page_alloc.c 137 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <trace/events/kmem.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/div64.h>
  53. #include "internal.h"
  54. /*
  55. * Array of node states.
  56. */
  57. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  58. [N_POSSIBLE] = NODE_MASK_ALL,
  59. [N_ONLINE] = { { [0] = 1UL } },
  60. #ifndef CONFIG_NUMA
  61. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  62. #ifdef CONFIG_HIGHMEM
  63. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  64. #endif
  65. [N_CPU] = { { [0] = 1UL } },
  66. #endif /* NUMA */
  67. };
  68. EXPORT_SYMBOL(node_states);
  69. unsigned long totalram_pages __read_mostly;
  70. unsigned long totalreserve_pages __read_mostly;
  71. unsigned long highest_memmap_pfn __read_mostly;
  72. int percpu_pagelist_fraction;
  73. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  74. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  75. int pageblock_order __read_mostly;
  76. #endif
  77. static void __free_pages_ok(struct page *page, unsigned int order);
  78. /*
  79. * results with 256, 32 in the lowmem_reserve sysctl:
  80. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  81. * 1G machine -> (16M dma, 784M normal, 224M high)
  82. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  83. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  84. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  85. *
  86. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  87. * don't need any ZONE_NORMAL reservation
  88. */
  89. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  90. #ifdef CONFIG_ZONE_DMA
  91. 256,
  92. #endif
  93. #ifdef CONFIG_ZONE_DMA32
  94. 256,
  95. #endif
  96. #ifdef CONFIG_HIGHMEM
  97. 32,
  98. #endif
  99. 32,
  100. };
  101. EXPORT_SYMBOL(totalram_pages);
  102. static char * const zone_names[MAX_NR_ZONES] = {
  103. #ifdef CONFIG_ZONE_DMA
  104. "DMA",
  105. #endif
  106. #ifdef CONFIG_ZONE_DMA32
  107. "DMA32",
  108. #endif
  109. "Normal",
  110. #ifdef CONFIG_HIGHMEM
  111. "HighMem",
  112. #endif
  113. "Movable",
  114. };
  115. int min_free_kbytes = 1024;
  116. unsigned long __meminitdata nr_kernel_pages;
  117. unsigned long __meminitdata nr_all_pages;
  118. static unsigned long __meminitdata dma_reserve;
  119. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  120. /*
  121. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  122. * ranges of memory (RAM) that may be registered with add_active_range().
  123. * Ranges passed to add_active_range() will be merged if possible
  124. * so the number of times add_active_range() can be called is
  125. * related to the number of nodes and the number of holes
  126. */
  127. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  128. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  129. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  130. #else
  131. #if MAX_NUMNODES >= 32
  132. /* If there can be many nodes, allow up to 50 holes per node */
  133. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  134. #else
  135. /* By default, allow up to 256 distinct regions */
  136. #define MAX_ACTIVE_REGIONS 256
  137. #endif
  138. #endif
  139. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  140. static int __meminitdata nr_nodemap_entries;
  141. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  142. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. int nr_online_nodes __read_mostly = 1;
  153. EXPORT_SYMBOL(nr_node_ids);
  154. EXPORT_SYMBOL(nr_online_nodes);
  155. #endif
  156. int page_group_by_mobility_disabled __read_mostly;
  157. static void set_pageblock_migratetype(struct page *page, int migratetype)
  158. {
  159. if (unlikely(page_group_by_mobility_disabled))
  160. migratetype = MIGRATE_UNMOVABLE;
  161. set_pageblock_flags_group(page, (unsigned long)migratetype,
  162. PB_migrate, PB_migrate_end);
  163. }
  164. bool oom_killer_disabled __read_mostly;
  165. #ifdef CONFIG_DEBUG_VM
  166. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  167. {
  168. int ret = 0;
  169. unsigned seq;
  170. unsigned long pfn = page_to_pfn(page);
  171. do {
  172. seq = zone_span_seqbegin(zone);
  173. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  174. ret = 1;
  175. else if (pfn < zone->zone_start_pfn)
  176. ret = 1;
  177. } while (zone_span_seqretry(zone, seq));
  178. return ret;
  179. }
  180. static int page_is_consistent(struct zone *zone, struct page *page)
  181. {
  182. if (!pfn_valid_within(page_to_pfn(page)))
  183. return 0;
  184. if (zone != page_zone(page))
  185. return 0;
  186. return 1;
  187. }
  188. /*
  189. * Temporary debugging check for pages not lying within a given zone.
  190. */
  191. static int bad_range(struct zone *zone, struct page *page)
  192. {
  193. if (page_outside_zone_boundaries(zone, page))
  194. return 1;
  195. if (!page_is_consistent(zone, page))
  196. return 1;
  197. return 0;
  198. }
  199. #else
  200. static inline int bad_range(struct zone *zone, struct page *page)
  201. {
  202. return 0;
  203. }
  204. #endif
  205. static void bad_page(struct page *page)
  206. {
  207. static unsigned long resume;
  208. static unsigned long nr_shown;
  209. static unsigned long nr_unshown;
  210. /*
  211. * Allow a burst of 60 reports, then keep quiet for that minute;
  212. * or allow a steady drip of one report per second.
  213. */
  214. if (nr_shown == 60) {
  215. if (time_before(jiffies, resume)) {
  216. nr_unshown++;
  217. goto out;
  218. }
  219. if (nr_unshown) {
  220. printk(KERN_ALERT
  221. "BUG: Bad page state: %lu messages suppressed\n",
  222. nr_unshown);
  223. nr_unshown = 0;
  224. }
  225. nr_shown = 0;
  226. }
  227. if (nr_shown++ == 0)
  228. resume = jiffies + 60 * HZ;
  229. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  230. current->comm, page_to_pfn(page));
  231. printk(KERN_ALERT
  232. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  233. page, (void *)page->flags, page_count(page),
  234. page_mapcount(page), page->mapping, page->index);
  235. dump_stack();
  236. out:
  237. /* Leave bad fields for debug, except PageBuddy could make trouble */
  238. __ClearPageBuddy(page);
  239. add_taint(TAINT_BAD_PAGE);
  240. }
  241. /*
  242. * Higher-order pages are called "compound pages". They are structured thusly:
  243. *
  244. * The first PAGE_SIZE page is called the "head page".
  245. *
  246. * The remaining PAGE_SIZE pages are called "tail pages".
  247. *
  248. * All pages have PG_compound set. All pages have their ->private pointing at
  249. * the head page (even the head page has this).
  250. *
  251. * The first tail page's ->lru.next holds the address of the compound page's
  252. * put_page() function. Its ->lru.prev holds the order of allocation.
  253. * This usage means that zero-order pages may not be compound.
  254. */
  255. static void free_compound_page(struct page *page)
  256. {
  257. __free_pages_ok(page, compound_order(page));
  258. }
  259. void prep_compound_page(struct page *page, unsigned long order)
  260. {
  261. int i;
  262. int nr_pages = 1 << order;
  263. set_compound_page_dtor(page, free_compound_page);
  264. set_compound_order(page, order);
  265. __SetPageHead(page);
  266. for (i = 1; i < nr_pages; i++) {
  267. struct page *p = page + i;
  268. __SetPageTail(p);
  269. p->first_page = page;
  270. }
  271. }
  272. static int destroy_compound_page(struct page *page, unsigned long order)
  273. {
  274. int i;
  275. int nr_pages = 1 << order;
  276. int bad = 0;
  277. if (unlikely(compound_order(page) != order) ||
  278. unlikely(!PageHead(page))) {
  279. bad_page(page);
  280. bad++;
  281. }
  282. __ClearPageHead(page);
  283. for (i = 1; i < nr_pages; i++) {
  284. struct page *p = page + i;
  285. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  286. bad_page(page);
  287. bad++;
  288. }
  289. __ClearPageTail(p);
  290. }
  291. return bad;
  292. }
  293. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  294. {
  295. int i;
  296. /*
  297. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  298. * and __GFP_HIGHMEM from hard or soft interrupt context.
  299. */
  300. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  301. for (i = 0; i < (1 << order); i++)
  302. clear_highpage(page + i);
  303. }
  304. static inline void set_page_order(struct page *page, int order)
  305. {
  306. set_page_private(page, order);
  307. __SetPageBuddy(page);
  308. }
  309. static inline void rmv_page_order(struct page *page)
  310. {
  311. __ClearPageBuddy(page);
  312. set_page_private(page, 0);
  313. }
  314. /*
  315. * Locate the struct page for both the matching buddy in our
  316. * pair (buddy1) and the combined O(n+1) page they form (page).
  317. *
  318. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  319. * the following equation:
  320. * B2 = B1 ^ (1 << O)
  321. * For example, if the starting buddy (buddy2) is #8 its order
  322. * 1 buddy is #10:
  323. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  324. *
  325. * 2) Any buddy B will have an order O+1 parent P which
  326. * satisfies the following equation:
  327. * P = B & ~(1 << O)
  328. *
  329. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  330. */
  331. static inline struct page *
  332. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  333. {
  334. unsigned long buddy_idx = page_idx ^ (1 << order);
  335. return page + (buddy_idx - page_idx);
  336. }
  337. static inline unsigned long
  338. __find_combined_index(unsigned long page_idx, unsigned int order)
  339. {
  340. return (page_idx & ~(1 << order));
  341. }
  342. /*
  343. * This function checks whether a page is free && is the buddy
  344. * we can do coalesce a page and its buddy if
  345. * (a) the buddy is not in a hole &&
  346. * (b) the buddy is in the buddy system &&
  347. * (c) a page and its buddy have the same order &&
  348. * (d) a page and its buddy are in the same zone.
  349. *
  350. * For recording whether a page is in the buddy system, we use PG_buddy.
  351. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  352. *
  353. * For recording page's order, we use page_private(page).
  354. */
  355. static inline int page_is_buddy(struct page *page, struct page *buddy,
  356. int order)
  357. {
  358. if (!pfn_valid_within(page_to_pfn(buddy)))
  359. return 0;
  360. if (page_zone_id(page) != page_zone_id(buddy))
  361. return 0;
  362. if (PageBuddy(buddy) && page_order(buddy) == order) {
  363. VM_BUG_ON(page_count(buddy) != 0);
  364. return 1;
  365. }
  366. return 0;
  367. }
  368. /*
  369. * Freeing function for a buddy system allocator.
  370. *
  371. * The concept of a buddy system is to maintain direct-mapped table
  372. * (containing bit values) for memory blocks of various "orders".
  373. * The bottom level table contains the map for the smallest allocatable
  374. * units of memory (here, pages), and each level above it describes
  375. * pairs of units from the levels below, hence, "buddies".
  376. * At a high level, all that happens here is marking the table entry
  377. * at the bottom level available, and propagating the changes upward
  378. * as necessary, plus some accounting needed to play nicely with other
  379. * parts of the VM system.
  380. * At each level, we keep a list of pages, which are heads of continuous
  381. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  382. * order is recorded in page_private(page) field.
  383. * So when we are allocating or freeing one, we can derive the state of the
  384. * other. That is, if we allocate a small block, and both were
  385. * free, the remainder of the region must be split into blocks.
  386. * If a block is freed, and its buddy is also free, then this
  387. * triggers coalescing into a block of larger size.
  388. *
  389. * -- wli
  390. */
  391. static inline void __free_one_page(struct page *page,
  392. struct zone *zone, unsigned int order,
  393. int migratetype)
  394. {
  395. unsigned long page_idx;
  396. if (unlikely(PageCompound(page)))
  397. if (unlikely(destroy_compound_page(page, order)))
  398. return;
  399. VM_BUG_ON(migratetype == -1);
  400. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  401. VM_BUG_ON(page_idx & ((1 << order) - 1));
  402. VM_BUG_ON(bad_range(zone, page));
  403. while (order < MAX_ORDER-1) {
  404. unsigned long combined_idx;
  405. struct page *buddy;
  406. buddy = __page_find_buddy(page, page_idx, order);
  407. if (!page_is_buddy(page, buddy, order))
  408. break;
  409. /* Our buddy is free, merge with it and move up one order. */
  410. list_del(&buddy->lru);
  411. zone->free_area[order].nr_free--;
  412. rmv_page_order(buddy);
  413. combined_idx = __find_combined_index(page_idx, order);
  414. page = page + (combined_idx - page_idx);
  415. page_idx = combined_idx;
  416. order++;
  417. }
  418. set_page_order(page, order);
  419. list_add(&page->lru,
  420. &zone->free_area[order].free_list[migratetype]);
  421. zone->free_area[order].nr_free++;
  422. }
  423. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  424. /*
  425. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  426. * Page should not be on lru, so no need to fix that up.
  427. * free_pages_check() will verify...
  428. */
  429. static inline void free_page_mlock(struct page *page)
  430. {
  431. __dec_zone_page_state(page, NR_MLOCK);
  432. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  433. }
  434. #else
  435. static void free_page_mlock(struct page *page) { }
  436. #endif
  437. static inline int free_pages_check(struct page *page)
  438. {
  439. if (unlikely(page_mapcount(page) |
  440. (page->mapping != NULL) |
  441. (atomic_read(&page->_count) != 0) |
  442. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  443. bad_page(page);
  444. return 1;
  445. }
  446. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  447. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  448. return 0;
  449. }
  450. /*
  451. * Frees a list of pages.
  452. * Assumes all pages on list are in same zone, and of same order.
  453. * count is the number of pages to free.
  454. *
  455. * If the zone was previously in an "all pages pinned" state then look to
  456. * see if this freeing clears that state.
  457. *
  458. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  459. * pinned" detection logic.
  460. */
  461. static void free_pages_bulk(struct zone *zone, int count,
  462. struct list_head *list, int order)
  463. {
  464. spin_lock(&zone->lock);
  465. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  466. zone->pages_scanned = 0;
  467. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  468. while (count--) {
  469. struct page *page;
  470. VM_BUG_ON(list_empty(list));
  471. page = list_entry(list->prev, struct page, lru);
  472. /* have to delete it as __free_one_page list manipulates */
  473. list_del(&page->lru);
  474. trace_mm_page_pcpu_drain(page, order, page_private(page));
  475. __free_one_page(page, zone, order, page_private(page));
  476. }
  477. spin_unlock(&zone->lock);
  478. }
  479. static void free_one_page(struct zone *zone, struct page *page, int order,
  480. int migratetype)
  481. {
  482. spin_lock(&zone->lock);
  483. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  484. zone->pages_scanned = 0;
  485. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  486. __free_one_page(page, zone, order, migratetype);
  487. spin_unlock(&zone->lock);
  488. }
  489. static void __free_pages_ok(struct page *page, unsigned int order)
  490. {
  491. unsigned long flags;
  492. int i;
  493. int bad = 0;
  494. int wasMlocked = __TestClearPageMlocked(page);
  495. kmemcheck_free_shadow(page, order);
  496. for (i = 0 ; i < (1 << order) ; ++i)
  497. bad += free_pages_check(page + i);
  498. if (bad)
  499. return;
  500. if (!PageHighMem(page)) {
  501. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  502. debug_check_no_obj_freed(page_address(page),
  503. PAGE_SIZE << order);
  504. }
  505. arch_free_page(page, order);
  506. kernel_map_pages(page, 1 << order, 0);
  507. local_irq_save(flags);
  508. if (unlikely(wasMlocked))
  509. free_page_mlock(page);
  510. __count_vm_events(PGFREE, 1 << order);
  511. free_one_page(page_zone(page), page, order,
  512. get_pageblock_migratetype(page));
  513. local_irq_restore(flags);
  514. }
  515. /*
  516. * permit the bootmem allocator to evade page validation on high-order frees
  517. */
  518. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  519. {
  520. if (order == 0) {
  521. __ClearPageReserved(page);
  522. set_page_count(page, 0);
  523. set_page_refcounted(page);
  524. __free_page(page);
  525. } else {
  526. int loop;
  527. prefetchw(page);
  528. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  529. struct page *p = &page[loop];
  530. if (loop + 1 < BITS_PER_LONG)
  531. prefetchw(p + 1);
  532. __ClearPageReserved(p);
  533. set_page_count(p, 0);
  534. }
  535. set_page_refcounted(page);
  536. __free_pages(page, order);
  537. }
  538. }
  539. /*
  540. * The order of subdivision here is critical for the IO subsystem.
