sata_sx4.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. /*
  2. * sata_sx4.c - Promise SATA
  3. *
  4. * Maintained by: Jeff Garzik <jgarzik@pobox.com>
  5. * Please ALWAYS copy linux-ide@vger.kernel.org
  6. * on emails.
  7. *
  8. * Copyright 2003-2004 Red Hat, Inc.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; see the file COPYING. If not, write to
  23. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  24. *
  25. *
  26. * libata documentation is available via 'make {ps|pdf}docs',
  27. * as Documentation/DocBook/libata.*
  28. *
  29. * Hardware documentation available under NDA.
  30. *
  31. */
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/init.h>
  36. #include <linux/blkdev.h>
  37. #include <linux/delay.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/sched.h>
  40. #include <linux/device.h>
  41. #include <scsi/scsi_host.h>
  42. #include <scsi/scsi_cmnd.h>
  43. #include <linux/libata.h>
  44. #include "sata_promise.h"
  45. #define DRV_NAME "sata_sx4"
  46. #define DRV_VERSION "0.9"
  47. enum {
  48. PDC_MMIO_BAR = 3,
  49. PDC_DIMM_BAR = 4,
  50. PDC_PRD_TBL = 0x44, /* Direct command DMA table addr */
  51. PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */
  52. PDC_HDMA_PKT_SUBMIT = 0x100, /* Host DMA packet pointer addr */
  53. PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */
  54. PDC_HDMA_CTLSTAT = 0x12C, /* Host DMA control / status */
  55. PDC_20621_SEQCTL = 0x400,
  56. PDC_20621_SEQMASK = 0x480,
  57. PDC_20621_GENERAL_CTL = 0x484,
  58. PDC_20621_PAGE_SIZE = (32 * 1024),
  59. /* chosen, not constant, values; we design our own DIMM mem map */
  60. PDC_20621_DIMM_WINDOW = 0x0C, /* page# for 32K DIMM window */
  61. PDC_20621_DIMM_BASE = 0x00200000,
  62. PDC_20621_DIMM_DATA = (64 * 1024),
  63. PDC_DIMM_DATA_STEP = (256 * 1024),
  64. PDC_DIMM_WINDOW_STEP = (8 * 1024),
  65. PDC_DIMM_HOST_PRD = (6 * 1024),
  66. PDC_DIMM_HOST_PKT = (128 * 0),
  67. PDC_DIMM_HPKT_PRD = (128 * 1),
  68. PDC_DIMM_ATA_PKT = (128 * 2),
  69. PDC_DIMM_APKT_PRD = (128 * 3),
  70. PDC_DIMM_HEADER_SZ = PDC_DIMM_APKT_PRD + 128,
  71. PDC_PAGE_WINDOW = 0x40,
  72. PDC_PAGE_DATA = PDC_PAGE_WINDOW +
  73. (PDC_20621_DIMM_DATA / PDC_20621_PAGE_SIZE),
  74. PDC_PAGE_SET = PDC_DIMM_DATA_STEP / PDC_20621_PAGE_SIZE,
  75. PDC_CHIP0_OFS = 0xC0000, /* offset of chip #0 */
  76. PDC_20621_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
  77. (1<<23),
  78. board_20621 = 0, /* FastTrak S150 SX4 */
  79. PDC_RESET = (1 << 11), /* HDMA reset */
  80. PDC_MAX_HDMA = 32,
  81. PDC_HDMA_Q_MASK = (PDC_MAX_HDMA - 1),
  82. PDC_DIMM0_SPD_DEV_ADDRESS = 0x50,
  83. PDC_DIMM1_SPD_DEV_ADDRESS = 0x51,
  84. PDC_MAX_DIMM_MODULE = 0x02,
  85. PDC_I2C_CONTROL_OFFSET = 0x48,
  86. PDC_I2C_ADDR_DATA_OFFSET = 0x4C,
  87. PDC_DIMM0_CONTROL_OFFSET = 0x80,
  88. PDC_DIMM1_CONTROL_OFFSET = 0x84,
  89. PDC_SDRAM_CONTROL_OFFSET = 0x88,
  90. PDC_I2C_WRITE = 0x00000000,
  91. PDC_I2C_READ = 0x00000040,
  92. PDC_I2C_START = 0x00000080,
  93. PDC_I2C_MASK_INT = 0x00000020,
  94. PDC_I2C_COMPLETE = 0x00010000,
  95. PDC_I2C_NO_ACK = 0x00100000,
  96. PDC_DIMM_SPD_SUBADDRESS_START = 0x00,
  97. PDC_DIMM_SPD_SUBADDRESS_END = 0x7F,
  98. PDC_DIMM_SPD_ROW_NUM = 3,
  99. PDC_DIMM_SPD_COLUMN_NUM = 4,
  100. PDC_DIMM_SPD_MODULE_ROW = 5,
  101. PDC_DIMM_SPD_TYPE = 11,
  102. PDC_DIMM_SPD_FRESH_RATE = 12,
  103. PDC_DIMM_SPD_BANK_NUM = 17,
  104. PDC_DIMM_SPD_CAS_LATENCY = 18,
  105. PDC_DIMM_SPD_ATTRIBUTE = 21,
  106. PDC_DIMM_SPD_ROW_PRE_CHARGE = 27,
  107. PDC_DIMM_SPD_ROW_ACTIVE_DELAY = 28,
  108. PDC_DIMM_SPD_RAS_CAS_DELAY = 29,
  109. PDC_DIMM_SPD_ACTIVE_PRECHARGE = 30,
  110. PDC_DIMM_SPD_SYSTEM_FREQ = 126,
  111. PDC_CTL_STATUS = 0x08,
  112. PDC_DIMM_WINDOW_CTLR = 0x0C,
  113. PDC_TIME_CONTROL = 0x3C,
  114. PDC_TIME_PERIOD = 0x40,
  115. PDC_TIME_COUNTER = 0x44,
  116. PDC_GENERAL_CTLR = 0x484,
  117. PCI_PLL_INIT = 0x8A531824,
  118. PCI_X_TCOUNT = 0xEE1E5CFF
  119. };
  120. struct pdc_port_priv {
  121. u8 dimm_buf[(ATA_PRD_SZ * ATA_MAX_PRD) + 512];
  122. u8 *pkt;
  123. dma_addr_t pkt_dma;
  124. };
  125. struct pdc_host_priv {
  126. unsigned int doing_hdma;
  127. unsigned int hdma_prod;
  128. unsigned int hdma_cons;
  129. struct {
  130. struct ata_queued_cmd *qc;
  131. unsigned int seq;
  132. unsigned long pkt_ofs;
  133. } hdma[32];
  134. };
  135. static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
  136. static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance);
  137. static void pdc_eng_timeout(struct ata_port *ap);
  138. static void pdc_20621_phy_reset (struct ata_port *ap);
  139. static int pdc_port_start(struct ata_port *ap);
  140. static void pdc20621_qc_prep(struct ata_queued_cmd *qc);
  141. static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
  142. static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
  143. static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe);
  144. static int pdc20621_detect_dimm(struct ata_probe_ent *pe);
  145. static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe,
  146. u32 device, u32 subaddr, u32 *pdata);
  147. static int pdc20621_prog_dimm0(struct ata_probe_ent *pe);
  148. static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe);
  149. #ifdef ATA_VERBOSE_DEBUG
  150. static void pdc20621_get_from_dimm(struct ata_probe_ent *pe,
  151. void *psource, u32 offset, u32 size);
  152. #endif
  153. static void pdc20621_put_to_dimm(struct ata_probe_ent *pe,
  154. void *psource, u32 offset, u32 size);
  155. static void pdc20621_irq_clear(struct ata_port *ap);
