ste_dma40.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878
  1. /*
  2. * driver/dma/ste_dma40.c
  3. *
  4. * Copyright (C) ST-Ericsson 2007-2010
  5. * License terms: GNU General Public License (GPL) version 2
  6. * Author: Per Friden <per.friden@stericsson.com>
  7. * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
  8. *
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <plat/ste_dma40.h>
  17. #include "ste_dma40_ll.h"
  18. #define D40_NAME "dma40"
  19. #define D40_PHY_CHAN -1
  20. /* For masking out/in 2 bit channel positions */
  21. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  22. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  23. /* Maximum iterations taken before giving up suspending a channel */
  24. #define D40_SUSPEND_MAX_IT 500
  25. /* Hardware requirement on LCLA alignment */
  26. #define LCLA_ALIGNMENT 0x40000
  27. /* Attempts before giving up to trying to get pages that are aligned */
  28. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  29. /* Bit markings for allocation map */
  30. #define D40_ALLOC_FREE (1 << 31)
  31. #define D40_ALLOC_PHY (1 << 30)
  32. #define D40_ALLOC_LOG_FREE 0
  33. /* Hardware designer of the block */
  34. #define D40_PERIPHID2_DESIGNER 0x8
  35. /**
  36. * enum 40_command - The different commands and/or statuses.
  37. *
  38. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  39. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  40. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  41. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  42. */
  43. enum d40_command {
  44. D40_DMA_STOP = 0,
  45. D40_DMA_RUN = 1,
  46. D40_DMA_SUSPEND_REQ = 2,
  47. D40_DMA_SUSPENDED = 3
  48. };
  49. /**
  50. * struct d40_lli_pool - Structure for keeping LLIs in memory
  51. *
  52. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  53. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  54. * pre_alloc_lli is used.
  55. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  56. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  57. * one buffer to one buffer.
  58. */
  59. struct d40_lli_pool {
  60. void *base;
  61. int size;
  62. /* Space for dst and src, plus an extra for padding */
  63. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  64. };
  65. /**
  66. * struct d40_desc - A descriptor is one DMA job.
  67. *
  68. * @lli_phy: LLI settings for physical channel. Both src and dst=
  69. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  70. * lli_len equals one.
  71. * @lli_log: Same as above but for logical channels.
  72. * @lli_pool: The pool with two entries pre-allocated.
  73. * @lli_len: Number of llis of current descriptor.
  74. * @lli_count: Number of transfered llis.
  75. * @lli_tx_len: Max number of LLIs per transfer, there can be
  76. * many transfer for one descriptor.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @dir: The transfer direction of this job.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. *
  83. * This descriptor is used for both logical and physical transfers.
  84. */
  85. struct d40_desc {
  86. /* LLI physical */
  87. struct d40_phy_lli_bidir lli_phy;
  88. /* LLI logical */
  89. struct d40_log_lli_bidir lli_log;
  90. struct d40_lli_pool lli_pool;
  91. int lli_len;
  92. int lli_count;
  93. u32 lli_tx_len;
  94. struct dma_async_tx_descriptor txd;
  95. struct list_head node;
  96. enum dma_data_direction dir;
  97. bool is_in_client_list;
  98. };
  99. /**
  100. * struct d40_lcla_pool - LCLA pool settings and data.
  101. *
  102. * @base: The virtual address of LCLA. 18 bit aligned.
  103. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  104. * This pointer is only there for clean-up on error.
  105. * @pages: The number of pages needed for all physical channels.
  106. * Only used later for clean-up on error
  107. * @lock: Lock to protect the content in this struct.
  108. * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
  109. * @num_blocks: The number of entries of alloc_map. Equals to the
  110. * number of physical channels.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. void *base_unaligned;
  115. int pages;
  116. spinlock_t lock;
  117. u32 *alloc_map;
  118. int num_blocks;
  119. };
  120. /**
  121. * struct d40_phy_res - struct for handling eventlines mapped to physical
  122. * channels.
  123. *
  124. * @lock: A lock protection this entity.
  125. * @num: The physical channel number of this entity.
  126. * @allocated_src: Bit mapped to show which src event line's are mapped to
  127. * this physical channel. Can also be free or physically allocated.
  128. * @allocated_dst: Same as for src but is dst.
  129. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  130. * event line number. Both allocated_src and allocated_dst can not be
  131. * allocated to a physical channel, since the interrupt handler has then
  132. * no way of figure out which one the interrupt belongs to.
  133. */
  134. struct d40_phy_res {
  135. spinlock_t lock;
  136. int num;
  137. u32 allocated_src;
  138. u32 allocated_dst;
  139. };
  140. struct d40_base;
  141. /**
  142. * struct d40_chan - Struct that describes a channel.
  143. *
  144. * @lock: A spinlock to protect this struct.
  145. * @log_num: The logical number, if any of this channel.
  146. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  147. * current cookie.
  148. * @pending_tx: The number of pending transfers. Used between interrupt handler
  149. * and tasklet.
  150. * @busy: Set to true when transfer is ongoing on this channel.
  151. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  152. * point is NULL, then the channel is not allocated.
  153. * @chan: DMA engine handle.
  154. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  155. * transfer and call client callback.
  156. * @client: Cliented owned descriptor list.
  157. * @active: Active descriptor.
  158. * @queue: Queued jobs.
  159. * @dma_cfg: The client configuration of this dma channel.
  160. * @base: Pointer to the device instance struct.
  161. * @src_def_cfg: Default cfg register setting for src.
  162. * @dst_def_cfg: Default cfg register setting for dst.
  163. * @log_def: Default logical channel settings.
  164. * @lcla: Space for one dst src pair for logical channel transfers.
  165. * @lcpa: Pointer to dst and src lcpa settings.
  166. *
  167. * This struct can either "be" a logical or a physical channel.
  168. */
  169. struct d40_chan {
  170. spinlock_t lock;
  171. int log_num;
  172. /* ID of the most recent completed transfer */
  173. int completed;
  174. int pending_tx;
  175. bool busy;
  176. struct d40_phy_res *phy_chan;
  177. struct dma_chan chan;
  178. struct tasklet_struct tasklet;
  179. struct list_head client;
  180. struct list_head active;
  181. struct list_head queue;
  182. struct stedma40_chan_cfg dma_cfg;
  183. struct d40_base *base;
  184. /* Default register configurations */
  185. u32 src_def_cfg;
  186. u32 dst_def_cfg;
  187. struct d40_def_lcsp log_def;
  188. struct d40_lcla_elem lcla;
  189. struct d40_log_lli_full *lcpa;
  190. /* Runtime reconfiguration */
  191. dma_addr_t runtime_addr;
  192. enum dma_data_direction runtime_direction;
  193. };
  194. /**
  195. * struct d40_base - The big global struct, one for each probe'd instance.
  196. *
  197. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  198. * @execmd_lock: Lock for execute command usage since several channels share
  199. * the same physical register.
  200. * @dev: The device structure.
  201. * @virtbase: The virtual base address of the DMA's register.
  202. * @rev: silicon revision detected.
  203. * @clk: Pointer to the DMA clock structure.
  204. * @phy_start: Physical memory start of the DMA registers.
  205. * @phy_size: Size of the DMA register map.
  206. * @irq: The IRQ number.
  207. * @num_phy_chans: The number of physical channels. Read from HW. This
  208. * is the number of available channels for this driver, not counting "Secure
  209. * mode" allocated physical channels.
  210. * @num_log_chans: The number of logical channels. Calculated from
  211. * num_phy_chans.
  212. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  213. * @dma_slave: dma_device channels that can do only do slave transfers.
  214. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  215. * @phy_chans: Room for all possible physical channels in system.
  216. * @log_chans: Room for all possible logical channels in system.
  217. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  218. * to log_chans entries.
  219. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  220. * to phy_chans entries.
  221. * @plat_data: Pointer to provided platform_data which is the driver
  222. * configuration.
  223. * @phy_res: Vector containing all physical channels.
  224. * @lcla_pool: lcla pool settings and data.
  225. * @lcpa_base: The virtual mapped address of LCPA.
  226. * @phy_lcpa: The physical address of the LCPA.
  227. * @lcpa_size: The size of the LCPA area.
  228. * @desc_slab: cache for descriptors.
  229. */
  230. struct d40_base {
  231. spinlock_t interrupt_lock;
  232. spinlock_t execmd_lock;
  233. struct device *dev;
  234. void __iomem *virtbase;
  235. u8 rev:4;
  236. struct clk *clk;
  237. phys_addr_t phy_start;
  238. resource_size_t phy_size;
  239. int irq;
  240. int num_phy_chans;
  241. int num_log_chans;
  242. struct dma_device dma_both;
  243. struct dma_device dma_slave;
  244. struct dma_device dma_memcpy;
  245. struct d40_chan *phy_chans;
  246. struct d40_chan *log_chans;
  247. struct d40_chan **lookup_log_chans;
  248. struct d40_chan **lookup_phy_chans;
  249. struct stedma40_platform_data *plat_data;
  250. /* Physical half channels */
  251. struct d40_phy_res *phy_res;
  252. struct d40_lcla_pool lcla_pool;
  253. void *lcpa_base;
  254. dma_addr_t phy_lcpa;
  255. resource_size_t lcpa_size;
  256. struct kmem_cache *desc_slab;
  257. };
  258. /**
  259. * struct d40_interrupt_lookup - lookup table for interrupt handler
  260. *
  261. * @src: Interrupt mask register.
  262. * @clr: Interrupt clear register.
  263. * @is_error: true if this is an error interrupt.
  264. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  265. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  266. */
  267. struct d40_interrupt_lookup {
  268. u32 src;
  269. u32 clr;
  270. bool is_error;
  271. int offset;
  272. };
  273. /**
  274. * struct d40_reg_val - simple lookup struct
  275. *
  276. * @reg: The register.
  277. * @val: The value that belongs to the register in reg.