  541. * Please do not alter this order without good reasons and regression
  542. * testing. Specifically, as large blocks of memory are subdivided,
  543. * the order in which smaller blocks are delivered depends on the order
  544. * they're subdivided in this function. This is the primary factor
  545. * influencing the order in which pages are delivered to the IO
  546. * subsystem according to empirical testing, and this is also justified
  547. * by considering the behavior of a buddy system containing a single
  548. * large block of memory acted on by a series of small allocations.
  549. * This behavior is a critical factor in sglist merging's success.
  550. *
  551. * -- wli
  552. */
  553. static inline void expand(struct zone *zone, struct page *page,
  554. int low, int high, struct free_area *area,
  555. int migratetype)
  556. {
  557. unsigned long size = 1 << high;
  558. while (high > low) {
  559. area--;
  560. high--;
  561. size >>= 1;
  562. VM_BUG_ON(bad_range(zone, &page[size]));
  563. list_add(&page[size].lru, &area->free_list[migratetype]);
  564. area->nr_free++;
  565. set_page_order(&page[size], high);
  566. }
  567. }
  568. /*
  569. * This page is about to be returned from the page allocator
  570. */
  571. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  572. {
  573. if (unlikely(page_mapcount(page) |
  574. (page->mapping != NULL) |
  575. (atomic_read(&page->_count) != 0) |
  576. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  577. bad_page(page);
  578. return 1;
  579. }
  580. set_page_private(page, 0);
  581. set_page_refcounted(page);
  582. arch_alloc_page(page, order);
  583. kernel_map_pages(page, 1 << order, 1);
  584. if (gfp_flags & __GFP_ZERO)
  585. prep_zero_page(page, order, gfp_flags);
  586. if (order && (gfp_flags & __GFP_COMP))
  587. prep_compound_page(page, order);
  588. return 0;
  589. }
  590. /*
  591. * Go through the free lists for the given migratetype and remove
  592. * the smallest available page from the freelists
  593. */
  594. static inline
  595. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  596. int migratetype)
  597. {
  598. unsigned int current_order;
  599. struct free_area * area;
  600. struct page *page;
  601. /* Find a page of the appropriate size in the preferred list */
  602. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  603. area = &(zone->free_area[current_order]);
  604. if (list_empty(&area->free_list[migratetype]))
  605. continue;
  606. page = list_entry(area->free_list[migratetype].next,
  607. struct page, lru);
  608. list_del(&page->lru);
  609. rmv_page_order(page);
  610. area->nr_free--;
  611. expand(zone, page, order, current_order, area, migratetype);
  612. return page;
  613. }
  614. return NULL;
  615. }
  616. /*
  617. * This array describes the order lists are fallen back to when
  618. * the free lists for the desirable migrate type are depleted
  619. */
  620. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  621. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  622. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  623. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  624. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  625. };
  626. /*
  627. * Move the free pages in a range to the free lists of the requested type.
  628. * Note that start_page and end_pages are not aligned on a pageblock
  629. * boundary. If alignment is required, use move_freepages_block()
  630. */
  631. static int move_freepages(struct zone *zone,
  632. struct page *start_page, struct page *end_page,
  633. int migratetype)
  634. {
  635. struct page *page;
  636. unsigned long order;
  637. int pages_moved = 0;
  638. #ifndef CONFIG_HOLES_IN_ZONE
  639. /*
  640. * page_zone is not safe to call in this context when
  641. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  642. * anyway as we check zone boundaries in move_freepages_block().
  643. * Remove at a later date when no bug reports exist related to
  644. * grouping pages by mobility
  645. */
  646. BUG_ON(page_zone(start_page) != page_zone(end_page));
  647. #endif
  648. for (page = start_page; page <= end_page;) {
  649. /* Make sure we are not inadvertently changing nodes */
  650. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  651. if (!pfn_valid_within(page_to_pfn(page))) {
  652. page++;
  653. continue;
  654. }
  655. if (!PageBuddy(page)) {
  656. page++;
  657. continue;
  658. }
  659. order = page_order(page);
  660. list_del(&page->lru);
  661. list_add(&page->lru,
  662. &zone->free_area[order].free_list[migratetype]);
  663. page += 1 << order;
  664. pages_moved += 1 << order;
  665. }
  666. return pages_moved;
  667. }
  668. static int move_freepages_block(struct zone *zone, struct page *page,
  669. int migratetype)
  670. {
  671. unsigned long start_pfn, end_pfn;
  672. struct page *start_page, *end_page;
  673. start_pfn = page_to_pfn(page);
  674. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  675. start_page = pfn_to_page(start_pfn);
  676. end_page = start_page + pageblock_nr_pages - 1;
  677. end_pfn = start_pfn + pageblock_nr_pages - 1;
  678. /* Do not cross zone boundaries */
  679. if (start_pfn < zone->zone_start_pfn)
  680. start_page = page;
  681. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  682. return 0;
  683. return move_freepages(zone, start_page, end_page, migratetype);
  684. }
  685. static void change_pageblock_range(struct page *pageblock_page,
  686. int start_order, int migratetype)
  687. {
  688. int nr_pageblocks = 1 << (start_order - pageblock_order);
  689. while (nr_pageblocks--) {
  690. set_pageblock_migratetype(pageblock_page, migratetype);
  691. pageblock_page += pageblock_nr_pages;
  692. }
  693. }
  694. /* Remove an element from the buddy allocator from the fallback list */
  695. static inline struct page *
  696. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  697. {
  698. struct free_area * area;
  699. int current_order;
  700. struct page *page;
  701. int migratetype, i;
  702. /* Find the largest possible block of pages in the other list */
  703. for (current_order = MAX_ORDER-1; current_order >= order;
  704. --current_order) {
  705. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  706. migratetype = fallbacks[start_migratetype][i];
  707. /* MIGRATE_RESERVE handled later if necessary */
  708. if (migratetype == MIGRATE_RESERVE)
  709. continue;
  710. area = &(zone->free_area[current_order]);
  711. if (list_empty(&area->free_list[migratetype]))
  712. continue;
  713. page = list_entry(area->free_list[migratetype].next,
  714. struct page, lru);
  715. area->nr_free--;
  716. /*
  717. * If breaking a large block of pages, move all free
  718. * pages to the preferred allocation list. If falling
  719. * back for a reclaimable kernel allocation, be more
  720. * agressive about taking ownership of free pages
  721. */
  722. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  723. start_migratetype == MIGRATE_RECLAIMABLE ||
  724. page_group_by_mobility_disabled) {
  725. unsigned long pages;
  726. pages = move_freepages_block(zone, page,
  727. start_migratetype);
  728. /* Claim the whole block if over half of it is free */
  729. if (pages >= (1 << (pageblock_order-1)) ||
  730. page_group_by_mobility_disabled)
  731. set_pageblock_migratetype(page,
  732. start_migratetype);
  733. migratetype = start_migratetype;
  734. }
  735. /* Remove the page from the freelists */
  736. list_del(&page->lru);
  737. rmv_page_order(page);
  738. /* Take ownership for orders >= pageblock_order */
  739. if (current_order >= pageblock_order)
  740. change_pageblock_range(page, current_order,
  741. start_migratetype);
  742. expand(zone, page, order, current_order, area, migratetype);
  743. trace_mm_page_alloc_extfrag(page, order, current_order,
  744. start_migratetype, migratetype);
  745. return page;
  746. }
  747. }
  748. return NULL;
  749. }
  750. /*
  751. * Do the hard work of removing an element from the buddy allocator.
  752. * Call me with the zone->lock already held.
  753. */
  754. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  755. int migratetype)
  756. {
  757. struct page *page;
  758. retry_reserve:
  759. page = __rmqueue_smallest(zone, order, migratetype);
  760. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  761. page = __rmqueue_fallback(zone, order, migratetype);
  762. /*
  763. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  764. * is used because __rmqueue_smallest is an inline function
  765. * and we want just one call site
  766. */
  767. if (!page) {
  768. migratetype = MIGRATE_RESERVE;
  769. goto retry_reserve;
  770. }
  771. }
  772. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  773. return page;
  774. }
  775. /*
  776. * Obtain a specified number of elements from the buddy allocator, all under
  777. * a single hold of the lock, for efficiency. Add them to the supplied list.
  778. * Returns the number of new pages which were placed at *list.
  779. */
  780. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  781. unsigned long count, struct list_head *list,
  782. int migratetype, int cold)
  783. {
  784. int i;
  785. spin_lock(&zone->lock);
  786. for (i = 0; i < count; ++i) {
  787. struct page *page = __rmqueue(zone, order, migratetype);
  788. if (unlikely(page == NULL))
  789. break;
  790. /*
  791. * Split buddy pages returned by expand() are received here
  792. * in physical page order. The page is added to the callers and
  793. * list and the list head then moves forward. From the callers
  794. * perspective, the linked list is ordered by page number in
  795. * some conditions. This is useful for IO devices that can
  796. * merge IO requests if the physical pages are ordered
  797. * properly.
  798. */
  799. if (likely(cold == 0))
  800. list_add(&page->lru, list);
  801. else
  802. list_add_tail(&page->lru, list);
  803. set_page_private(page, migratetype);
  804. list = &page->lru;
  805. }
  806. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  807. spin_unlock(&zone->lock);
  808. return i;
  809. }
  810. #ifdef CONFIG_NUMA
  811. /*
  812. * Called from the vmstat counter updater to drain pagesets of this
  813. * currently executing processor on remote nodes after they have
  814. * expired.
  815. *
  816. * Note that this function must be called with the thread pinned to
  817. * a single processor.
  818. */
  819. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  820. {
  821. unsigned long flags;
  822. int to_drain;
  823. local_irq_save(flags);
  824. if (pcp->count >= pcp->batch)
  825. to_drain = pcp->batch;
  826. else
  827. to_drain = pcp->count;
  828. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  829. pcp->count -= to_drain;
  830. local_irq_restore(flags);
  831. }
  832. #endif
  833. /*
  834. * Drain pages of the indicated processor.
  835. *
  836. * The processor must either be the current processor and the
  837. * thread pinned to the current processor or a processor that
  838. * is not online.
  839. */
  840. static void drain_pages(unsigned int cpu)
  841. {
  842. unsigned long flags;
  843. struct zone *zone;
  844. for_each_populated_zone(zone) {
  845. struct per_cpu_pageset *pset;
  846. struct per_cpu_pages *pcp;
  847. pset = zone_pcp(zone, cpu);
  848. pcp = &pset->pcp;
  849. local_irq_save(flags);
  850. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  851. pcp->count = 0;
  852. local_irq_restore(flags);
  853. }
  854. }
  855. /*
  856. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  857. */
  858. void drain_local_pages(void *arg)
  859. {
  860. drain_pages(smp_processor_id());
  861. }
  862. /*
  863. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  864. */
  865. void drain_all_pages(void)
  866. {
  867. on_each_cpu(drain_local_pages, NULL, 1);
  868. }
  869. #ifdef CONFIG_HIBERNATION
  870. void mark_free_pages(struct zone *zone)
  871. {
  872. unsigned long pfn, max_zone_pfn;
  873. unsigned long flags;
  874. int order, t;
  875. struct list_head *curr;
  876. if (!zone->spanned_pages)
  877. return;
  878. spin_lock_irqsave(&zone->lock, flags);
  879. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  880. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  881. if (pfn_valid(pfn)) {
  882. struct page *page = pfn_to_page(pfn);
  883. if (!swsusp_page_is_forbidden(page))
  884. swsusp_unset_page_free(page);
  885. }
  886. for_each_migratetype_order(order, t) {
  887. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  888. unsigned long i;
  889. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  890. for (i = 0; i < (1UL << order); i++)
  891. swsusp_set_page_free(pfn_to_page(pfn + i));
  892. }
  893. }
  894. spin_unlock_irqrestore(&zone->lock, flags);
  895. }
  896. #endif /* CONFIG_PM */
  897. /*
  898. * Free a 0-order page
  899. */
  900. static void free_hot_cold_page(struct page *page, int cold)
  901. {
  902. struct zone *zone = page_zone(page);
  903. struct per_cpu_pages *pcp;
  904. unsigned long flags;
  905. int wasMlocked = __TestClearPageMlocked(page);
  906. kmemcheck_free_shadow(page, 0);
  907. if (PageAnon(page))
  908. page->mapping = NULL;
  909. if (free_pages_check(page))
  910. return;
  911. if (!PageHighMem(page)) {
  912. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  913. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  914. }
  915. arch_free_page(page, 0);
  916. kernel_map_pages(page, 1, 0);
  917. pcp = &zone_pcp(zone, get_cpu())->pcp;
  918. set_page_private(page, get_pageblock_migratetype(page));
  919. local_irq_save(flags);
  920. if (unlikely(wasMlocked))
  921. free_page_mlock(page);
  922. __count_vm_event(PGFREE);
  923. if (cold)
  924. list_add_tail(&page->lru, &pcp->list);
  925. else
  926. list_add(&page->lru, &pcp->list);
  927. pcp->count++;
  928. if (pcp->count >= pcp->high) {
  929. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  930. pcp->count -= pcp->batch;
  931. }
  932. local_irq_restore(flags);
  933. put_cpu();
  934. }
  935. void free_hot_page(struct page *page)
  936. {
  937. trace_mm_page_free_direct(page, 0);
  938. free_hot_cold_page(page, 0);
  939. }
  940. /*
  941. * split_page takes a non-compound higher-order page, and splits it into
  942. * n (1<<order) sub-pages: page[0..n]
  943. * Each sub-page must be freed individually.
  944. *
  945. * Note: this is probably too low level an operation for use in drivers.
  946. * Please consult with lkml before using this in your driver.
