page_tables.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702
  1. /*P:700 The pagetable code, on the other hand, still shows the scars of
  2. * previous encounters. It's functional, and as neat as it can be in the
  3. * circumstances, but be wary, for these things are subtle and break easily.
  4. * The Guest provides a virtual to physical mapping, but we can neither trust
  5. * it nor use it: we verify and convert it here to point the hardware to the
  6. * actual Guest pages when running the Guest. :*/
  7. /* Copyright (C) Rusty Russell IBM Corporation 2006.
  8. * GPL v2 and any later version */
  9. #include <linux/mm.h>
  10. #include <linux/types.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/random.h>
  13. #include <linux/percpu.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/uaccess.h>
  16. #include "lg.h"
  17. /*M:008 We hold reference to pages, which prevents them from being swapped.
  18. * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  19. * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
  20. * could probably consider launching Guests as non-root. :*/
  21. /*H:300
  22. * The Page Table Code
  23. *
  24. * We use two-level page tables for the Guest. If you're not entirely
  25. * comfortable with virtual addresses, physical addresses and page tables then
  26. * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
  27. *
  28. * The Guest keeps page tables, but we maintain the actual ones here: these are
  29. * called "shadow" page tables. Which is a very Guest-centric name: these are
  30. * the real page tables the CPU uses, although we keep them up to date to
  31. * reflect the Guest's. (See what I mean about weird naming? Since when do
  32. * shadows reflect anything?)
  33. *
  34. * Anyway, this is the most complicated part of the Host code. There are seven
  35. * parts to this:
  36. * (i) Setting up a page table entry for the Guest when it faults,
  37. * (ii) Setting up the page table entry for the Guest stack,
  38. * (iii) Setting up a page table entry when the Guest tells us it has changed,
  39. * (iv) Switching page tables,
  40. * (v) Flushing (thowing away) page tables,
  41. * (vi) Mapping the Switcher when the Guest is about to run,
  42. * (vii) Setting up the page tables initially.
  43. :*/
  44. /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
  45. * conveniently placed at the top 4MB, so it uses a separate, complete PTE
  46. * page. */
  47. #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  48. /* We actually need a separate PTE page for each CPU. Remember that after the
  49. * Switcher code itself comes two pages for each CPU, and we don't want this
  50. * CPU's guest to see the pages of any other CPU. */
  51. static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  52. #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  53. /*H:320 With our shadow and Guest types established, we need to deal with
  54. * them: the page table code is curly enough to need helper functions to keep
  55. * it clear and clean.
  56. *
  57. * There are two functions which return pointers to the shadow (aka "real")
  58. * page tables.
  59. *
  60. * spgd_addr() takes the virtual address and returns a pointer to the top-level
  61. * page directory entry for that address. Since we keep track of several page
  62. * tables, the "i" argument tells us which one we're interested in (it's
  63. * usually the current one). */
  64. static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
  65. {
  66. unsigned int index = pgd_index(vaddr);
  67. /* We kill any Guest trying to touch the Switcher addresses. */
  68. if (index >= SWITCHER_PGD_INDEX) {
  69. kill_guest(lg, "attempt to access switcher pages");
  70. index = 0;
  71. }
  72. /* Return a pointer index'th pgd entry for the i'th page table. */
  73. return &lg->pgdirs[i].pgdir[index];
  74. }
  75. /* This routine then takes the PGD entry given above, which contains the
  76. * address of the PTE page. It then returns a pointer to the PTE entry for the
  77. * given address. */
  78. static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
  79. {
  80. pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
  81. /* You should never call this if the PGD entry wasn't valid */
  82. BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
  83. return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
  84. }
  85. /* These two functions just like the above two, except they access the Guest
  86. * page tables. Hence they return a Guest address. */
  87. static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
  88. {
  89. unsigned int index = vaddr >> (PGDIR_SHIFT);
  90. return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
  91. }
  92. static unsigned long gpte_addr(struct lguest *lg,
  93. pgd_t gpgd, unsigned long vaddr)
  94. {
  95. unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
  96. BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
  97. return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
  98. }
  99. /*H:350 This routine takes a page number given by the Guest and converts it to
  100. * an actual, physical page number. It can fail for several reasons: the
  101. * virtual address might not be mapped by the Launcher, the write flag is set
  102. * and the page is read-only, or the write flag was set and the page was
  103. * shared so had to be copied, but we ran out of memory.
