;
  3869. }
  3870. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3871. goto test_nvram_done;
  3872. csum = ether_crc_le(0x100, data);
  3873. if (csum != CRC32_RESIDUAL) {
  3874. rc = -ENODEV;
  3875. goto test_nvram_done;
  3876. }
  3877. csum = ether_crc_le(0x100, data + 0x100);
  3878. if (csum != CRC32_RESIDUAL) {
  3879. rc = -ENODEV;
  3880. }
  3881. test_nvram_done:
  3882. return rc;
  3883. }
  3884. static int
  3885. bnx2_test_link(struct bnx2 *bp)
  3886. {
  3887. u32 bmsr;
  3888. spin_lock_bh(&bp->phy_lock);
  3889. bnx2_enable_bmsr1(bp);
  3890. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3891. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3892. bnx2_disable_bmsr1(bp);
  3893. spin_unlock_bh(&bp->phy_lock);
  3894. if (bmsr & BMSR_LSTATUS) {
  3895. return 0;
  3896. }
  3897. return -ENODEV;
  3898. }
  3899. static int
  3900. bnx2_test_intr(struct bnx2 *bp)
  3901. {
  3902. int i;
  3903. u16 status_idx;
  3904. if (!netif_running(bp->dev))
  3905. return -ENODEV;
  3906. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3907. /* This register is not touched during run-time. */
  3908. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  3909. REG_RD(bp, BNX2_HC_COMMAND);
  3910. for (i = 0; i < 10; i++) {
  3911. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3912. status_idx) {
  3913. break;
  3914. }
  3915. msleep_interruptible(10);
  3916. }
  3917. if (i < 10)
  3918. return 0;
  3919. return -ENODEV;
  3920. }
  3921. static void
  3922. bnx2_5706_serdes_timer(struct bnx2 *bp)
  3923. {
  3924. spin_lock(&bp->phy_lock);
  3925. if (bp->serdes_an_pending)
  3926. bp->serdes_an_pending--;
  3927. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3928. u32 bmcr;
  3929. bp->current_interval = bp->timer_interval;
  3930. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3931. if (bmcr & BMCR_ANENABLE) {
  3932. u32 phy1, phy2;
  3933. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3934. bnx2_read_phy(bp, 0x1c, &phy1);
  3935. bnx2_write_phy(bp, 0x17, 0x0f01);
  3936. bnx2_read_phy(bp, 0x15, &phy2);
  3937. bnx2_write_phy(bp, 0x17, 0x0f01);
  3938. bnx2_read_phy(bp, 0x15, &phy2);
  3939. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3940. !(phy2 & 0x20)) { /* no CONFIG */
  3941. bmcr &= ~BMCR_ANENABLE;
  3942. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  3943. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3944. bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
  3945. }
  3946. }
  3947. }
  3948. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3949. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3950. u32 phy2;
  3951. bnx2_write_phy(bp, 0x17, 0x0f01);
  3952. bnx2_read_phy(bp, 0x15, &phy2);
  3953. if (phy2 & 0x20) {
  3954. u32 bmcr;
  3955. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3956. bmcr |= BMCR_ANENABLE;
  3957. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3958. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3959. }
  3960. } else
  3961. bp->current_interval = bp->timer_interval;
  3962. spin_unlock(&bp->phy_lock);
  3963. }
  3964. static void
  3965. bnx2_5708_serdes_timer(struct bnx2 *bp)
  3966. {
  3967. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3968. return;
  3969. if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
  3970. bp->serdes_an_pending = 0;
  3971. return;
  3972. }
  3973. spin_lock(&bp->phy_lock);
  3974. if (bp->serdes_an_pending)
  3975. bp->serdes_an_pending--;
  3976. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3977. u32 bmcr;
  3978. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3979. if (bmcr & BMCR_ANENABLE) {
  3980. bnx2_enable_forced_2g5(bp);
  3981. bp->current_interval = SERDES_FORCED_TIMEOUT;
  3982. } else {
  3983. bnx2_disable_forced_2g5(bp);
  3984. bp->serdes_an_pending = 2;
  3985. bp->current_interval = bp->timer_interval;
  3986. }
  3987. } else
  3988. bp->current_interval = bp->timer_interval;
  3989. spin_unlock(&bp->phy_lock);
  3990. }
  3991. static void
  3992. bnx2_timer(unsigned long data)
  3993. {
  3994. struct bnx2 *bp = (struct bnx2 *) data;
  3995. u32 msg;
  3996. if (!netif_running(bp->dev))
  3997. return;
  3998. if (atomic_read(&bp->intr_sem) != 0)
  3999. goto bnx2_restart_timer;
  4000. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  4001. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  4002. bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
  4003. /* workaround occasional corrupted counters */
  4004. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4005. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4006. BNX2_HC_COMMAND_STATS_NOW);
  4007. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4008. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4009. bnx2_5706_serdes_timer(bp);
  4010. else
  4011. bnx2_5708_serdes_timer(bp);
  4012. }
  4013. bnx2_restart_timer:
  4014. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4015. }
  4016. static int
  4017. bnx2_request_irq(struct bnx2 *bp)
  4018. {
  4019. struct net_device *dev = bp->dev;
  4020. int rc = 0;
  4021. if (bp->flags & USING_MSI_FLAG) {
  4022. irq_handler_t fn = bnx2_msi;
  4023. if (bp->flags & ONE_SHOT_MSI_FLAG)
  4024. fn = bnx2_msi_1shot;
  4025. rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
  4026. } else
  4027. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  4028. IRQF_SHARED, dev->name, dev);
  4029. return rc;
  4030. }
  4031. static void
  4032. bnx2_free_irq(struct bnx2 *bp)
  4033. {
  4034. struct net_device *dev = bp->dev;
  4035. if (bp->flags & USING_MSI_FLAG) {
  4036. free_irq(bp->pdev->irq, dev);
  4037. pci_disable_msi(bp->pdev);
  4038. bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
  4039. } else
  4040. free_irq(bp->pdev->irq, dev);
  4041. }
  4042. /* Called with rtnl_lock */
  4043. static int
  4044. bnx2_open(struct net_device *dev)
  4045. {
  4046. struct bnx2 *bp = netdev_priv(dev);
  4047. int rc;
  4048. netif_carrier_off(dev);
  4049. bnx2_set_power_state(bp, PCI_D0);
  4050. bnx2_disable_int(bp);
  4051. rc = bnx2_alloc_mem(bp);
  4052. if (rc)
  4053. return rc;
  4054. if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
  4055. if (pci_enable_msi(bp->pdev) == 0) {
  4056. bp->flags |= USING_MSI_FLAG;
  4057. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4058. bp->flags |= ONE_SHOT_MSI_FLAG;
  4059. }
  4060. }
  4061. rc = bnx2_request_irq(bp);
  4062. if (rc) {
  4063. bnx2_free_mem(bp);
  4064. return rc;
  4065. }
  4066. rc = bnx2_init_nic(bp);
  4067. if (rc) {
  4068. bnx2_free_irq(bp);
  4069. bnx2_free_skbs(bp);
  4070. bnx2_free_mem(bp);
  4071. return rc;
  4072. }
  4073. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4074. atomic_set(&bp->intr_sem, 0);
  4075. bnx2_enable_int(bp);
  4076. if (bp->flags & USING_MSI_FLAG) {
  4077. /* Test MSI to make sure it is working
  4078. * If MSI test fails, go back to INTx mode
  4079. */
  4080. if (bnx2_test_intr(bp) != 0) {
  4081. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  4082. " using MSI, switching to INTx mode. Please"
  4083. " report this failure to the PCI maintainer"
  4084. " and include system chipset information.\n",
  4085. bp->dev->name);
  4086. bnx2_disable_int(bp);
  4087. bnx2_free_irq(bp);
  4088. rc = bnx2_init_nic(bp);
  4089. if (!rc)
  4090. rc = bnx2_request_irq(bp);
  4091. if (rc) {
  4092. bnx2_free_skbs(bp);
  4093. bnx2_free_mem(bp);
  4094. del_timer_sync(&bp->timer);
  4095. return rc;
  4096. }
  4097. bnx2_enable_int(bp);
  4098. }
  4099. }
  4100. if (bp->flags & USING_MSI_FLAG) {
  4101. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  4102. }
  4103. netif_start_queue(dev);
  4104. return 0;
  4105. }
  4106. static void
  4107. bnx2_reset_task(struct work_struct *work)
  4108. {
  4109. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  4110. if (!netif_running(bp->dev))
  4111. return;
  4112. bp->in_reset_task = 1;
  4113. bnx2_netif_stop(bp);
  4114. bnx2_init_nic(bp);
  4115. atomic_set(&bp->intr_sem, 1);
  4116. bnx2_netif_start(bp);
  4117. bp->in_reset_task = 0;
  4118. }
  4119. static void
  4120. bnx2_tx_timeout(struct net_device *dev)
  4121. {
  4122. struct bnx2 *bp = netdev_priv(dev);
  4123. /* This allows the netif to be shutdown gracefully before resetting */
  4124. schedule_work(&bp->reset_task);
  4125. }
  4126. #ifdef BCM_VLAN
  4127. /* Called with rtnl_lock */
  4128. static void
  4129. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  4130. {
  4131. struct bnx2 *bp = netdev_priv(dev);
  4132. bnx2_netif_stop(bp);
  4133. bp->vlgrp = vlgrp;
  4134. bnx2_set_rx_mode(dev);
  4135. bnx2_netif_start(bp);
  4136. }
  4137. #endif
  4138. /* Called with netif_tx_lock.