  947. */
  948. void split_page(struct page *page, unsigned int order)
  949. {
  950. int i;
  951. VM_BUG_ON(PageCompound(page));
  952. VM_BUG_ON(!page_count(page));
  953. #ifdef CONFIG_KMEMCHECK
  954. /*
  955. * Split shadow pages too, because free(page[0]) would
  956. * otherwise free the whole shadow.
  957. */
  958. if (kmemcheck_page_is_tracked(page))
  959. split_page(virt_to_page(page[0].shadow), order);
  960. #endif
  961. for (i = 1; i < (1 << order); i++)
  962. set_page_refcounted(page + i);
  963. }
  964. /*
  965. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  966. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  967. * or two.
  968. */
  969. static inline
  970. struct page *buffered_rmqueue(struct zone *preferred_zone,
  971. struct zone *zone, int order, gfp_t gfp_flags,
  972. int migratetype)
  973. {
  974. unsigned long flags;
  975. struct page *page;
  976. int cold = !!(gfp_flags & __GFP_COLD);
  977. int cpu;
  978. again:
  979. cpu = get_cpu();
  980. if (likely(order == 0)) {
  981. struct per_cpu_pages *pcp;
  982. pcp = &zone_pcp(zone, cpu)->pcp;
  983. local_irq_save(flags);
  984. if (!pcp->count) {
  985. pcp->count = rmqueue_bulk(zone, 0,
  986. pcp->batch, &pcp->list,
  987. migratetype, cold);
  988. if (unlikely(!pcp->count))
  989. goto failed;
  990. }
  991. /* Find a page of the appropriate migrate type */
  992. if (cold) {
  993. list_for_each_entry_reverse(page, &pcp->list, lru)
  994. if (page_private(page) == migratetype)
  995. break;
  996. } else {
  997. list_for_each_entry(page, &pcp->list, lru)
  998. if (page_private(page) == migratetype)
  999. break;
  1000. }
  1001. /* Allocate more to the pcp list if necessary */
  1002. if (unlikely(&page->lru == &pcp->list)) {
  1003. int get_one_page = 0;
  1004. pcp->count += rmqueue_bulk(zone, 0,
  1005. pcp->batch, &pcp->list,
  1006. migratetype, cold);
  1007. list_for_each_entry(page, &pcp->list, lru) {
  1008. if (get_pageblock_migratetype(page) !=
  1009. MIGRATE_ISOLATE) {
  1010. get_one_page = 1;
  1011. break;
  1012. }
  1013. }
  1014. if (!get_one_page)
  1015. goto failed;
  1016. }
  1017. list_del(&page->lru);
  1018. pcp->count--;
  1019. } else {
  1020. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1021. /*
  1022. * __GFP_NOFAIL is not to be used in new code.
  1023. *
  1024. * All __GFP_NOFAIL callers should be fixed so that they
  1025. * properly detect and handle allocation failures.
  1026. *
  1027. * We most definitely don't want callers attempting to
  1028. * allocate greater than order-1 page units with
  1029. * __GFP_NOFAIL.
  1030. */
  1031. WARN_ON_ONCE(order > 1);
  1032. }
  1033. spin_lock_irqsave(&zone->lock, flags);
  1034. page = __rmqueue(zone, order, migratetype);
  1035. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1036. spin_unlock(&zone->lock);
  1037. if (!page)
  1038. goto failed;
  1039. }
  1040. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1041. zone_statistics(preferred_zone, zone);
  1042. local_irq_restore(flags);
  1043. put_cpu();
  1044. VM_BUG_ON(bad_range(zone, page));
  1045. if (prep_new_page(page, order, gfp_flags))
  1046. goto again;
  1047. return page;
  1048. failed:
  1049. local_irq_restore(flags);
  1050. put_cpu();
  1051. return NULL;
  1052. }
  1053. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1054. #define ALLOC_WMARK_MIN WMARK_MIN
  1055. #define ALLOC_WMARK_LOW WMARK_LOW
  1056. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1057. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1058. /* Mask to get the watermark bits */
  1059. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1060. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1061. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1062. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1063. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1064. static struct fail_page_alloc_attr {
  1065. struct fault_attr attr;
  1066. u32 ignore_gfp_highmem;
  1067. u32 ignore_gfp_wait;
  1068. u32 min_order;
  1069. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1070. struct dentry *ignore_gfp_highmem_file;
  1071. struct dentry *ignore_gfp_wait_file;
  1072. struct dentry *min_order_file;
  1073. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1074. } fail_page_alloc = {
  1075. .attr = FAULT_ATTR_INITIALIZER,
  1076. .ignore_gfp_wait = 1,
  1077. .ignore_gfp_highmem = 1,
  1078. .min_order = 1,
  1079. };
  1080. static int __init setup_fail_page_alloc(char *str)
  1081. {
  1082. return setup_fault_attr(&fail_page_alloc.attr, str);
  1083. }
  1084. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1085. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1086. {
  1087. if (order < fail_page_alloc.min_order)
  1088. return 0;
  1089. if (gfp_mask & __GFP_NOFAIL)
  1090. return 0;
  1091. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1092. return 0;
  1093. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1094. return 0;
  1095. return should_fail(&fail_page_alloc.attr, 1 << order);
  1096. }
  1097. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1098. static int __init fail_page_alloc_debugfs(void)
  1099. {
  1100. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1101. struct dentry *dir;
  1102. int err;
  1103. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1104. "fail_page_alloc");
  1105. if (err)
  1106. return err;
  1107. dir = fail_page_alloc.attr.dentries.dir;
  1108. fail_page_alloc.ignore_gfp_wait_file =
  1109. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1110. &fail_page_alloc.ignore_gfp_wait);
  1111. fail_page_alloc.ignore_gfp_highmem_file =
  1112. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1113. &fail_page_alloc.ignore_gfp_highmem);
  1114. fail_page_alloc.min_order_file =
  1115. debugfs_create_u32("min-order", mode, dir,
  1116. &fail_page_alloc.min_order);
  1117. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1118. !fail_page_alloc.ignore_gfp_highmem_file ||
  1119. !fail_page_alloc.min_order_file) {
  1120. err = -ENOMEM;
  1121. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1122. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1123. debugfs_remove(fail_page_alloc.min_order_file);
  1124. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1125. }
  1126. return err;
  1127. }
  1128. late_initcall(fail_page_alloc_debugfs);
  1129. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1130. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1131. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1132. {
  1133. return 0;
  1134. }
  1135. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1136. /*
  1137. * Return 1 if free pages are above 'mark'. This takes into account the order
  1138. * of the allocation.
  1139. */
  1140. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1141. int classzone_idx, int alloc_flags)
  1142. {
  1143. /* free_pages my go negative - that's OK */
  1144. long min = mark;
  1145. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1146. int o;
  1147. if (alloc_flags & ALLOC_HIGH)
  1148. min -= min / 2;
  1149. if (alloc_flags & ALLOC_HARDER)
  1150. min -= min / 4;
  1151. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1152. return 0;
  1153. for (o = 0; o < order; o++) {
  1154. /* At the next order, this order's pages become unavailable */
  1155. free_pages -= z->free_area[o].nr_free << o;
  1156. /* Require fewer higher order pages to be free */
  1157. min >>= 1;
  1158. if (free_pages <= min)
  1159. return 0;
  1160. }
  1161. return 1;
  1162. }
  1163. #ifdef CONFIG_NUMA
  1164. /*
  1165. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1166. * skip over zones that are not allowed by the cpuset, or that have
  1167. * been recently (in last second) found to be nearly full. See further
  1168. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1169. * that have to skip over a lot of full or unallowed zones.
  1170. *
  1171. * If the zonelist cache is present in the passed in zonelist, then
  1172. * returns a pointer to the allowed node mask (either the current
  1173. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1174. *
  1175. * If the zonelist cache is not available for this zonelist, does
  1176. * nothing and returns NULL.
  1177. *
  1178. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1179. * a second since last zap'd) then we zap it out (clear its bits.)
  1180. *
  1181. * We hold off even calling zlc_setup, until after we've checked the
  1182. * first zone in the zonelist, on the theory that most allocations will
  1183. * be satisfied from that first zone, so best to examine that zone as
  1184. * quickly as we can.
  1185. */
  1186. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1187. {
  1188. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1189. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1190. zlc = zonelist->zlcache_ptr;
  1191. if (!zlc)
  1192. return NULL;
  1193. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1194. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1195. zlc->last_full_zap = jiffies;
  1196. }
  1197. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1198. &cpuset_current_mems_allowed :
  1199. &node_states[N_HIGH_MEMORY];
  1200. return allowednodes;
  1201. }
  1202. /*
  1203. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1204. * if it is worth looking at further for free memory:
  1205. * 1) Check that the zone isn't thought to be full (doesn't have its
  1206. * bit set in the zonelist_cache fullzones BITMAP).
  1207. * 2) Check that the zones node (obtained from the zonelist_cache
  1208. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1209. * Return true (non-zero) if zone is worth looking at further, or
  1210. * else return false (zero) if it is not.
  1211. *
  1212. * This check -ignores- the distinction between various watermarks,
  1213. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1214. * found to be full for any variation of these watermarks, it will
  1215. * be considered full for up to one second by all requests, unless
  1216. * we are so low on memory on all allowed nodes that we are forced
  1217. * into the second scan of the zonelist.
  1218. *
  1219. * In the second scan we ignore this zonelist cache and exactly
  1220. * apply the watermarks to all zones, even it is slower to do so.
  1221. * We are low on memory in the second scan, and should leave no stone
  1222. * unturned looking for a free page.
  1223. */
  1224. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1225. nodemask_t *allowednodes)
  1226. {
  1227. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1228. int i; /* index of *z in zonelist zones */
  1229. int n; /* node that zone *z is on */
  1230. zlc = zonelist->zlcache_ptr;
  1231. if (!zlc)
  1232. return 1;
  1233. i = z - zonelist->_zonerefs;
  1234. n = zlc->z_to_n[i];
  1235. /* This zone is worth trying if it is allowed but not full */
  1236. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1237. }
  1238. /*
  1239. * Given 'z' scanning a zonelist, set the corresponding bit in
  1240. * zlc->fullzones, so that subsequent attempts to allocate a page
  1241. * from that zone don't waste time re-examining it.
  1242. */
  1243. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1244. {
  1245. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1246. int i; /* index of *z in zonelist zones */
  1247. zlc = zonelist->zlcache_ptr;
  1248. if (!zlc)
  1249. return;
  1250. i = z - zonelist->_zonerefs;
  1251. set_bit(i, zlc->fullzones);
  1252. }
  1253. #else /* CONFIG_NUMA */
  1254. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1255. {
  1256. return NULL;
  1257. }
  1258. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1259. nodemask_t *allowednodes)
  1260. {
  1261. return 1;
  1262. }
  1263. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1264. {
  1265. }
  1266. #endif /* CONFIG_NUMA */
  1267. /*
  1268. * get_page_from_freelist goes through the zonelist trying to allocate
  1269. * a page.
  1270. */
  1271. static struct page *
  1272. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1273. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1274. struct zone *preferred_zone, int migratetype)
  1275. {
  1276. struct zoneref *z;
  1277. struct page *page = NULL;
  1278. int classzone_idx;
  1279. struct zone *zone;
  1280. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1281. int zlc_active = 0; /* set if using zonelist_cache */
  1282. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1283. classzone_idx = zone_idx(preferred_zone);
  1284. zonelist_scan:
  1285. /*
  1286. * Scan zonelist, looking for a zone with enough free.
  1287. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1288. */
  1289. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1290. high_zoneidx, nodemask) {
  1291. if (NUMA_BUILD && zlc_active &&
  1292. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1293. continue;
  1294. if ((alloc_flags & ALLOC_CPUSET) &&
  1295. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1296. goto try_next_zone;
  1297. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1298. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1299. unsigned long mark;
  1300. int ret;
  1301. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1302. if (zone_watermark_ok(zone, order, mark,
  1303. classzone_idx, alloc_flags))
  1304. goto try_this_zone;
  1305. if (zone_reclaim_mode == 0)
  1306. goto this_zone_full;
  1307. ret = zone_reclaim(zone, gfp_mask, order);
  1308. switch (ret) {
  1309. case ZONE_RECLAIM_NOSCAN:
  1310. /* did not scan */
  1311. goto try_next_zone;
  1312. case ZONE_RECLAIM_FULL:
  1313. /* scanned but unreclaimable */
  1314. goto this_zone_full;
  1315. default:
  1316. /* did we reclaim enough */
  1317. if (!zone_watermark_ok(zone, order, mark,
  1318. classzone_idx, alloc_flags))
  1319. goto this_zone_full;
  1320. }
  1321. }
  1322. try_this_zone:
  1323. page = buffered_rmqueue(preferred_zone, zone, order,
  1324. gfp_mask, migratetype);
  1325. if (page)
  1326. break;
  1327. this_zone_full:
  1328. if (NUMA_BUILD)
  1329. zlc_mark_zone_full(zonelist, z);
  1330. try_next_zone:
  1331. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1332. /*
  1333. * we do zlc_setup after the first zone is tried but only
  1334. * if there are multiple nodes make it worthwhile
  1335. */
  1336. allowednodes = zlc_setup(zonelist, alloc_flags);
  1337. zlc_active = 1;
  1338. did_zlc_setup = 1;
  1339. }
  1340. }
  1341. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1342. /* Disable zlc cache for second zonelist scan */
  1343. zlc_active = 0;
  1344. goto zonelist_scan;
  1345. }
  1346. return page;
  1347. }
  1348. static inline int
  1349. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1350. unsigned long pages_reclaimed)
  1351. {
  1352. /* Do not loop if specifically requested */
  1353. if (gfp_mask & __GFP_NORETRY)
  1354. return 0;
  1355. /*
  1356. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1357. * means __GFP_NOFAIL, but that may not be true in other
  1358. * implementations.
  1359. */
  1360. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1361. return 1;
  1362. /*
  1363. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1364. * specified, then we retry until we no longer reclaim any pages
  1365. * (above), or we've reclaimed an order of pages at least as
  1366. * large as the allocation's order. In both cases, if the
  1367. * allocation still fails, we stop retrying.
  1368. */
  1369. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1370. return 1;
  1371. /*
  1372. * Don't let big-order allocations loop unless the caller
  1373. * explicitly requests that.
  1374. */
  1375. if (gfp_mask & __GFP_NOFAIL)
  1376. return 1;
  1377. return 0;
  1378. }
  1379. static inline struct page *
  1380. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1381. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1382. nodemask_t *nodemask, struct zone *preferred_zone,
  1383. int migratetype)
  1384. {
  1385. struct page *page;
  1386. /* Acquire the OOM killer lock for the zones in zonelist */
  1387. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1388. schedule_timeout_uninterruptible(1);
  1389. return NULL;
  1390. }
  1391. /*
  1392. * Go through the zonelist yet one more time, keep very high watermark
  1393. * here, this is only to catch a parallel oom killing, we must fail if
  1394. * we're still under heavy pressure.