  156. static unsigned int pdc20621_qc_issue_prot(struct ata_queued_cmd *qc);
  157. static struct scsi_host_template pdc_sata_sht = {
  158. .module = THIS_MODULE,
  159. .name = DRV_NAME,
  160. .ioctl = ata_scsi_ioctl,
  161. .queuecommand = ata_scsi_queuecmd,
  162. .can_queue = ATA_DEF_QUEUE,
  163. .this_id = ATA_SHT_THIS_ID,
  164. .sg_tablesize = LIBATA_MAX_PRD,
  165. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  166. .emulated = ATA_SHT_EMULATED,
  167. .use_clustering = ATA_SHT_USE_CLUSTERING,
  168. .proc_name = DRV_NAME,
  169. .dma_boundary = ATA_DMA_BOUNDARY,
  170. .slave_configure = ata_scsi_slave_config,
  171. .slave_destroy = ata_scsi_slave_destroy,
  172. .bios_param = ata_std_bios_param,
  173. };
  174. static const struct ata_port_operations pdc_20621_ops = {
  175. .port_disable = ata_port_disable,
  176. .tf_load = pdc_tf_load_mmio,
  177. .tf_read = ata_tf_read,
  178. .check_status = ata_check_status,
  179. .exec_command = pdc_exec_command_mmio,
  180. .dev_select = ata_std_dev_select,
  181. .phy_reset = pdc_20621_phy_reset,
  182. .qc_prep = pdc20621_qc_prep,
  183. .qc_issue = pdc20621_qc_issue_prot,
  184. .data_xfer = ata_data_xfer,
  185. .eng_timeout = pdc_eng_timeout,
  186. .irq_handler = pdc20621_interrupt,
  187. .irq_clear = pdc20621_irq_clear,
  188. .port_start = pdc_port_start,
  189. };
  190. static const struct ata_port_info pdc_port_info[] = {
  191. /* board_20621 */
  192. {
  193. .sht = &pdc_sata_sht,
  194. .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  195. ATA_FLAG_SRST | ATA_FLAG_MMIO |
  196. ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING,
  197. .pio_mask = 0x1f, /* pio0-4 */
  198. .mwdma_mask = 0x07, /* mwdma0-2 */
  199. .udma_mask = 0x7f, /* udma0-6 ; FIXME */
  200. .port_ops = &pdc_20621_ops,
  201. },
  202. };
  203. static const struct pci_device_id pdc_sata_pci_tbl[] = {
  204. { PCI_VDEVICE(PROMISE, 0x6622), board_20621 },
  205. { } /* terminate list */
  206. };
  207. static struct pci_driver pdc_sata_pci_driver = {
  208. .name = DRV_NAME,
  209. .id_table = pdc_sata_pci_tbl,
  210. .probe = pdc_sata_init_one,
  211. .remove = ata_pci_remove_one,
  212. };
  213. static int pdc_port_start(struct ata_port *ap)
  214. {
  215. struct device *dev = ap->host->dev;
  216. struct pdc_port_priv *pp;
  217. int rc;
  218. rc = ata_port_start(ap);
  219. if (rc)
  220. return rc;
  221. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  222. if (!pp)
  223. return -ENOMEM;
  224. pp->pkt = dmam_alloc_coherent(dev, 128, &pp->pkt_dma, GFP_KERNEL);
  225. if (!pp->pkt)
  226. return -ENOMEM;
  227. ap->private_data = pp;
  228. return 0;
  229. }
  230. static void pdc_20621_phy_reset (struct ata_port *ap)
  231. {
  232. VPRINTK("ENTER\n");
  233. ap->cbl = ATA_CBL_SATA;
  234. ata_port_probe(ap);
  235. ata_bus_reset(ap);
  236. }
  237. static inline void pdc20621_ata_sg(struct ata_taskfile *tf, u8 *buf,
  238. unsigned int portno,
  239. unsigned int total_len)
  240. {
  241. u32 addr;
  242. unsigned int dw = PDC_DIMM_APKT_PRD >> 2;
  243. u32 *buf32 = (u32 *) buf;
  244. /* output ATA packet S/G table */
  245. addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
  246. (PDC_DIMM_DATA_STEP * portno);
  247. VPRINTK("ATA sg addr 0x%x, %d\n", addr, addr);
  248. buf32[dw] = cpu_to_le32(addr);
  249. buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
  250. VPRINTK("ATA PSG @ %x == (0x%x, 0x%x)\n",
  251. PDC_20621_DIMM_BASE +
  252. (PDC_DIMM_WINDOW_STEP * portno) +
  253. PDC_DIMM_APKT_PRD,
  254. buf32[dw], buf32[dw + 1]);
  255. }
  256. static inline void pdc20621_host_sg(struct ata_taskfile *tf, u8 *buf,
  257. unsigned int portno,
  258. unsigned int total_len)
  259. {
  260. u32 addr;
  261. unsigned int dw = PDC_DIMM_HPKT_PRD >> 2;
  262. u32 *buf32 = (u32 *) buf;
  263. /* output Host DMA packet S/G table */
  264. addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
  265. (PDC_DIMM_DATA_STEP * portno);
  266. buf32[dw] = cpu_to_le32(addr);
  267. buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
  268. VPRINTK("HOST PSG @ %x == (0x%x, 0x%x)\n",
  269. PDC_20621_DIMM_BASE +
  270. (PDC_DIMM_WINDOW_STEP * portno) +
  271. PDC_DIMM_HPKT_PRD,
  272. buf32[dw], buf32[dw + 1]);
  273. }
  274. static inline unsigned int pdc20621_ata_pkt(struct ata_taskfile *tf,
  275. unsigned int devno, u8 *buf,
  276. unsigned int portno)
  277. {
  278. unsigned int i, dw;
  279. u32 *buf32 = (u32 *) buf;
  280. u8 dev_reg;
  281. unsigned int dimm_sg = PDC_20621_DIMM_BASE +
  282. (PDC_DIMM_WINDOW_STEP * portno) +
  283. PDC_DIMM_APKT_PRD;
  284. VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
  285. i = PDC_DIMM_ATA_PKT;
  286. /*
  287. * Set up ATA packet
  288. */
  289. if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
  290. buf[i++] = PDC_PKT_READ;
  291. else if (tf->protocol == ATA_PROT_NODATA)
  292. buf[i++] = PDC_PKT_NODATA;
  293. else
  294. buf[i++] = 0;
  295. buf[i++] = 0; /* reserved */
  296. buf[i++] = portno + 1; /* seq. id */
  297. buf[i++] = 0xff; /* delay seq. id */
  298. /* dimm dma S/G, and next-pkt */
  299. dw = i >> 2;
  300. if (tf->protocol == ATA_PROT_NODATA)
  301. buf32[dw] = 0;
  302. else
  303. buf32[dw] = cpu_to_le32(dimm_sg);
  304. buf32[dw + 1] = 0;
  305. i += 8;
  306. if (devno == 0)
  307. dev_reg = ATA_DEVICE_OBS;
  308. else
  309. dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
  310. /* select device */
  311. buf[i++] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
  312. buf[i++] = dev_reg;