  278. */
  279. struct d40_reg_val {
  280. unsigned int reg;
  281. unsigned int val;
  282. };
  283. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  284. int lli_len, bool is_log)
  285. {
  286. u32 align;
  287. void *base;
  288. if (is_log)
  289. align = sizeof(struct d40_log_lli);
  290. else
  291. align = sizeof(struct d40_phy_lli);
  292. if (lli_len == 1) {
  293. base = d40d->lli_pool.pre_alloc_lli;
  294. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  295. d40d->lli_pool.base = NULL;
  296. } else {
  297. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  298. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  299. d40d->lli_pool.base = base;
  300. if (d40d->lli_pool.base == NULL)
  301. return -ENOMEM;
  302. }
  303. if (is_log) {
  304. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  305. align);
  306. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  307. align);
  308. } else {
  309. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  310. align);
  311. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  312. align);
  313. d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
  314. d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
  315. }
  316. return 0;
  317. }
  318. static void d40_pool_lli_free(struct d40_desc *d40d)
  319. {
  320. kfree(d40d->lli_pool.base);
  321. d40d->lli_pool.base = NULL;
  322. d40d->lli_pool.size = 0;
  323. d40d->lli_log.src = NULL;
  324. d40d->lli_log.dst = NULL;
  325. d40d->lli_phy.src = NULL;
  326. d40d->lli_phy.dst = NULL;
  327. d40d->lli_phy.src_addr = 0;
  328. d40d->lli_phy.dst_addr = 0;
  329. }
  330. static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
  331. struct d40_desc *desc)
  332. {
  333. dma_cookie_t cookie = d40c->chan.cookie;
  334. if (++cookie < 0)
  335. cookie = 1;
  336. d40c->chan.cookie = cookie;
  337. desc->txd.cookie = cookie;
  338. return cookie;
  339. }
  340. static void d40_desc_remove(struct d40_desc *d40d)
  341. {
  342. list_del(&d40d->node);
  343. }
  344. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  345. {
  346. struct d40_desc *d;
  347. struct d40_desc *_d;
  348. if (!list_empty(&d40c->client)) {
  349. list_for_each_entry_safe(d, _d, &d40c->client, node)
  350. if (async_tx_test_ack(&d->txd)) {
  351. d40_pool_lli_free(d);
  352. d40_desc_remove(d);
  353. break;
  354. }
  355. } else {
  356. d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
  357. if (d != NULL) {
  358. memset(d, 0, sizeof(struct d40_desc));
  359. INIT_LIST_HEAD(&d->node);
  360. }
  361. }
  362. return d;
  363. }
  364. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  365. {
  366. kmem_cache_free(d40c->base->desc_slab, d40d);
  367. }
  368. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  369. {
  370. list_add_tail(&desc->node, &d40c->active);
  371. }
  372. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  373. {
  374. struct d40_desc *d;
  375. if (list_empty(&d40c->active))
  376. return NULL;
  377. d = list_first_entry(&d40c->active,
  378. struct d40_desc,
  379. node);
  380. return d;
  381. }
  382. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  383. {
  384. list_add_tail(&desc->node, &d40c->queue);
  385. }
  386. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  387. {
  388. struct d40_desc *d;
  389. if (list_empty(&d40c->queue))
  390. return NULL;
  391. d = list_first_entry(&d40c->queue,
  392. struct d40_desc,
  393. node);
  394. return d;
  395. }
  396. /* Support functions for logical channels */
  397. static int d40_lcla_id_get(struct d40_chan *d40c)
  398. {
  399. int src_id = 0;
  400. int dst_id = 0;
  401. struct d40_log_lli *lcla_lidx_base =
  402. d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
  403. int i;
  404. int lli_per_log = d40c->base->plat_data->llis_per_log;
  405. unsigned long flags;
  406. if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
  407. return 0;
  408. if (d40c->base->lcla_pool.num_blocks > 32)
  409. return -EINVAL;
  410. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  411. for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
  412. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  413. (0x1 << i))) {
  414. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  415. (0x1 << i);
  416. break;
  417. }
  418. }
  419. src_id = i;
  420. if (src_id >= d40c->base->lcla_pool.num_blocks)
  421. goto err;
  422. for (; i < d40c->base->lcla_pool.num_blocks; i++) {
  423. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  424. (0x1 << i))) {
  425. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  426. (0x1 << i);
  427. break;
  428. }
  429. }
  430. dst_id = i;
  431. if (dst_id == src_id)
  432. goto err;
  433. d40c->lcla.src_id = src_id;
  434. d40c->lcla.dst_id = dst_id;
  435. d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
  436. d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
  437. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  438. return 0;
  439. err:
  440. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  441. return -EINVAL;
  442. }
  443. static int d40_channel_execute_command(struct d40_chan *d40c,
  444. enum d40_command command)
  445. {
  446. int status, i;
  447. void __iomem *active_reg;
  448. int ret = 0;
  449. unsigned long flags;
  450. u32 wmask;
  451. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  452. if (d40c->phy_chan->num % 2 == 0)
  453. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  454. else
  455. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  456. if (command == D40_DMA_SUSPEND_REQ) {
  457. status = (readl(active_reg) &
  458. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  459. D40_CHAN_POS(d40c->phy_chan->num);
  460. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  461. goto done;
  462. }
  463. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  464. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  465. active_reg);
  466. if (command == D40_DMA_SUSPEND_REQ) {
  467. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  468. status = (readl(active_reg) &
  469. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  470. D40_CHAN_POS(d40c->phy_chan->num);
  471. cpu_relax();
  472. /*
  473. * Reduce the number of bus accesses while
  474. * waiting for the DMA to suspend.
  475. */
  476. udelay(3);
  477. if (status == D40_DMA_STOP ||
  478. status == D40_DMA_SUSPENDED)
  479. break;
  480. }
  481. if (i == D40_SUSPEND_MAX_IT) {
  482. dev_err(&d40c->chan.dev->device,
  483. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  484. __func__, d40c->phy_chan->num, d40c->log_num,
  485. status);
  486. dump_stack();
  487. ret = -EBUSY;
  488. }
  489. }
  490. done:
  491. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  492. return ret;
  493. }
  494. static void d40_term_all(struct d40_chan *d40c)
  495. {
  496. struct d40_desc *d40d;
  497. unsigned long flags;
  498. /* Release active descriptors */
  499. while ((d40d = d40_first_active_get(d40c))) {
  500. d40_desc_remove(d40d);
  501. /* Return desc to free-list */
  502. d40_desc_free(d40c, d40d);
  503. }
  504. /* Release queued descriptors waiting for transfer */
  505. while ((d40d = d40_first_queued(d40c))) {
  506. d40_desc_remove(d40d);
  507. /* Return desc to free-list */
  508. d40_desc_free(d40c, d40d);
  509. }
  510. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  511. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  512. (~(0x1 << d40c->lcla.dst_id));
  513. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  514. (~(0x1 << d40c->lcla.src_id));
  515. d40c->lcla.src_id = -1;
  516. d40c->lcla.dst_id = -1;
  517. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  518. d40c->pending_tx = 0;
  519. d40c->busy = false;
  520. }
  521. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  522. {
  523. u32 val;
  524. unsigned long flags;
  525. /* Notice, that disable requires the physical channel to be stopped */
  526. if (do_enable)
  527. val = D40_ACTIVATE_EVENTLINE;
  528. else
  529. val = D40_DEACTIVATE_EVENTLINE;
  530. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  531. /* Enable event line connected to device (or memcpy) */
  532. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  533. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  534. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  535. writel((val << D40_EVENTLINE_POS(event)) |
  536. ~D40_EVENTLINE_MASK(event),
  537. d40c->base->virtbase + D40_DREG_PCBASE +
  538. d40c->phy_chan->num * D40_DREG_PCDELTA +
  539. D40_CHAN_REG_SSLNK);
  540. }
  541. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  542. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  543. writel((val << D40_EVENTLINE_POS(event)) |
  544. ~D40_EVENTLINE_MASK(event),
  545. d40c->base->virtbase + D40_DREG_PCBASE +
  546. d40c->phy_chan->num * D40_DREG_PCDELTA +
  547. D40_CHAN_REG_SDLNK);
  548. }
  549. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  550. }
  551. static u32 d40_chan_has_events(struct d40_chan *d40c)
  552. {
  553. u32 val = 0;
  554. /* If SSLNK or SDLNK is zero all events are disabled */
  555. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  556. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  557. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  558. d40c->phy_chan->num * D40_DREG_PCDELTA +
  559. D40_CHAN_REG_SSLNK);
  560. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
  561. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  562. d40c->phy_chan->num * D40_DREG_PCDELTA +
  563. D40_CHAN_REG_SDLNK);
  564. return val;
  565. }
  566. static void d40_config_enable_lidx(struct d40_chan *d40c)
  567. {
  568. /* Set LIDX for lcla */
  569. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  570. D40_SREG_ELEM_LOG_LIDX_MASK,
  571. d40c->base->virtbase + D40_DREG_PCBASE +
  572. d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
  573. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  574. D40_SREG_ELEM_LOG_LIDX_MASK,
  575. d40c->base->virtbase + D40_DREG_PCBASE +
  576. d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
  577. }
  578. static int d40_config_write(struct d40_chan *d40c)
  579. {
  580. u32 addr_base;
  581. u32 var;
  582. int res;
  583. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  584. if (res)
  585. return res;
  586. /* Odd addresses are even addresses + 4 */
  587. addr_base = (d40c->phy_chan->num % 2) * 4;
  588. /* Setup channel mode to logical or physical */
  589. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  590. D40_CHAN_POS(d40c->phy_chan->num);
  591. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  592. /* Setup operational mode option register */
  593. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  594. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  595. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  596. if (d40c->log_num != D40_PHY_CHAN) {
  597. /* Set default config for CFG reg */
  598. writel(d40c->src_def_cfg,
  599. d40c->base->virtbase + D40_DREG_PCBASE +
  600. d40c->phy_chan->num * D40_DREG_PCDELTA +
  601. D40_CHAN_REG_SSCFG);
  602. writel(d40c->dst_def_cfg,
  603. d40c->base->virtbase + D40_DREG_PCBASE +
  604. d40c->phy_chan->num * D40_DREG_PCDELTA +
  605. D40_CHAN_REG_SDCFG);
  606. d40_config_enable_lidx(d40c);
  607. }
  608. return res;
  609. }
  610. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  611. {
  612. if (d40d->lli_phy.dst && d40d->lli_phy.src) {
  613. d40_phy_lli_write(d40c->base->virtbase,
  614. d40c->phy_chan->num,
  615. d40d->lli_phy.dst,
  616. d40d->lli_phy.src);
  617. } else if (d40d->lli_log.dst && d40d->lli_log.src) {
  618. struct d40_log_lli *src = d40d->lli_log.src;
  619. struct d40_log_lli *dst = d40d->lli_log.dst;
  620. int s;
  621. src += d40d->lli_count;
  622. dst += d40d->lli_count;
  623. s = d40_log_lli_write(d40c->lcpa,
  624. d40c->lcla.src, d40c->lcla.dst,
  625. dst, src,
  626. d40c->base->plat_data->llis_per_log);
  627. /* If s equals to zero, the job is not linked */
  628. if (s > 0) {
  629. (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
  630. s * sizeof(struct d40_log_lli),