  1395. */
  1396. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1397. order, zonelist, high_zoneidx,
  1398. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1399. preferred_zone, migratetype);
  1400. if (page)
  1401. goto out;
  1402. /* The OOM killer will not help higher order allocs */
  1403. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
  1404. goto out;
  1405. /* Exhausted what can be done so it's blamo time */
  1406. out_of_memory(zonelist, gfp_mask, order);
  1407. out:
  1408. clear_zonelist_oom(zonelist, gfp_mask);
  1409. return page;
  1410. }
  1411. /* The really slow allocator path where we enter direct reclaim */
  1412. static inline struct page *
  1413. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1414. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1415. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1416. int migratetype, unsigned long *did_some_progress)
  1417. {
  1418. struct page *page = NULL;
  1419. struct reclaim_state reclaim_state;
  1420. struct task_struct *p = current;
  1421. cond_resched();
  1422. /* We now go into synchronous reclaim */
  1423. cpuset_memory_pressure_bump();
  1424. p->flags |= PF_MEMALLOC;
  1425. lockdep_set_current_reclaim_state(gfp_mask);
  1426. reclaim_state.reclaimed_slab = 0;
  1427. p->reclaim_state = &reclaim_state;
  1428. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1429. p->reclaim_state = NULL;
  1430. lockdep_clear_current_reclaim_state();
  1431. p->flags &= ~PF_MEMALLOC;
  1432. cond_resched();
  1433. if (order != 0)
  1434. drain_all_pages();
  1435. if (likely(*did_some_progress))
  1436. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1437. zonelist, high_zoneidx,
  1438. alloc_flags, preferred_zone,
  1439. migratetype);
  1440. return page;
  1441. }
  1442. /*
  1443. * This is called in the allocator slow-path if the allocation request is of
  1444. * sufficient urgency to ignore watermarks and take other desperate measures
  1445. */
  1446. static inline struct page *
  1447. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1448. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1449. nodemask_t *nodemask, struct zone *preferred_zone,
  1450. int migratetype)
  1451. {
  1452. struct page *page;
  1453. do {
  1454. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1455. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1456. preferred_zone, migratetype);
  1457. if (!page && gfp_mask & __GFP_NOFAIL)
  1458. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1459. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1460. return page;
  1461. }
  1462. static inline
  1463. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1464. enum zone_type high_zoneidx)
  1465. {
  1466. struct zoneref *z;
  1467. struct zone *zone;
  1468. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1469. wakeup_kswapd(zone, order);
  1470. }
  1471. static inline int
  1472. gfp_to_alloc_flags(gfp_t gfp_mask)
  1473. {
  1474. struct task_struct *p = current;
  1475. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1476. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1477. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1478. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1479. /*
  1480. * The caller may dip into page reserves a bit more if the caller
  1481. * cannot run direct reclaim, or if the caller has realtime scheduling
  1482. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1483. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1484. */
  1485. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1486. if (!wait) {
  1487. alloc_flags |= ALLOC_HARDER;
  1488. /*
  1489. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1490. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1491. */
  1492. alloc_flags &= ~ALLOC_CPUSET;
  1493. } else if (unlikely(rt_task(p)))
  1494. alloc_flags |= ALLOC_HARDER;
  1495. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1496. if (!in_interrupt() &&
  1497. ((p->flags & PF_MEMALLOC) ||
  1498. unlikely(test_thread_flag(TIF_MEMDIE))))
  1499. alloc_flags |= ALLOC_NO_WATERMARKS;
  1500. }
  1501. return alloc_flags;
  1502. }
  1503. static inline struct page *
  1504. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1505. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1506. nodemask_t *nodemask, struct zone *preferred_zone,
  1507. int migratetype)
  1508. {
  1509. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1510. struct page *page = NULL;
  1511. int alloc_flags;
  1512. unsigned long pages_reclaimed = 0;
  1513. unsigned long did_some_progress;
  1514. struct task_struct *p = current;
  1515. /*
  1516. * In the slowpath, we sanity check order to avoid ever trying to
  1517. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1518. * be using allocators in order of preference for an area that is
  1519. * too large.
  1520. */
  1521. if (order >= MAX_ORDER) {
  1522. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1523. return NULL;
  1524. }
  1525. /*
  1526. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1527. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1528. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1529. * using a larger set of nodes after it has established that the
  1530. * allowed per node queues are empty and that nodes are
  1531. * over allocated.
  1532. */
  1533. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1534. goto nopage;
  1535. wake_all_kswapd(order, zonelist, high_zoneidx);
  1536. restart:
  1537. /*
  1538. * OK, we're below the kswapd watermark and have kicked background
  1539. * reclaim. Now things get more complex, so set up alloc_flags according
  1540. * to how we want to proceed.
  1541. */
  1542. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1543. /* This is the last chance, in general, before the goto nopage. */
  1544. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1545. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1546. preferred_zone, migratetype);
  1547. if (page)
  1548. goto got_pg;
  1549. rebalance:
  1550. /* Allocate without watermarks if the context allows */
  1551. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1552. page = __alloc_pages_high_priority(gfp_mask, order,
  1553. zonelist, high_zoneidx, nodemask,
  1554. preferred_zone, migratetype);
  1555. if (page)
  1556. goto got_pg;
  1557. }
  1558. /* Atomic allocations - we can't balance anything */
  1559. if (!wait)
  1560. goto nopage;
  1561. /* Avoid recursion of direct reclaim */
  1562. if (p->flags & PF_MEMALLOC)
  1563. goto nopage;
  1564. /* Avoid allocations with no watermarks from looping endlessly */
  1565. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1566. goto nopage;
  1567. /* Try direct reclaim and then allocating */
  1568. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1569. zonelist, high_zoneidx,
  1570. nodemask,
  1571. alloc_flags, preferred_zone,
  1572. migratetype, &did_some_progress);
  1573. if (page)
  1574. goto got_pg;
  1575. /*
  1576. * If we failed to make any progress reclaiming, then we are
  1577. * running out of options and have to consider going OOM
  1578. */
  1579. if (!did_some_progress) {
  1580. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1581. if (oom_killer_disabled)
  1582. goto nopage;
  1583. page = __alloc_pages_may_oom(gfp_mask, order,
  1584. zonelist, high_zoneidx,
  1585. nodemask, preferred_zone,
  1586. migratetype);
  1587. if (page)
  1588. goto got_pg;
  1589. /*
  1590. * The OOM killer does not trigger for high-order
  1591. * ~__GFP_NOFAIL allocations so if no progress is being
  1592. * made, there are no other options and retrying is
  1593. * unlikely to help.
  1594. */
  1595. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1596. !(gfp_mask & __GFP_NOFAIL))
  1597. goto nopage;
  1598. goto restart;
  1599. }
  1600. }
  1601. /* Check if we should retry the allocation */
  1602. pages_reclaimed += did_some_progress;
  1603. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1604. /* Wait for some write requests to complete then retry */
  1605. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1606. goto rebalance;
  1607. }
  1608. nopage:
  1609. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1610. printk(KERN_WARNING "%s: page allocation failure."
  1611. " order:%d, mode:0x%x\n",
  1612. p->comm, order, gfp_mask);
  1613. dump_stack();
  1614. show_mem();
  1615. }
  1616. return page;
  1617. got_pg:
  1618. if (kmemcheck_enabled)
  1619. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1620. return page;
  1621. }
  1622. /*
  1623. * This is the 'heart' of the zoned buddy allocator.
  1624. */
  1625. struct page *
  1626. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1627. struct zonelist *zonelist, nodemask_t *nodemask)
  1628. {
  1629. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1630. struct zone *preferred_zone;
  1631. struct page *page;
  1632. int migratetype = allocflags_to_migratetype(gfp_mask);
  1633. gfp_mask &= gfp_allowed_mask;
  1634. lockdep_trace_alloc(gfp_mask);
  1635. might_sleep_if(gfp_mask & __GFP_WAIT);
  1636. if (should_fail_alloc_page(gfp_mask, order))
  1637. return NULL;
  1638. /*
  1639. * Check the zones suitable for the gfp_mask contain at least one
  1640. * valid zone. It's possible to have an empty zonelist as a result
  1641. * of GFP_THISNODE and a memoryless node
  1642. */
  1643. if (unlikely(!zonelist->_zonerefs->zone))
  1644. return NULL;
  1645. /* The preferred zone is used for statistics later */
  1646. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1647. if (!preferred_zone)
  1648. return NULL;
  1649. /* First allocation attempt */
  1650. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1651. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1652. preferred_zone, migratetype);
  1653. if (unlikely(!page))
  1654. page = __alloc_pages_slowpath(gfp_mask, order,
  1655. zonelist, high_zoneidx, nodemask,
  1656. preferred_zone, migratetype);
  1657. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1658. return page;
  1659. }
  1660. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1661. /*
  1662. * Common helper functions.
  1663. */
  1664. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1665. {
  1666. struct page *page;
  1667. /*
  1668. * __get_free_pages() returns a 32-bit address, which cannot represent
  1669. * a highmem page
  1670. */
  1671. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1672. page = alloc_pages(gfp_mask, order);
  1673. if (!page)
  1674. return 0;
  1675. return (unsigned long) page_address(page);
  1676. }
  1677. EXPORT_SYMBOL(__get_free_pages);
  1678. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1679. {
  1680. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1681. }
  1682. EXPORT_SYMBOL(get_zeroed_page);
  1683. void __pagevec_free(struct pagevec *pvec)
  1684. {
  1685. int i = pagevec_count(pvec);
  1686. while (--i >= 0) {
  1687. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1688. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1689. }
  1690. }
  1691. void __free_pages(struct page *page, unsigned int order)
  1692. {
  1693. if (put_page_testzero(page)) {
  1694. trace_mm_page_free_direct(page, order);
  1695. if (order == 0)
  1696. free_hot_page(page);
  1697. else
  1698. __free_pages_ok(page, order);
  1699. }
  1700. }
  1701. EXPORT_SYMBOL(__free_pages);
  1702. void free_pages(unsigned long addr, unsigned int order)
  1703. {
  1704. if (addr != 0) {
  1705. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1706. __free_pages(virt_to_page((void *)addr), order);
  1707. }
  1708. }
  1709. EXPORT_SYMBOL(free_pages);
  1710. /**
  1711. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1712. * @size: the number of bytes to allocate
  1713. * @gfp_mask: GFP flags for the allocation
  1714. *
  1715. * This function is similar to alloc_pages(), except that it allocates the
  1716. * minimum number of pages to satisfy the request. alloc_pages() can only
  1717. * allocate memory in power-of-two pages.
  1718. *
  1719. * This function is also limited by MAX_ORDER.
  1720. *
  1721. * Memory allocated by this function must be released by free_pages_exact().
  1722. */
  1723. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1724. {
  1725. unsigned int order = get_order(size);
  1726. unsigned long addr;
  1727. addr = __get_free_pages(gfp_mask, order);
  1728. if (addr) {
  1729. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1730. unsigned long used = addr + PAGE_ALIGN(size);
  1731. split_page(virt_to_page((void *)addr), order);
  1732. while (used < alloc_end) {
  1733. free_page(used);
  1734. used += PAGE_SIZE;
  1735. }
  1736. }
  1737. return (void *)addr;
  1738. }
  1739. EXPORT_SYMBOL(alloc_pages_exact);
  1740. /**
  1741. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1742. * @virt: the value returned by alloc_pages_exact.
  1743. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1744. *
  1745. * Release the memory allocated by a previous call to alloc_pages_exact.
  1746. */
  1747. void free_pages_exact(void *virt, size_t size)
  1748. {
  1749. unsigned long addr = (unsigned long)virt;
  1750. unsigned long end = addr + PAGE_ALIGN(size);
  1751. while (addr < end) {
  1752. free_page(addr);
  1753. addr += PAGE_SIZE;
  1754. }
  1755. }
  1756. EXPORT_SYMBOL(free_pages_exact);
  1757. static unsigned int nr_free_zone_pages(int offset)
  1758. {
  1759. struct zoneref *z;
  1760. struct zone *zone;
  1761. /* Just pick one node, since fallback list is circular */
  1762. unsigned int sum = 0;
  1763. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1764. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1765. unsigned long size = zone->present_pages;
  1766. unsigned long high = high_wmark_pages(zone);
  1767. if (size > high)
  1768. sum += size - high;
  1769. }
  1770. return sum;
  1771. }
  1772. /*
  1773. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1774. */
  1775. unsigned int nr_free_buffer_pages(void)
  1776. {
  1777. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1778. }
  1779. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1780. /*
  1781. * Amount of free RAM allocatable within all zones
  1782. */
  1783. unsigned int nr_free_pagecache_pages(void)
  1784. {
  1785. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1786. }
  1787. static inline void show_node(struct zone *zone)
  1788. {
  1789. if (NUMA_BUILD)
  1790. printk("Node %d ", zone_to_nid(zone));
  1791. }
  1792. void si_meminfo(struct sysinfo *val)
  1793. {
  1794. val->totalram = totalram_pages;
  1795. val->sharedram = 0;
  1796. val->freeram = global_page_state(NR_FREE_PAGES);
  1797. val->bufferram = nr_blockdev_pages();
  1798. val->totalhigh = totalhigh_pages;
  1799. val->freehigh = nr_free_highpages();
  1800. val->mem_unit = PAGE_SIZE;
  1801. }
  1802. EXPORT_SYMBOL(si_meminfo);
  1803. #ifdef CONFIG_NUMA
  1804. void si_meminfo_node(struct sysinfo *val, int nid)
  1805. {
  1806. pg_data_t *pgdat = NODE_DATA(nid);
  1807. val->totalram = pgdat->node_present_pages;
  1808. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1809. #ifdef CONFIG_HIGHMEM
  1810. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1811. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1812. NR_FREE_PAGES);
  1813. #else
  1814. val->totalhigh = 0;
  1815. val->freehigh = 0;
  1816. #endif
  1817. val->mem_unit = PAGE_SIZE;
  1818. }
  1819. #endif
  1820. #define K(x) ((x) << (PAGE_SHIFT-10))
  1821. /*
  1822. * Show free area list (used inside shift_scroll-lock stuff)
  1823. * We also calculate the percentage fragmentation. We do this by counting the
  1824. * memory on each free list with the exception of the first item on the list.