  4139. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  4140. * netif_wake_queue().
  4141. */
  4142. static int
  4143. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4144. {
  4145. struct bnx2 *bp = netdev_priv(dev);
  4146. dma_addr_t mapping;
  4147. struct tx_bd *txbd;
  4148. struct sw_bd *tx_buf;
  4149. u32 len, vlan_tag_flags, last_frag, mss;
  4150. u16 prod, ring_prod;
  4151. int i;
  4152. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  4153. netif_stop_queue(dev);
  4154. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  4155. dev->name);
  4156. return NETDEV_TX_BUSY;
  4157. }
  4158. len = skb_headlen(skb);
  4159. prod = bp->tx_prod;
  4160. ring_prod = TX_RING_IDX(prod);
  4161. vlan_tag_flags = 0;
  4162. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4163. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  4164. }
  4165. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  4166. vlan_tag_flags |=
  4167. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  4168. }
  4169. if ((mss = skb_shinfo(skb)->gso_size)) {
  4170. u32 tcp_opt_len, ip_tcp_len;
  4171. struct iphdr *iph;
  4172. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  4173. tcp_opt_len = tcp_optlen(skb);
  4174. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  4175. u32 tcp_off = skb_transport_offset(skb) -
  4176. sizeof(struct ipv6hdr) - ETH_HLEN;
  4177. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  4178. TX_BD_FLAGS_SW_FLAGS;
  4179. if (likely(tcp_off == 0))
  4180. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  4181. else {
  4182. tcp_off >>= 3;
  4183. vlan_tag_flags |= ((tcp_off & 0x3) <<
  4184. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  4185. ((tcp_off & 0x10) <<
  4186. TX_BD_FLAGS_TCP6_OFF4_SHL);
  4187. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  4188. }
  4189. } else {
  4190. if (skb_header_cloned(skb) &&
  4191. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  4192. dev_kfree_skb(skb);
  4193. return NETDEV_TX_OK;
  4194. }
  4195. ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
  4196. iph = ip_hdr(skb);
  4197. iph->check = 0;
  4198. iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  4199. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  4200. iph->daddr, 0,
  4201. IPPROTO_TCP,
  4202. 0);
  4203. if (tcp_opt_len || (iph->ihl > 5)) {
  4204. vlan_tag_flags |= ((iph->ihl - 5) +
  4205. (tcp_opt_len >> 2)) << 8;
  4206. }
  4207. }
  4208. } else
  4209. mss = 0;
  4210. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  4211. tx_buf = &bp->tx_buf_ring[ring_prod];
  4212. tx_buf->skb = skb;
  4213. pci_unmap_addr_set(tx_buf, mapping, mapping);
  4214. txbd = &bp->tx_desc_ring[ring_prod];
  4215. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4216. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4217. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4218. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  4219. last_frag = skb_shinfo(skb)->nr_frags;
  4220. for (i = 0; i < last_frag; i++) {
  4221. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4222. prod = NEXT_TX_BD(prod);
  4223. ring_prod = TX_RING_IDX(prod);
  4224. txbd = &bp->tx_desc_ring[ring_prod];
  4225. len = frag->size;
  4226. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  4227. len, PCI_DMA_TODEVICE);
  4228. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  4229. mapping, mapping);
  4230. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4231. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4232. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4233. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  4234. }
  4235. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  4236. prod = NEXT_TX_BD(prod);
  4237. bp->tx_prod_bseq += skb->len;
  4238. REG_WR16(bp, bp->tx_bidx_addr, prod);
  4239. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  4240. mmiowb();
  4241. bp->tx_prod = prod;
  4242. dev->trans_start = jiffies;
  4243. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  4244. netif_stop_queue(dev);
  4245. if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
  4246. netif_wake_queue(dev);
  4247. }
  4248. return NETDEV_TX_OK;
  4249. }
  4250. /* Called with rtnl_lock */
  4251. static int
  4252. bnx2_close(struct net_device *dev)
  4253. {
  4254. struct bnx2 *bp = netdev_priv(dev);
  4255. u32 reset_code;
  4256. /* Calling flush_scheduled_work() may deadlock because
  4257. * linkwatch_event() may be on the workqueue and it will try to get
  4258. * the rtnl_lock which we are holding.