  631. DMA_TO_DEVICE);
  632. (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
  633. s * sizeof(struct d40_log_lli),
  634. DMA_TO_DEVICE);
  635. }
  636. }
  637. d40d->lli_count += d40d->lli_tx_len;
  638. }
  639. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  640. {
  641. struct d40_chan *d40c = container_of(tx->chan,
  642. struct d40_chan,
  643. chan);
  644. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  645. unsigned long flags;
  646. spin_lock_irqsave(&d40c->lock, flags);
  647. tx->cookie = d40_assign_cookie(d40c, d40d);
  648. d40_desc_queue(d40c, d40d);
  649. spin_unlock_irqrestore(&d40c->lock, flags);
  650. return tx->cookie;
  651. }
  652. static int d40_start(struct d40_chan *d40c)
  653. {
  654. if (d40c->base->rev == 0) {
  655. int err;
  656. if (d40c->log_num != D40_PHY_CHAN) {
  657. err = d40_channel_execute_command(d40c,
  658. D40_DMA_SUSPEND_REQ);
  659. if (err)
  660. return err;
  661. }
  662. }
  663. if (d40c->log_num != D40_PHY_CHAN)
  664. d40_config_set_event(d40c, true);
  665. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  666. }
  667. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  668. {
  669. struct d40_desc *d40d;
  670. int err;
  671. /* Start queued jobs, if any */
  672. d40d = d40_first_queued(d40c);
  673. if (d40d != NULL) {
  674. d40c->busy = true;
  675. /* Remove from queue */
  676. d40_desc_remove(d40d);
  677. /* Add to active queue */
  678. d40_desc_submit(d40c, d40d);
  679. /* Initiate DMA job */
  680. d40_desc_load(d40c, d40d);
  681. /* Start dma job */
  682. err = d40_start(d40c);
  683. if (err)
  684. return NULL;
  685. }
  686. return d40d;
  687. }
  688. /* called from interrupt context */
  689. static void dma_tc_handle(struct d40_chan *d40c)
  690. {
  691. struct d40_desc *d40d;
  692. if (!d40c->phy_chan)
  693. return;
  694. /* Get first active entry from list */
  695. d40d = d40_first_active_get(d40c);
  696. if (d40d == NULL)
  697. return;
  698. if (d40d->lli_count < d40d->lli_len) {
  699. d40_desc_load(d40c, d40d);
  700. /* Start dma job */
  701. (void) d40_start(d40c);
  702. return;
  703. }
  704. if (d40_queue_start(d40c) == NULL)
  705. d40c->busy = false;
  706. d40c->pending_tx++;
  707. tasklet_schedule(&d40c->tasklet);
  708. }
  709. static void dma_tasklet(unsigned long data)
  710. {
  711. struct d40_chan *d40c = (struct d40_chan *) data;
  712. struct d40_desc *d40d_fin;
  713. unsigned long flags;
  714. dma_async_tx_callback callback;
  715. void *callback_param;
  716. spin_lock_irqsave(&d40c->lock, flags);
  717. /* Get first active entry from list */
  718. d40d_fin = d40_first_active_get(d40c);
  719. if (d40d_fin == NULL)
  720. goto err;
  721. d40c->completed = d40d_fin->txd.cookie;
  722. /*
  723. * If terminating a channel pending_tx is set to zero.
  724. * This prevents any finished active jobs to return to the client.
  725. */
  726. if (d40c->pending_tx == 0) {
  727. spin_unlock_irqrestore(&d40c->lock, flags);
  728. return;
  729. }
  730. /* Callback to client */
  731. callback = d40d_fin->txd.callback;
  732. callback_param = d40d_fin->txd.callback_param;
  733. if (async_tx_test_ack(&d40d_fin->txd)) {
  734. d40_pool_lli_free(d40d_fin);
  735. d40_desc_remove(d40d_fin);
  736. /* Return desc to free-list */
  737. d40_desc_free(d40c, d40d_fin);
  738. } else {
  739. if (!d40d_fin->is_in_client_list) {
  740. d40_desc_remove(d40d_fin);
  741. list_add_tail(&d40d_fin->node, &d40c->client);
  742. d40d_fin->is_in_client_list = true;
  743. }
  744. }
  745. d40c->pending_tx--;
  746. if (d40c->pending_tx)
  747. tasklet_schedule(&d40c->tasklet);
  748. spin_unlock_irqrestore(&d40c->lock, flags);
  749. if (callback)
  750. callback(callback_param);
  751. return;
  752. err:
  753. /* Rescue manouver if receiving double interrupts */
  754. if (d40c->pending_tx > 0)
  755. d40c->pending_tx--;
  756. spin_unlock_irqrestore(&d40c->lock, flags);
  757. }
  758. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  759. {
  760. static const struct d40_interrupt_lookup il[] = {
  761. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  762. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  763. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  764. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  765. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  766. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  767. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  768. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  769. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  770. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  771. };
  772. int i;
  773. u32 regs[ARRAY_SIZE(il)];
  774. u32 tmp;
  775. u32 idx;
  776. u32 row;
  777. long chan = -1;
  778. struct d40_chan *d40c;
  779. unsigned long flags;
  780. struct d40_base *base = data;
  781. spin_lock_irqsave(&base->interrupt_lock, flags);
  782. /* Read interrupt status of both logical and physical channels */
  783. for (i = 0; i < ARRAY_SIZE(il); i++)
  784. regs[i] = readl(base->virtbase + il[i].src);
  785. for (;;) {
  786. chan = find_next_bit((unsigned long *)regs,
  787. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  788. /* No more set bits found? */
  789. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  790. break;
  791. row = chan / BITS_PER_LONG;
  792. idx = chan & (BITS_PER_LONG - 1);
  793. /* ACK interrupt */
  794. tmp = readl(base->virtbase + il[row].clr);
  795. tmp |= 1 << idx;
  796. writel(tmp, base->virtbase + il[row].clr);
  797. if (il[row].offset == D40_PHY_CHAN)
  798. d40c = base->lookup_phy_chans[idx];
  799. else
  800. d40c = base->lookup_log_chans[il[row].offset + idx];
  801. spin_lock(&d40c->lock);
  802. if (!il[row].is_error)
  803. dma_tc_handle(d40c);
  804. else
  805. dev_err(base->dev,
  806. "[%s] IRQ chan: %ld offset %d idx %d\n",
  807. __func__, chan, il[row].offset, idx);
  808. spin_unlock(&d40c->lock);
  809. }
  810. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  811. return IRQ_HANDLED;
  812. }
  813. static int d40_validate_conf(struct d40_chan *d40c,
  814. struct stedma40_chan_cfg *conf)
  815. {
  816. int res = 0;
  817. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  818. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  819. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  820. == STEDMA40_CHANNEL_IN_LOG_MODE;
  821. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
  822. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  823. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  824. __func__);
  825. res = -EINVAL;
  826. }
  827. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
  828. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  829. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  830. __func__);
  831. res = -EINVAL;
  832. }
  833. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  834. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  835. dev_err(&d40c->chan.dev->device,
  836. "[%s] No event line\n", __func__);
  837. res = -EINVAL;
  838. }
  839. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  840. (src_event_group != dst_event_group)) {
  841. dev_err(&d40c->chan.dev->device,
  842. "[%s] Invalid event group\n", __func__);
  843. res = -EINVAL;
  844. }
  845. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  846. /*
  847. * DMAC HW supports it. Will be added to this driver,
  848. * in case any dma client requires it.
  849. */
  850. dev_err(&d40c->chan.dev->device,
  851. "[%s] periph to periph not supported\n",
  852. __func__);
  853. res = -EINVAL;
  854. }
  855. return res;
  856. }
  857. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  858. int log_event_line, bool is_log)
  859. {
  860. unsigned long flags;
  861. spin_lock_irqsave(&phy->lock, flags);
  862. if (!is_log) {
  863. /* Physical interrupts are masked per physical full channel */
  864. if (phy->allocated_src == D40_ALLOC_FREE &&
  865. phy->allocated_dst == D40_ALLOC_FREE) {
  866. phy->allocated_dst = D40_ALLOC_PHY;
  867. phy->allocated_src = D40_ALLOC_PHY;
  868. goto found;
  869. } else
  870. goto not_found;
  871. }
  872. /* Logical channel */
  873. if (is_src) {
  874. if (phy->allocated_src == D40_ALLOC_PHY)
  875. goto not_found;
  876. if (phy->allocated_src == D40_ALLOC_FREE)
  877. phy->allocated_src = D40_ALLOC_LOG_FREE;
  878. if (!(phy->allocated_src & (1 << log_event_line))) {
  879. phy->allocated_src |= 1 << log_event_line;
  880. goto found;
  881. } else
  882. goto not_found;
  883. } else {
  884. if (phy->allocated_dst == D40_ALLOC_PHY)
  885. goto not_found;
  886. if (phy->allocated_dst == D40_ALLOC_FREE)
  887. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  888. if (!(phy->allocated_dst & (1 << log_event_line))) {
  889. phy->allocated_dst |= 1 << log_event_line;
  890. goto found;
  891. } else
  892. goto not_found;
  893. }
  894. not_found:
  895. spin_unlock_irqrestore(&phy->lock, flags);
  896. return false;
  897. found:
  898. spin_unlock_irqrestore(&phy->lock, flags);
  899. return true;
  900. }
  901. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  902. int log_event_line)
  903. {
  904. unsigned long flags;
  905. bool is_free = false;
  906. spin_lock_irqsave(&phy->lock, flags);
  907. if (!log_event_line) {
  908. /* Physical interrupts are masked per physical full channel */
  909. phy->allocated_dst = D40_ALLOC_FREE;
  910. phy->allocated_src = D40_ALLOC_FREE;
  911. is_free = true;
  912. goto out;
  913. }
  914. /* Logical channel */
  915. if (is_src) {
  916. phy->allocated_src &= ~(1 << log_event_line);
  917. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  918. phy->allocated_src = D40_ALLOC_FREE;
  919. } else {
  920. phy->allocated_dst &= ~(1 << log_event_line);
  921. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  922. phy->allocated_dst = D40_ALLOC_FREE;
  923. }
  924. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  925. D40_ALLOC_FREE);
  926. out:
  927. spin_unlock_irqrestore(&phy->lock, flags);
  928. return is_free;
  929. }
  930. static int d40_allocate_channel(struct d40_chan *d40c)
  931. {
  932. int dev_type;
  933. int event_group;
  934. int event_line;
  935. struct d40_phy_res *phys;
  936. int i;
  937. int j;
  938. int log_num;
  939. bool is_src;
  940. bool is_log = (d40c->dma_cfg.channel_type &
  941. STEDMA40_CHANNEL_IN_OPER_MODE)
  942. == STEDMA40_CHANNEL_IN_LOG_MODE;
  943. phys = d40c->base->phy_res;
  944. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  945. dev_type = d40c->dma_cfg.src_dev_type;
  946. log_num = 2 * dev_type;
  947. is_src = true;
  948. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  949. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  950. /* dst event lines are used for logical memcpy */
  951. dev_type = d40c->dma_cfg.dst_dev_type;
  952. log_num = 2 * dev_type + 1;
  953. is_src = false;
  954. } else
  955. return -EINVAL;
  956. event_group = D40_TYPE_TO_GROUP(dev_type);
  957. event_line = D40_TYPE_TO_EVENT(dev_type);
  958. if (!is_log) {
  959. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  960. /* Find physical half channel */
  961. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  962. if (d40_alloc_mask_set(&phys[i], is_src,
  963. 0, is_log))
  964. goto found_phy;
  965. }
  966. } else
  967. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  968. int phy_num = j + event_group * 2;
  969. for (i = phy_num; i < phy_num + 2; i++) {
  970. if (d40_alloc_mask_set(&phys[i],
  971. is_src,
  972. 0,
  973. is_log))
  974. goto found_phy;
  975. }
  976. }
  977. return -EINVAL;
  978. found_phy:
  979. d40c->phy_chan = &phys[i];
  980. d40c->log_num = D40_PHY_CHAN;
  981. goto out;
  982. }
  983. if (dev_type == -1)
  984. return -EINVAL;
  985. /* Find logical channel */
  986. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  987. int phy_num = j + event_group * 2;
  988. /*
  989. * Spread logical channels across all available physical rather
  990. * than pack every logical channel at the first available phy
  991. * channels.