  1825. */
  1826. void show_free_areas(void)
  1827. {
  1828. int cpu;
  1829. struct zone *zone;
  1830. for_each_populated_zone(zone) {
  1831. show_node(zone);
  1832. printk("%s per-cpu:\n", zone->name);
  1833. for_each_online_cpu(cpu) {
  1834. struct per_cpu_pageset *pageset;
  1835. pageset = zone_pcp(zone, cpu);
  1836. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1837. cpu, pageset->pcp.high,
  1838. pageset->pcp.batch, pageset->pcp.count);
  1839. }
  1840. }
  1841. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1842. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1843. " unevictable:%lu"
  1844. " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
  1845. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1846. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1847. global_page_state(NR_ACTIVE_ANON),
  1848. global_page_state(NR_INACTIVE_ANON),
  1849. global_page_state(NR_ISOLATED_ANON),
  1850. global_page_state(NR_ACTIVE_FILE),
  1851. global_page_state(NR_INACTIVE_FILE),
  1852. global_page_state(NR_ISOLATED_FILE),
  1853. global_page_state(NR_UNEVICTABLE),
  1854. global_page_state(NR_FILE_DIRTY),
  1855. global_page_state(NR_WRITEBACK),
  1856. global_page_state(NR_UNSTABLE_NFS),
  1857. nr_blockdev_pages(),
  1858. global_page_state(NR_FREE_PAGES),
  1859. global_page_state(NR_SLAB_RECLAIMABLE),
  1860. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1861. global_page_state(NR_FILE_MAPPED),
  1862. global_page_state(NR_SHMEM),
  1863. global_page_state(NR_PAGETABLE),
  1864. global_page_state(NR_BOUNCE));
  1865. for_each_populated_zone(zone) {
  1866. int i;
  1867. show_node(zone);
  1868. printk("%s"
  1869. " free:%lukB"
  1870. " min:%lukB"
  1871. " low:%lukB"
  1872. " high:%lukB"
  1873. " active_anon:%lukB"
  1874. " inactive_anon:%lukB"
  1875. " active_file:%lukB"
  1876. " inactive_file:%lukB"
  1877. " unevictable:%lukB"
  1878. " isolated(anon):%lukB"
  1879. " isolated(file):%lukB"
  1880. " present:%lukB"
  1881. " mlocked:%lukB"
  1882. " dirty:%lukB"
  1883. " writeback:%lukB"
  1884. " mapped:%lukB"
  1885. " shmem:%lukB"
  1886. " slab_reclaimable:%lukB"
  1887. " slab_unreclaimable:%lukB"
  1888. " kernel_stack:%lukB"
  1889. " pagetables:%lukB"
  1890. " unstable:%lukB"
  1891. " bounce:%lukB"
  1892. " writeback_tmp:%lukB"
  1893. " pages_scanned:%lu"
  1894. " all_unreclaimable? %s"
  1895. "\n",
  1896. zone->name,
  1897. K(zone_page_state(zone, NR_FREE_PAGES)),
  1898. K(min_wmark_pages(zone)),
  1899. K(low_wmark_pages(zone)),
  1900. K(high_wmark_pages(zone)),
  1901. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1902. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1903. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1904. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1905. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1906. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1907. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1908. K(zone->present_pages),
  1909. K(zone_page_state(zone, NR_MLOCK)),
  1910. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1911. K(zone_page_state(zone, NR_WRITEBACK)),
  1912. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1913. K(zone_page_state(zone, NR_SHMEM)),
  1914. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1915. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1916. zone_page_state(zone, NR_KERNEL_STACK) *
  1917. THREAD_SIZE / 1024,
  1918. K(zone_page_state(zone, NR_PAGETABLE)),
  1919. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1920. K(zone_page_state(zone, NR_BOUNCE)),
  1921. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1922. zone->pages_scanned,
  1923. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1924. );
  1925. printk("lowmem_reserve[]:");
  1926. for (i = 0; i < MAX_NR_ZONES; i++)
  1927. printk(" %lu", zone->lowmem_reserve[i]);
  1928. printk("\n");
  1929. }
  1930. for_each_populated_zone(zone) {
  1931. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1932. show_node(zone);
  1933. printk("%s: ", zone->name);
  1934. spin_lock_irqsave(&zone->lock, flags);
  1935. for (order = 0; order < MAX_ORDER; order++) {
  1936. nr[order] = zone->free_area[order].nr_free;
  1937. total += nr[order] << order;
  1938. }
  1939. spin_unlock_irqrestore(&zone->lock, flags);
  1940. for (order = 0; order < MAX_ORDER; order++)
  1941. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1942. printk("= %lukB\n", K(total));
  1943. }
  1944. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1945. show_swap_cache_info();
  1946. }
  1947. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1948. {
  1949. zoneref->zone = zone;
  1950. zoneref->zone_idx = zone_idx(zone);
  1951. }
  1952. /*
  1953. * Builds allocation fallback zone lists.
  1954. *
  1955. * Add all populated zones of a node to the zonelist.
  1956. */
  1957. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1958. int nr_zones, enum zone_type zone_type)
  1959. {
  1960. struct zone *zone;
  1961. BUG_ON(zone_type >= MAX_NR_ZONES);
  1962. zone_type++;
  1963. do {
  1964. zone_type--;
  1965. zone = pgdat->node_zones + zone_type;
  1966. if (populated_zone(zone)) {
  1967. zoneref_set_zone(zone,
  1968. &zonelist->_zonerefs[nr_zones++]);
  1969. check_highest_zone(zone_type);
  1970. }
  1971. } while (zone_type);
  1972. return nr_zones;
  1973. }
  1974. /*
  1975. * zonelist_order:
  1976. * 0 = automatic detection of better ordering.
  1977. * 1 = order by ([node] distance, -zonetype)
  1978. * 2 = order by (-zonetype, [node] distance)
  1979. *
  1980. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1981. * the same zonelist. So only NUMA can configure this param.
  1982. */
  1983. #define ZONELIST_ORDER_DEFAULT 0
  1984. #define ZONELIST_ORDER_NODE 1
  1985. #define ZONELIST_ORDER_ZONE 2
  1986. /* zonelist order in the kernel.
  1987. * set_zonelist_order() will set this to NODE or ZONE.
  1988. */
  1989. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1990. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1991. #ifdef CONFIG_NUMA
  1992. /* The value user specified ....changed by config */
  1993. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1994. /* string for sysctl */
  1995. #define NUMA_ZONELIST_ORDER_LEN 16
  1996. char numa_zonelist_order[16] = "default";
  1997. /*
  1998. * interface for configure zonelist ordering.
  1999. * command line option "numa_zonelist_order"
  2000. * = "[dD]efault - default, automatic configuration.
  2001. * = "[nN]ode - order by node locality, then by zone within node
  2002. * = "[zZ]one - order by zone, then by locality within zone
  2003. */
  2004. static int __parse_numa_zonelist_order(char *s)
  2005. {
  2006. if (*s == 'd' || *s == 'D') {
  2007. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2008. } else if (*s == 'n' || *s == 'N') {
  2009. user_zonelist_order = ZONELIST_ORDER_NODE;
  2010. } else if (*s == 'z' || *s == 'Z') {
  2011. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2012. } else {
  2013. printk(KERN_WARNING
  2014. "Ignoring invalid numa_zonelist_order value: "
  2015. "%s\n", s);
  2016. return -EINVAL;
  2017. }
  2018. return 0;
  2019. }
  2020. static __init int setup_numa_zonelist_order(char *s)
  2021. {
  2022. if (s)
  2023. return __parse_numa_zonelist_order(s);
  2024. return 0;
  2025. }
  2026. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2027. /*
  2028. * sysctl handler for numa_zonelist_order
  2029. */
  2030. int numa_zonelist_order_handler(ctl_table *table, int write,
  2031. struct file *file, void __user *buffer, size_t *length,
  2032. loff_t *ppos)
  2033. {
  2034. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2035. int ret;
  2036. if (write)
  2037. strncpy(saved_string, (char*)table->data,
  2038. NUMA_ZONELIST_ORDER_LEN);
  2039. ret = proc_dostring(table, write, file, buffer, length, ppos);
  2040. if (ret)
  2041. return ret;
  2042. if (write) {
  2043. int oldval = user_zonelist_order;
  2044. if (__parse_numa_zonelist_order((char*)table->data)) {
  2045. /*
  2046. * bogus value. restore saved string
  2047. */
  2048. strncpy((char*)table->data, saved_string,
  2049. NUMA_ZONELIST_ORDER_LEN);
  2050. user_zonelist_order = oldval;
  2051. } else if (oldval != user_zonelist_order)
  2052. build_all_zonelists();
  2053. }
  2054. return 0;
  2055. }
  2056. #define MAX_NODE_LOAD (nr_online_nodes)
  2057. static int node_load[MAX_NUMNODES];
  2058. /**
  2059. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2060. * @node: node whose fallback list we're appending
  2061. * @used_node_mask: nodemask_t of already used nodes
  2062. *
  2063. * We use a number of factors to determine which is the next node that should
  2064. * appear on a given node's fallback list. The node should not have appeared
  2065. * already in @node's fallback list, and it should be the next closest node
  2066. * according to the distance array (which contains arbitrary distance values
  2067. * from each node to each node in the system), and should also prefer nodes
  2068. * with no CPUs, since presumably they'll have very little allocation pressure
  2069. * on them otherwise.
  2070. * It returns -1 if no node is found.
  2071. */
  2072. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2073. {
  2074. int n, val;
  2075. int min_val = INT_MAX;
  2076. int best_node = -1;
  2077. const struct cpumask *tmp = cpumask_of_node(0);
  2078. /* Use the local node if we haven't already */
  2079. if (!node_isset(node, *used_node_mask)) {
  2080. node_set(node, *used_node_mask);
  2081. return node;
  2082. }
  2083. for_each_node_state(n, N_HIGH_MEMORY) {
  2084. /* Don't want a node to appear more than once */
  2085. if (node_isset(n, *used_node_mask))
  2086. continue;
  2087. /* Use the distance array to find the distance */
  2088. val = node_distance(node, n);
  2089. /* Penalize nodes under us ("prefer the next node") */
  2090. val += (n < node);
  2091. /* Give preference to headless and unused nodes */
  2092. tmp = cpumask_of_node(n);
  2093. if (!cpumask_empty(tmp))
  2094. val += PENALTY_FOR_NODE_WITH_CPUS;
  2095. /* Slight preference for less loaded node */
  2096. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2097. val += node_load[n];
  2098. if (val < min_val) {
  2099. min_val = val;
  2100. best_node = n;
  2101. }
  2102. }
  2103. if (best_node >= 0)
  2104. node_set(best_node, *used_node_mask);
  2105. return best_node;
  2106. }
  2107. /*
  2108. * Build zonelists ordered by node and zones within node.
  2109. * This results in maximum locality--normal zone overflows into local
  2110. * DMA zone, if any--but risks exhausting DMA zone.
  2111. */
  2112. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2113. {
  2114. int j;
  2115. struct zonelist *zonelist;
  2116. zonelist = &pgdat->node_zonelists[0];
  2117. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2118. ;
  2119. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2120. MAX_NR_ZONES - 1);
  2121. zonelist->_zonerefs[j].zone = NULL;
  2122. zonelist->_zonerefs[j].zone_idx = 0;
  2123. }
  2124. /*
  2125. * Build gfp_thisnode zonelists
  2126. */
  2127. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2128. {
  2129. int j;
  2130. struct zonelist *zonelist;
  2131. zonelist = &pgdat->node_zonelists[1];
  2132. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2133. zonelist->_zonerefs[j].zone = NULL;
  2134. zonelist->_zonerefs[j].zone_idx = 0;
  2135. }
  2136. /*
  2137. * Build zonelists ordered by zone and nodes within zones.
  2138. * This results in conserving DMA zone[s] until all Normal memory is
  2139. * exhausted, but results in overflowing to remote node while memory
  2140. * may still exist in local DMA zone.
  2141. */
  2142. static int node_order[MAX_NUMNODES];
  2143. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2144. {
  2145. int pos, j, node;
  2146. int zone_type; /* needs to be signed */
  2147. struct zone *z;
  2148. struct zonelist *zonelist;
  2149. zonelist = &pgdat->node_zonelists[0];
  2150. pos = 0;
  2151. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2152. for (j = 0; j < nr_nodes; j++) {
  2153. node = node_order[j];
  2154. z = &NODE_DATA(node)->node_zones[zone_type];
  2155. if (populated_zone(z)) {
  2156. zoneref_set_zone(z,
  2157. &zonelist->_zonerefs[pos++]);
  2158. check_highest_zone(zone_type);
  2159. }
  2160. }
  2161. }
  2162. zonelist->_zonerefs[pos].zone = NULL;
  2163. zonelist->_zonerefs[pos].zone_idx = 0;
  2164. }
  2165. static int default_zonelist_order(void)
  2166. {
  2167. int nid, zone_type;
  2168. unsigned long low_kmem_size,total_size;
  2169. struct zone *z;
  2170. int average_size;
  2171. /*
  2172. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2173. * If they are really small and used heavily, the system can fall
  2174. * into OOM very easily.
  2175. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2176. */
  2177. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2178. low_kmem_size = 0;
  2179. total_size = 0;
  2180. for_each_online_node(nid) {
  2181. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2182. z = &NODE_DATA(nid)->node_zones[zone_type];
  2183. if (populated_zone(z)) {
  2184. if (zone_type < ZONE_NORMAL)
  2185. low_kmem_size += z->present_pages;
  2186. total_size += z->present_pages;
  2187. }
  2188. }
  2189. }
  2190. if (!low_kmem_size || /* there are no DMA area. */
  2191. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2192. return ZONELIST_ORDER_NODE;
  2193. /*
  2194. * look into each node's config.
  2195. * If there is a node whose DMA/DMA32 memory is very big area on
  2196. * local memory, NODE_ORDER may be suitable.
  2197. */
  2198. average_size = total_size /
  2199. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2200. for_each_online_node(nid) {
  2201. low_kmem_size = 0;
  2202. total_size = 0;
  2203. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2204. z = &NODE_DATA(nid)->node_zones[zone_type];
  2205. if (populated_zone(z)) {
  2206. if (zone_type < ZONE_NORMAL)
  2207. low_kmem_size += z->present_pages;
  2208. total_size += z->present_pages;
  2209. }
  2210. }
  2211. if (low_kmem_size &&
  2212. total_size > average_size && /* ignore small node */
  2213. low_kmem_size > total_size * 70/100)
  2214. return ZONELIST_ORDER_NODE;
  2215. }
  2216. return ZONELIST_ORDER_ZONE;
  2217. }
  2218. static void set_zonelist_order(void)
  2219. {
  2220. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2221. current_zonelist_order = default_zonelist_order();
  2222. else
  2223. current_zonelist_order = user_zonelist_order;
  2224. }
  2225. static void build_zonelists(pg_data_t *pgdat)
  2226. {
  2227. int j, node, load;
  2228. enum zone_type i;
  2229. nodemask_t used_mask;
  2230. int local_node, prev_node;
  2231. struct zonelist *zonelist;
  2232. int order = current_zonelist_order;
  2233. /* initialize zonelists */
  2234. for (i = 0; i < MAX_ZONELISTS; i++) {
  2235. zonelist = pgdat->node_zonelists + i;
  2236. zonelist->_zonerefs[0].zone = NULL;
  2237. zonelist->_zonerefs[0].zone_idx = 0;
  2238. }
  2239. /* NUMA-aware ordering of nodes */
  2240. local_node = pgdat->node_id;
  2241. load = nr_online_nodes;
  2242. prev_node = local_node;
  2243. nodes_clear(used_mask);
  2244. memset(node_order, 0, sizeof(node_order));
  2245. j = 0;
  2246. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2247. int distance = node_distance(local_node, node);
  2248. /*
  2249. * If another node is sufficiently far away then it is better
  2250. * to reclaim pages in a zone before going off node.
  2251. */
  2252. if (distance > RECLAIM_DISTANCE)
  2253. zone_reclaim_mode = 1;
  2254. /*
  2255. * We don't want to pressure a particular node.