  4259. */
  4260. while (bp->in_reset_task)
  4261. msleep(1);
  4262. bnx2_netif_stop(bp);
  4263. del_timer_sync(&bp->timer);
  4264. if (bp->flags & NO_WOL_FLAG)
  4265. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4266. else if (bp->wol)
  4267. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4268. else
  4269. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4270. bnx2_reset_chip(bp, reset_code);
  4271. bnx2_free_irq(bp);
  4272. bnx2_free_skbs(bp);
  4273. bnx2_free_mem(bp);
  4274. bp->link_up = 0;
  4275. netif_carrier_off(bp->dev);
  4276. bnx2_set_power_state(bp, PCI_D3hot);
  4277. return 0;
  4278. }
  4279. #define GET_NET_STATS64(ctr) \
  4280. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  4281. (unsigned long) (ctr##_lo)
  4282. #define GET_NET_STATS32(ctr) \
  4283. (ctr##_lo)
  4284. #if (BITS_PER_LONG == 64)
  4285. #define GET_NET_STATS GET_NET_STATS64
  4286. #else
  4287. #define GET_NET_STATS GET_NET_STATS32
  4288. #endif
  4289. static struct net_device_stats *
  4290. bnx2_get_stats(struct net_device *dev)
  4291. {
  4292. struct bnx2 *bp = netdev_priv(dev);
  4293. struct statistics_block *stats_blk = bp->stats_blk;
  4294. struct net_device_stats *net_stats = &bp->net_stats;
  4295. if (bp->stats_blk == NULL) {
  4296. return net_stats;
  4297. }
  4298. net_stats->rx_packets =
  4299. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  4300. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  4301. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  4302. net_stats->tx_packets =
  4303. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  4304. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  4305. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  4306. net_stats->rx_bytes =
  4307. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  4308. net_stats->tx_bytes =
  4309. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  4310. net_stats->multicast =
  4311. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  4312. net_stats->collisions =
  4313. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  4314. net_stats->rx_length_errors =
  4315. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  4316. stats_blk->stat_EtherStatsOverrsizePkts);
  4317. net_stats->rx_over_errors =
  4318. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  4319. net_stats->rx_frame_errors =
  4320. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  4321. net_stats->rx_crc_errors =
  4322. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  4323. net_stats->rx_errors = net_stats->rx_length_errors +
  4324. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  4325. net_stats->rx_crc_errors;
  4326. net_stats->tx_aborted_errors =
  4327. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  4328. stats_blk->stat_Dot3StatsLateCollisions);
  4329. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  4330. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4331. net_stats->tx_carrier_errors = 0;
  4332. else {
  4333. net_stats->tx_carrier_errors =
  4334. (unsigned long)
  4335. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  4336. }
  4337. net_stats->tx_errors =
  4338. (unsigned long)
  4339. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  4340. +
  4341. net_stats->tx_aborted_errors +
  4342. net_stats->tx_carrier_errors;
  4343. net_stats->rx_missed_errors =
  4344. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  4345. stats_blk->stat_FwRxDrop);
  4346. return net_stats;
  4347. }
  4348. /* All ethtool functions called with rtnl_lock */
  4349. static int
  4350. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4351. {
  4352. struct bnx2 *bp = netdev_priv(dev);
  4353. cmd->supported = SUPPORTED_Autoneg;
  4354. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4355. cmd->supported |= SUPPORTED_1000baseT_Full |
  4356. SUPPORTED_FIBRE;
  4357. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  4358. cmd->supported |= SUPPORTED_2500baseX_Full;
  4359. cmd->port = PORT_FIBRE;
  4360. }
  4361. else {
  4362. cmd->supported |= SUPPORTED_10baseT_Half |
  4363. SUPPORTED_10baseT_Full |
  4364. SUPPORTED_100baseT_Half |
  4365. SUPPORTED_100baseT_Full |
  4366. SUPPORTED_1000baseT_Full |
  4367. SUPPORTED_TP;
  4368. cmd->port = PORT_TP;
  4369. }
  4370. cmd->advertising = bp->advertising;
  4371. if (bp->autoneg & AUTONEG_SPEED) {
  4372. cmd->autoneg = AUTONEG_ENABLE;
  4373. }
  4374. else {
  4375. cmd->autoneg = AUTONEG_DISABLE;
  4376. }
  4377. if (netif_carrier_ok(dev)) {
  4378. cmd->speed = bp->line_speed;
  4379. cmd->duplex = bp->duplex;
  4380. }
  4381. else {
  4382. cmd->speed = -1;
  4383. cmd->duplex = -1;
  4384. }
  4385. cmd->transceiver = XCVR_INTERNAL;
  4386. cmd->phy_address = bp->phy_addr;
  4387. return 0;
  4388. }
  4389. static int
  4390. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4391. {
  4392. struct bnx2 *bp = netdev_priv(dev);
  4393. u8 autoneg = bp->autoneg;
  4394. u8 req_duplex = bp->req_duplex;
  4395. u16 req_line_speed = bp->req_line_speed;
  4396. u32 advertising = bp->advertising;
  4397. if (cmd->autoneg == AUTONEG_ENABLE) {
  4398. autoneg |= AUTONEG_SPEED;
  4399. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  4400. /* allow advertising 1 speed */
  4401. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  4402. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  4403. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  4404. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  4405. if (bp->phy_flags & PHY_SERDES_FLAG)
  4406. return -EINVAL;
  4407. advertising = cmd->advertising;
  4408. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  4409. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4410. return -EINVAL;
  4411. } else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  4412. advertising = cmd->advertising;
  4413. }
  4414. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  4415. return -EINVAL;
  4416. }
  4417. else {
  4418. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4419. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  4420. }
  4421. else {
  4422. advertising = ETHTOOL_ALL_COPPER_SPEED;
  4423. }
  4424. }
  4425. advertising |= ADVERTISED_Autoneg;
  4426. }
  4427. else {
  4428. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4429. if ((cmd->speed != SPEED_1000 &&
  4430. cmd->speed != SPEED_2500) ||
  4431. (cmd->duplex != DUPLEX_FULL))
  4432. return -EINVAL;
  4433. if (cmd->speed == SPEED_2500 &&
  4434. !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4435. return -EINVAL;
  4436. }
  4437. else if (cmd->speed == SPEED_1000) {
  4438. return -EINVAL;
  4439. }
  4440. autoneg &= ~AUTONEG_SPEED;
  4441. req_line_speed = cmd->speed;
  4442. req_duplex = cmd->duplex;
  4443. advertising = 0;
  4444. }
  4445. bp->autoneg = autoneg;
  4446. bp->advertising = advertising;
  4447. bp->req_line_speed = req_line_speed;
  4448. bp->req_duplex = req_duplex;
  4449. spin_lock_bh(&bp->phy_lock);
  4450. bnx2_setup_phy(bp, bp->phy_port);
  4451. spin_unlock_bh(&bp->phy_lock);
  4452. return 0;
  4453. }
  4454. static void
  4455. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  4456. {
  4457. struct bnx2 *bp = netdev_priv(dev);
  4458. strcpy(info->driver, DRV_MODULE_NAME);
  4459. strcpy(info->version, DRV_MODULE_VERSION);
  4460. strcpy(info->bus_info, pci_name(bp->pdev));
  4461. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  4462. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  4463. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  4464. info->fw_version[1] = info->fw_version[3] = '.';
  4465. info->fw_version[5] = 0;
  4466. }
  4467. #define BNX2_REGDUMP_LEN (32 * 1024)
  4468. static int
  4469. bnx2_get_regs_len(struct net_device *dev)
  4470. {
  4471. return BNX2_REGDUMP_LEN;
  4472. }
  4473. static void
  4474. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  4475. {
  4476. u32 *p = _p, i, offset;
  4477. u8 *orig_p = _p;
  4478. struct bnx2 *bp = netdev_priv(dev);
  4479. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  4480. 0x0800, 0x0880, 0x0c00, 0x0c10,
  4481. 0x0c30, 0x0d08, 0x1000, 0x101c,
  4482. 0x1040, 0x1048, 0x1080, 0x10a4,
  4483. 0x1400, 0x1490, 0x1498, 0x14f0,
  4484. 0x1500, 0x155c, 0x1580, 0x15dc,
  4485. 0x1600, 0x1658, 0x1680, 0x16d8,
  4486. 0x1800, 0x1820, 0x1840, 0x1854,
  4487. 0x1880, 0x1894, 0x1900, 0x1984,
  4488. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  4489. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  4490. 0x2000, 0x2030, 0x23c0, 0x2400,
  4491. 0x2800, 0x2820, 0x2830, 0x2850,
  4492. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  4493. 0x3c00, 0x3c94, 0x4000, 0x4010,
  4494. 0x4080, 0x4090, 0x43c0, 0x4458,
  4495. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  4496. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  4497. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  4498. 0x5fc0, 0x6000, 0x6400, 0x6428,