  104. *
  105. * This holds a reference to the page, so release_pte() is careful to
  106. * put that back. */
  107. static unsigned long get_pfn(unsigned long virtpfn, int write)
  108. {
  109. struct page *page;
  110. /* This value indicates failure. */
  111. unsigned long ret = -1UL;
  112. /* get_user_pages() is a complex interface: it gets the "struct
  113. * vm_area_struct" and "struct page" assocated with a range of pages.
  114. * It also needs the task's mmap_sem held, and is not very quick.
  115. * It returns the number of pages it got. */
  116. down_read(&current->mm->mmap_sem);
  117. if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
  118. 1, write, 1, &page, NULL) == 1)
  119. ret = page_to_pfn(page);
  120. up_read(&current->mm->mmap_sem);
  121. return ret;
  122. }
  123. /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
  124. * entry can be a little tricky. The flags are (almost) the same, but the
  125. * Guest PTE contains a virtual page number: the CPU needs the real page
  126. * number. */
  127. static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
  128. {
  129. unsigned long pfn, base, flags;
  130. /* The Guest sets the global flag, because it thinks that it is using
  131. * PGE. We only told it to use PGE so it would tell us whether it was
  132. * flushing a kernel mapping or a userspace mapping. We don't actually
  133. * use the global bit, so throw it away. */
  134. flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
  135. /* The Guest's pages are offset inside the Launcher. */
  136. base = (unsigned long)lg->mem_base / PAGE_SIZE;
  137. /* We need a temporary "unsigned long" variable to hold the answer from
  138. * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
  139. * fit in spte.pfn. get_pfn() finds the real physical number of the
  140. * page, given the virtual number. */
  141. pfn = get_pfn(base + pte_pfn(gpte), write);
  142. if (pfn == -1UL) {
  143. kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
  144. /* When we destroy the Guest, we'll go through the shadow page
  145. * tables and release_pte() them. Make sure we don't think
  146. * this one is valid! */
  147. flags = 0;
  148. }
  149. /* Now we assemble our shadow PTE from the page number and flags. */
  150. return pfn_pte(pfn, __pgprot(flags));
  151. }
  152. /*H:460 And to complete the chain, release_pte() looks like this: */
  153. static void release_pte(pte_t pte)
  154. {
  155. /* Remember that get_user_pages() took a reference to the page, in
  156. * get_pfn()? We have to put it back now. */
  157. if (pte_flags(pte) & _PAGE_PRESENT)
  158. put_page(pfn_to_page(pte_pfn(pte)));
  159. }
  160. /*:*/
  161. static void check_gpte(struct lguest *lg, pte_t gpte)
  162. {
  163. if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
  164. || pte_pfn(gpte) >= lg->pfn_limit)
  165. kill_guest(lg, "bad page table entry");
  166. }
  167. static void check_gpgd(struct lguest *lg, pgd_t gpgd)
  168. {
  169. if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
  170. kill_guest(lg, "bad page directory entry");
  171. }
  172. /*H:330
  173. * (i) Setting up a page table entry for the Guest when it faults
  174. *
  175. * We saw this call in run_guest(): when we see a page fault in the Guest, we
  176. * come here. That's because we only set up the shadow page tables lazily as
  177. * they're needed, so we get page faults all the time and quietly fix them up
  178. * and return to the Guest without it knowing.