  2256. * So adding penalty to the first node in same
  2257. * distance group to make it round-robin.
  2258. */
  2259. if (distance != node_distance(local_node, prev_node))
  2260. node_load[node] = load;
  2261. prev_node = node;
  2262. load--;
  2263. if (order == ZONELIST_ORDER_NODE)
  2264. build_zonelists_in_node_order(pgdat, node);
  2265. else
  2266. node_order[j++] = node; /* remember order */
  2267. }
  2268. if (order == ZONELIST_ORDER_ZONE) {
  2269. /* calculate node order -- i.e., DMA last! */
  2270. build_zonelists_in_zone_order(pgdat, j);
  2271. }
  2272. build_thisnode_zonelists(pgdat);
  2273. }
  2274. /* Construct the zonelist performance cache - see further mmzone.h */
  2275. static void build_zonelist_cache(pg_data_t *pgdat)
  2276. {
  2277. struct zonelist *zonelist;
  2278. struct zonelist_cache *zlc;
  2279. struct zoneref *z;
  2280. zonelist = &pgdat->node_zonelists[0];
  2281. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2282. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2283. for (z = zonelist->_zonerefs; z->zone; z++)
  2284. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2285. }
  2286. #else /* CONFIG_NUMA */
  2287. static void set_zonelist_order(void)
  2288. {
  2289. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2290. }
  2291. static void build_zonelists(pg_data_t *pgdat)
  2292. {
  2293. int node, local_node;
  2294. enum zone_type j;
  2295. struct zonelist *zonelist;
  2296. local_node = pgdat->node_id;
  2297. zonelist = &pgdat->node_zonelists[0];
  2298. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2299. /*
  2300. * Now we build the zonelist so that it contains the zones
  2301. * of all the other nodes.
  2302. * We don't want to pressure a particular node, so when
  2303. * building the zones for node N, we make sure that the
  2304. * zones coming right after the local ones are those from
  2305. * node N+1 (modulo N)
  2306. */
  2307. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2308. if (!node_online(node))
  2309. continue;
  2310. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2311. MAX_NR_ZONES - 1);
  2312. }
  2313. for (node = 0; node < local_node; node++) {
  2314. if (!node_online(node))
  2315. continue;
  2316. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2317. MAX_NR_ZONES - 1);
  2318. }
  2319. zonelist->_zonerefs[j].zone = NULL;
  2320. zonelist->_zonerefs[j].zone_idx = 0;
  2321. }
  2322. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2323. static void build_zonelist_cache(pg_data_t *pgdat)
  2324. {
  2325. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2326. }
  2327. #endif /* CONFIG_NUMA */
  2328. /* return values int ....just for stop_machine() */
  2329. static int __build_all_zonelists(void *dummy)
  2330. {
  2331. int nid;
  2332. #ifdef CONFIG_NUMA
  2333. memset(node_load, 0, sizeof(node_load));
  2334. #endif
  2335. for_each_online_node(nid) {
  2336. pg_data_t *pgdat = NODE_DATA(nid);
  2337. build_zonelists(pgdat);
  2338. build_zonelist_cache(pgdat);
  2339. }
  2340. return 0;
  2341. }
  2342. void build_all_zonelists(void)
  2343. {
  2344. set_zonelist_order();
  2345. if (system_state == SYSTEM_BOOTING) {
  2346. __build_all_zonelists(NULL);
  2347. mminit_verify_zonelist();
  2348. cpuset_init_current_mems_allowed();
  2349. } else {
  2350. /* we have to stop all cpus to guarantee there is no user
  2351. of zonelist */
  2352. stop_machine(__build_all_zonelists, NULL, NULL);
  2353. /* cpuset refresh routine should be here */
  2354. }
  2355. vm_total_pages = nr_free_pagecache_pages();
  2356. /*
  2357. * Disable grouping by mobility if the number of pages in the
  2358. * system is too low to allow the mechanism to work. It would be
  2359. * more accurate, but expensive to check per-zone. This check is
  2360. * made on memory-hotadd so a system can start with mobility
  2361. * disabled and enable it later
  2362. */
  2363. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2364. page_group_by_mobility_disabled = 1;
  2365. else
  2366. page_group_by_mobility_disabled = 0;
  2367. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2368. "Total pages: %ld\n",
  2369. nr_online_nodes,
  2370. zonelist_order_name[current_zonelist_order],
  2371. page_group_by_mobility_disabled ? "off" : "on",
  2372. vm_total_pages);
  2373. #ifdef CONFIG_NUMA
  2374. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2375. #endif
  2376. }
  2377. /*
  2378. * Helper functions to size the waitqueue hash table.
  2379. * Essentially these want to choose hash table sizes sufficiently
  2380. * large so that collisions trying to wait on pages are rare.
  2381. * But in fact, the number of active page waitqueues on typical
  2382. * systems is ridiculously low, less than 200. So this is even
  2383. * conservative, even though it seems large.
  2384. *
  2385. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2386. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2387. */
  2388. #define PAGES_PER_WAITQUEUE 256
  2389. #ifndef CONFIG_MEMORY_HOTPLUG
  2390. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2391. {
  2392. unsigned long size = 1;
  2393. pages /= PAGES_PER_WAITQUEUE;
  2394. while (size < pages)
  2395. size <<= 1;
  2396. /*
  2397. * Once we have dozens or even hundreds of threads sleeping
  2398. * on IO we've got bigger problems than wait queue collision.
  2399. * Limit the size of the wait table to a reasonable size.
  2400. */
  2401. size = min(size, 4096UL);
  2402. return max(size, 4UL);
  2403. }
  2404. #else
  2405. /*
  2406. * A zone's size might be changed by hot-add, so it is not possible to determine
  2407. * a suitable size for its wait_table. So we use the maximum size now.
  2408. *
  2409. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2410. *
  2411. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2412. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2413. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2414. *
  2415. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2416. * or more by the traditional way. (See above). It equals:
  2417. *
  2418. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2419. * ia64(16K page size) : = ( 8G + 4M)byte.
  2420. * powerpc (64K page size) : = (32G +16M)byte.
  2421. */
  2422. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2423. {
  2424. return 4096UL;
  2425. }
  2426. #endif
  2427. /*
  2428. * This is an integer logarithm so that shifts can be used later
  2429. * to extract the more random high bits from the multiplicative
  2430. * hash function before the remainder is taken.
  2431. */
  2432. static inline unsigned long wait_table_bits(unsigned long size)
  2433. {
  2434. return ffz(~size);
  2435. }
  2436. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2437. /*
  2438. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2439. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2440. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2441. * higher will lead to a bigger reserve which will get freed as contiguous
  2442. * blocks as reclaim kicks in
  2443. */
  2444. static void setup_zone_migrate_reserve(struct zone *zone)
  2445. {
  2446. unsigned long start_pfn, pfn, end_pfn;
  2447. struct page *page;
  2448. unsigned long reserve, block_migratetype;
  2449. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2450. start_pfn = zone->zone_start_pfn;
  2451. end_pfn = start_pfn + zone->spanned_pages;
  2452. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2453. pageblock_order;
  2454. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2455. if (!pfn_valid(pfn))
  2456. continue;
  2457. page = pfn_to_page(pfn);
  2458. /* Watch out for overlapping nodes */
  2459. if (page_to_nid(page) != zone_to_nid(zone))
  2460. continue;
  2461. /* Blocks with reserved pages will never free, skip them. */
  2462. if (PageReserved(page))
  2463. continue;
  2464. block_migratetype = get_pageblock_migratetype(page);
  2465. /* If this block is reserved, account for it */
  2466. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2467. reserve--;
  2468. continue;
  2469. }
  2470. /* Suitable for reserving if this block is movable */
  2471. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2472. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2473. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2474. reserve--;
  2475. continue;
  2476. }
  2477. /*
  2478. * If the reserve is met and this is a previous reserved block,
  2479. * take it back
  2480. */
  2481. if (block_migratetype == MIGRATE_RESERVE) {
  2482. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2483. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2484. }
  2485. }
  2486. }
  2487. /*
  2488. * Initially all pages are reserved - free ones are freed
  2489. * up by free_all_bootmem() once the early boot process is
  2490. * done. Non-atomic initialization, single-pass.
  2491. */
  2492. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2493. unsigned long start_pfn, enum memmap_context context)
  2494. {
  2495. struct page *page;
  2496. unsigned long end_pfn = start_pfn + size;
  2497. unsigned long pfn;
  2498. struct zone *z;
  2499. if (highest_memmap_pfn < end_pfn - 1)
  2500. highest_memmap_pfn = end_pfn - 1;
  2501. z = &NODE_DATA(nid)->node_zones[zone];
  2502. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2503. /*
  2504. * There can be holes in boot-time mem_map[]s
  2505. * handed to this function. They do not
  2506. * exist on hotplugged memory.
  2507. */
  2508. if (context == MEMMAP_EARLY) {
  2509. if (!early_pfn_valid(pfn))
  2510. continue;
  2511. if (!early_pfn_in_nid(pfn, nid))
  2512. continue;
  2513. }
  2514. page = pfn_to_page(pfn);
  2515. set_page_links(page, zone, nid, pfn);
  2516. mminit_verify_page_links(page, zone, nid, pfn);
  2517. init_page_count(page);
  2518. reset_page_mapcount(page);
  2519. SetPageReserved(page);
  2520. /*
  2521. * Mark the block movable so that blocks are reserved for
  2522. * movable at startup. This will force kernel allocations
  2523. * to reserve their blocks rather than leaking throughout
  2524. * the address space during boot when many long-lived
  2525. * kernel allocations are made. Later some blocks near
  2526. * the start are marked MIGRATE_RESERVE by
  2527. * setup_zone_migrate_reserve()
  2528. *
  2529. * bitmap is created for zone's valid pfn range. but memmap
  2530. * can be created for invalid pages (for alignment)
  2531. * check here not to call set_pageblock_migratetype() against
  2532. * pfn out of zone.
  2533. */
  2534. if ((z->zone_start_pfn <= pfn)
  2535. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2536. && !(pfn & (pageblock_nr_pages - 1)))
  2537. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2538. INIT_LIST_HEAD(&page->lru);
  2539. #ifdef WANT_PAGE_VIRTUAL
  2540. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2541. if (!is_highmem_idx(zone))
  2542. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2543. #endif
  2544. }
  2545. }
  2546. static void __meminit zone_init_free_lists(struct zone *zone)
  2547. {
  2548. int order, t;
  2549. for_each_migratetype_order(order, t) {
  2550. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2551. zone->free_area[order].nr_free = 0;
  2552. }
  2553. }
  2554. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2555. #define memmap_init(size, nid, zone, start_pfn) \
  2556. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2557. #endif
  2558. static int zone_batchsize(struct zone *zone)
  2559. {
  2560. #ifdef CONFIG_MMU
  2561. int batch;
  2562. /*
  2563. * The per-cpu-pages pools are set to around 1000th of the
  2564. * size of the zone. But no more than 1/2 of a meg.
  2565. *
  2566. * OK, so we don't know how big the cache is. So guess.
  2567. */
  2568. batch = zone->present_pages / 1024;
  2569. if (batch * PAGE_SIZE > 512 * 1024)
  2570. batch = (512 * 1024) / PAGE_SIZE;
  2571. batch /= 4; /* We effectively *= 4 below */
  2572. if (batch < 1)
  2573. batch = 1;
  2574. /*
  2575. * Clamp the batch to a 2^n - 1 value. Having a power
  2576. * of 2 value was found to be more likely to have
  2577. * suboptimal cache aliasing properties in some cases.
  2578. *
  2579. * For example if 2 tasks are alternately allocating
  2580. * batches of pages, one task can end up with a lot
  2581. * of pages of one half of the possible page colors
  2582. * and the other with pages of the other colors.
  2583. */
  2584. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2585. return batch;
  2586. #else
  2587. /* The deferral and batching of frees should be suppressed under NOMMU
  2588. * conditions.
  2589. *
  2590. * The problem is that NOMMU needs to be able to allocate large chunks
  2591. * of contiguous memory as there's no hardware page translation to
  2592. * assemble apparent contiguous memory from discontiguous pages.
  2593. *
  2594. * Queueing large contiguous runs of pages for batching, however,
  2595. * causes the pages to actually be freed in smaller chunks. As there
  2596. * can be a significant delay between the individual batches being
  2597. * recycled, this leads to the once large chunks of space being
  2598. * fragmented and becoming unavailable for high-order allocations.
  2599. */
  2600. return 0;
  2601. #endif
  2602. }
  2603. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2604. {
  2605. struct per_cpu_pages *pcp;
  2606. memset(p, 0, sizeof(*p));
  2607. pcp = &p->pcp;
  2608. pcp->count = 0;
  2609. pcp->high = 6 * batch;
  2610. pcp->batch = max(1UL, 1 * batch);
  2611. INIT_LIST_HEAD(&pcp->list);
  2612. }
  2613. /*
  2614. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2615. * to the value high for the pageset p.
  2616. */
  2617. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2618. unsigned long high)
  2619. {
  2620. struct per_cpu_pages *pcp;
  2621. pcp = &p->pcp;
  2622. pcp->high = high;
  2623. pcp->batch = max(1UL, high/4);
  2624. if ((high/4) > (PAGE_SHIFT * 8))
  2625. pcp->batch = PAGE_SHIFT * 8;
  2626. }
  2627. #ifdef CONFIG_NUMA
  2628. /*
  2629. * Boot pageset table. One per cpu which is going to be used for all
  2630. * zones and all nodes. The parameters will be set in such a way
  2631. * that an item put on a list will immediately be handed over to
  2632. * the buddy list. This is safe since pageset manipulation is done
  2633. * with interrupts disabled.
  2634. *
  2635. * Some NUMA counter updates may also be caught by the boot pagesets.
  2636. *
  2637. * The boot_pagesets must be kept even after bootup is complete for
  2638. * unused processors and/or zones. They do play a role for bootstrapping
  2639. * hotplugged processors.
  2640. *
  2641. * zoneinfo_show() and maybe other functions do
  2642. * not check if the processor is online before following the pageset pointer.
  2643. * Other parts of the kernel may not check if the zone is available.
  2644. */
  2645. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2646. /*
  2647. * Dynamically allocate memory for the
  2648. * per cpu pageset array in struct zone.