  4499. 0x6800, 0x6848, 0x684c, 0x6860,
  4500. 0x6888, 0x6910, 0x8000 };
  4501. regs->version = 0;
  4502. memset(p, 0, BNX2_REGDUMP_LEN);
  4503. if (!netif_running(bp->dev))
  4504. return;
  4505. i = 0;
  4506. offset = reg_boundaries[0];
  4507. p += offset;
  4508. while (offset < BNX2_REGDUMP_LEN) {
  4509. *p++ = REG_RD(bp, offset);
  4510. offset += 4;
  4511. if (offset == reg_boundaries[i + 1]) {
  4512. offset = reg_boundaries[i + 2];
  4513. p = (u32 *) (orig_p + offset);
  4514. i += 2;
  4515. }
  4516. }
  4517. }
  4518. static void
  4519. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4520. {
  4521. struct bnx2 *bp = netdev_priv(dev);
  4522. if (bp->flags & NO_WOL_FLAG) {
  4523. wol->supported = 0;
  4524. wol->wolopts = 0;
  4525. }
  4526. else {
  4527. wol->supported = WAKE_MAGIC;
  4528. if (bp->wol)
  4529. wol->wolopts = WAKE_MAGIC;
  4530. else
  4531. wol->wolopts = 0;
  4532. }
  4533. memset(&wol->sopass, 0, sizeof(wol->sopass));
  4534. }
  4535. static int
  4536. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4537. {
  4538. struct bnx2 *bp = netdev_priv(dev);
  4539. if (wol->wolopts & ~WAKE_MAGIC)
  4540. return -EINVAL;
  4541. if (wol->wolopts & WAKE_MAGIC) {
  4542. if (bp->flags & NO_WOL_FLAG)
  4543. return -EINVAL;
  4544. bp->wol = 1;
  4545. }
  4546. else {
  4547. bp->wol = 0;
  4548. }
  4549. return 0;
  4550. }
  4551. static int
  4552. bnx2_nway_reset(struct net_device *dev)
  4553. {
  4554. struct bnx2 *bp = netdev_priv(dev);
  4555. u32 bmcr;
  4556. if (!(bp->autoneg & AUTONEG_SPEED)) {
  4557. return -EINVAL;
  4558. }
  4559. spin_lock_bh(&bp->phy_lock);
  4560. /* Force a link down visible on the other side */
  4561. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4562. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  4563. spin_unlock_bh(&bp->phy_lock);
  4564. msleep(20);
  4565. spin_lock_bh(&bp->phy_lock);
  4566. bp->current_interval = SERDES_AN_TIMEOUT;
  4567. bp->serdes_an_pending = 1;
  4568. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4569. }
  4570. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4571. bmcr &= ~BMCR_LOOPBACK;
  4572. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  4573. spin_unlock_bh(&bp->phy_lock);
  4574. return 0;
  4575. }
  4576. static int
  4577. bnx2_get_eeprom_len(struct net_device *dev)
  4578. {
  4579. struct bnx2 *bp = netdev_priv(dev);
  4580. if (bp->flash_info == NULL)
  4581. return 0;
  4582. return (int) bp->flash_size;
  4583. }
  4584. static int
  4585. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4586. u8 *eebuf)
  4587. {
  4588. struct bnx2 *bp = netdev_priv(dev);
  4589. int rc;
  4590. /* parameters already validated in ethtool_get_eeprom */
  4591. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  4592. return rc;
  4593. }
  4594. static int
  4595. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4596. u8 *eebuf)
  4597. {
  4598. struct bnx2 *bp = netdev_priv(dev);
  4599. int rc;
  4600. /* parameters already validated in ethtool_set_eeprom */
  4601. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  4602. return rc;
  4603. }
  4604. static int
  4605. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4606. {
  4607. struct bnx2 *bp = netdev_priv(dev);
  4608. memset(coal, 0, sizeof(struct ethtool_coalesce));
  4609. coal->rx_coalesce_usecs = bp->rx_ticks;
  4610. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  4611. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  4612. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  4613. coal->tx_coalesce_usecs = bp->tx_ticks;
  4614. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  4615. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  4616. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  4617. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  4618. return 0;
  4619. }
  4620. static int
  4621. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4622. {
  4623. struct bnx2 *bp = netdev_priv(dev);
  4624. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  4625. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  4626. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  4627. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  4628. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  4629. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  4630. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  4631. if (bp->rx_quick_cons_trip_int > 0xff)
  4632. bp->rx_quick_cons_trip_int = 0xff;
  4633. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  4634. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  4635. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  4636. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  4637. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  4638. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  4639. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  4640. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  4641. 0xff;
  4642. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  4643. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4644. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  4645. bp->stats_ticks = USEC_PER_SEC;
  4646. }
  4647. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  4648. bp->stats_ticks &= 0xffff00;
  4649. if (netif_running(bp->dev)) {
  4650. bnx2_netif_stop(bp);
  4651. bnx2_init_nic(bp);
  4652. bnx2_netif_start(bp);
  4653. }
  4654. return 0;
  4655. }
  4656. static void
  4657. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4658. {
  4659. struct bnx2 *bp = netdev_priv(dev);
  4660. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  4661. ering->rx_mini_max_pending = 0;
  4662. ering->rx_jumbo_max_pending = 0;
  4663. ering->rx_pending = bp->rx_ring_size;
  4664. ering->rx_mini_pending = 0;
  4665. ering->rx_jumbo_pending = 0;
  4666. ering->tx_max_pending = MAX_TX_DESC_CNT;
  4667. ering->tx_pending = bp->tx_ring_size;
  4668. }
  4669. static int
  4670. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4671. {
  4672. struct bnx2 *bp = netdev_priv(dev);
  4673. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  4674. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  4675. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  4676. return -EINVAL;
  4677. }
  4678. if (netif_running(bp->dev)) {
  4679. bnx2_netif_stop(bp);
  4680. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4681. bnx2_free_skbs(bp);
  4682. bnx2_free_mem(bp);
  4683. }
  4684. bnx2_set_rx_ring_size(bp, ering->rx_pending);
  4685. bp->tx_ring_size = ering->tx_pending;
  4686. if (netif_running(bp->dev)) {
  4687. int rc;
  4688. rc = bnx2_alloc_mem(bp);
  4689. if (rc)
  4690. return rc;
  4691. bnx2_init_nic(bp);
  4692. bnx2_netif_start(bp);
  4693. }
  4694. return 0;
  4695. }
  4696. static void
  4697. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4698. {
  4699. struct bnx2 *bp = netdev_priv(dev);
  4700. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4701. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4702. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4703. }
  4704. static int
  4705. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4706. {
  4707. struct bnx2 *bp = netdev_priv(dev);
  4708. bp->req_flow_ctrl = 0;
  4709. if (epause->rx_pause)
  4710. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4711. if (epause->tx_pause)
  4712. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4713. if (epause->autoneg) {
  4714. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4715. }
  4716. else {
  4717. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4718. }
  4719. spin_lock_bh(&bp->phy_lock);
  4720. bnx2_setup_phy(bp, bp->phy_port);
  4721. spin_unlock_bh(&bp->phy_lock);
  4722. return 0;
  4723. }
  4724. static u32
  4725. bnx2_get_rx_csum(struct net_device *dev)
  4726. {
  4727. struct bnx2 *bp = netdev_priv(dev);
  4728. return bp->rx_csum;
  4729. }
  4730. static int
  4731. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4732. {
  4733. struct bnx2 *bp = netdev_priv(dev);
  4734. bp->rx_csum = data;
  4735. return 0;
  4736. }
  4737. static int
  4738. bnx2_set_tso(struct net_device *dev, u32 data)
  4739. {
  4740. struct bnx2 *bp = netdev_priv(dev);
  4741. if (data) {
  4742. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4743. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4744. dev->features |= NETIF_F_TSO6;
  4745. } else
  4746. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  4747. NETIF_F_TSO_ECN);
  4748. return 0;
  4749. }
  4750. #define BNX2_NUM_STATS 46
  4751. static struct {
  4752. char string[ETH_GSTRING_LEN];
  4753. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4754. { "rx_bytes" },
  4755. { "rx_error_bytes" },
  4756. { "tx_bytes" },