  313. /* device control register */
  314. buf[i++] = (1 << 5) | PDC_REG_DEVCTL;
  315. buf[i++] = tf->ctl;
  316. return i;
  317. }
  318. static inline void pdc20621_host_pkt(struct ata_taskfile *tf, u8 *buf,
  319. unsigned int portno)
  320. {
  321. unsigned int dw;
  322. u32 tmp, *buf32 = (u32 *) buf;
  323. unsigned int host_sg = PDC_20621_DIMM_BASE +
  324. (PDC_DIMM_WINDOW_STEP * portno) +
  325. PDC_DIMM_HOST_PRD;
  326. unsigned int dimm_sg = PDC_20621_DIMM_BASE +
  327. (PDC_DIMM_WINDOW_STEP * portno) +
  328. PDC_DIMM_HPKT_PRD;
  329. VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
  330. VPRINTK("host_sg == 0x%x, %d\n", host_sg, host_sg);
  331. dw = PDC_DIMM_HOST_PKT >> 2;
  332. /*
  333. * Set up Host DMA packet
  334. */
  335. if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
  336. tmp = PDC_PKT_READ;
  337. else
  338. tmp = 0;
  339. tmp |= ((portno + 1 + 4) << 16); /* seq. id */
  340. tmp |= (0xff << 24); /* delay seq. id */
  341. buf32[dw + 0] = cpu_to_le32(tmp);
  342. buf32[dw + 1] = cpu_to_le32(host_sg);
  343. buf32[dw + 2] = cpu_to_le32(dimm_sg);
  344. buf32[dw + 3] = 0;
  345. VPRINTK("HOST PKT @ %x == (0x%x 0x%x 0x%x 0x%x)\n",
  346. PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * portno) +
  347. PDC_DIMM_HOST_PKT,
  348. buf32[dw + 0],
  349. buf32[dw + 1],
  350. buf32[dw + 2],
  351. buf32[dw + 3]);
  352. }
  353. static void pdc20621_dma_prep(struct ata_queued_cmd *qc)
  354. {
  355. struct scatterlist *sg;
  356. struct ata_port *ap = qc->ap;
  357. struct pdc_port_priv *pp = ap->private_data;
  358. void __iomem *mmio = ap->host->iomap[PDC_MMIO_BAR];
  359. void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
  360. unsigned int portno = ap->port_no;
  361. unsigned int i, idx, total_len = 0, sgt_len;
  362. u32 *buf = (u32 *) &pp->dimm_buf[PDC_DIMM_HEADER_SZ];
  363. WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
  364. VPRINTK("ata%u: ENTER\n", ap->id);
  365. /* hard-code chip #0 */
  366. mmio += PDC_CHIP0_OFS;
  367. /*
  368. * Build S/G table
  369. */
  370. idx = 0;
  371. ata_for_each_sg(sg, qc) {
  372. buf[idx++] = cpu_to_le32(sg_dma_address(sg));
  373. buf[idx++] = cpu_to_le32(sg_dma_len(sg));
  374. total_len += sg_dma_len(sg);
  375. }
  376. buf[idx - 1] |= cpu_to_le32(ATA_PRD_EOT);
  377. sgt_len = idx * 4;
  378. /*
  379. * Build ATA, host DMA packets
  380. */
  381. pdc20621_host_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
  382. pdc20621_host_pkt(&qc->tf, &pp->dimm_buf[0], portno);
  383. pdc20621_ata_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
  384. i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
  385. if (qc->tf.flags & ATA_TFLAG_LBA48)
  386. i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
  387. else
  388. i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
  389. pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
  390. /* copy three S/G tables and two packets to DIMM MMIO window */
  391. memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
  392. &pp->dimm_buf, PDC_DIMM_HEADER_SZ);
  393. memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP) +
  394. PDC_DIMM_HOST_PRD,
  395. &pp->dimm_buf[PDC_DIMM_HEADER_SZ], sgt_len);
  396. /* force host FIFO dump */
  397. writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
  398. readl(dimm_mmio); /* MMIO PCI posting flush */
  399. VPRINTK("ata pkt buf ofs %u, prd size %u, mmio copied\n", i, sgt_len);
  400. }
  401. static void pdc20621_nodata_prep(struct ata_queued_cmd *qc)
  402. {
  403. struct ata_port *ap = qc->ap;
  404. struct pdc_port_priv *pp = ap->private_data;
  405. void __iomem *mmio = ap->host->iomap[PDC_MMIO_BAR];
  406. void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
  407. unsigned int portno = ap->port_no;
  408. unsigned int i;
  409. VPRINTK("ata%u: ENTER\n", ap->id);
  410. /* hard-code chip #0 */
  411. mmio += PDC_CHIP0_OFS;
  412. i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
  413. if (qc->tf.flags & ATA_TFLAG_LBA48)
  414. i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
  415. else
  416. i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
  417. pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
  418. /* copy three S/G tables and two packets to DIMM MMIO window */
  419. memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
  420. &pp->dimm_buf, PDC_DIMM_HEADER_SZ);
  421. /* force host FIFO dump */
  422. writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
  423. readl(dimm_mmio); /* MMIO PCI posting flush */
  424. VPRINTK("ata pkt buf ofs %u, mmio copied\n", i);
  425. }
  426. static void pdc20621_qc_prep(struct ata_queued_cmd *qc)
  427. {
  428. switch (qc->tf.protocol) {
  429. case ATA_PROT_DMA:
  430. pdc20621_dma_prep(qc);
  431. break;
  432. case ATA_PROT_NODATA:
  433. pdc20621_nodata_prep(qc);
  434. break;
  435. default:
  436. break;
  437. }
  438. }
  439. static void __pdc20621_push_hdma(struct ata_queued_cmd *qc,
  440. unsigned int seq,
  441. u32 pkt_ofs)
  442. {
  443. struct ata_port *ap = qc->ap;
  444. struct ata_host *host = ap->host;
  445. void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
  446. /* hard-code chip #0 */
  447. mmio += PDC_CHIP0_OFS;
  448. writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
  449. readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
  450. writel(pkt_ofs, mmio + PDC_HDMA_PKT_SUBMIT);
  451. readl(mmio + PDC_HDMA_PKT_SUBMIT); /* flush */
  452. }
  453. static void pdc20621_push_hdma(struct ata_queued_cmd *qc,