  992. */
  993. if (is_src) {
  994. for (i = phy_num; i < phy_num + 2; i++) {
  995. if (d40_alloc_mask_set(&phys[i], is_src,
  996. event_line, is_log))
  997. goto found_log;
  998. }
  999. } else {
  1000. for (i = phy_num + 1; i >= phy_num; i--) {
  1001. if (d40_alloc_mask_set(&phys[i], is_src,
  1002. event_line, is_log))
  1003. goto found_log;
  1004. }
  1005. }
  1006. }
  1007. return -EINVAL;
  1008. found_log:
  1009. d40c->phy_chan = &phys[i];
  1010. d40c->log_num = log_num;
  1011. out:
  1012. if (is_log)
  1013. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1014. else
  1015. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1016. return 0;
  1017. }
  1018. static int d40_config_memcpy(struct d40_chan *d40c)
  1019. {
  1020. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1021. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1022. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1023. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1024. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1025. memcpy[d40c->chan.chan_id];
  1026. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1027. dma_has_cap(DMA_SLAVE, cap)) {
  1028. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1029. } else {
  1030. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1031. __func__);
  1032. return -EINVAL;
  1033. }
  1034. return 0;
  1035. }
  1036. static int d40_free_dma(struct d40_chan *d40c)
  1037. {
  1038. int res = 0;
  1039. u32 event;
  1040. struct d40_phy_res *phy = d40c->phy_chan;
  1041. bool is_src;
  1042. struct d40_desc *d;
  1043. struct d40_desc *_d;
  1044. /* Terminate all queued and active transfers */
  1045. d40_term_all(d40c);
  1046. /* Release client owned descriptors */
  1047. if (!list_empty(&d40c->client))
  1048. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1049. d40_pool_lli_free(d);
  1050. d40_desc_remove(d);
  1051. /* Return desc to free-list */
  1052. d40_desc_free(d40c, d);
  1053. }
  1054. if (phy == NULL) {
  1055. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1056. __func__);
  1057. return -EINVAL;
  1058. }
  1059. if (phy->allocated_src == D40_ALLOC_FREE &&
  1060. phy->allocated_dst == D40_ALLOC_FREE) {
  1061. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1062. __func__);
  1063. return -EINVAL;
  1064. }
  1065. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1066. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1067. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1068. is_src = false;
  1069. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1070. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1071. is_src = true;
  1072. } else {
  1073. dev_err(&d40c->chan.dev->device,
  1074. "[%s] Unknown direction\n", __func__);
  1075. return -EINVAL;
  1076. }
  1077. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1078. if (res) {
  1079. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1080. __func__);
  1081. return res;
  1082. }
  1083. if (d40c->log_num != D40_PHY_CHAN) {
  1084. /* Release logical channel, deactivate the event line */
  1085. d40_config_set_event(d40c, false);
  1086. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1087. /*
  1088. * Check if there are more logical allocation
  1089. * on this phy channel.
  1090. */
  1091. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1092. /* Resume the other logical channels if any */
  1093. if (d40_chan_has_events(d40c)) {
  1094. res = d40_channel_execute_command(d40c,
  1095. D40_DMA_RUN);
  1096. if (res) {
  1097. dev_err(&d40c->chan.dev->device,
  1098. "[%s] Executing RUN command\n",
  1099. __func__);
  1100. return res;
  1101. }
  1102. }
  1103. return 0;
  1104. }
  1105. } else {
  1106. (void) d40_alloc_mask_free(phy, is_src, 0);
  1107. }
  1108. /* Release physical channel */
  1109. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1110. if (res) {
  1111. dev_err(&d40c->chan.dev->device,
  1112. "[%s] Failed to stop channel\n", __func__);
  1113. return res;
  1114. }
  1115. d40c->phy_chan = NULL;
  1116. /* Invalidate channel type */
  1117. d40c->dma_cfg.channel_type = 0;
  1118. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1119. return 0;
  1120. }
  1121. static int d40_pause(struct dma_chan *chan)
  1122. {
  1123. struct d40_chan *d40c =
  1124. container_of(chan, struct d40_chan, chan);
  1125. int res;
  1126. unsigned long flags;
  1127. spin_lock_irqsave(&d40c->lock, flags);
  1128. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1129. if (res == 0) {
  1130. if (d40c->log_num != D40_PHY_CHAN) {
  1131. d40_config_set_event(d40c, false);
  1132. /* Resume the other logical channels if any */
  1133. if (d40_chan_has_events(d40c))
  1134. res = d40_channel_execute_command(d40c,
  1135. D40_DMA_RUN);
  1136. }
  1137. }
  1138. spin_unlock_irqrestore(&d40c->lock, flags);
  1139. return res;
  1140. }
  1141. static bool d40_is_paused(struct d40_chan *d40c)
  1142. {
  1143. bool is_paused = false;
  1144. unsigned long flags;
  1145. void __iomem *active_reg;
  1146. u32 status;
  1147. u32 event;
  1148. spin_lock_irqsave(&d40c->lock, flags);
  1149. if (d40c->log_num == D40_PHY_CHAN) {
  1150. if (d40c->phy_chan->num % 2 == 0)
  1151. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1152. else
  1153. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1154. status = (readl(active_reg) &
  1155. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1156. D40_CHAN_POS(d40c->phy_chan->num);
  1157. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1158. is_paused = true;
  1159. goto _exit;
  1160. }
  1161. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1162. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
  1163. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1164. else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1165. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1166. else {
  1167. dev_err(&d40c->chan.dev->device,
  1168. "[%s] Unknown direction\n", __func__);
  1169. goto _exit;
  1170. }
  1171. status = d40_chan_has_events(d40c);
  1172. status = (status & D40_EVENTLINE_MASK(event)) >>
  1173. D40_EVENTLINE_POS(event);
  1174. if (status != D40_DMA_RUN)
  1175. is_paused = true;
  1176. _exit:
  1177. spin_unlock_irqrestore(&d40c->lock, flags);
  1178. return is_paused;
  1179. }
  1180. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1181. {
  1182. bool is_link;
  1183. if (d40c->log_num != D40_PHY_CHAN)
  1184. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1185. else
  1186. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1187. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1188. D40_CHAN_REG_SDLNK) &
  1189. D40_SREG_LNK_PHYS_LNK_MASK;
  1190. return is_link;
  1191. }
  1192. static u32 d40_residue(struct d40_chan *d40c)
  1193. {
  1194. u32 num_elt;
  1195. if (d40c->log_num != D40_PHY_CHAN)
  1196. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1197. >> D40_MEM_LCSP2_ECNT_POS;
  1198. else
  1199. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1200. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1201. D40_CHAN_REG_SDELT) &
  1202. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  1203. D40_SREG_ELEM_PHY_ECNT_POS;
  1204. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1205. }
  1206. static int d40_resume(struct dma_chan *chan)
  1207. {
  1208. struct d40_chan *d40c =
  1209. container_of(chan, struct d40_chan, chan);
  1210. int res = 0;
  1211. unsigned long flags;
  1212. spin_lock_irqsave(&d40c->lock, flags);
  1213. if (d40c->base->rev == 0)
  1214. if (d40c->log_num != D40_PHY_CHAN) {
  1215. res = d40_channel_execute_command(d40c,
  1216. D40_DMA_SUSPEND_REQ);
  1217. goto no_suspend;
  1218. }
  1219. /* If bytes left to transfer or linked tx resume job */
  1220. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  1221. if (d40c->log_num != D40_PHY_CHAN)
  1222. d40_config_set_event(d40c, true);
  1223. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1224. }
  1225. no_suspend:
  1226. spin_unlock_irqrestore(&d40c->lock, flags);
  1227. return res;
  1228. }
  1229. static u32 stedma40_residue(struct dma_chan *chan)
  1230. {
  1231. struct d40_chan *d40c =
  1232. container_of(chan, struct d40_chan, chan);
  1233. u32 bytes_left;
  1234. unsigned long flags;
  1235. spin_lock_irqsave(&d40c->lock, flags);
  1236. bytes_left = d40_residue(d40c);
  1237. spin_unlock_irqrestore(&d40c->lock, flags);
  1238. return bytes_left;
  1239. }
  1240. /* Public DMA functions in addition to the DMA engine framework */
  1241. int stedma40_set_psize(struct dma_chan *chan,
  1242. int src_psize,
  1243. int dst_psize)
  1244. {
  1245. struct d40_chan *d40c =
  1246. container_of(chan, struct d40_chan, chan);
  1247. unsigned long flags;
  1248. spin_lock_irqsave(&d40c->lock, flags);
  1249. if (d40c->log_num != D40_PHY_CHAN) {
  1250. d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1251. d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1252. d40c->log_def.lcsp1 |= src_psize <<
  1253. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1254. d40c->log_def.lcsp3 |= dst_psize <<
  1255. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1256. goto out;
  1257. }
  1258. if (src_psize == STEDMA40_PSIZE_PHY_1)
  1259. d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1260. else {
  1261. d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1262. d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1263. D40_SREG_CFG_PSIZE_POS);
  1264. d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
  1265. }
  1266. if (dst_psize == STEDMA40_PSIZE_PHY_1)
  1267. d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1268. else {
  1269. d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1270. d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1271. D40_SREG_CFG_PSIZE_POS);
  1272. d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
  1273. }
  1274. out:
  1275. spin_unlock_irqrestore(&d40c->lock, flags);
  1276. return 0;
  1277. }
  1278. EXPORT_SYMBOL(stedma40_set_psize);
  1279. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1280. struct scatterlist *sgl_dst,
  1281. struct scatterlist *sgl_src,
  1282. unsigned int sgl_len,
  1283. unsigned long dma_flags)
  1284. {
  1285. int res;
  1286. struct d40_desc *d40d;
  1287. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1288. chan);
  1289. unsigned long flags;
  1290. if (d40c->phy_chan == NULL) {
  1291. dev_err(&d40c->chan.dev->device,
  1292. "[%s] Unallocated channel.\n", __func__);
  1293. return ERR_PTR(-EINVAL);
  1294. }
  1295. spin_lock_irqsave(&d40c->lock, flags);
  1296. d40d = d40_desc_get(d40c);
  1297. if (d40d == NULL)
  1298. goto err;
  1299. d40d->lli_len = sgl_len;
  1300. d40d->lli_tx_len = d40d->lli_len;
  1301. d40d->txd.flags = dma_flags;
  1302. if (d40c->log_num != D40_PHY_CHAN) {
  1303. if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
  1304. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1305. if (sgl_len > 1)
  1306. /*
  1307. * Check if there is space available in lcla. If not,
  1308. * split list into 1-length and run only in lcpa
  1309. * space.