  2649. */
  2650. static int __cpuinit process_zones(int cpu)
  2651. {
  2652. struct zone *zone, *dzone;
  2653. int node = cpu_to_node(cpu);
  2654. node_set_state(node, N_CPU); /* this node has a cpu */
  2655. for_each_populated_zone(zone) {
  2656. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2657. GFP_KERNEL, node);
  2658. if (!zone_pcp(zone, cpu))
  2659. goto bad;
  2660. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2661. if (percpu_pagelist_fraction)
  2662. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2663. (zone->present_pages / percpu_pagelist_fraction));
  2664. }
  2665. return 0;
  2666. bad:
  2667. for_each_zone(dzone) {
  2668. if (!populated_zone(dzone))
  2669. continue;
  2670. if (dzone == zone)
  2671. break;
  2672. kfree(zone_pcp(dzone, cpu));
  2673. zone_pcp(dzone, cpu) = &boot_pageset[cpu];
  2674. }
  2675. return -ENOMEM;
  2676. }
  2677. static inline void free_zone_pagesets(int cpu)
  2678. {
  2679. struct zone *zone;
  2680. for_each_zone(zone) {
  2681. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2682. /* Free per_cpu_pageset if it is slab allocated */
  2683. if (pset != &boot_pageset[cpu])
  2684. kfree(pset);
  2685. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2686. }
  2687. }
  2688. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2689. unsigned long action,
  2690. void *hcpu)
  2691. {
  2692. int cpu = (long)hcpu;
  2693. int ret = NOTIFY_OK;
  2694. switch (action) {
  2695. case CPU_UP_PREPARE:
  2696. case CPU_UP_PREPARE_FROZEN:
  2697. if (process_zones(cpu))
  2698. ret = NOTIFY_BAD;
  2699. break;
  2700. case CPU_UP_CANCELED:
  2701. case CPU_UP_CANCELED_FROZEN:
  2702. case CPU_DEAD:
  2703. case CPU_DEAD_FROZEN:
  2704. free_zone_pagesets(cpu);
  2705. break;
  2706. default:
  2707. break;
  2708. }
  2709. return ret;
  2710. }
  2711. static struct notifier_block __cpuinitdata pageset_notifier =
  2712. { &pageset_cpuup_callback, NULL, 0 };
  2713. void __init setup_per_cpu_pageset(void)
  2714. {
  2715. int err;
  2716. /* Initialize per_cpu_pageset for cpu 0.
  2717. * A cpuup callback will do this for every cpu
  2718. * as it comes online
  2719. */
  2720. err = process_zones(smp_processor_id());
  2721. BUG_ON(err);
  2722. register_cpu_notifier(&pageset_notifier);
  2723. }
  2724. #endif
  2725. static noinline __init_refok
  2726. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2727. {
  2728. int i;
  2729. struct pglist_data *pgdat = zone->zone_pgdat;
  2730. size_t alloc_size;
  2731. /*
  2732. * The per-page waitqueue mechanism uses hashed waitqueues
  2733. * per zone.
  2734. */
  2735. zone->wait_table_hash_nr_entries =
  2736. wait_table_hash_nr_entries(zone_size_pages);
  2737. zone->wait_table_bits =
  2738. wait_table_bits(zone->wait_table_hash_nr_entries);
  2739. alloc_size = zone->wait_table_hash_nr_entries
  2740. * sizeof(wait_queue_head_t);
  2741. if (!slab_is_available()) {
  2742. zone->wait_table = (wait_queue_head_t *)
  2743. alloc_bootmem_node(pgdat, alloc_size);
  2744. } else {
  2745. /*
  2746. * This case means that a zone whose size was 0 gets new memory
  2747. * via memory hot-add.
  2748. * But it may be the case that a new node was hot-added. In
  2749. * this case vmalloc() will not be able to use this new node's
  2750. * memory - this wait_table must be initialized to use this new
  2751. * node itself as well.
  2752. * To use this new node's memory, further consideration will be
  2753. * necessary.
  2754. */
  2755. zone->wait_table = vmalloc(alloc_size);
  2756. }
  2757. if (!zone->wait_table)
  2758. return -ENOMEM;
  2759. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2760. init_waitqueue_head(zone->wait_table + i);
  2761. return 0;
  2762. }
  2763. static int __zone_pcp_update(void *data)
  2764. {
  2765. struct zone *zone = data;
  2766. int cpu;
  2767. unsigned long batch = zone_batchsize(zone), flags;
  2768. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2769. struct per_cpu_pageset *pset;
  2770. struct per_cpu_pages *pcp;
  2771. pset = zone_pcp(zone, cpu);
  2772. pcp = &pset->pcp;
  2773. local_irq_save(flags);
  2774. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  2775. setup_pageset(pset, batch);
  2776. local_irq_restore(flags);
  2777. }
  2778. return 0;
  2779. }
  2780. void zone_pcp_update(struct zone *zone)
  2781. {
  2782. stop_machine(__zone_pcp_update, zone, NULL);
  2783. }
  2784. static __meminit void zone_pcp_init(struct zone *zone)
  2785. {
  2786. int cpu;
  2787. unsigned long batch = zone_batchsize(zone);
  2788. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2789. #ifdef CONFIG_NUMA
  2790. /* Early boot. Slab allocator not functional yet */
  2791. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2792. setup_pageset(&boot_pageset[cpu],0);
  2793. #else
  2794. setup_pageset(zone_pcp(zone,cpu), batch);
  2795. #endif
  2796. }
  2797. if (zone->present_pages)
  2798. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2799. zone->name, zone->present_pages, batch);
  2800. }
  2801. __meminit int init_currently_empty_zone(struct zone *zone,
  2802. unsigned long zone_start_pfn,
  2803. unsigned long size,
  2804. enum memmap_context context)
  2805. {
  2806. struct pglist_data *pgdat = zone->zone_pgdat;
  2807. int ret;
  2808. ret = zone_wait_table_init(zone, size);
  2809. if (ret)
  2810. return ret;
  2811. pgdat->nr_zones = zone_idx(zone) + 1;
  2812. zone->zone_start_pfn = zone_start_pfn;
  2813. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2814. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2815. pgdat->node_id,
  2816. (unsigned long)zone_idx(zone),
  2817. zone_start_pfn, (zone_start_pfn + size));
  2818. zone_init_free_lists(zone);
  2819. return 0;
  2820. }
  2821. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2822. /*
  2823. * Basic iterator support. Return the first range of PFNs for a node
  2824. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2825. */
  2826. static int __meminit first_active_region_index_in_nid(int nid)
  2827. {
  2828. int i;
  2829. for (i = 0; i < nr_nodemap_entries; i++)
  2830. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2831. return i;
  2832. return -1;
  2833. }
  2834. /*
  2835. * Basic iterator support. Return the next active range of PFNs for a node
  2836. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2837. */
  2838. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2839. {
  2840. for (index = index + 1; index < nr_nodemap_entries; index++)
  2841. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2842. return index;
  2843. return -1;
  2844. }
  2845. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2846. /*
  2847. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2848. * Architectures may implement their own version but if add_active_range()
  2849. * was used and there are no special requirements, this is a convenient
  2850. * alternative
  2851. */
  2852. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2853. {
  2854. int i;
  2855. for (i = 0; i < nr_nodemap_entries; i++) {
  2856. unsigned long start_pfn = early_node_map[i].start_pfn;
  2857. unsigned long end_pfn = early_node_map[i].end_pfn;
  2858. if (start_pfn <= pfn && pfn < end_pfn)
  2859. return early_node_map[i].nid;
  2860. }
  2861. /* This is a memory hole */
  2862. return -1;
  2863. }
  2864. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2865. int __meminit early_pfn_to_nid(unsigned long pfn)
  2866. {
  2867. int nid;
  2868. nid = __early_pfn_to_nid(pfn);
  2869. if (nid >= 0)
  2870. return nid;
  2871. /* just returns 0 */
  2872. return 0;
  2873. }
  2874. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2875. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2876. {
  2877. int nid;
  2878. nid = __early_pfn_to_nid(pfn);
  2879. if (nid >= 0 && nid != node)
  2880. return false;
  2881. return true;
  2882. }
  2883. #endif
  2884. /* Basic iterator support to walk early_node_map[] */
  2885. #define for_each_active_range_index_in_nid(i, nid) \
  2886. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2887. i = next_active_region_index_in_nid(i, nid))
  2888. /**
  2889. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2890. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2891. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2892. *
  2893. * If an architecture guarantees that all ranges registered with
  2894. * add_active_ranges() contain no holes and may be freed, this
  2895. * this function may be used instead of calling free_bootmem() manually.
  2896. */
  2897. void __init free_bootmem_with_active_regions(int nid,
  2898. unsigned long max_low_pfn)
  2899. {
  2900. int i;
  2901. for_each_active_range_index_in_nid(i, nid) {
  2902. unsigned long size_pages = 0;
  2903. unsigned long end_pfn = early_node_map[i].end_pfn;
  2904. if (early_node_map[i].start_pfn >= max_low_pfn)
  2905. continue;
  2906. if (end_pfn > max_low_pfn)
  2907. end_pfn = max_low_pfn;
  2908. size_pages = end_pfn - early_node_map[i].start_pfn;
  2909. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2910. PFN_PHYS(early_node_map[i].start_pfn),
  2911. size_pages << PAGE_SHIFT);
  2912. }
  2913. }
  2914. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2915. {
  2916. int i;
  2917. int ret;
  2918. for_each_active_range_index_in_nid(i, nid) {
  2919. ret = work_fn(early_node_map[i].start_pfn,
  2920. early_node_map[i].end_pfn, data);
  2921. if (ret)
  2922. break;
  2923. }
  2924. }
  2925. /**
  2926. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2927. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2928. *
  2929. * If an architecture guarantees that all ranges registered with
  2930. * add_active_ranges() contain no holes and may be freed, this
  2931. * function may be used instead of calling memory_present() manually.
  2932. */
  2933. void __init sparse_memory_present_with_active_regions(int nid)
  2934. {
  2935. int i;
  2936. for_each_active_range_index_in_nid(i, nid)
  2937. memory_present(early_node_map[i].nid,
  2938. early_node_map[i].start_pfn,
  2939. early_node_map[i].end_pfn);
  2940. }
  2941. /**
  2942. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2943. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2944. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2945. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2946. *
  2947. * It returns the start and end page frame of a node based on information
  2948. * provided by an arch calling add_active_range(). If called for a node
  2949. * with no available memory, a warning is printed and the start and end
  2950. * PFNs will be 0.
  2951. */
  2952. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2953. unsigned long *start_pfn, unsigned long *end_pfn)
  2954. {
  2955. int i;
  2956. *start_pfn = -1UL;
  2957. *end_pfn = 0;
  2958. for_each_active_range_index_in_nid(i, nid) {
  2959. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2960. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2961. }
  2962. if (*start_pfn == -1UL)
  2963. *start_pfn = 0;
  2964. }
  2965. /*
  2966. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2967. * assumption is made that zones within a node are ordered in monotonic
  2968. * increasing memory addresses so that the "highest" populated zone is used
  2969. */
  2970. static void __init find_usable_zone_for_movable(void)
  2971. {
  2972. int zone_index;
  2973. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2974. if (zone_index == ZONE_MOVABLE)
  2975. continue;
  2976. if (arch_zone_highest_possible_pfn[zone_index] >
  2977. arch_zone_lowest_possible_pfn[zone_index])
  2978. break;
  2979. }
  2980. VM_BUG_ON(zone_index == -1);
  2981. movable_zone = zone_index;
  2982. }
  2983. /*
  2984. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2985. * because it is sized independant of architecture. Unlike the other zones,
  2986. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2987. * in each node depending on the size of each node and how evenly kernelcore
  2988. * is distributed. This helper function adjusts the zone ranges
  2989. * provided by the architecture for a given node by using the end of the
  2990. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2991. * zones within a node are in order of monotonic increases memory addresses
  2992. */
  2993. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2994. unsigned long zone_type,
  2995. unsigned long node_start_pfn,
  2996. unsigned long node_end_pfn,
  2997. unsigned long *zone_start_pfn,
  2998. unsigned long *zone_end_pfn)
  2999. {
  3000. /* Only adjust if ZONE_MOVABLE is on this node */
  3001. if (zone_movable_pfn[nid]) {
  3002. /* Size ZONE_MOVABLE */
  3003. if (zone_type == ZONE_MOVABLE) {
  3004. *zone_start_pfn = zone_movable_pfn[nid];
  3005. *zone_end_pfn = min(node_end_pfn,
  3006. arch_zone_highest_possible_pfn[movable_zone]);
  3007. /* Adjust for ZONE_MOVABLE starting within this range */
  3008. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3009. *zone_end_pfn > zone_movable_pfn[nid]) {
  3010. *zone_end_pfn = zone_movable_pfn[nid];
  3011. /* Check if this whole range is within ZONE_MOVABLE */
  3012. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3013. *zone_start_pfn = *zone_end_pfn;
  3014. }
  3015. }
  3016. /*
  3017. * Return the number of pages a zone spans in a node, including holes
  3018. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3019. */
  3020. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3021. unsigned long zone_type,
  3022. unsigned long *ignored)
  3023. {
  3024. unsigned long node_start_pfn, node_end_pfn;
  3025. unsigned long zone_start_pfn, zone_end_pfn;
  3026. /* Get the start and end of the node and zone */
  3027. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3028. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3029. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3030. adjust_zone_range_for_zone_movable(nid, zone_type,
  3031. node_start_pfn, node_end_pfn,
  3032. &zone_start_pfn, &zone_end_pfn);
  3033. /* Check that this node has pages within the zone's required range */
  3034. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3035. return 0;
  3036. /* Move the zone boundaries inside the node if necessary */
  3037. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3038. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3039. /* Return the spanned pages */
  3040. return zone_end_pfn - zone_start_pfn;
  3041. }
  3042. /*
  3043. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3044. * then all holes in the requested range will be accounted for.
  3045. */
  3046. static unsigned long __meminit __absent_pages_in_range(int nid,
  3047. unsigned long range_start_pfn,
  3048. unsigned long range_end_pfn)
  3049. {
  3050. int i = 0;
  3051. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3052. unsigned long start_pfn;
  3053. /* Find the end_pfn of the first active range of pfns in the node */
  3054. i = first_active_region_index_in_nid(nid);
  3055. if (i == -1)
  3056. return 0;
  3057. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3058. /* Account for ranges before physical memory on this node */
  3059. if (early_node_map[i].start_pfn > range_start_pfn)
  3060. hole_pages = prev_end_pfn - range_start_pfn;
  3061. /* Find all holes for the zone within the node */
  3062. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3063. /* No need to continue if prev_end_pfn is outside the zone */
  3064. if (prev_end_pfn >= range_end_pfn)
  3065. break;
  3066. /* Make sure the end of the zone is not within the hole */
  3067. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3068. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3069. /* Update the hole size cound and move on */
  3070. if (start_pfn > range_start_pfn) {
  3071. BUG_ON(prev_end_pfn > start_pfn);
  3072. hole_pages += start_pfn - prev_end_pfn;
  3073. }
  3074. prev_end_pfn = early_node_map[i].end_pfn;
  3075. }
  3076. /* Account for ranges past physical memory on this node */
  3077. if (range_end_pfn > prev_end_pfn)
  3078. hole_pages += range_end_pfn -
  3079. max(range_start_pfn, prev_end_pfn);
  3080. return hole_pages;
  3081. }
  3082. /**
  3083. * absent_pages_in_range - Return number of page frames in holes within a range
  3084. * @start_pfn: The start PFN to start searching for holes
  3085. * @end_pfn: The end PFN to stop searching for holes
  3086. *
  3087. * It returns the number of pages frames in memory holes within a range.