  4757. { "tx_error_bytes" },
  4758. { "rx_ucast_packets" },
  4759. { "rx_mcast_packets" },
  4760. { "rx_bcast_packets" },
  4761. { "tx_ucast_packets" },
  4762. { "tx_mcast_packets" },
  4763. { "tx_bcast_packets" },
  4764. { "tx_mac_errors" },
  4765. { "tx_carrier_errors" },
  4766. { "rx_crc_errors" },
  4767. { "rx_align_errors" },
  4768. { "tx_single_collisions" },
  4769. { "tx_multi_collisions" },
  4770. { "tx_deferred" },
  4771. { "tx_excess_collisions" },
  4772. { "tx_late_collisions" },
  4773. { "tx_total_collisions" },
  4774. { "rx_fragments" },
  4775. { "rx_jabbers" },
  4776. { "rx_undersize_packets" },
  4777. { "rx_oversize_packets" },
  4778. { "rx_64_byte_packets" },
  4779. { "rx_65_to_127_byte_packets" },
  4780. { "rx_128_to_255_byte_packets" },
  4781. { "rx_256_to_511_byte_packets" },
  4782. { "rx_512_to_1023_byte_packets" },
  4783. { "rx_1024_to_1522_byte_packets" },
  4784. { "rx_1523_to_9022_byte_packets" },
  4785. { "tx_64_byte_packets" },
  4786. { "tx_65_to_127_byte_packets" },
  4787. { "tx_128_to_255_byte_packets" },
  4788. { "tx_256_to_511_byte_packets" },
  4789. { "tx_512_to_1023_byte_packets" },
  4790. { "tx_1024_to_1522_byte_packets" },
  4791. { "tx_1523_to_9022_byte_packets" },
  4792. { "rx_xon_frames" },
  4793. { "rx_xoff_frames" },
  4794. { "tx_xon_frames" },
  4795. { "tx_xoff_frames" },
  4796. { "rx_mac_ctrl_frames" },
  4797. { "rx_filtered_packets" },
  4798. { "rx_discards" },
  4799. { "rx_fw_discards" },
  4800. };
  4801. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4802. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4803. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4804. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4805. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4806. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4807. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4808. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4809. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4810. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4811. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4812. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4813. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4814. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4815. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4816. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4817. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4818. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4819. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4820. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4821. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4822. STATS_OFFSET32(stat_EtherStatsCollisions),
  4823. STATS_OFFSET32(stat_EtherStatsFragments),
  4824. STATS_OFFSET32(stat_EtherStatsJabbers),
  4825. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4826. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4827. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4828. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4829. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4830. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4831. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4832. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4833. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4834. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4835. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4836. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4837. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4838. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4839. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4840. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4841. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4842. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4843. STATS_OFFSET32(stat_OutXonSent),
  4844. STATS_OFFSET32(stat_OutXoffSent),
  4845. STATS_OFFSET32(stat_MacControlFramesReceived),
  4846. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4847. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4848. STATS_OFFSET32(stat_FwRxDrop),
  4849. };
  4850. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4851. * skipped because of errata.
  4852. */
  4853. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4854. 8,0,8,8,8,8,8,8,8,8,
  4855. 4,0,4,4,4,4,4,4,4,4,
  4856. 4,4,4,4,4,4,4,4,4,4,
  4857. 4,4,4,4,4,4,4,4,4,4,
  4858. 4,4,4,4,4,4,
  4859. };
  4860. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4861. 8,0,8,8,8,8,8,8,8,8,
  4862. 4,4,4,4,4,4,4,4,4,4,
  4863. 4,4,4,4,4,4,4,4,4,4,
  4864. 4,4,4,4,4,4,4,4,4,4,
  4865. 4,4,4,4,4,4,
  4866. };
  4867. #define BNX2_NUM_TESTS 6
  4868. static struct {
  4869. char string[ETH_GSTRING_LEN];
  4870. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4871. { "register_test (offline)" },
  4872. { "memory_test (offline)" },
  4873. { "loopback_test (offline)" },
  4874. { "nvram_test (online)" },
  4875. { "interrupt_test (online)" },
  4876. { "link_test (online)" },
  4877. };
  4878. static int
  4879. bnx2_self_test_count(struct net_device *dev)
  4880. {
  4881. return BNX2_NUM_TESTS;
  4882. }
  4883. static void
  4884. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4885. {
  4886. struct bnx2 *bp = netdev_priv(dev);
  4887. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4888. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4889. int i;
  4890. bnx2_netif_stop(bp);
  4891. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4892. bnx2_free_skbs(bp);
  4893. if (bnx2_test_registers(bp) != 0) {
  4894. buf[0] = 1;
  4895. etest->flags |= ETH_TEST_FL_FAILED;
  4896. }
  4897. if (bnx2_test_memory(bp) != 0) {
  4898. buf[1] = 1;
  4899. etest->flags |= ETH_TEST_FL_FAILED;
  4900. }
  4901. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4902. etest->flags |= ETH_TEST_FL_FAILED;
  4903. if (!netif_running(bp->dev)) {
  4904. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4905. }
  4906. else {
  4907. bnx2_init_nic(bp);
  4908. bnx2_netif_start(bp);
  4909. }
  4910. /* wait for link up */
  4911. for (i = 0; i < 7; i++) {
  4912. if (bp->link_up)
  4913. break;
  4914. msleep_interruptible(1000);
  4915. }
  4916. }
  4917. if (bnx2_test_nvram(bp) != 0) {
  4918. buf[3] = 1;
  4919. etest->flags |= ETH_TEST_FL_FAILED;
  4920. }
  4921. if (bnx2_test_intr(bp) != 0) {
  4922. buf[4] = 1;
  4923. etest->flags |= ETH_TEST_FL_FAILED;
  4924. }
  4925. if (bnx2_test_link(bp) != 0) {
  4926. buf[5] = 1;
  4927. etest->flags |= ETH_TEST_FL_FAILED;
  4928. }
  4929. }
  4930. static void
  4931. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4932. {
  4933. switch (stringset) {
  4934. case ETH_SS_STATS:
  4935. memcpy(buf, bnx2_stats_str_arr,
  4936. sizeof(bnx2_stats_str_arr));
  4937. break;
  4938. case ETH_SS_TEST:
  4939. memcpy(buf, bnx2_tests_str_arr,
  4940. sizeof(bnx2_tests_str_arr));
  4941. break;
  4942. }
  4943. }
  4944. static int
  4945. bnx2_get_stats_count(struct net_device *dev)
  4946. {
  4947. return BNX2_NUM_STATS;
  4948. }
  4949. static void
  4950. bnx2_get_ethtool_stats(struct net_device *dev,
  4951. struct ethtool_stats *stats, u64 *buf)
  4952. {
  4953. struct bnx2 *bp = netdev_priv(dev);
  4954. int i;
  4955. u32 *hw_stats = (u32 *) bp->stats_blk;
  4956. u8 *stats_len_arr = NULL;
  4957. if (hw_stats == NULL) {
  4958. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4959. return;
  4960. }
  4961. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4962. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4963. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4964. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4965. stats_len_arr = bnx2_5706_stats_len_arr;
  4966. else
  4967. stats_len_arr = bnx2_5708_stats_len_arr;
  4968. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4969. if (stats_len_arr[i] == 0) {
  4970. /* skip this counter */
  4971. buf[i] = 0;
  4972. continue;
  4973. }
  4974. if (stats_len_arr[i] == 4) {
  4975. /* 4-byte counter */
  4976. buf[i] = (u64)
  4977. *(hw_stats + bnx2_stats_offset_arr[i]);
  4978. continue;
  4979. }
  4980. /* 8-byte counter */
  4981. buf[i] = (((u64) *(hw_stats +
  4982. bnx2_stats_offset_arr[i])) << 32) +
  4983. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4984. }
  4985. }
  4986. static int
  4987. bnx2_phys_id(struct net_device *dev, u32 data)
  4988. {
  4989. struct bnx2 *bp = netdev_priv(dev);
  4990. int i;
  4991. u32 save;
  4992. if (data == 0)
  4993. data = 2;
  4994. save = REG_RD(bp, BNX2_MISC_CFG);
  4995. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4996. for (i = 0; i < (data * 2); i++) {
  4997. if ((i % 2) == 0) {
  4998. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4999. }
  5000. else {