  179. *
  180. * If we fixed up the fault (ie. we mapped the address), this routine returns
  181. * true. */
  182. int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
  183. {
  184. pgd_t gpgd;
  185. pgd_t *spgd;
  186. unsigned long gpte_ptr;
  187. pte_t gpte;
  188. pte_t *spte;
  189. /* First step: get the top-level Guest page table entry. */
  190. gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
  191. /* Toplevel not present? We can't map it in. */
  192. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  193. return 0;
  194. /* Now look at the matching shadow entry. */
  195. spgd = spgd_addr(lg, lg->pgdidx, vaddr);
  196. if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
  197. /* No shadow entry: allocate a new shadow PTE page. */
  198. unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
  199. /* This is not really the Guest's fault, but killing it is
  200. * simple for this corner case. */
  201. if (!ptepage) {
  202. kill_guest(lg, "out of memory allocating pte page");
  203. return 0;
  204. }
  205. /* We check that the Guest pgd is OK. */
  206. check_gpgd(lg, gpgd);
  207. /* And we copy the flags to the shadow PGD entry. The page
  208. * number in the shadow PGD is the page we just allocated. */
  209. *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
  210. }
  211. /* OK, now we look at the lower level in the Guest page table: keep its
  212. * address, because we might update it later. */
  213. gpte_ptr = gpte_addr(lg, gpgd, vaddr);
  214. gpte = lgread(lg, gpte_ptr, pte_t);
  215. /* If this page isn't in the Guest page tables, we can't page it in. */
  216. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  217. return 0;
  218. /* Check they're not trying to write to a page the Guest wants
  219. * read-only (bit 2 of errcode == write). */
  220. if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
  221. return 0;
  222. /* User access to a kernel page? (bit 3 == user access) */
  223. if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
  224. return 0;
  225. /* Check that the Guest PTE flags are OK, and the page number is below
  226. * the pfn_limit (ie. not mapping the Launcher binary). */
  227. check_gpte(lg, gpte);
  228. /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
  229. gpte = pte_mkyoung(gpte);
  230. if (errcode & 2)
  231. gpte = pte_mkdirty(gpte);
  232. /* Get the pointer to the shadow PTE entry we're going to set. */
  233. spte = spte_addr(lg, *spgd, vaddr);
  234. /* If there was a valid shadow PTE entry here before, we release it.
  235. * This can happen with a write to a previously read-only entry. */
  236. release_pte(*spte);
  237. /* If this is a write, we insist that the Guest page is writable (the
  238. * final arg to gpte_to_spte()). */
  239. if (pte_dirty(gpte))
  240. *spte = gpte_to_spte(lg, gpte, 1);
  241. else
  242. /* If this is a read, don't set the "writable" bit in the page
  243. * table entry, even if the Guest says it's writable. That way
  244. * we come back here when a write does actually ocur, so we can
  245. * update the Guest's _PAGE_DIRTY flag. */
  246. *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
  247. /* Finally, we write the Guest PTE entry back: we've set the
  248. * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
  249. lgwrite(lg, gpte_ptr, pte_t, gpte);
  250. /* We succeeded in mapping the page! */
  251. return 1;
  252. }
  253. /*H:360 (ii) Setting up the page table entry for the Guest stack.
  254. *
  255. * Remember pin_stack_pages() which makes sure the stack is mapped? It could
  256. * simply call demand_page(), but as we've seen that logic is quite long, and
  257. * usually the stack pages are already mapped anyway, so it's not required.
  258. *
  259. * This is a quick version which answers the question: is this virtual address
  260. * mapped by the shadow page tables, and is it writable? */
  261. static int page_writable(struct lguest *lg, unsigned long vaddr)
  262. {
  263. pgd_t *spgd;
  264. unsigned long flags;
  265. /* Look at the top level entry: is it present? */
  266. spgd = spgd_addr(lg, lg->pgdidx, vaddr);
  267. if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
  268. return 0;
  269. /* Check the flags on the pte entry itself: it must be present and
  270. * writable. */
  271. flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
  272. return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
  273. }
  274. /* So, when pin_stack_pages() asks us to pin a page, we check if it's already
  275. * in the page tables, and if not, we call demand_page() with error code 2
  276. * (meaning "write"). */
  277. void pin_page(struct lguest *lg, unsigned long vaddr)
  278. {
  279. if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
  280. kill_guest(lg, "bad stack page %#lx", vaddr);
  281. }
  282. /*H:450 If we chase down the release_pgd() code, it looks like this: */
  283. static void release_pgd(struct lguest *lg, pgd_t *spgd)
  284. {
  285. /* If the entry's not present, there's nothing to release. */
  286. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  287. unsigned int i;
  288. /* Converting the pfn to find the actual PTE page is easy: turn
  289. * the page number into a physical address, then convert to a
  290. * virtual address (easy for kernel pages like this one). */
  291. pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