  1310. */
  1311. if (d40_lcla_id_get(d40c) != 0)
  1312. d40d->lli_tx_len = 1;
  1313. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1314. dev_err(&d40c->chan.dev->device,
  1315. "[%s] Out of memory\n", __func__);
  1316. goto err;
  1317. }
  1318. (void) d40_log_sg_to_lli(d40c->lcla.src_id,
  1319. sgl_src,
  1320. sgl_len,
  1321. d40d->lli_log.src,
  1322. d40c->log_def.lcsp1,
  1323. d40c->dma_cfg.src_info.data_width,
  1324. dma_flags & DMA_PREP_INTERRUPT,
  1325. d40d->lli_tx_len,
  1326. d40c->base->plat_data->llis_per_log);
  1327. (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
  1328. sgl_dst,
  1329. sgl_len,
  1330. d40d->lli_log.dst,
  1331. d40c->log_def.lcsp3,
  1332. d40c->dma_cfg.dst_info.data_width,
  1333. dma_flags & DMA_PREP_INTERRUPT,
  1334. d40d->lli_tx_len,
  1335. d40c->base->plat_data->llis_per_log);
  1336. } else {
  1337. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1338. dev_err(&d40c->chan.dev->device,
  1339. "[%s] Out of memory\n", __func__);
  1340. goto err;
  1341. }
  1342. res = d40_phy_sg_to_lli(sgl_src,
  1343. sgl_len,
  1344. 0,
  1345. d40d->lli_phy.src,
  1346. d40d->lli_phy.src_addr,
  1347. d40c->src_def_cfg,
  1348. d40c->dma_cfg.src_info.data_width,
  1349. d40c->dma_cfg.src_info.psize,
  1350. true);
  1351. if (res < 0)
  1352. goto err;
  1353. res = d40_phy_sg_to_lli(sgl_dst,
  1354. sgl_len,
  1355. 0,
  1356. d40d->lli_phy.dst,
  1357. d40d->lli_phy.dst_addr,
  1358. d40c->dst_def_cfg,
  1359. d40c->dma_cfg.dst_info.data_width,
  1360. d40c->dma_cfg.dst_info.psize,
  1361. true);
  1362. if (res < 0)
  1363. goto err;
  1364. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1365. d40d->lli_pool.size, DMA_TO_DEVICE);
  1366. }
  1367. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1368. d40d->txd.tx_submit = d40_tx_submit;
  1369. spin_unlock_irqrestore(&d40c->lock, flags);
  1370. return &d40d->txd;
  1371. err:
  1372. spin_unlock_irqrestore(&d40c->lock, flags);
  1373. return NULL;
  1374. }
  1375. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1376. bool stedma40_filter(struct dma_chan *chan, void *data)
  1377. {
  1378. struct stedma40_chan_cfg *info = data;
  1379. struct d40_chan *d40c =
  1380. container_of(chan, struct d40_chan, chan);
  1381. int err;
  1382. if (data) {
  1383. err = d40_validate_conf(d40c, info);
  1384. if (!err)
  1385. d40c->dma_cfg = *info;
  1386. } else
  1387. err = d40_config_memcpy(d40c);
  1388. return err == 0;
  1389. }
  1390. EXPORT_SYMBOL(stedma40_filter);
  1391. /* DMA ENGINE functions */
  1392. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1393. {
  1394. int err;
  1395. unsigned long flags;
  1396. struct d40_chan *d40c =
  1397. container_of(chan, struct d40_chan, chan);
  1398. bool is_free_phy;
  1399. spin_lock_irqsave(&d40c->lock, flags);
  1400. d40c->completed = chan->cookie = 1;
  1401. /*
  1402. * If no dma configuration is set (channel_type == 0)
  1403. * use default configuration (memcpy)
  1404. */
  1405. if (d40c->dma_cfg.channel_type == 0) {
  1406. err = d40_config_memcpy(d40c);
  1407. if (err) {
  1408. dev_err(&d40c->chan.dev->device,
  1409. "[%s] Failed to configure memcpy channel\n",
  1410. __func__);
  1411. goto fail;
  1412. }
  1413. }
  1414. is_free_phy = (d40c->phy_chan == NULL);
  1415. err = d40_allocate_channel(d40c);
  1416. if (err) {
  1417. dev_err(&d40c->chan.dev->device,
  1418. "[%s] Failed to allocate channel\n", __func__);
  1419. goto fail;
  1420. }
  1421. /* Fill in basic CFG register values */
  1422. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1423. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1424. if (d40c->log_num != D40_PHY_CHAN) {
  1425. d40_log_cfg(&d40c->dma_cfg,
  1426. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1427. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1428. d40c->lcpa = d40c->base->lcpa_base +
  1429. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1430. else
  1431. d40c->lcpa = d40c->base->lcpa_base +
  1432. d40c->dma_cfg.dst_dev_type *
  1433. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1434. }
  1435. /*
  1436. * Only write channel configuration to the DMA if the physical
  1437. * resource is free. In case of multiple logical channels
  1438. * on the same physical resource, only the first write is necessary.
  1439. */
  1440. if (is_free_phy) {
  1441. err = d40_config_write(d40c);
  1442. if (err) {
  1443. dev_err(&d40c->chan.dev->device,
  1444. "[%s] Failed to configure channel\n",
  1445. __func__);
  1446. }
  1447. }
  1448. fail:
  1449. spin_unlock_irqrestore(&d40c->lock, flags);
  1450. return err;
  1451. }
  1452. static void d40_free_chan_resources(struct dma_chan *chan)
  1453. {
  1454. struct d40_chan *d40c =
  1455. container_of(chan, struct d40_chan, chan);
  1456. int err;
  1457. unsigned long flags;
  1458. if (d40c->phy_chan == NULL) {
  1459. dev_err(&d40c->chan.dev->device,
  1460. "[%s] Cannot free unallocated channel\n", __func__);
  1461. return;
  1462. }
  1463. spin_lock_irqsave(&d40c->lock, flags);
  1464. err = d40_free_dma(d40c);
  1465. if (err)
  1466. dev_err(&d40c->chan.dev->device,
  1467. "[%s] Failed to free channel\n", __func__);
  1468. spin_unlock_irqrestore(&d40c->lock, flags);
  1469. }
  1470. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1471. dma_addr_t dst,
  1472. dma_addr_t src,
  1473. size_t size,
  1474. unsigned long dma_flags)
  1475. {
  1476. struct d40_desc *d40d;
  1477. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1478. chan);
  1479. unsigned long flags;
  1480. int err = 0;
  1481. if (d40c->phy_chan == NULL) {
  1482. dev_err(&d40c->chan.dev->device,
  1483. "[%s] Channel is not allocated.\n", __func__);
  1484. return ERR_PTR(-EINVAL);
  1485. }
  1486. spin_lock_irqsave(&d40c->lock, flags);
  1487. d40d = d40_desc_get(d40c);
  1488. if (d40d == NULL) {
  1489. dev_err(&d40c->chan.dev->device,
  1490. "[%s] Descriptor is NULL\n", __func__);
  1491. goto err;
  1492. }
  1493. d40d->txd.flags = dma_flags;
  1494. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1495. d40d->txd.tx_submit = d40_tx_submit;
  1496. if (d40c->log_num != D40_PHY_CHAN) {
  1497. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1498. dev_err(&d40c->chan.dev->device,
  1499. "[%s] Out of memory\n", __func__);
  1500. goto err;
  1501. }
  1502. d40d->lli_len = 1;
  1503. d40d->lli_tx_len = 1;
  1504. d40_log_fill_lli(d40d->lli_log.src,
  1505. src,
  1506. size,
  1507. 0,
  1508. d40c->log_def.lcsp1,
  1509. d40c->dma_cfg.src_info.data_width,
  1510. false, true);
  1511. d40_log_fill_lli(d40d->lli_log.dst,
  1512. dst,
  1513. size,
  1514. 0,
  1515. d40c->log_def.lcsp3,
  1516. d40c->dma_cfg.dst_info.data_width,
  1517. true, true);
  1518. } else {
  1519. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1520. dev_err(&d40c->chan.dev->device,
  1521. "[%s] Out of memory\n", __func__);
  1522. goto err;
  1523. }
  1524. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1525. src,
  1526. size,
  1527. d40c->dma_cfg.src_info.psize,
  1528. 0,
  1529. d40c->src_def_cfg,
  1530. true,
  1531. d40c->dma_cfg.src_info.data_width,
  1532. false);
  1533. if (err)
  1534. goto err_fill_lli;
  1535. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1536. dst,
  1537. size,
  1538. d40c->dma_cfg.dst_info.psize,
  1539. 0,
  1540. d40c->dst_def_cfg,
  1541. true,
  1542. d40c->dma_cfg.dst_info.data_width,
  1543. false);
  1544. if (err)
  1545. goto err_fill_lli;
  1546. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1547. d40d->lli_pool.size, DMA_TO_DEVICE);
  1548. }
  1549. spin_unlock_irqrestore(&d40c->lock, flags);
  1550. return &d40d->txd;
  1551. err_fill_lli:
  1552. dev_err(&d40c->chan.dev->device,
  1553. "[%s] Failed filling in PHY LLI\n", __func__);
  1554. d40_pool_lli_free(d40d);
  1555. err:
  1556. spin_unlock_irqrestore(&d40c->lock, flags);
  1557. return NULL;
  1558. }
  1559. static struct dma_async_tx_descriptor *
  1560. d40_prep_sg(struct dma_chan *chan,
  1561. struct scatterlist *dst_sg, unsigned int dst_nents,
  1562. struct scatterlist *src_sg, unsigned int src_nents,
  1563. unsigned long dma_flags)
  1564. {
  1565. if (dst_nents != src_nents)
  1566. return NULL;
  1567. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1568. }
  1569. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1570. struct d40_chan *d40c,
  1571. struct scatterlist *sgl,
  1572. unsigned int sg_len,
  1573. enum dma_data_direction direction,
  1574. unsigned long dma_flags)
  1575. {
  1576. dma_addr_t dev_addr = 0;
  1577. int total_size;
  1578. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1579. dev_err(&d40c->chan.dev->device,
  1580. "[%s] Out of memory\n", __func__);
  1581. return -ENOMEM;
  1582. }
  1583. d40d->lli_len = sg_len;
  1584. if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
  1585. d40d->lli_tx_len = d40d->lli_len;
  1586. else
  1587. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1588. if (sg_len > 1)
  1589. /*
  1590. * Check if there is space available in lcla.