  454. unsigned int seq,
  455. u32 pkt_ofs)
  456. {
  457. struct ata_port *ap = qc->ap;
  458. struct pdc_host_priv *pp = ap->host->private_data;
  459. unsigned int idx = pp->hdma_prod & PDC_HDMA_Q_MASK;
  460. if (!pp->doing_hdma) {
  461. __pdc20621_push_hdma(qc, seq, pkt_ofs);
  462. pp->doing_hdma = 1;
  463. return;
  464. }
  465. pp->hdma[idx].qc = qc;
  466. pp->hdma[idx].seq = seq;
  467. pp->hdma[idx].pkt_ofs = pkt_ofs;
  468. pp->hdma_prod++;
  469. }
  470. static void pdc20621_pop_hdma(struct ata_queued_cmd *qc)
  471. {
  472. struct ata_port *ap = qc->ap;
  473. struct pdc_host_priv *pp = ap->host->private_data;
  474. unsigned int idx = pp->hdma_cons & PDC_HDMA_Q_MASK;
  475. /* if nothing on queue, we're done */
  476. if (pp->hdma_prod == pp->hdma_cons) {
  477. pp->doing_hdma = 0;
  478. return;
  479. }
  480. __pdc20621_push_hdma(pp->hdma[idx].qc, pp->hdma[idx].seq,
  481. pp->hdma[idx].pkt_ofs);
  482. pp->hdma_cons++;
  483. }
  484. #ifdef ATA_VERBOSE_DEBUG
  485. static void pdc20621_dump_hdma(struct ata_queued_cmd *qc)
  486. {
  487. struct ata_port *ap = qc->ap;
  488. unsigned int port_no = ap->port_no;
  489. void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
  490. dimm_mmio += (port_no * PDC_DIMM_WINDOW_STEP);
  491. dimm_mmio += PDC_DIMM_HOST_PKT;
  492. printk(KERN_ERR "HDMA[0] == 0x%08X\n", readl(dimm_mmio));
  493. printk(KERN_ERR "HDMA[1] == 0x%08X\n", readl(dimm_mmio + 4));
  494. printk(KERN_ERR "HDMA[2] == 0x%08X\n", readl(dimm_mmio + 8));
  495. printk(KERN_ERR "HDMA[3] == 0x%08X\n", readl(dimm_mmio + 12));
  496. }
  497. #else
  498. static inline void pdc20621_dump_hdma(struct ata_queued_cmd *qc) { }
  499. #endif /* ATA_VERBOSE_DEBUG */
  500. static void pdc20621_packet_start(struct ata_queued_cmd *qc)
  501. {
  502. struct ata_port *ap = qc->ap;
  503. struct ata_host *host = ap->host;
  504. unsigned int port_no = ap->port_no;
  505. void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
  506. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  507. u8 seq = (u8) (port_no + 1);
  508. unsigned int port_ofs;
  509. /* hard-code chip #0 */
  510. mmio += PDC_CHIP0_OFS;
  511. VPRINTK("ata%u: ENTER\n", ap->id);
  512. wmb(); /* flush PRD, pkt writes */
  513. port_ofs = PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
  514. /* if writing, we (1) DMA to DIMM, then (2) do ATA command */
  515. if (rw && qc->tf.protocol == ATA_PROT_DMA) {
  516. seq += 4;
  517. pdc20621_dump_hdma(qc);
  518. pdc20621_push_hdma(qc, seq, port_ofs + PDC_DIMM_HOST_PKT);
  519. VPRINTK("queued ofs 0x%x (%u), seq %u\n",
  520. port_ofs + PDC_DIMM_HOST_PKT,
  521. port_ofs + PDC_DIMM_HOST_PKT,
  522. seq);
  523. } else {
  524. writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
  525. readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
  526. writel(port_ofs + PDC_DIMM_ATA_PKT,
  527. ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
  528. readl(ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
  529. VPRINTK("submitted ofs 0x%x (%u), seq %u\n",
  530. port_ofs + PDC_DIMM_ATA_PKT,
  531. port_ofs + PDC_DIMM_ATA_PKT,
  532. seq);
  533. }
  534. }
  535. static unsigned int pdc20621_qc_issue_prot(struct ata_queued_cmd *qc)
  536. {
  537. switch (qc->tf.protocol) {
  538. case ATA_PROT_DMA:
  539. case ATA_PROT_NODATA:
  540. pdc20621_packet_start(qc);
  541. return 0;
  542. case ATA_PROT_ATAPI_DMA:
  543. BUG();
  544. break;
  545. default:
  546. break;
  547. }
  548. return ata_qc_issue_prot(qc);
  549. }
  550. static inline unsigned int pdc20621_host_intr( struct ata_port *ap,
  551. struct ata_queued_cmd *qc,
  552. unsigned int doing_hdma,
  553. void __iomem *mmio)
  554. {
  555. unsigned int port_no = ap->port_no;
  556. unsigned int port_ofs =
  557. PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
  558. u8 status;
  559. unsigned int handled = 0;
  560. VPRINTK("ENTER\n");
  561. if ((qc->tf.protocol == ATA_PROT_DMA) && /* read */
  562. (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
  563. /* step two - DMA from DIMM to host */
  564. if (doing_hdma) {
  565. VPRINTK("ata%u: read hdma, 0x%x 0x%x\n", ap->id,
  566. readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
  567. /* get drive status; clear intr; complete txn */
  568. qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
  569. ata_qc_complete(qc);
  570. pdc20621_pop_hdma(qc);
  571. }
  572. /* step one - exec ATA command */
  573. else {
  574. u8 seq = (u8) (port_no + 1 + 4);
  575. VPRINTK("ata%u: read ata, 0x%x 0x%x\n", ap->id,
  576. readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
  577. /* submit hdma pkt */
  578. pdc20621_dump_hdma(qc);
  579. pdc20621_push_hdma(qc, seq,
  580. port_ofs + PDC_DIMM_HOST_PKT);
  581. }
  582. handled = 1;
  583. } else if (qc->tf.protocol == ATA_PROT_DMA) { /* write */
  584. /* step one - DMA from host to DIMM */
  585. if (doing_hdma) {
  586. u8 seq = (u8) (port_no + 1);
  587. VPRINTK("ata%u: write hdma, 0x%x 0x%x\n", ap->id,
  588. readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
  589. /* submit ata pkt */
  590. writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
  591. readl(mmio + PDC_20621_SEQCTL + (seq * 4));
  592. writel(port_ofs + PDC_DIMM_ATA_PKT,
  593. ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
  594. readl(ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
  595. }
  596. /* step two - execute ATA command */
  597. else {
  598. VPRINTK("ata%u: write ata, 0x%x 0x%x\n", ap->id,