  292. /* For each entry in the page, we might need to release it. */
  293. for (i = 0; i < PTRS_PER_PTE; i++)
  294. release_pte(ptepage[i]);
  295. /* Now we can free the page of PTEs */
  296. free_page((long)ptepage);
  297. /* And zero out the PGD entry we we never release it twice. */
  298. *spgd = __pgd(0);
  299. }
  300. }
  301. /*H:440 (v) Flushing (thowing away) page tables,
  302. *
  303. * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
  304. * It simply releases every PTE page from 0 up to the kernel address. */
  305. static void flush_user_mappings(struct lguest *lg, int idx)
  306. {
  307. unsigned int i;
  308. /* Release every pgd entry up to the kernel's address. */
  309. for (i = 0; i < pgd_index(lg->kernel_address); i++)
  310. release_pgd(lg, lg->pgdirs[idx].pgdir + i);
  311. }
  312. /* The Guest also has a hypercall to do this manually: it's used when a large
  313. * number of mappings have been changed. */
  314. void guest_pagetable_flush_user(struct lguest *lg)
  315. {
  316. /* Drop the userspace part of the current page table. */
  317. flush_user_mappings(lg, lg->pgdidx);
  318. }
  319. /*:*/
  320. /* We walk down the guest page tables to get a guest-physical address */
  321. unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
  322. {
  323. pgd_t gpgd;
  324. pte_t gpte;
  325. /* First step: get the top-level Guest page table entry. */
  326. gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
  327. /* Toplevel not present? We can't map it in. */
  328. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  329. kill_guest(lg, "Bad address %#lx", vaddr);
  330. gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
  331. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  332. kill_guest(lg, "Bad address %#lx", vaddr);
  333. return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
  334. }
  335. /* We keep several page tables. This is a simple routine to find the page
  336. * table (if any) corresponding to this top-level address the Guest has given
  337. * us. */
  338. static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
  339. {
  340. unsigned int i;
  341. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  342. if (lg->pgdirs[i].gpgdir == pgtable)
  343. break;
  344. return i;
  345. }
  346. /*H:435 And this is us, creating the new page directory. If we really do
  347. * allocate a new one (and so the kernel parts are not there), we set
  348. * blank_pgdir. */
  349. static unsigned int new_pgdir(struct lguest *lg,
  350. unsigned long gpgdir,
  351. int *blank_pgdir)
  352. {
  353. unsigned int next;
  354. /* We pick one entry at random to throw out. Choosing the Least
  355. * Recently Used might be better, but this is easy. */
  356. next = random32() % ARRAY_SIZE(lg->pgdirs);
  357. /* If it's never been allocated at all before, try now. */
  358. if (!lg->pgdirs[next].pgdir) {
  359. lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
  360. /* If the allocation fails, just keep using the one we have */
  361. if (!lg->pgdirs[next].pgdir)
  362. next = lg->pgdidx;
  363. else
  364. /* This is a blank page, so there are no kernel
  365. * mappings: caller must map the stack! */
  366. *blank_pgdir = 1;
  367. }
  368. /* Record which Guest toplevel this shadows. */
  369. lg->pgdirs[next].gpgdir = gpgdir;
  370. /* Release all the non-kernel mappings. */
  371. flush_user_mappings(lg, next);
  372. return next;
  373. }
  374. /*H:430 (iv) Switching page tables
  375. *
  376. * This is what happens when the Guest changes page tables (ie. changes the
  377. * top-level pgdir). This happens on almost every context switch. */
  378. void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
  379. {
  380. int newpgdir, repin = 0;
  381. /* Look to see if we have this one already. */
  382. newpgdir = find_pgdir(lg, pgtable);
  383. /* If not, we allocate or mug an existing one: if it's a fresh one,
  384. * repin gets set to 1. */
  385. if (newpgdir == ARRAY_SIZE(lg->pgdirs))
  386. newpgdir = new_pgdir(lg, pgtable, &repin);
  387. /* Change the current pgd index to the new one. */
  388. lg->pgdidx = newpgdir;
  389. /* If it was completely blank, we map in the Guest kernel stack */
  390. if (repin)
  391. pin_stack_pages(lg);
  392. }
  393. /*H:470 Finally, a routine which throws away everything: all PGD entries in all
  394. * the shadow page tables. This is used when we destroy the Guest. */
  395. static void release_all_pagetables(struct lguest *lg)
  396. {
  397. unsigned int i, j;
  398. /* Every shadow pagetable this Guest has */
  399. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  400. if (lg->pgdirs[i].pgdir)
  401. /* Every PGD entry except the Switcher at the top */
  402. for (j = 0; j < SWITCHER_PGD_INDEX; j++)
  403. release_pgd(lg, lg->pgdirs[i].pgdir + j);
  404. }
  405. /* We also throw away everything when a Guest tells us it's changed a kernel
  406. * mapping. Since kernel mappings are in every page table, it's easiest to
  407. * throw them all away. This is amazingly slow, but thankfully rare. */
  408. void guest_pagetable_clear_all(struct lguest *lg)
  409. {
  410. release_all_pagetables(lg);
  411. /* We need the Guest kernel stack mapped again. */
  412. pin_stack_pages(lg);
  413. }
  414. /*H:420 This is the routine which actually sets the page table entry for then
  415. * "idx"'th shadow page table.