  1591. * If not, split list into 1-length and run only
  1592. * in lcpa space.
  1593. */
  1594. if (d40_lcla_id_get(d40c) != 0)
  1595. d40d->lli_tx_len = 1;
  1596. if (direction == DMA_FROM_DEVICE)
  1597. if (d40c->runtime_addr)
  1598. dev_addr = d40c->runtime_addr;
  1599. else
  1600. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1601. else if (direction == DMA_TO_DEVICE)
  1602. if (d40c->runtime_addr)
  1603. dev_addr = d40c->runtime_addr;
  1604. else
  1605. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1606. else
  1607. return -EINVAL;
  1608. total_size = d40_log_sg_to_dev(&d40c->lcla,
  1609. sgl, sg_len,
  1610. &d40d->lli_log,
  1611. &d40c->log_def,
  1612. d40c->dma_cfg.src_info.data_width,
  1613. d40c->dma_cfg.dst_info.data_width,
  1614. direction,
  1615. dma_flags & DMA_PREP_INTERRUPT,
  1616. dev_addr, d40d->lli_tx_len,
  1617. d40c->base->plat_data->llis_per_log);
  1618. if (total_size < 0)
  1619. return -EINVAL;
  1620. return 0;
  1621. }
  1622. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1623. struct d40_chan *d40c,
  1624. struct scatterlist *sgl,
  1625. unsigned int sgl_len,
  1626. enum dma_data_direction direction,
  1627. unsigned long dma_flags)
  1628. {
  1629. dma_addr_t src_dev_addr;
  1630. dma_addr_t dst_dev_addr;
  1631. int res;
  1632. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1633. dev_err(&d40c->chan.dev->device,
  1634. "[%s] Out of memory\n", __func__);
  1635. return -ENOMEM;
  1636. }
  1637. d40d->lli_len = sgl_len;
  1638. d40d->lli_tx_len = sgl_len;
  1639. if (direction == DMA_FROM_DEVICE) {
  1640. dst_dev_addr = 0;
  1641. if (d40c->runtime_addr)
  1642. src_dev_addr = d40c->runtime_addr;
  1643. else
  1644. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1645. } else if (direction == DMA_TO_DEVICE) {
  1646. if (d40c->runtime_addr)
  1647. dst_dev_addr = d40c->runtime_addr;
  1648. else
  1649. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1650. src_dev_addr = 0;
  1651. } else
  1652. return -EINVAL;
  1653. res = d40_phy_sg_to_lli(sgl,
  1654. sgl_len,
  1655. src_dev_addr,
  1656. d40d->lli_phy.src,
  1657. d40d->lli_phy.src_addr,
  1658. d40c->src_def_cfg,
  1659. d40c->dma_cfg.src_info.data_width,
  1660. d40c->dma_cfg.src_info.psize,
  1661. true);
  1662. if (res < 0)
  1663. return res;
  1664. res = d40_phy_sg_to_lli(sgl,
  1665. sgl_len,
  1666. dst_dev_addr,
  1667. d40d->lli_phy.dst,
  1668. d40d->lli_phy.dst_addr,
  1669. d40c->dst_def_cfg,
  1670. d40c->dma_cfg.dst_info.data_width,
  1671. d40c->dma_cfg.dst_info.psize,
  1672. true);
  1673. if (res < 0)
  1674. return res;
  1675. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1676. d40d->lli_pool.size, DMA_TO_DEVICE);
  1677. return 0;
  1678. }
  1679. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1680. struct scatterlist *sgl,
  1681. unsigned int sg_len,
  1682. enum dma_data_direction direction,
  1683. unsigned long dma_flags)
  1684. {
  1685. struct d40_desc *d40d;
  1686. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1687. chan);
  1688. unsigned long flags;
  1689. int err;
  1690. if (d40c->phy_chan == NULL) {
  1691. dev_err(&d40c->chan.dev->device,
  1692. "[%s] Cannot prepare unallocated channel\n", __func__);
  1693. return ERR_PTR(-EINVAL);
  1694. }
  1695. if (d40c->dma_cfg.pre_transfer)
  1696. d40c->dma_cfg.pre_transfer(chan,
  1697. d40c->dma_cfg.pre_transfer_data,
  1698. sg_dma_len(sgl));
  1699. spin_lock_irqsave(&d40c->lock, flags);
  1700. d40d = d40_desc_get(d40c);
  1701. spin_unlock_irqrestore(&d40c->lock, flags);
  1702. if (d40d == NULL)
  1703. return NULL;
  1704. if (d40c->log_num != D40_PHY_CHAN)
  1705. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1706. direction, dma_flags);
  1707. else
  1708. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1709. direction, dma_flags);
  1710. if (err) {
  1711. dev_err(&d40c->chan.dev->device,
  1712. "[%s] Failed to prepare %s slave sg job: %d\n",
  1713. __func__,
  1714. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1715. return NULL;
  1716. }
  1717. d40d->txd.flags = dma_flags;
  1718. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1719. d40d->txd.tx_submit = d40_tx_submit;
  1720. return &d40d->txd;
  1721. }
  1722. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1723. dma_cookie_t cookie,
  1724. struct dma_tx_state *txstate)
  1725. {
  1726. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1727. dma_cookie_t last_used;
  1728. dma_cookie_t last_complete;
  1729. int ret;
  1730. if (d40c->phy_chan == NULL) {
  1731. dev_err(&d40c->chan.dev->device,
  1732. "[%s] Cannot read status of unallocated channel\n",
  1733. __func__);
  1734. return -EINVAL;
  1735. }
  1736. last_complete = d40c->completed;
  1737. last_used = chan->cookie;
  1738. if (d40_is_paused(d40c))
  1739. ret = DMA_PAUSED;
  1740. else
  1741. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1742. dma_set_tx_state(txstate, last_complete, last_used,
  1743. stedma40_residue(chan));
  1744. return ret;
  1745. }
  1746. static void d40_issue_pending(struct dma_chan *chan)
  1747. {
  1748. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1749. unsigned long flags;
  1750. if (d40c->phy_chan == NULL) {
  1751. dev_err(&d40c->chan.dev->device,
  1752. "[%s] Channel is not allocated!\n", __func__);
  1753. return;
  1754. }
  1755. spin_lock_irqsave(&d40c->lock, flags);
  1756. /* Busy means that pending jobs are already being processed */
  1757. if (!d40c->busy)
  1758. (void) d40_queue_start(d40c);
  1759. spin_unlock_irqrestore(&d40c->lock, flags);
  1760. }
  1761. /* Runtime reconfiguration extension */
  1762. static void d40_set_runtime_config(struct dma_chan *chan,
  1763. struct dma_slave_config *config)
  1764. {
  1765. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1766. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1767. enum dma_slave_buswidth config_addr_width;
  1768. dma_addr_t config_addr;
  1769. u32 config_maxburst;
  1770. enum stedma40_periph_data_width addr_width;
  1771. int psize;
  1772. if (config->direction == DMA_FROM_DEVICE) {
  1773. dma_addr_t dev_addr_rx =
  1774. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1775. config_addr = config->src_addr;
  1776. if (dev_addr_rx)
  1777. dev_dbg(d40c->base->dev,
  1778. "channel has a pre-wired RX address %08x "
  1779. "overriding with %08x\n",
  1780. dev_addr_rx, config_addr);
  1781. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1782. dev_dbg(d40c->base->dev,
  1783. "channel was not configured for peripheral "
  1784. "to memory transfer (%d) overriding\n",
  1785. cfg->dir);
  1786. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1787. config_addr_width = config->src_addr_width;
  1788. config_maxburst = config->src_maxburst;
  1789. } else if (config->direction == DMA_TO_DEVICE) {
  1790. dma_addr_t dev_addr_tx =
  1791. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1792. config_addr = config->dst_addr;
  1793. if (dev_addr_tx)
  1794. dev_dbg(d40c->base->dev,
  1795. "channel has a pre-wired TX address %08x "
  1796. "overriding with %08x\n",
  1797. dev_addr_tx, config_addr);
  1798. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1799. dev_dbg(d40c->base->dev,
  1800. "channel was not configured for memory "
  1801. "to peripheral transfer (%d) overriding\n",
  1802. cfg->dir);
  1803. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1804. config_addr_width = config->dst_addr_width;
  1805. config_maxburst = config->dst_maxburst;
  1806. } else {
  1807. dev_err(d40c->base->dev,
  1808. "unrecognized channel direction %d\n",
  1809. config->direction);
  1810. return;
  1811. }
  1812. switch (config_addr_width) {
  1813. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1814. addr_width = STEDMA40_BYTE_WIDTH;
  1815. break;
  1816. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1817. addr_width = STEDMA40_HALFWORD_WIDTH;
  1818. break;
  1819. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1820. addr_width = STEDMA40_WORD_WIDTH;
  1821. break;
  1822. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1823. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1824. break;
  1825. default:
  1826. dev_err(d40c->base->dev,
  1827. "illegal peripheral address width "
  1828. "requested (%d)\n",
  1829. config->src_addr_width);
  1830. return;
  1831. }
  1832. if (config_maxburst >= 16)
  1833. psize = STEDMA40_PSIZE_LOG_16;
  1834. else if (config_maxburst >= 8)
  1835. psize = STEDMA40_PSIZE_LOG_8;
  1836. else if (config_maxburst >= 4)
  1837. psize = STEDMA40_PSIZE_LOG_4;
  1838. else
  1839. psize = STEDMA40_PSIZE_LOG_1;
  1840. /* Set up all the endpoint configs */
  1841. cfg->src_info.data_width = addr_width;
  1842. cfg->src_info.psize = psize;
  1843. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1844. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1845. cfg->dst_info.data_width = addr_width;
  1846. cfg->dst_info.psize = psize;
  1847. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1848. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1849. /* These settings will take precedence later */
  1850. d40c->runtime_addr = config_addr;
  1851. d40c->runtime_direction = config->direction;
  1852. dev_dbg(d40c->base->dev,
  1853. "configured channel %s for %s, data width %d, "
  1854. "maxburst %d bytes, LE, no flow control\n",
  1855. dma_chan_name(chan),
  1856. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1857. config_addr_width,
  1858. config_maxburst);
  1859. }
  1860. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1861. unsigned long arg)
  1862. {
  1863. unsigned long flags;
  1864. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1865. if (d40c->phy_chan == NULL) {
  1866. dev_err(&d40c->chan.dev->device,
  1867. "[%s] Channel is not allocated!\n", __func__);
  1868. return -EINVAL;
  1869. }
  1870. switch (cmd) {
  1871. case DMA_TERMINATE_ALL:
  1872. spin_lock_irqsave(&d40c->lock, flags);
  1873. d40_term_all(d40c);
  1874. spin_unlock_irqrestore(&d40c->lock, flags);
  1875. return 0;
  1876. case DMA_PAUSE:
  1877. return d40_pause(chan);
  1878. case DMA_RESUME:
  1879. return d40_resume(chan);
  1880. case DMA_SLAVE_CONFIG:
  1881. d40_set_runtime_config(chan,
  1882. (struct dma_slave_config *) arg);
  1883. return 0;
  1884. default:
  1885. break;
  1886. }
  1887. /* Other commands are unimplemented */
  1888. return -ENXIO;
  1889. }
  1890. /* Initialization functions */
  1891. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1892. struct d40_chan *chans, int offset,
  1893. int num_chans)
  1894. {
  1895. int i = 0;
  1896. struct d40_chan *d40c;
  1897. INIT_LIST_HEAD(&dma->channels);
  1898. for (i = offset; i < offset + num_chans; i++) {
  1899. d40c = &chans[i];
  1900. d40c->base = base;
  1901. d40c->chan.device = dma;
  1902. /* Invalidate lcla element */
  1903. d40c->lcla.src_id = -1;
  1904. d40c->lcla.dst_id = -1;
  1905. spin_lock_init(&d40c->lock);
  1906. d40c->log_num = D40_PHY_CHAN;
  1907. INIT_LIST_HEAD(&d40c->active);
  1908. INIT_LIST_HEAD(&d40c->queue);
  1909. INIT_LIST_HEAD(&d40c->client);
  1910. tasklet_init(&d40c->tasklet, dma_tasklet,
  1911. (unsigned long) d40c);
  1912. list_add_tail(&d40c->chan.device_node,
  1913. &dma->channels);
  1914. }
  1915. }
  1916. static int __init d40_dmaengine_init(struct d40_base *base,
  1917. int num_reserved_chans)
  1918. {
  1919. int err ;
  1920. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1921. 0, base->num_log_chans);
  1922. dma_cap_zero(base->dma_slave.cap_mask);
  1923. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1924. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1925. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1926. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1927. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1928. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1929. base->dma_slave.device_tx_status = d40_tx_status;
  1930. base->dma_slave.device_issue_pending = d40_issue_pending;
  1931. base->dma_slave.device_control = d40_control;
  1932. base->dma_slave.dev = base->dev;
  1933. err = dma_async_device_register(&base->dma_slave);
  1934. if (err) {
  1935. dev_err(base->dev,
  1936. "[%s] Failed to register slave channels\n",
  1937. __func__);
  1938. goto failure1;
  1939. }
  1940. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1941. base->num_log_chans, base->plat_data->memcpy_len);
  1942. dma_cap_zero(base->dma_memcpy.cap_mask);
  1943. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1944. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1945. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1946. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1947. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1948. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1949. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1950. base->dma_memcpy.device_tx_status = d40_tx_status;
  1951. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1952. base->dma_memcpy.device_control = d40_control;
  1953. base->dma_memcpy.dev = base->dev;
  1954. /*
  1955. * This controller can only access address at even
  1956. * 32bit boundaries, i.e. 2^2
  1957. */
  1958. base->dma_memcpy.copy_align = 2;
  1959. err = dma_async_device_register(&base->dma_memcpy);
  1960. if (err) {
  1961. dev_err(base->dev,
  1962. "[%s] Failed to regsiter memcpy only channels\n",
  1963. __func__);
  1964. goto failure2;
  1965. }
  1966. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1967. 0, num_reserved_chans);
  1968. dma_cap_zero(base->dma_both.cap_mask);
  1969. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1970. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1971. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1972. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1973. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1974. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1975. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1976. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1977. base->dma_both.device_tx_status = d40_tx_status;
  1978. base->dma_both.device_issue_pending = d40_issue_pending;
  1979. base->dma_both.device_control = d40_control;
  1980. base->dma_both.dev = base->dev;
  1981. base->dma_both.copy_align = 2;
  1982. err = dma_async_device_register(&base->dma_both);
  1983. if (err) {
  1984. dev_err(base->dev,
  1985. "[%s] Failed to register logical and physical capable channels\n",
  1986. __func__);
  1987. goto failure3;
  1988. }
  1989. return 0;
  1990. failure3:
  1991. dma_async_device_unregister(&base->dma_memcpy);
  1992. failure2:
  1993. dma_async_device_unregister(&base->dma_slave);
  1994. failure1:
  1995. return err;
  1996. }
  1997. /* Initialization functions. */
  1998. static int __init d40_phy_res_init(struct d40_base *base)
  1999. {
  2000. int i;
  2001. int num_phy_chans_avail = 0;
  2002. u32 val[2];
  2003. int odd_even_bit = -2;
  2004. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2005. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2006. for (i = 0; i < base->num_phy_chans; i++) {
  2007. base->phy_res[i].num = i;
  2008. odd_even_bit += 2 * ((i % 2) == 0);
  2009. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2010. /* Mark security only channels as occupied */
  2011. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2012. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2013. } else {
  2014. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2015. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2016. num_phy_chans_avail++;
  2017. }
  2018. spin_lock_init(&base->phy_res[i].lock);
  2019. }
  2020. /* Mark disabled channels as occupied */
  2021. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2022. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2023. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2024. num_phy_chans_avail--;
  2025. }
  2026. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2027. num_phy_chans_avail, base->num_phy_chans);
  2028. /* Verify settings extended vs standard */
  2029. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2030. for (i = 0; i < base->num_phy_chans; i++) {
  2031. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2032. (val[0] & 0x3) != 1)
  2033. dev_info(base->dev,
  2034. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2035. __func__, i, val[0] & 0x3);
  2036. val[0] = val[0] >> 2;
  2037. }
  2038. return num_phy_chans_avail;
  2039. }
  2040. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2041. {
  2042. static const struct d40_reg_val dma_id_regs[] = {
  2043. /* Peripheral Id */
  2044. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2045. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2046. /*
  2047. * D40_DREG_PERIPHID2 Depends on HW revision:
  2048. * MOP500/HREF ED has 0x0008,
  2049. * ? has 0x0018,
  2050. * HREF V1 has 0x0028
  2051. */
  2052. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2053. /* PCell Id */
  2054. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2055. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2056. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2057. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2058. };
  2059. struct stedma40_platform_data *plat_data;
  2060. struct clk *clk = NULL;
  2061. void __iomem *virtbase = NULL;
  2062. struct resource *res = NULL;
  2063. struct d40_base *base = NULL;
  2064. int num_log_chans = 0;
  2065. int num_phy_chans;
  2066. int i;
  2067. u32 val;
  2068. clk = clk_get(&pdev->dev, NULL);
  2069. if (IS_ERR(clk)) {
  2070. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2071. __func__);
  2072. goto failure;
  2073. }
  2074. clk_enable(clk);
  2075. /* Get IO for DMAC base address */
  2076. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2077. if (!res)
  2078. goto failure;
  2079. if (request_mem_region(res->start, resource_size(res),
  2080. D40_NAME " I/O base") == NULL)
  2081. goto failure;
  2082. virtbase = ioremap(res->start, resource_size(res));
  2083. if (!virtbase)
  2084. goto failure;
  2085. /* HW version check */
  2086. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2087. if (dma_id_regs[i].val !=
  2088. readl(virtbase + dma_id_regs[i].reg)) {
  2089. dev_err(&pdev->dev,
  2090. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2091. __func__,
  2092. dma_id_regs[i].val,
  2093. dma_id_regs[i].reg,
  2094. readl(virtbase + dma_id_regs[i].reg));
  2095. goto failure;
  2096. }
  2097. }
  2098. /* Get silicon revision */
  2099. val = readl(virtbase + D40_DREG_PERIPHID2);
  2100. if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
  2101. dev_err(&pdev->dev,
  2102. "[%s] Unknown designer! Got %x wanted %x\n",
  2103. __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
  2104. goto failure;
  2105. }
  2106. /* The number of physical channels on this HW */
  2107. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2108. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2109. (val >> 4) & 0xf, res->start);
  2110. plat_data = pdev->dev.platform_data;
  2111. /* Count the number of logical channels in use */
  2112. for (i = 0; i < plat_data->dev_len; i++)
  2113. if (plat_data->dev_rx[i] != 0)
  2114. num_log_chans++;
  2115. for (i = 0; i < plat_data->dev_len; i++)
  2116. if (plat_data->dev_tx[i] != 0)
  2117. num_log_chans++;
  2118. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2119. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2120. sizeof(struct d40_chan), GFP_KERNEL);
  2121. if (base == NULL) {
  2122. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2123. goto failure;
  2124. }
  2125. base->rev = (val >> 4) & 0xf;
  2126. base->clk = clk;
  2127. base->num_phy_chans = num_phy_chans;