  599. readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
  600. /* get drive status; clear intr; complete txn */
  601. qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
  602. ata_qc_complete(qc);
  603. pdc20621_pop_hdma(qc);
  604. }
  605. handled = 1;
  606. /* command completion, but no data xfer */
  607. } else if (qc->tf.protocol == ATA_PROT_NODATA) {
  608. status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
  609. DPRINTK("BUS_NODATA (drv_stat 0x%X)\n", status);
  610. qc->err_mask |= ac_err_mask(status);
  611. ata_qc_complete(qc);
  612. handled = 1;
  613. } else {
  614. ap->stats.idle_irq++;
  615. }
  616. return handled;
  617. }
  618. static void pdc20621_irq_clear(struct ata_port *ap)
  619. {
  620. struct ata_host *host = ap->host;
  621. void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
  622. mmio += PDC_CHIP0_OFS;
  623. readl(mmio + PDC_20621_SEQMASK);
  624. }
  625. static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance)
  626. {
  627. struct ata_host *host = dev_instance;
  628. struct ata_port *ap;
  629. u32 mask = 0;
  630. unsigned int i, tmp, port_no;
  631. unsigned int handled = 0;
  632. void __iomem *mmio_base;
  633. VPRINTK("ENTER\n");
  634. if (!host || !host->iomap[PDC_MMIO_BAR]) {
  635. VPRINTK("QUICK EXIT\n");
  636. return IRQ_NONE;
  637. }
  638. mmio_base = host->iomap[PDC_MMIO_BAR];
  639. /* reading should also clear interrupts */
  640. mmio_base += PDC_CHIP0_OFS;
  641. mask = readl(mmio_base + PDC_20621_SEQMASK);
  642. VPRINTK("mask == 0x%x\n", mask);
  643. if (mask == 0xffffffff) {
  644. VPRINTK("QUICK EXIT 2\n");
  645. return IRQ_NONE;
  646. }
  647. mask &= 0xffff; /* only 16 tags possible */
  648. if (!mask) {
  649. VPRINTK("QUICK EXIT 3\n");
  650. return IRQ_NONE;
  651. }
  652. spin_lock(&host->lock);
  653. for (i = 1; i < 9; i++) {
  654. port_no = i - 1;
  655. if (port_no > 3)
  656. port_no -= 4;
  657. if (port_no >= host->n_ports)
  658. ap = NULL;
  659. else
  660. ap = host->ports[port_no];
  661. tmp = mask & (1 << i);
  662. VPRINTK("seq %u, port_no %u, ap %p, tmp %x\n", i, port_no, ap, tmp);
  663. if (tmp && ap &&
  664. !(ap->flags & ATA_FLAG_DISABLED)) {
  665. struct ata_queued_cmd *qc;
  666. qc = ata_qc_from_tag(ap, ap->active_tag);
  667. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
  668. handled += pdc20621_host_intr(ap, qc, (i > 4),
  669. mmio_base);
  670. }
  671. }
  672. spin_unlock(&host->lock);
  673. VPRINTK("mask == 0x%x\n", mask);
  674. VPRINTK("EXIT\n");
  675. return IRQ_RETVAL(handled);
  676. }
  677. static void pdc_eng_timeout(struct ata_port *ap)
  678. {
  679. u8 drv_stat;
  680. struct ata_host *host = ap->host;
  681. struct ata_queued_cmd *qc;
  682. unsigned long flags;
  683. DPRINTK("ENTER\n");
  684. spin_lock_irqsave(&host->lock, flags);
  685. qc = ata_qc_from_tag(ap, ap->active_tag);
  686. switch (qc->tf.protocol) {
  687. case ATA_PROT_DMA:
  688. case ATA_PROT_NODATA:
  689. ata_port_printk(ap, KERN_ERR, "command timeout\n");
  690. qc->err_mask |= __ac_err_mask(ata_wait_idle(ap));
  691. break;
  692. default:
  693. drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
  694. ata_port_printk(ap, KERN_ERR,
  695. "unknown timeout, cmd 0x%x stat 0x%x\n",
  696. qc->tf.command, drv_stat);
  697. qc->err_mask |= ac_err_mask(drv_stat);
  698. break;
  699. }
  700. spin_unlock_irqrestore(&host->lock, flags);
  701. ata_eh_qc_complete(qc);
  702. DPRINTK("EXIT\n");
  703. }
  704. static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
  705. {
  706. WARN_ON (tf->protocol == ATA_PROT_DMA ||
  707. tf->protocol == ATA_PROT_NODATA);
  708. ata_tf_load(ap, tf);
  709. }
  710. static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
  711. {
  712. WARN_ON (tf->protocol == ATA_PROT_DMA ||
  713. tf->protocol == ATA_PROT_NODATA);
  714. ata_exec_command(ap, tf);
  715. }
  716. static void pdc_sata_setup_port(struct ata_ioports *port, void __iomem *base)
  717. {
  718. port->cmd_addr = base;
  719. port->data_addr = base;
  720. port->feature_addr =
  721. port->error_addr = base + 0x4;
  722. port->nsect_addr = base + 0x8;
  723. port->lbal_addr = base + 0xc;
  724. port->lbam_addr = base + 0x10;
  725. port->lbah_addr = base + 0x14;
  726. port->device_addr = base + 0x18;
  727. port->command_addr =
  728. port->status_addr = base + 0x1c;
  729. port->altstatus_addr =
  730. port->ctl_addr = base + 0x38;
  731. }
  732. #ifdef ATA_VERBOSE_DEBUG
  733. static void pdc20621_get_from_dimm(struct ata_probe_ent *pe, void *psource,
  734. u32 offset, u32 size)
  735. {
  736. u32 window_size;
  737. u16 idx;
  738. u8 page_mask;
  739. long dist;
  740. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  741. void __iomem *dimm_mmio = pe->iomap[PDC_DIMM_BAR];
  742. /* hard-code chip #0 */
  743. mmio += PDC_CHIP0_OFS;
  744. page_mask = 0x00;
  745. window_size = 0x2000 * 4; /* 32K byte uchar size */
  746. idx = (u16) (offset / window_size);
  747. writel(0x01, mmio + PDC_GENERAL_CTLR);
  748. readl(mmio + PDC_GENERAL_CTLR);
  749. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  750. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  751. offset -= (idx * window_size);
  752. idx++;
  753. dist = ((long) (window_size - (offset + size))) >= 0 ? size :
  754. (long) (window_size - offset);
  755. memcpy_fromio((char *) psource, (char *) (dimm_mmio + offset / 4),
  756. dist);
  757. psource += dist;
  758. size -= dist;
  759. for (; (long) size >= (long) window_size ;) {
  760. writel(0x01, mmio + PDC_GENERAL_CTLR);