  416. *
  417. * Normally, we can just throw out the old entry and replace it with 0: if they
  418. * use it demand_page() will put the new entry in. We need to do this anyway:
  419. * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
  420. * is read from, and _PAGE_DIRTY when it's written to.
  421. *
  422. * But Avi Kivity pointed out that most Operating Systems (Linux included) set
  423. * these bits on PTEs immediately anyway. This is done to save the CPU from
  424. * having to update them, but it helps us the same way: if they set
  425. * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
  426. * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
  427. */
  428. static void do_set_pte(struct lguest *lg, int idx,
  429. unsigned long vaddr, pte_t gpte)
  430. {
  431. /* Look up the matching shadow page directot entry. */
  432. pgd_t *spgd = spgd_addr(lg, idx, vaddr);
  433. /* If the top level isn't present, there's no entry to update. */
  434. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  435. /* Otherwise, we start by releasing the existing entry. */
  436. pte_t *spte = spte_addr(lg, *spgd, vaddr);
  437. release_pte(*spte);
  438. /* If they're setting this entry as dirty or accessed, we might
  439. * as well put that entry they've given us in now. This shaves
  440. * 10% off a copy-on-write micro-benchmark. */
  441. if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
  442. check_gpte(lg, gpte);
  443. *spte = gpte_to_spte(lg, gpte,
  444. pte_flags(gpte) & _PAGE_DIRTY);
  445. } else
  446. /* Otherwise we can demand_page() it in later. */
  447. *spte = __pte(0);
  448. }
  449. }
  450. /*H:410 Updating a PTE entry is a little trickier.
  451. *
  452. * We keep track of several different page tables (the Guest uses one for each
  453. * process, so it makes sense to cache at least a few). Each of these have
  454. * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
  455. * all processes. So when the page table above that address changes, we update
  456. * all the page tables, not just the current one. This is rare.
  457. *
  458. * The benefit is that when we have to track a new page table, we can copy keep
  459. * all the kernel mappings. This speeds up context switch immensely. */
  460. void guest_set_pte(struct lguest *lg,
  461. unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
  462. {
  463. /* Kernel mappings must be changed on all top levels. Slow, but
  464. * doesn't happen often. */
  465. if (vaddr >= lg->kernel_address) {
  466. unsigned int i;
  467. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  468. if (lg->pgdirs[i].pgdir)
  469. do_set_pte(lg, i, vaddr, gpte);
  470. } else {
  471. /* Is this page table one we have a shadow for? */
  472. int pgdir = find_pgdir(lg, gpgdir);
  473. if (pgdir != ARRAY_SIZE(lg->pgdirs))
  474. /* If so, do the update. */
  475. do_set_pte(lg, pgdir, vaddr, gpte);
  476. }
  477. }
  478. /*H:400
  479. * (iii) Setting up a page table entry when the Guest tells us it has changed.
  480. *
  481. * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
  482. * with the other side of page tables while we're here: what happens when the
  483. * Guest asks for a page table to be updated?
  484. *
  485. * We already saw that demand_page() will fill in the shadow page tables when
  486. * needed, so we can simply remove shadow page table entries whenever the Guest
  487. * tells us they've changed. When the Guest tries to use the new entry it will
  488. * fault and demand_page() will fix it up.
  489. *
  490. * So with that in mind here's our code to to update a (top-level) PGD entry:
  491. */
  492. void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
  493. {
  494. int pgdir;
  495. /* The kernel seems to try to initialize this early on: we ignore its
  496. * attempts to map over the Switcher. */
  497. if (idx >= SWITCHER_PGD_INDEX)
  498. return;
  499. /* If they're talking about a page table we have a shadow for... */
  500. pgdir = find_pgdir(lg, gpgdir);
  501. if (pgdir < ARRAY_SIZE(lg->pgdirs))
  502. /* ... throw it away. */
  503. release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
  504. }
  505. /*H:500 (vii) Setting up the page tables initially.