  5001. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  5002. BNX2_EMAC_LED_1000MB_OVERRIDE |
  5003. BNX2_EMAC_LED_100MB_OVERRIDE |
  5004. BNX2_EMAC_LED_10MB_OVERRIDE |
  5005. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  5006. BNX2_EMAC_LED_TRAFFIC);
  5007. }
  5008. msleep_interruptible(500);
  5009. if (signal_pending(current))
  5010. break;
  5011. }
  5012. REG_WR(bp, BNX2_EMAC_LED, 0);
  5013. REG_WR(bp, BNX2_MISC_CFG, save);
  5014. return 0;
  5015. }
  5016. static int
  5017. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  5018. {
  5019. struct bnx2 *bp = netdev_priv(dev);
  5020. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5021. return (ethtool_op_set_tx_hw_csum(dev, data));
  5022. else
  5023. return (ethtool_op_set_tx_csum(dev, data));
  5024. }
  5025. static const struct ethtool_ops bnx2_ethtool_ops = {
  5026. .get_settings = bnx2_get_settings,
  5027. .set_settings = bnx2_set_settings,
  5028. .get_drvinfo = bnx2_get_drvinfo,
  5029. .get_regs_len = bnx2_get_regs_len,
  5030. .get_regs = bnx2_get_regs,
  5031. .get_wol = bnx2_get_wol,
  5032. .set_wol = bnx2_set_wol,
  5033. .nway_reset = bnx2_nway_reset,
  5034. .get_link = ethtool_op_get_link,
  5035. .get_eeprom_len = bnx2_get_eeprom_len,
  5036. .get_eeprom = bnx2_get_eeprom,
  5037. .set_eeprom = bnx2_set_eeprom,
  5038. .get_coalesce = bnx2_get_coalesce,
  5039. .set_coalesce = bnx2_set_coalesce,
  5040. .get_ringparam = bnx2_get_ringparam,
  5041. .set_ringparam = bnx2_set_ringparam,
  5042. .get_pauseparam = bnx2_get_pauseparam,
  5043. .set_pauseparam = bnx2_set_pauseparam,
  5044. .get_rx_csum = bnx2_get_rx_csum,
  5045. .set_rx_csum = bnx2_set_rx_csum,
  5046. .get_tx_csum = ethtool_op_get_tx_csum,
  5047. .set_tx_csum = bnx2_set_tx_csum,
  5048. .get_sg = ethtool_op_get_sg,
  5049. .set_sg = ethtool_op_set_sg,
  5050. .get_tso = ethtool_op_get_tso,
  5051. .set_tso = bnx2_set_tso,
  5052. .self_test_count = bnx2_self_test_count,
  5053. .self_test = bnx2_self_test,
  5054. .get_strings = bnx2_get_strings,
  5055. .phys_id = bnx2_phys_id,
  5056. .get_stats_count = bnx2_get_stats_count,
  5057. .get_ethtool_stats = bnx2_get_ethtool_stats,
  5058. .get_perm_addr = ethtool_op_get_perm_addr,
  5059. };
  5060. /* Called with rtnl_lock */
  5061. static int
  5062. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5063. {
  5064. struct mii_ioctl_data *data = if_mii(ifr);
  5065. struct bnx2 *bp = netdev_priv(dev);
  5066. int err;
  5067. switch(cmd) {
  5068. case SIOCGMIIPHY:
  5069. data->phy_id = bp->phy_addr;
  5070. /* fallthru */
  5071. case SIOCGMIIREG: {
  5072. u32 mii_regval;
  5073. if (!netif_running(dev))
  5074. return -EAGAIN;
  5075. spin_lock_bh(&bp->phy_lock);
  5076. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  5077. spin_unlock_bh(&bp->phy_lock);
  5078. data->val_out = mii_regval;
  5079. return err;
  5080. }
  5081. case SIOCSMIIREG:
  5082. if (!capable(CAP_NET_ADMIN))
  5083. return -EPERM;
  5084. if (!netif_running(dev))
  5085. return -EAGAIN;
  5086. spin_lock_bh(&bp->phy_lock);
  5087. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  5088. spin_unlock_bh(&bp->phy_lock);
  5089. return err;
  5090. default:
  5091. /* do nothing */
  5092. break;
  5093. }
  5094. return -EOPNOTSUPP;
  5095. }
  5096. /* Called with rtnl_lock */
  5097. static int
  5098. bnx2_change_mac_addr(struct net_device *dev, void *p)
  5099. {
  5100. struct sockaddr *addr = p;
  5101. struct bnx2 *bp = netdev_priv(dev);
  5102. if (!is_valid_ether_addr(addr->sa_data))
  5103. return -EINVAL;
  5104. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  5105. if (netif_running(dev))
  5106. bnx2_set_mac_addr(bp);
  5107. return 0;
  5108. }
  5109. /* Called with rtnl_lock */
  5110. static int
  5111. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  5112. {
  5113. struct bnx2 *bp = netdev_priv(dev);
  5114. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  5115. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  5116. return -EINVAL;
  5117. dev->mtu = new_mtu;
  5118. if (netif_running(dev)) {
  5119. bnx2_netif_stop(bp);
  5120. bnx2_init_nic(bp);
  5121. bnx2_netif_start(bp);
  5122. }
  5123. return 0;
  5124. }
  5125. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5126. static void
  5127. poll_bnx2(struct net_device *dev)
  5128. {
  5129. struct bnx2 *bp = netdev_priv(dev);
  5130. disable_irq(bp->pdev->irq);
  5131. bnx2_interrupt(bp->pdev->irq, dev);
  5132. enable_irq(bp->pdev->irq);
  5133. }
  5134. #endif
  5135. static void __devinit
  5136. bnx2_get_5709_media(struct bnx2 *bp)
  5137. {
  5138. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  5139. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  5140. u32 strap;
  5141. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  5142. return;
  5143. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  5144. bp->phy_flags |= PHY_SERDES_FLAG;
  5145. return;
  5146. }
  5147. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  5148. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  5149. else
  5150. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  5151. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  5152. switch (strap) {
  5153. case 0x4:
  5154. case 0x5:
  5155. case 0x6:
  5156. bp->phy_flags |= PHY_SERDES_FLAG;
  5157. return;
  5158. }
  5159. } else {
  5160. switch (strap) {
  5161. case 0x1:
  5162. case 0x2:
  5163. case 0x4:
  5164. bp->phy_flags |= PHY_SERDES_FLAG;
  5165. return;
  5166. }
  5167. }
  5168. }
  5169. static void __devinit
  5170. bnx2_get_pci_speed(struct bnx2 *bp)
  5171. {
  5172. u32 reg;
  5173. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  5174. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  5175. u32 clkreg;
  5176. bp->flags |= PCIX_FLAG;
  5177. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  5178. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  5179. switch (clkreg) {
  5180. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  5181. bp->bus_speed_mhz = 133;
  5182. break;
  5183. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  5184. bp->bus_speed_mhz = 100;
  5185. break;
  5186. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  5187. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  5188. bp->bus_speed_mhz = 66;
  5189. break;
  5190. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  5191. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  5192. bp->bus_speed_mhz = 50;
  5193. break;
  5194. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  5195. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  5196. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  5197. bp->bus_speed_mhz = 33;
  5198. break;
  5199. }
  5200. }
  5201. else {
  5202. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  5203. bp->bus_speed_mhz = 66;
  5204. else
  5205. bp->bus_speed_mhz = 33;
  5206. }
  5207. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  5208. bp->flags |= PCI_32BIT_FLAG;
  5209. }
  5210. static int __devinit
  5211. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  5212. {
  5213. struct bnx2 *bp;
  5214. unsigned long mem_len;
  5215. int rc;
  5216. u32 reg;
  5217. u64 dma_mask, persist_dma_mask;
  5218. SET_MODULE_OWNER(dev);
  5219. SET_NETDEV_DEV(dev, &pdev->dev);
  5220. bp = netdev_priv(dev);
  5221. bp->flags = 0;
  5222. bp->phy_flags = 0;
  5223. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  5224. rc = pci_enable_device(pdev);
  5225. if (rc) {
  5226. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
  5227. goto err_out;
  5228. }
  5229. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  5230. dev_err(&pdev->dev,
  5231. "Cannot find PCI device base address, aborting.\n");
  5232. rc = -ENODEV;
  5233. goto err_out_disable;
  5234. }
  5235. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  5236. if (rc) {
  5237. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  5238. goto err_out_disable;
  5239. }
  5240. pci_set_master(pdev);
  5241. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  5242. if (bp->pm_cap == 0) {
  5243. dev_err(&pdev->dev,
  5244. "Cannot find power management capability, aborting.\n");
  5245. rc = -EIO;
  5246. goto err_out_release;
  5247. }
  5248. bp->dev = dev;
  5249. bp->pdev = pdev;
  5250. spin_lock_init(&bp->phy_lock);
  5251. spin_lock_init(&bp->indirect_lock);
  5252. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  5253. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  5254. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  5255. dev->mem_end = dev->mem_start + mem_len;
  5256. dev->irq = pdev->irq;
  5257. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  5258. if (!bp->regview) {
  5259. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  5260. rc = -ENOMEM;
  5261. goto err_out_release;
  5262. }
  5263. /* Configure byte swap and enable write to the reg_window registers.