  761. readl(mmio + PDC_GENERAL_CTLR);
  762. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  763. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  764. memcpy_fromio((char *) psource, (char *) (dimm_mmio),
  765. window_size / 4);
  766. psource += window_size;
  767. size -= window_size;
  768. idx ++;
  769. }
  770. if (size) {
  771. writel(0x01, mmio + PDC_GENERAL_CTLR);
  772. readl(mmio + PDC_GENERAL_CTLR);
  773. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  774. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  775. memcpy_fromio((char *) psource, (char *) (dimm_mmio),
  776. size / 4);
  777. }
  778. }
  779. #endif
  780. static void pdc20621_put_to_dimm(struct ata_probe_ent *pe, void *psource,
  781. u32 offset, u32 size)
  782. {
  783. u32 window_size;
  784. u16 idx;
  785. u8 page_mask;
  786. long dist;
  787. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  788. void __iomem *dimm_mmio = pe->iomap[PDC_DIMM_BAR];
  789. /* hard-code chip #0 */
  790. mmio += PDC_CHIP0_OFS;
  791. page_mask = 0x00;
  792. window_size = 0x2000 * 4; /* 32K byte uchar size */
  793. idx = (u16) (offset / window_size);
  794. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  795. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  796. offset -= (idx * window_size);
  797. idx++;
  798. dist = ((long)(s32)(window_size - (offset + size))) >= 0 ? size :
  799. (long) (window_size - offset);
  800. memcpy_toio(dimm_mmio + offset / 4, psource, dist);
  801. writel(0x01, mmio + PDC_GENERAL_CTLR);
  802. readl(mmio + PDC_GENERAL_CTLR);
  803. psource += dist;
  804. size -= dist;
  805. for (; (long) size >= (long) window_size ;) {
  806. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  807. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  808. memcpy_toio(dimm_mmio, psource, window_size / 4);
  809. writel(0x01, mmio + PDC_GENERAL_CTLR);
  810. readl(mmio + PDC_GENERAL_CTLR);
  811. psource += window_size;
  812. size -= window_size;
  813. idx ++;
  814. }
  815. if (size) {
  816. writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
  817. readl(mmio + PDC_DIMM_WINDOW_CTLR);
  818. memcpy_toio(dimm_mmio, psource, size / 4);
  819. writel(0x01, mmio + PDC_GENERAL_CTLR);
  820. readl(mmio + PDC_GENERAL_CTLR);
  821. }
  822. }
  823. static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe, u32 device,
  824. u32 subaddr, u32 *pdata)
  825. {
  826. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  827. u32 i2creg = 0;
  828. u32 status;
  829. u32 count =0;
  830. /* hard-code chip #0 */
  831. mmio += PDC_CHIP0_OFS;
  832. i2creg |= device << 24;
  833. i2creg |= subaddr << 16;
  834. /* Set the device and subaddress */
  835. writel(i2creg, mmio + PDC_I2C_ADDR_DATA_OFFSET);
  836. readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
  837. /* Write Control to perform read operation, mask int */
  838. writel(PDC_I2C_READ | PDC_I2C_START | PDC_I2C_MASK_INT,
  839. mmio + PDC_I2C_CONTROL_OFFSET);
  840. for (count = 0; count <= 1000; count ++) {
  841. status = readl(mmio + PDC_I2C_CONTROL_OFFSET);
  842. if (status & PDC_I2C_COMPLETE) {
  843. status = readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
  844. break;
  845. } else if (count == 1000)
  846. return 0;
  847. }
  848. *pdata = (status >> 8) & 0x000000ff;
  849. return 1;
  850. }
  851. static int pdc20621_detect_dimm(struct ata_probe_ent *pe)
  852. {
  853. u32 data=0 ;
  854. if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
  855. PDC_DIMM_SPD_SYSTEM_FREQ, &data)) {
  856. if (data == 100)
  857. return 100;
  858. } else
  859. return 0;
  860. if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS, 9, &data)) {
  861. if(data <= 0x75)
  862. return 133;
  863. } else
  864. return 0;
  865. return 0;
  866. }
  867. static int pdc20621_prog_dimm0(struct ata_probe_ent *pe)
  868. {
  869. u32 spd0[50];
  870. u32 data = 0;
  871. int size, i;
  872. u8 bdimmsize;
  873. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  874. static const struct {
  875. unsigned int reg;
  876. unsigned int ofs;
  877. } pdc_i2c_read_data [] = {
  878. { PDC_DIMM_SPD_TYPE, 11 },
  879. { PDC_DIMM_SPD_FRESH_RATE, 12 },
  880. { PDC_DIMM_SPD_COLUMN_NUM, 4 },
  881. { PDC_DIMM_SPD_ATTRIBUTE, 21 },
  882. { PDC_DIMM_SPD_ROW_NUM, 3 },
  883. { PDC_DIMM_SPD_BANK_NUM, 17 },
  884. { PDC_DIMM_SPD_MODULE_ROW, 5 },
  885. { PDC_DIMM_SPD_ROW_PRE_CHARGE, 27 },
  886. { PDC_DIMM_SPD_ROW_ACTIVE_DELAY, 28 },
  887. { PDC_DIMM_SPD_RAS_CAS_DELAY, 29 },
  888. { PDC_DIMM_SPD_ACTIVE_PRECHARGE, 30 },
  889. { PDC_DIMM_SPD_CAS_LATENCY, 18 },
  890. };
  891. /* hard-code chip #0 */
  892. mmio += PDC_CHIP0_OFS;
  893. for(i=0; i<ARRAY_SIZE(pdc_i2c_read_data); i++)
  894. pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
  895. pdc_i2c_read_data[i].reg,
  896. &spd0[pdc_i2c_read_data[i].ofs]);
  897. data |= (spd0[4] - 8) | ((spd0[21] != 0) << 3) | ((spd0[3]-11) << 4);
  898. data |= ((spd0[17] / 4) << 6) | ((spd0[5] / 2) << 7) |
  899. ((((spd0[27] + 9) / 10) - 1) << 8) ;
  900. data |= (((((spd0[29] > spd0[28])
  901. ? spd0[29] : spd0[28]) + 9) / 10) - 1) << 10;
  902. data |= ((spd0[30] - spd0[29] + 9) / 10 - 2) << 12;
  903. if (spd0[18] & 0x08)
  904. data |= ((0x03) << 14);
  905. else if (spd0[18] & 0x04)
  906. data |= ((0x02) << 14);
  907. else if (spd0[18] & 0x01)
  908. data |= ((0x01) << 14);
  909. else
  910. data |= (0 << 14);
  911. /*
  912. Calculate the size of bDIMMSize (power of 2) and
  913. merge the DIMM size by program start/end address.