  506. *
  507. * When a Guest is first created, the Launcher tells us where the toplevel of
  508. * its first page table is. We set some things up here: */
  509. int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
  510. {
  511. /* We start on the first shadow page table, and give it a blank PGD
  512. * page. */
  513. lg->pgdidx = 0;
  514. lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
  515. lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
  516. if (!lg->pgdirs[lg->pgdidx].pgdir)
  517. return -ENOMEM;
  518. return 0;
  519. }
  520. /* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
  521. void page_table_guest_data_init(struct lguest *lg)
  522. {
  523. /* We get the kernel address: above this is all kernel memory. */
  524. if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
  525. /* We tell the Guest that it can't use the top 4MB of virtual
  526. * addresses used by the Switcher. */
  527. || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
  528. || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
  529. kill_guest(lg, "bad guest page %p", lg->lguest_data);
  530. /* In flush_user_mappings() we loop from 0 to
  531. * "pgd_index(lg->kernel_address)". This assumes it won't hit the
  532. * Switcher mappings, so check that now. */
  533. if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
  534. kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
  535. }
  536. /* When a Guest dies, our cleanup is fairly simple. */
  537. void free_guest_pagetable(struct lguest *lg)
  538. {
  539. unsigned int i;
  540. /* Throw away all page table pages. */
  541. release_all_pagetables(lg);
  542. /* Now free the top levels: free_page() can handle 0 just fine. */
  543. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  544. free_page((long)lg->pgdirs[i].pgdir);
  545. }
  546. /*H:480 (vi) Mapping the Switcher when the Guest is about to run.
  547. *
  548. * The Switcher and the two pages for this CPU need to be available to the
  549. * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
  550. * for each CPU already set up, we just need to hook them in. */
  551. void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
  552. {
  553. pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
  554. pgd_t switcher_pgd;
  555. pte_t regs_pte;
  556. /* Make the last PGD entry for this Guest point to the Switcher's PTE
  557. * page for this CPU (with appropriate flags). */
  558. switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
  559. lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
  560. /* We also change the Switcher PTE page. When we're running the Guest,
  561. * we want the Guest's "regs" page to appear where the first Switcher
  562. * page for this CPU is. This is an optimization: when the Switcher
  563. * saves the Guest registers, it saves them into the first page of this
  564. * CPU's "struct lguest_pages": if we make sure the Guest's register
  565. * page is already mapped there, we don't have to copy them out
  566. * again. */
  567. regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
  568. switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
  569. }
  570. /*:*/
  571. static void free_switcher_pte_pages(void)
  572. {
  573. unsigned int i;
  574. for_each_possible_cpu(i)
  575. free_page((long)switcher_pte_page(i));
  576. }
  577. /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
  578. * the CPU number and the "struct page"s for the Switcher code itself.
  579. *
  580. * Currently the Switcher is less than a page long, so "pages" is always 1. */
  581. static __init void populate_switcher_pte_page(unsigned int cpu,
  582. struct page *switcher_page[],
  583. unsigned int pages)
  584. {
  585. unsigned int i;
  586. pte_t *pte = switcher_pte_page(cpu);
  587. /* The first entries are easy: they map the Switcher code. */
  588. for (i = 0; i < pages; i++) {
  589. pte[i] = mk_pte(switcher_page[i],
  590. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  591. }
  592. /* The only other thing we map is this CPU's pair of pages. */
  593. i = pages + cpu*2;
  594. /* First page (Guest registers) is writable from the Guest */
  595. pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
  596. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
  597. /* The second page contains the "struct lguest_ro_state", and is
  598. * read-only. */
  599. pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
  600. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  601. }
  602. /*H:510 At boot or module load time, init_pagetables() allocates and populates
  603. * the Switcher PTE page for each CPU. */
  604. __init int init_pagetables(struct page **switcher_page, unsigned int pages)
  605. {
  606. unsigned int i;
  607. for_each_possible_cpu(i) {
  608. switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
  609. if (!switcher_pte_page(i)) {
  610. free_switcher_pte_pages();
  611. return -ENOMEM;
  612. }
  613. populate_switcher_pte_page(i, switcher_page, pages);
  614. }
  615. return 0;
  616. }
  617. /*:*/
  618. /* Cleaning up simply involves freeing the PTE page for each CPU. */
  619. void free_pagetables(void)
  620. {
  621. free_switcher_pte_pages();
  622. }