  2128. base->num_log_chans = num_log_chans;
  2129. base->phy_start = res->start;
  2130. base->phy_size = resource_size(res);
  2131. base->virtbase = virtbase;
  2132. base->plat_data = plat_data;
  2133. base->dev = &pdev->dev;
  2134. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2135. base->log_chans = &base->phy_chans[num_phy_chans];
  2136. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2137. GFP_KERNEL);
  2138. if (!base->phy_res)
  2139. goto failure;
  2140. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2141. sizeof(struct d40_chan *),
  2142. GFP_KERNEL);
  2143. if (!base->lookup_phy_chans)
  2144. goto failure;
  2145. if (num_log_chans + plat_data->memcpy_len) {
  2146. /*
  2147. * The max number of logical channels are event lines for all
  2148. * src devices and dst devices
  2149. */
  2150. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2151. sizeof(struct d40_chan *),
  2152. GFP_KERNEL);
  2153. if (!base->lookup_log_chans)
  2154. goto failure;
  2155. }
  2156. base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
  2157. GFP_KERNEL);
  2158. if (!base->lcla_pool.alloc_map)
  2159. goto failure;
  2160. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2161. 0, SLAB_HWCACHE_ALIGN,
  2162. NULL);
  2163. if (base->desc_slab == NULL)
  2164. goto failure;
  2165. return base;
  2166. failure:
  2167. if (clk) {
  2168. clk_disable(clk);
  2169. clk_put(clk);
  2170. }
  2171. if (virtbase)
  2172. iounmap(virtbase);
  2173. if (res)
  2174. release_mem_region(res->start,
  2175. resource_size(res));
  2176. if (virtbase)
  2177. iounmap(virtbase);
  2178. if (base) {
  2179. kfree(base->lcla_pool.alloc_map);
  2180. kfree(base->lookup_log_chans);
  2181. kfree(base->lookup_phy_chans);
  2182. kfree(base->phy_res);
  2183. kfree(base);
  2184. }
  2185. return NULL;
  2186. }
  2187. static void __init d40_hw_init(struct d40_base *base)
  2188. {
  2189. static const struct d40_reg_val dma_init_reg[] = {
  2190. /* Clock every part of the DMA block from start */
  2191. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2192. /* Interrupts on all logical channels */
  2193. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2194. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2195. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2196. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2197. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2198. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2199. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2200. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2201. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2202. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2203. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2204. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2205. };
  2206. int i;
  2207. u32 prmseo[2] = {0, 0};
  2208. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2209. u32 pcmis = 0;
  2210. u32 pcicr = 0;
  2211. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2212. writel(dma_init_reg[i].val,
  2213. base->virtbase + dma_init_reg[i].reg);
  2214. /* Configure all our dma channels to default settings */
  2215. for (i = 0; i < base->num_phy_chans; i++) {
  2216. activeo[i % 2] = activeo[i % 2] << 2;
  2217. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2218. == D40_ALLOC_PHY) {
  2219. activeo[i % 2] |= 3;
  2220. continue;
  2221. }
  2222. /* Enable interrupt # */
  2223. pcmis = (pcmis << 1) | 1;
  2224. /* Clear interrupt # */
  2225. pcicr = (pcicr << 1) | 1;
  2226. /* Set channel to physical mode */
  2227. prmseo[i % 2] = prmseo[i % 2] << 2;
  2228. prmseo[i % 2] |= 1;
  2229. }
  2230. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2231. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2232. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2233. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2234. /* Write which interrupt to enable */
  2235. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2236. /* Write which interrupt to clear */
  2237. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2238. }
  2239. static int __init d40_lcla_allocate(struct d40_base *base)
  2240. {
  2241. unsigned long *page_list;
  2242. int i, j;
  2243. int ret = 0;
  2244. /*
  2245. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2246. * To full fill this hardware requirement without wasting 256 kb
  2247. * we allocate pages until we get an aligned one.
  2248. */
  2249. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2250. GFP_KERNEL);
  2251. if (!page_list) {
  2252. ret = -ENOMEM;
  2253. goto failure;
  2254. }
  2255. /* Calculating how many pages that are required */
  2256. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2257. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2258. page_list[i] = __get_free_pages(GFP_KERNEL,
  2259. base->lcla_pool.pages);
  2260. if (!page_list[i]) {
  2261. dev_err(base->dev,
  2262. "[%s] Failed to allocate %d pages.\n",
  2263. __func__, base->lcla_pool.pages);
  2264. for (j = 0; j < i; j++)
  2265. free_pages(page_list[j], base->lcla_pool.pages);
  2266. goto failure;
  2267. }
  2268. if ((virt_to_phys((void *)page_list[i]) &
  2269. (LCLA_ALIGNMENT - 1)) == 0)
  2270. break;
  2271. }
  2272. for (j = 0; j < i; j++)
  2273. free_pages(page_list[j], base->lcla_pool.pages);
  2274. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2275. base->lcla_pool.base = (void *)page_list[i];
  2276. } else {
  2277. /* After many attempts, no succees with finding the correct
  2278. * alignment try with allocating a big buffer */
  2279. dev_warn(base->dev,
  2280. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2281. __func__, base->lcla_pool.pages);
  2282. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2283. base->num_phy_chans +
  2284. LCLA_ALIGNMENT,
  2285. GFP_KERNEL);
  2286. if (!base->lcla_pool.base_unaligned) {
  2287. ret = -ENOMEM;
  2288. goto failure;
  2289. }
  2290. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2291. LCLA_ALIGNMENT);
  2292. }
  2293. writel(virt_to_phys(base->lcla_pool.base),
  2294. base->virtbase + D40_DREG_LCLA);
  2295. failure:
  2296. kfree(page_list);
  2297. return ret;
  2298. }
  2299. static int __init d40_probe(struct platform_device *pdev)
  2300. {
  2301. int err;
  2302. int ret = -ENOENT;
  2303. struct d40_base *base;
  2304. struct resource *res = NULL;
  2305. int num_reserved_chans;
  2306. u32 val;
  2307. base = d40_hw_detect_init(pdev);
  2308. if (!base)
  2309. goto failure;
  2310. num_reserved_chans = d40_phy_res_init(base);
  2311. platform_set_drvdata(pdev, base);
  2312. spin_lock_init(&base->interrupt_lock);
  2313. spin_lock_init(&base->execmd_lock);
  2314. /* Get IO for logical channel parameter address */
  2315. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2316. if (!res) {
  2317. ret = -ENOENT;
  2318. dev_err(&pdev->dev,
  2319. "[%s] No \"lcpa\" memory resource\n",
  2320. __func__);
  2321. goto failure;
  2322. }
  2323. base->lcpa_size = resource_size(res);
  2324. base->phy_lcpa = res->start;
  2325. if (request_mem_region(res->start, resource_size(res),
  2326. D40_NAME " I/O lcpa") == NULL) {
  2327. ret = -EBUSY;
  2328. dev_err(&pdev->dev,
  2329. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2330. __func__, res->start, res->end);
  2331. goto failure;
  2332. }
  2333. /* We make use of ESRAM memory for this. */
  2334. val = readl(base->virtbase + D40_DREG_LCPA);
  2335. if (res->start != val && val != 0) {
  2336. dev_warn(&pdev->dev,
  2337. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2338. __func__, val, res->start);
  2339. } else
  2340. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2341. base->lcpa_base = ioremap(res->start, resource_size(res));
  2342. if (!base->lcpa_base) {
  2343. ret = -ENOMEM;
  2344. dev_err(&pdev->dev,
  2345. "[%s] Failed to ioremap LCPA region\n",
  2346. __func__);
  2347. goto failure;
  2348. }
  2349. ret = d40_lcla_allocate(base);
  2350. if (ret) {
  2351. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2352. __func__);
  2353. goto failure;
  2354. }
  2355. spin_lock_init(&base->lcla_pool.lock);
  2356. base->lcla_pool.num_blocks = base->num_phy_chans;
  2357. base->irq = platform_get_irq(pdev, 0);
  2358. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2359. if (ret) {
  2360. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2361. goto failure;
  2362. }
  2363. err = d40_dmaengine_init(base, num_reserved_chans);
  2364. if (err)
  2365. goto failure;
  2366. d40_hw_init(base);
  2367. dev_info(base->dev, "initialized\n");
  2368. return 0;
  2369. failure:
  2370. if (base) {
  2371. if (base->desc_slab)
  2372. kmem_cache_destroy(base->desc_slab);
  2373. if (base->virtbase)
  2374. iounmap(base->virtbase);
  2375. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2376. free_pages((unsigned long)base->lcla_pool.base,
  2377. base->lcla_pool.pages);
  2378. if (base->lcla_pool.base_unaligned)
  2379. kfree(base->lcla_pool.base_unaligned);
  2380. if (base->phy_lcpa)
  2381. release_mem_region(base->phy_lcpa,
  2382. base->lcpa_size);
  2383. if (base->phy_start)
  2384. release_mem_region(base->phy_start,
  2385. base->phy_size);
  2386. if (base->clk) {
  2387. clk_disable(base->clk);
  2388. clk_put(base->clk);
  2389. }
  2390. kfree(base->lcla_pool.alloc_map);
  2391. kfree(base->lookup_log_chans);
  2392. kfree(base->lookup_phy_chans);
  2393. kfree(base->phy_res);
  2394. kfree(base);
  2395. }
  2396. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2397. return ret;
  2398. }
  2399. static struct platform_driver d40_driver = {
  2400. .driver = {
  2401. .owner = THIS_MODULE,
  2402. .name = D40_NAME,
  2403. },
  2404. };
  2405. int __init stedma40_init(void)
  2406. {
  2407. return platform_driver_probe(&d40_driver, d40_probe);
  2408. }
  2409. arch_initcall(stedma40_init);