  914. */
  915. bdimmsize = spd0[4] + (spd0[5] / 2) + spd0[3] + (spd0[17] / 2) + 3;
  916. size = (1 << bdimmsize) >> 20; /* size = xxx(MB) */
  917. data |= (((size / 16) - 1) << 16);
  918. data |= (0 << 23);
  919. data |= 8;
  920. writel(data, mmio + PDC_DIMM0_CONTROL_OFFSET);
  921. readl(mmio + PDC_DIMM0_CONTROL_OFFSET);
  922. return size;
  923. }
  924. static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe)
  925. {
  926. u32 data, spd0;
  927. int error, i;
  928. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  929. /* hard-code chip #0 */
  930. mmio += PDC_CHIP0_OFS;
  931. /*
  932. Set To Default : DIMM Module Global Control Register (0x022259F1)
  933. DIMM Arbitration Disable (bit 20)
  934. DIMM Data/Control Output Driving Selection (bit12 - bit15)
  935. Refresh Enable (bit 17)
  936. */
  937. data = 0x022259F1;
  938. writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
  939. readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
  940. /* Turn on for ECC */
  941. pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
  942. PDC_DIMM_SPD_TYPE, &spd0);
  943. if (spd0 == 0x02) {
  944. data |= (0x01 << 16);
  945. writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
  946. readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
  947. printk(KERN_ERR "Local DIMM ECC Enabled\n");
  948. }
  949. /* DIMM Initialization Select/Enable (bit 18/19) */
  950. data &= (~(1<<18));
  951. data |= (1<<19);
  952. writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
  953. error = 1;
  954. for (i = 1; i <= 10; i++) { /* polling ~5 secs */
  955. data = readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
  956. if (!(data & (1<<19))) {
  957. error = 0;
  958. break;
  959. }
  960. msleep(i*100);
  961. }
  962. return error;
  963. }
  964. static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe)
  965. {
  966. int speed, size, length;
  967. u32 addr,spd0,pci_status;
  968. u32 tmp=0;
  969. u32 time_period=0;
  970. u32 tcount=0;
  971. u32 ticks=0;
  972. u32 clock=0;
  973. u32 fparam=0;
  974. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  975. /* hard-code chip #0 */
  976. mmio += PDC_CHIP0_OFS;
  977. /* Initialize PLL based upon PCI Bus Frequency */
  978. /* Initialize Time Period Register */
  979. writel(0xffffffff, mmio + PDC_TIME_PERIOD);
  980. time_period = readl(mmio + PDC_TIME_PERIOD);
  981. VPRINTK("Time Period Register (0x40): 0x%x\n", time_period);
  982. /* Enable timer */
  983. writel(0x00001a0, mmio + PDC_TIME_CONTROL);
  984. readl(mmio + PDC_TIME_CONTROL);
  985. /* Wait 3 seconds */
  986. msleep(3000);
  987. /*
  988. When timer is enabled, counter is decreased every internal
  989. clock cycle.
  990. */
  991. tcount = readl(mmio + PDC_TIME_COUNTER);
  992. VPRINTK("Time Counter Register (0x44): 0x%x\n", tcount);
  993. /*
  994. If SX4 is on PCI-X bus, after 3 seconds, the timer counter
  995. register should be >= (0xffffffff - 3x10^8).
  996. */
  997. if(tcount >= PCI_X_TCOUNT) {
  998. ticks = (time_period - tcount);
  999. VPRINTK("Num counters 0x%x (%d)\n", ticks, ticks);
  1000. clock = (ticks / 300000);
  1001. VPRINTK("10 * Internal clk = 0x%x (%d)\n", clock, clock);
  1002. clock = (clock * 33);
  1003. VPRINTK("10 * Internal clk * 33 = 0x%x (%d)\n", clock, clock);
  1004. /* PLL F Param (bit 22:16) */
  1005. fparam = (1400000 / clock) - 2;
  1006. VPRINTK("PLL F Param: 0x%x (%d)\n", fparam, fparam);
  1007. /* OD param = 0x2 (bit 31:30), R param = 0x5 (bit 29:25) */
  1008. pci_status = (0x8a001824 | (fparam << 16));
  1009. } else
  1010. pci_status = PCI_PLL_INIT;
  1011. /* Initialize PLL. */
  1012. VPRINTK("pci_status: 0x%x\n", pci_status);
  1013. writel(pci_status, mmio + PDC_CTL_STATUS);
  1014. readl(mmio + PDC_CTL_STATUS);
  1015. /*
  1016. Read SPD of DIMM by I2C interface,
  1017. and program the DIMM Module Controller.