  5264. * Rely on CPU to do target byte swapping on big endian systems
  5265. * The chip's target access swapping will not swap all accesses
  5266. */
  5267. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  5268. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  5269. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  5270. bnx2_set_power_state(bp, PCI_D0);
  5271. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  5272. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5273. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  5274. dev_err(&pdev->dev,
  5275. "Cannot find PCIE capability, aborting.\n");
  5276. rc = -EIO;
  5277. goto err_out_unmap;
  5278. }
  5279. bp->flags |= PCIE_FLAG;
  5280. } else {
  5281. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  5282. if (bp->pcix_cap == 0) {
  5283. dev_err(&pdev->dev,
  5284. "Cannot find PCIX capability, aborting.\n");
  5285. rc = -EIO;
  5286. goto err_out_unmap;
  5287. }
  5288. }
  5289. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  5290. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  5291. bp->flags |= MSI_CAP_FLAG;
  5292. }
  5293. /* 5708 cannot support DMA addresses > 40-bit. */
  5294. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  5295. persist_dma_mask = dma_mask = DMA_40BIT_MASK;
  5296. else
  5297. persist_dma_mask = dma_mask = DMA_64BIT_MASK;
  5298. /* Configure DMA attributes. */
  5299. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  5300. dev->features |= NETIF_F_HIGHDMA;
  5301. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  5302. if (rc) {
  5303. dev_err(&pdev->dev,
  5304. "pci_set_consistent_dma_mask failed, aborting.\n");
  5305. goto err_out_unmap;
  5306. }
  5307. } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  5308. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  5309. goto err_out_unmap;
  5310. }
  5311. if (!(bp->flags & PCIE_FLAG))
  5312. bnx2_get_pci_speed(bp);
  5313. /* 5706A0 may falsely detect SERR and PERR. */
  5314. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5315. reg = REG_RD(bp, PCI_COMMAND);
  5316. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  5317. REG_WR(bp, PCI_COMMAND, reg);
  5318. }
  5319. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  5320. !(bp->flags & PCIX_FLAG)) {
  5321. dev_err(&pdev->dev,
  5322. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  5323. goto err_out_unmap;
  5324. }
  5325. bnx2_init_nvram(bp);
  5326. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  5327. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  5328. BNX2_SHM_HDR_SIGNATURE_SIG) {
  5329. u32 off = PCI_FUNC(pdev->devfn) << 2;
  5330. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
  5331. } else
  5332. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  5333. /* Get the permanent MAC address. First we need to make sure the
  5334. * firmware is actually running.
  5335. */
  5336. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  5337. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  5338. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  5339. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  5340. rc = -ENODEV;
  5341. goto err_out_unmap;
  5342. }
  5343. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  5344. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  5345. bp->mac_addr[0] = (u8) (reg >> 8);
  5346. bp->mac_addr[1] = (u8) reg;
  5347. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  5348. bp->mac_addr[2] = (u8) (reg >> 24);
  5349. bp->mac_addr[3] = (u8) (reg >> 16);
  5350. bp->mac_addr[4] = (u8) (reg >> 8);
  5351. bp->mac_addr[5] = (u8) reg;
  5352. bp->tx_ring_size = MAX_TX_DESC_CNT;
  5353. bnx2_set_rx_ring_size(bp, 255);
  5354. bp->rx_csum = 1;
  5355. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  5356. bp->tx_quick_cons_trip_int = 20;
  5357. bp->tx_quick_cons_trip = 20;
  5358. bp->tx_ticks_int = 80;
  5359. bp->tx_ticks = 80;
  5360. bp->rx_quick_cons_trip_int = 6;
  5361. bp->rx_quick_cons_trip = 6;
  5362. bp->rx_ticks_int = 18;
  5363. bp->rx_ticks = 18;
  5364. bp->stats_ticks = 1000000 & 0xffff00;
  5365. bp->timer_interval = HZ;
  5366. bp->current_interval = HZ;
  5367. bp->phy_addr = 1;
  5368. /* Disable WOL support if we are running on a SERDES chip. */
  5369. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5370. bnx2_get_5709_media(bp);
  5371. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  5372. bp->phy_flags |= PHY_SERDES_FLAG;
  5373. bp->phy_port = PORT_TP;
  5374. if (bp->phy_flags & PHY_SERDES_FLAG) {
  5375. bp->phy_port = PORT_FIBRE;
  5376. bp->flags |= NO_WOL_FLAG;
  5377. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  5378. bp->phy_addr = 2;
  5379. reg = REG_RD_IND(bp, bp->shmem_base +
  5380. BNX2_SHARED_HW_CFG_CONFIG);
  5381. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  5382. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  5383. }
  5384. bnx2_init_remote_phy(bp);
  5385. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  5386. CHIP_NUM(bp) == CHIP_NUM_5708)
  5387. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  5388. else if (CHIP_ID(bp) == CHIP_ID_5709_A0)
  5389. bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
  5390. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  5391. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  5392. (CHIP_ID(bp) == CHIP_ID_5708_B1))
  5393. bp->flags |= NO_WOL_FLAG;
  5394. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5395. bp->tx_quick_cons_trip_int =
  5396. bp->tx_quick_cons_trip;
  5397. bp->tx_ticks_int = bp->tx_ticks;
  5398. bp->rx_quick_cons_trip_int =
  5399. bp->rx_quick_cons_trip;
  5400. bp->rx_ticks_int = bp->rx_ticks;
  5401. bp->comp_prod_trip_int = bp->comp_prod_trip;
  5402. bp->com_ticks_int = bp->com_ticks;
  5403. bp->cmd_ticks_int = bp->cmd_ticks;
  5404. }
  5405. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  5406. *
  5407. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  5408. * with byte enables disabled on the unused 32-bit word. This is legal
  5409. * but causes problems on the AMD 8132 which will eventually stop
  5410. * responding after a while.