  1018. */
  1019. if (!(speed = pdc20621_detect_dimm(pe))) {
  1020. printk(KERN_ERR "Detect Local DIMM Fail\n");
  1021. return 1; /* DIMM error */
  1022. }
  1023. VPRINTK("Local DIMM Speed = %d\n", speed);
  1024. /* Programming DIMM0 Module Control Register (index_CID0:80h) */
  1025. size = pdc20621_prog_dimm0(pe);
  1026. VPRINTK("Local DIMM Size = %dMB\n",size);
  1027. /* Programming DIMM Module Global Control Register (index_CID0:88h) */
  1028. if (pdc20621_prog_dimm_global(pe)) {
  1029. printk(KERN_ERR "Programming DIMM Module Global Control Register Fail\n");
  1030. return 1;
  1031. }
  1032. #ifdef ATA_VERBOSE_DEBUG
  1033. {
  1034. u8 test_parttern1[40] = {0x55,0xAA,'P','r','o','m','i','s','e',' ',
  1035. 'N','o','t',' ','Y','e','t',' ','D','e','f','i','n','e','d',' ',
  1036. '1','.','1','0',
  1037. '9','8','0','3','1','6','1','2',0,0};
  1038. u8 test_parttern2[40] = {0};
  1039. pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x10040, 40);
  1040. pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x40, 40);
  1041. pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x10040, 40);
  1042. pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
  1043. printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
  1044. test_parttern2[1], &(test_parttern2[2]));
  1045. pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x10040,
  1046. 40);
  1047. printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
  1048. test_parttern2[1], &(test_parttern2[2]));
  1049. pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x40, 40);
  1050. pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
  1051. printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
  1052. test_parttern2[1], &(test_parttern2[2]));
  1053. }
  1054. #endif
  1055. /* ECC initiliazation. */
  1056. pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
  1057. PDC_DIMM_SPD_TYPE, &spd0);
  1058. if (spd0 == 0x02) {
  1059. VPRINTK("Start ECC initialization\n");
  1060. addr = 0;
  1061. length = size * 1024 * 1024;
  1062. while (addr < length) {
  1063. pdc20621_put_to_dimm(pe, (void *) &tmp, addr,
  1064. sizeof(u32));
  1065. addr += sizeof(u32);
  1066. }
  1067. VPRINTK("Finish ECC initialization\n");
  1068. }
  1069. return 0;
  1070. }
  1071. static void pdc_20621_init(struct ata_probe_ent *pe)
  1072. {
  1073. u32 tmp;
  1074. void __iomem *mmio = pe->iomap[PDC_MMIO_BAR];
  1075. /* hard-code chip #0 */
  1076. mmio += PDC_CHIP0_OFS;
  1077. /*
  1078. * Select page 0x40 for our 32k DIMM window
  1079. */
  1080. tmp = readl(mmio + PDC_20621_DIMM_WINDOW) & 0xffff0000;
  1081. tmp |= PDC_PAGE_WINDOW; /* page 40h; arbitrarily selected */
  1082. writel(tmp, mmio + PDC_20621_DIMM_WINDOW);
  1083. /*
  1084. * Reset Host DMA
  1085. */
  1086. tmp = readl(mmio + PDC_HDMA_CTLSTAT);
  1087. tmp |= PDC_RESET;
  1088. writel(tmp, mmio + PDC_HDMA_CTLSTAT);
  1089. readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
  1090. udelay(10);
  1091. tmp = readl(mmio + PDC_HDMA_CTLSTAT);
  1092. tmp &= ~PDC_RESET;
  1093. writel(tmp, mmio + PDC_HDMA_CTLSTAT);
  1094. readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
  1095. }
  1096. static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
  1097. {
  1098. static int printed_version;
  1099. struct ata_probe_ent *probe_ent;
  1100. void __iomem *base;
  1101. struct pdc_host_priv *hpriv;
  1102. unsigned int board_idx = (unsigned int) ent->driver_data;
  1103. int rc;
  1104. if (!printed_version++)
  1105. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  1106. rc = pcim_enable_device(pdev);
  1107. if (rc)
  1108. return rc;
  1109. rc = pcim_iomap_regions(pdev, (1 << PDC_MMIO_BAR) | (1 << PDC_DIMM_BAR),
  1110. DRV_NAME);
  1111. if (rc == -EBUSY)
  1112. pcim_pin_device(pdev);
  1113. if (rc)
  1114. return rc;
  1115. rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
  1116. if (rc)
  1117. return rc;
  1118. rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
  1119. if (rc)
  1120. return rc;
  1121. probe_ent = devm_kzalloc(&pdev->dev, sizeof(*probe_ent), GFP_KERNEL);
  1122. if (probe_ent == NULL)
  1123. return -ENOMEM;
  1124. probe_ent->dev = pci_dev_to_dev(pdev);
  1125. INIT_LIST_HEAD(&probe_ent->node);
  1126. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  1127. if (!hpriv)
  1128. return -ENOMEM;
  1129. probe_ent->sht = pdc_port_info[board_idx].sht;
  1130. probe_ent->port_flags = pdc_port_info[board_idx].flags;
  1131. probe_ent->pio_mask = pdc_port_info[board_idx].pio_mask;
  1132. probe_ent->mwdma_mask = pdc_port_info[board_idx].mwdma_mask;
  1133. probe_ent->udma_mask = pdc_port_info[board_idx].udma_mask;
  1134. probe_ent->port_ops = pdc_port_info[board_idx].port_ops;
  1135. probe_ent->irq = pdev->irq;
  1136. probe_ent->irq_flags = IRQF_SHARED;
  1137. probe_ent->iomap = pcim_iomap_table(pdev);
  1138. probe_ent->private_data = hpriv;
  1139. base = probe_ent->iomap[PDC_MMIO_BAR] + PDC_CHIP0_OFS;
  1140. probe_ent->n_ports = 4;
  1141. pdc_sata_setup_port(&probe_ent->port[0], base + 0x200);
  1142. pdc_sata_setup_port(&probe_ent->port[1], base + 0x280);
  1143. pdc_sata_setup_port(&probe_ent->port[2], base + 0x300);
  1144. pdc_sata_setup_port(&probe_ent->port[3], base + 0x380);
  1145. pci_set_master(pdev);
  1146. /* initialize adapter */
  1147. /* initialize local dimm */
  1148. if (pdc20621_dimm_init(probe_ent))
  1149. return -ENOMEM;
  1150. pdc_20621_init(probe_ent);
  1151. if (!ata_device_add(probe_ent))
  1152. return -ENODEV;
  1153. devm_kfree(&pdev->dev, probe_ent);
  1154. return 0;
  1155. }
  1156. static int __init pdc_sata_init(void)
  1157. {
  1158. return pci_register_driver(&pdc_sata_pci_driver);
  1159. }
  1160. static void __exit pdc_sata_exit(void)
  1161. {
  1162. pci_unregister_driver(&pdc_sata_pci_driver);
  1163. }
  1164. MODULE_AUTHOR("Jeff Garzik");
  1165. MODULE_DESCRIPTION("Promise SATA low-level driver");
  1166. MODULE_LICENSE("GPL");
  1167. MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl);
  1168. MODULE_VERSION(DRV_VERSION);
  1169. module_init(pdc_sata_init);
  1170. module_exit(pdc_sata_exit);