  5411. *
  5412. * AMD believes this incompatibility is unique to the 5706, and
  5413. * prefers to locally disable MSI rather than globally disabling it.
  5414. */
  5415. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  5416. struct pci_dev *amd_8132 = NULL;
  5417. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  5418. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  5419. amd_8132))) {
  5420. u8 rev;
  5421. pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
  5422. if (rev >= 0x10 && rev <= 0x13) {
  5423. disable_msi = 1;
  5424. pci_dev_put(amd_8132);
  5425. break;
  5426. }
  5427. }
  5428. }
  5429. bnx2_set_default_link(bp);
  5430. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  5431. init_timer(&bp->timer);
  5432. bp->timer.expires = RUN_AT(bp->timer_interval);
  5433. bp->timer.data = (unsigned long) bp;
  5434. bp->timer.function = bnx2_timer;
  5435. return 0;
  5436. err_out_unmap:
  5437. if (bp->regview) {
  5438. iounmap(bp->regview);
  5439. bp->regview = NULL;
  5440. }
  5441. err_out_release:
  5442. pci_release_regions(pdev);
  5443. err_out_disable:
  5444. pci_disable_device(pdev);
  5445. pci_set_drvdata(pdev, NULL);
  5446. err_out:
  5447. return rc;
  5448. }
  5449. static char * __devinit
  5450. bnx2_bus_string(struct bnx2 *bp, char *str)
  5451. {
  5452. char *s = str;
  5453. if (bp->flags & PCIE_FLAG) {
  5454. s += sprintf(s, "PCI Express");
  5455. } else {
  5456. s += sprintf(s, "PCI");
  5457. if (bp->flags & PCIX_FLAG)
  5458. s += sprintf(s, "-X");
  5459. if (bp->flags & PCI_32BIT_FLAG)
  5460. s += sprintf(s, " 32-bit");
  5461. else
  5462. s += sprintf(s, " 64-bit");
  5463. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  5464. }
  5465. return str;
  5466. }
  5467. static int __devinit
  5468. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  5469. {
  5470. static int version_printed = 0;
  5471. struct net_device *dev = NULL;
  5472. struct bnx2 *bp;
  5473. int rc, i;
  5474. char str[40];
  5475. if (version_printed++ == 0)
  5476. printk(KERN_INFO "%s", version);
  5477. /* dev zeroed in init_etherdev */
  5478. dev = alloc_etherdev(sizeof(*bp));
  5479. if (!dev)
  5480. return -ENOMEM;
  5481. rc = bnx2_init_board(pdev, dev);
  5482. if (rc < 0) {
  5483. free_netdev(dev);
  5484. return rc;
  5485. }
  5486. dev->open = bnx2_open;
  5487. dev->hard_start_xmit = bnx2_start_xmit;
  5488. dev->stop = bnx2_close;
  5489. dev->get_stats = bnx2_get_stats;
  5490. dev->set_multicast_list = bnx2_set_rx_mode;
  5491. dev->do_ioctl = bnx2_ioctl;
  5492. dev->set_mac_address = bnx2_change_mac_addr;
  5493. dev->change_mtu = bnx2_change_mtu;
  5494. dev->tx_timeout = bnx2_tx_timeout;
  5495. dev->watchdog_timeo = TX_TIMEOUT;
  5496. #ifdef BCM_VLAN
  5497. dev->vlan_rx_register = bnx2_vlan_rx_register;
  5498. #endif
  5499. dev->poll = bnx2_poll;
  5500. dev->ethtool_ops = &bnx2_ethtool_ops;
  5501. dev->weight = 64;
  5502. bp = netdev_priv(dev);
  5503. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5504. dev->poll_controller = poll_bnx2;
  5505. #endif
  5506. pci_set_drvdata(pdev, dev);
  5507. memcpy(dev->dev_addr, bp->mac_addr, 6);
  5508. memcpy(dev->perm_addr, bp->mac_addr, 6);
  5509. bp->name = board_info[ent->driver_data].name;
  5510. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5511. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5512. dev->features |= NETIF_F_IPV6_CSUM;
  5513. #ifdef BCM_VLAN
  5514. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  5515. #endif
  5516. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5517. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5518. dev->features |= NETIF_F_TSO6;
  5519. if ((rc = register_netdev(dev))) {
  5520. dev_err(&pdev->dev, "Cannot register net device\n");
  5521. if (bp->regview)
  5522. iounmap(bp->regview);
  5523. pci_release_regions(pdev);
  5524. pci_disable_device(pdev);
  5525. pci_set_drvdata(pdev, NULL);
  5526. free_netdev(dev);
  5527. return rc;
  5528. }
  5529. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  5530. "IRQ %d, ",
  5531. dev->name,
  5532. bp->name,
  5533. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  5534. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  5535. bnx2_bus_string(bp, str),
  5536. dev->base_addr,
  5537. bp->pdev->irq);
  5538. printk("node addr ");
  5539. for (i = 0; i < 6; i++)
  5540. printk("%2.2x", dev->dev_addr[i]);
  5541. printk("\n");
  5542. return 0;
  5543. }
  5544. static void __devexit
  5545. bnx2_remove_one(struct pci_dev *pdev)
  5546. {
  5547. struct net_device *dev = pci_get_drvdata(pdev);
  5548. struct bnx2 *bp = netdev_priv(dev);
  5549. flush_scheduled_work();
  5550. unregister_netdev(dev);
  5551. if (bp->regview)
  5552. iounmap(bp->regview);
  5553. free_netdev(dev);
  5554. pci_release_regions(pdev);
  5555. pci_disable_device(pdev);
  5556. pci_set_drvdata(pdev, NULL);
  5557. }
  5558. static int
  5559. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  5560. {
  5561. struct net_device *dev = pci_get_drvdata(pdev);
  5562. struct bnx2 *bp = netdev_priv(dev);
  5563. u32 reset_code;
  5564. if (!netif_running(dev))
  5565. return 0;
  5566. flush_scheduled_work();
  5567. bnx2_netif_stop(bp);
  5568. netif_device_detach(dev);
  5569. del_timer_sync(&bp->timer);
  5570. if (bp->flags & NO_WOL_FLAG)
  5571. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  5572. else if (bp->wol)
  5573. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  5574. else
  5575. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  5576. bnx2_reset_chip(bp, reset_code);
  5577. bnx2_free_skbs(bp);
  5578. pci_save_state(pdev);
  5579. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  5580. return 0;
  5581. }
  5582. static int
  5583. bnx2_resume(struct pci_dev *pdev)
  5584. {
  5585. struct net_device *dev = pci_get_drvdata(pdev);
  5586. struct bnx2 *bp = netdev_priv(dev);
  5587. if (!netif_running(dev))
  5588. return 0;
  5589. pci_restore_state(pdev);
  5590. bnx2_set_power_state(bp, PCI_D0);
  5591. netif_device_attach(dev);
  5592. bnx2_init_nic(bp);
  5593. bnx2_netif_start(bp);
  5594. return 0;
  5595. }
  5596. static struct pci_driver bnx2_pci_driver = {
  5597. .name = DRV_MODULE_NAME,
  5598. .id_table = bnx2_pci_tbl,
  5599. .probe = bnx2_init_one,
  5600. .remove = __devexit_p(bnx2_remove_one),
  5601. .suspend = bnx2_suspend,
  5602. .resume = bnx2_resume,
  5603. };
  5604. static int __init bnx2_init(void)
  5605. {
  5606. return pci_register_driver(&bnx2_pci_driver);
  5607. }
  5608. static void __exit bnx2_cleanup(void)
  5609. {
  5610. pci_unregister_driver(&bnx2_pci_driver);
  5611. }
  5612. module_init(bnx2_init);
  5613. module_exit(bnx2_cleanup);