  3088. */
  3089. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3090. unsigned long end_pfn)
  3091. {
  3092. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3093. }
  3094. /* Return the number of page frames in holes in a zone on a node */
  3095. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3096. unsigned long zone_type,
  3097. unsigned long *ignored)
  3098. {
  3099. unsigned long node_start_pfn, node_end_pfn;
  3100. unsigned long zone_start_pfn, zone_end_pfn;
  3101. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3102. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3103. node_start_pfn);
  3104. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3105. node_end_pfn);
  3106. adjust_zone_range_for_zone_movable(nid, zone_type,
  3107. node_start_pfn, node_end_pfn,
  3108. &zone_start_pfn, &zone_end_pfn);
  3109. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3110. }
  3111. #else
  3112. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3113. unsigned long zone_type,
  3114. unsigned long *zones_size)
  3115. {
  3116. return zones_size[zone_type];
  3117. }
  3118. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3119. unsigned long zone_type,
  3120. unsigned long *zholes_size)
  3121. {
  3122. if (!zholes_size)
  3123. return 0;
  3124. return zholes_size[zone_type];
  3125. }
  3126. #endif
  3127. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3128. unsigned long *zones_size, unsigned long *zholes_size)
  3129. {
  3130. unsigned long realtotalpages, totalpages = 0;
  3131. enum zone_type i;
  3132. for (i = 0; i < MAX_NR_ZONES; i++)
  3133. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3134. zones_size);
  3135. pgdat->node_spanned_pages = totalpages;
  3136. realtotalpages = totalpages;
  3137. for (i = 0; i < MAX_NR_ZONES; i++)
  3138. realtotalpages -=
  3139. zone_absent_pages_in_node(pgdat->node_id, i,
  3140. zholes_size);
  3141. pgdat->node_present_pages = realtotalpages;
  3142. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3143. realtotalpages);
  3144. }
  3145. #ifndef CONFIG_SPARSEMEM
  3146. /*
  3147. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3148. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3149. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3150. * round what is now in bits to nearest long in bits, then return it in
  3151. * bytes.
  3152. */
  3153. static unsigned long __init usemap_size(unsigned long zonesize)
  3154. {
  3155. unsigned long usemapsize;
  3156. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3157. usemapsize = usemapsize >> pageblock_order;
  3158. usemapsize *= NR_PAGEBLOCK_BITS;
  3159. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3160. return usemapsize / 8;
  3161. }
  3162. static void __init setup_usemap(struct pglist_data *pgdat,
  3163. struct zone *zone, unsigned long zonesize)
  3164. {
  3165. unsigned long usemapsize = usemap_size(zonesize);
  3166. zone->pageblock_flags = NULL;
  3167. if (usemapsize)
  3168. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3169. }
  3170. #else
  3171. static void inline setup_usemap(struct pglist_data *pgdat,
  3172. struct zone *zone, unsigned long zonesize) {}
  3173. #endif /* CONFIG_SPARSEMEM */
  3174. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3175. /* Return a sensible default order for the pageblock size. */
  3176. static inline int pageblock_default_order(void)
  3177. {
  3178. if (HPAGE_SHIFT > PAGE_SHIFT)
  3179. return HUGETLB_PAGE_ORDER;
  3180. return MAX_ORDER-1;
  3181. }
  3182. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3183. static inline void __init set_pageblock_order(unsigned int order)
  3184. {
  3185. /* Check that pageblock_nr_pages has not already been setup */
  3186. if (pageblock_order)
  3187. return;
  3188. /*
  3189. * Assume the largest contiguous order of interest is a huge page.
  3190. * This value may be variable depending on boot parameters on IA64
  3191. */
  3192. pageblock_order = order;
  3193. }
  3194. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3195. /*
  3196. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3197. * and pageblock_default_order() are unused as pageblock_order is set
  3198. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3199. * pageblock_order based on the kernel config
  3200. */
  3201. static inline int pageblock_default_order(unsigned int order)
  3202. {
  3203. return MAX_ORDER-1;
  3204. }
  3205. #define set_pageblock_order(x) do {} while (0)
  3206. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3207. /*
  3208. * Set up the zone data structures:
  3209. * - mark all pages reserved
  3210. * - mark all memory queues empty
  3211. * - clear the memory bitmaps
  3212. */
  3213. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3214. unsigned long *zones_size, unsigned long *zholes_size)
  3215. {
  3216. enum zone_type j;
  3217. int nid = pgdat->node_id;
  3218. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3219. int ret;
  3220. pgdat_resize_init(pgdat);
  3221. pgdat->nr_zones = 0;
  3222. init_waitqueue_head(&pgdat->kswapd_wait);
  3223. pgdat->kswapd_max_order = 0;
  3224. pgdat_page_cgroup_init(pgdat);
  3225. for (j = 0; j < MAX_NR_ZONES; j++) {
  3226. struct zone *zone = pgdat->node_zones + j;
  3227. unsigned long size, realsize, memmap_pages;
  3228. enum lru_list l;
  3229. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3230. realsize = size - zone_absent_pages_in_node(nid, j,
  3231. zholes_size);
  3232. /*
  3233. * Adjust realsize so that it accounts for how much memory
  3234. * is used by this zone for memmap. This affects the watermark
  3235. * and per-cpu initialisations
  3236. */
  3237. memmap_pages =
  3238. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3239. if (realsize >= memmap_pages) {
  3240. realsize -= memmap_pages;
  3241. if (memmap_pages)
  3242. printk(KERN_DEBUG
  3243. " %s zone: %lu pages used for memmap\n",
  3244. zone_names[j], memmap_pages);
  3245. } else
  3246. printk(KERN_WARNING
  3247. " %s zone: %lu pages exceeds realsize %lu\n",
  3248. zone_names[j], memmap_pages, realsize);
  3249. /* Account for reserved pages */
  3250. if (j == 0 && realsize > dma_reserve) {
  3251. realsize -= dma_reserve;
  3252. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3253. zone_names[0], dma_reserve);
  3254. }
  3255. if (!is_highmem_idx(j))
  3256. nr_kernel_pages += realsize;
  3257. nr_all_pages += realsize;
  3258. zone->spanned_pages = size;
  3259. zone->present_pages = realsize;
  3260. #ifdef CONFIG_NUMA
  3261. zone->node = nid;
  3262. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3263. / 100;
  3264. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3265. #endif
  3266. zone->name = zone_names[j];
  3267. spin_lock_init(&zone->lock);
  3268. spin_lock_init(&zone->lru_lock);
  3269. zone_seqlock_init(zone);
  3270. zone->zone_pgdat = pgdat;
  3271. zone->prev_priority = DEF_PRIORITY;
  3272. zone_pcp_init(zone);
  3273. for_each_lru(l) {
  3274. INIT_LIST_HEAD(&zone->lru[l].list);
  3275. zone->lru[l].nr_saved_scan = 0;
  3276. }
  3277. zone->reclaim_stat.recent_rotated[0] = 0;
  3278. zone->reclaim_stat.recent_rotated[1] = 0;
  3279. zone->reclaim_stat.recent_scanned[0] = 0;
  3280. zone->reclaim_stat.recent_scanned[1] = 0;
  3281. zap_zone_vm_stats(zone);
  3282. zone->flags = 0;
  3283. if (!size)
  3284. continue;
  3285. set_pageblock_order(pageblock_default_order());
  3286. setup_usemap(pgdat, zone, size);
  3287. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3288. size, MEMMAP_EARLY);
  3289. BUG_ON(ret);
  3290. memmap_init(size, nid, j, zone_start_pfn);
  3291. zone_start_pfn += size;
  3292. }
  3293. }
  3294. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3295. {
  3296. /* Skip empty nodes */
  3297. if (!pgdat->node_spanned_pages)
  3298. return;
  3299. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3300. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3301. if (!pgdat->node_mem_map) {
  3302. unsigned long size, start, end;
  3303. struct page *map;
  3304. /*
  3305. * The zone's endpoints aren't required to be MAX_ORDER
  3306. * aligned but the node_mem_map endpoints must be in order
  3307. * for the buddy allocator to function correctly.
  3308. */
  3309. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3310. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3311. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3312. size = (end - start) * sizeof(struct page);
  3313. map = alloc_remap(pgdat->node_id, size);
  3314. if (!map)
  3315. map = alloc_bootmem_node(pgdat, size);
  3316. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3317. }
  3318. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3319. /*
  3320. * With no DISCONTIG, the global mem_map is just set as node 0's
  3321. */
  3322. if (pgdat == NODE_DATA(0)) {
  3323. mem_map = NODE_DATA(0)->node_mem_map;
  3324. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3325. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3326. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3327. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3328. }
  3329. #endif
  3330. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3331. }
  3332. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3333. unsigned long node_start_pfn, unsigned long *zholes_size)
  3334. {
  3335. pg_data_t *pgdat = NODE_DATA(nid);
  3336. pgdat->node_id = nid;
  3337. pgdat->node_start_pfn = node_start_pfn;
  3338. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3339. alloc_node_mem_map(pgdat);
  3340. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3341. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3342. nid, (unsigned long)pgdat,
  3343. (unsigned long)pgdat->node_mem_map);
  3344. #endif
  3345. free_area_init_core(pgdat, zones_size, zholes_size);
  3346. }
  3347. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3348. #if MAX_NUMNODES > 1
  3349. /*
  3350. * Figure out the number of possible node ids.
  3351. */
  3352. static void __init setup_nr_node_ids(void)
  3353. {
  3354. unsigned int node;
  3355. unsigned int highest = 0;
  3356. for_each_node_mask(node, node_possible_map)
  3357. highest = node;
  3358. nr_node_ids = highest + 1;
  3359. }
  3360. #else
  3361. static inline void setup_nr_node_ids(void)
  3362. {
  3363. }
  3364. #endif
  3365. /**
  3366. * add_active_range - Register a range of PFNs backed by physical memory
  3367. * @nid: The node ID the range resides on
  3368. * @start_pfn: The start PFN of the available physical memory
  3369. * @end_pfn: The end PFN of the available physical memory
  3370. *
  3371. * These ranges are stored in an early_node_map[] and later used by
  3372. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3373. * range spans a memory hole, it is up to the architecture to ensure
  3374. * the memory is not freed by the bootmem allocator. If possible
  3375. * the range being registered will be merged with existing ranges.
  3376. */
  3377. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3378. unsigned long end_pfn)
  3379. {
  3380. int i;
  3381. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3382. "Entering add_active_range(%d, %#lx, %#lx) "
  3383. "%d entries of %d used\n",
  3384. nid, start_pfn, end_pfn,
  3385. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3386. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3387. /* Merge with existing active regions if possible */
  3388. for (i = 0; i < nr_nodemap_entries; i++) {
  3389. if (early_node_map[i].nid != nid)
  3390. continue;
  3391. /* Skip if an existing region covers this new one */
  3392. if (start_pfn >= early_node_map[i].start_pfn &&
  3393. end_pfn <= early_node_map[i].end_pfn)
  3394. return;
  3395. /* Merge forward if suitable */
  3396. if (start_pfn <= early_node_map[i].end_pfn &&
  3397. end_pfn > early_node_map[i].end_pfn) {
  3398. early_node_map[i].end_pfn = end_pfn;
  3399. return;
  3400. }
  3401. /* Merge backward if suitable */
  3402. if (start_pfn < early_node_map[i].end_pfn &&
  3403. end_pfn >= early_node_map[i].start_pfn) {
  3404. early_node_map[i].start_pfn = start_pfn;
  3405. return;
  3406. }
  3407. }
  3408. /* Check that early_node_map is large enough */
  3409. if (i >= MAX_ACTIVE_REGIONS) {
  3410. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3411. MAX_ACTIVE_REGIONS);
  3412. return;
  3413. }
  3414. early_node_map[i].nid = nid;
  3415. early_node_map[i].start_pfn = start_pfn;
  3416. early_node_map[i].end_pfn = end_pfn;
  3417. nr_nodemap_entries = i + 1;
  3418. }
  3419. /**
  3420. * remove_active_range - Shrink an existing registered range of PFNs
  3421. * @nid: The node id the range is on that should be shrunk
  3422. * @start_pfn: The new PFN of the range
  3423. * @end_pfn: The new PFN of the range
  3424. *
  3425. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3426. * The map is kept near the end physical page range that has already been
  3427. * registered. This function allows an arch to shrink an existing registered
  3428. * range.
  3429. */
  3430. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3431. unsigned long end_pfn)
  3432. {
  3433. int i, j;
  3434. int removed = 0;
  3435. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3436. nid, start_pfn, end_pfn);
  3437. /* Find the old active region end and shrink */
  3438. for_each_active_range_index_in_nid(i, nid) {
  3439. if (early_node_map[i].start_pfn >= start_pfn &&
  3440. early_node_map[i].end_pfn <= end_pfn) {
  3441. /* clear it */
  3442. early_node_map[i].start_pfn = 0;
  3443. early_node_map[i].end_pfn = 0;
  3444. removed = 1;
  3445. continue;
  3446. }
  3447. if (early_node_map[i].start_pfn < start_pfn &&
  3448. early_node_map[i].end_pfn > start_pfn) {
  3449. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3450. early_node_map[i].end_pfn = start_pfn;
  3451. if (temp_end_pfn > end_pfn)
  3452. add_active_range(nid, end_pfn, temp_end_pfn);
  3453. continue;
  3454. }
  3455. if (early_node_map[i].start_pfn >= start_pfn &&
  3456. early_node_map[i].end_pfn > end_pfn &&
  3457. early_node_map[i].start_pfn < end_pfn) {
  3458. early_node_map[i].start_pfn = end_pfn;
  3459. continue;
  3460. }
  3461. }
  3462. if (!removed)
  3463. return;
  3464. /* remove the blank ones */
  3465. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3466. if (early_node_map[i].nid != nid)
  3467. continue;
  3468. if (early_node_map[i].end_pfn)
  3469. continue;
  3470. /* we found it, get rid of it */
  3471. for (j = i; j < nr_nodemap_entries - 1; j++)
  3472. memcpy(&early_node_map[j], &early_node_map[j+1],
  3473. sizeof(early_node_map[j]));
  3474. j = nr_nodemap_entries - 1;
  3475. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3476. nr_nodemap_entries--;
  3477. }
  3478. }
  3479. /**
  3480. * remove_all_active_ranges - Remove all currently registered regions
  3481. *
  3482. * During discovery, it may be found that a table like SRAT is invalid
  3483. * and an alternative discovery method must be used. This function removes
  3484. * all currently registered regions.
  3485. */
  3486. void __init remove_all_active_ranges(void)
  3487. {
  3488. memset(early_node_map, 0, sizeof(early_node_map));
  3489. nr_nodemap_entries = 0;
  3490. }
  3491. /* Compare two active node_active_regions */
  3492. static int __init cmp_node_active_region(const void *a, const void *b)
  3493. {
  3494. struct node_active_region *arange = (struct node_active_region *)a;
  3495. struct node_active_region *brange = (struct node_active_region *)b;
  3496. /* Done this way to avoid overflows */
  3497. if (arange->start_pfn > brange->start_pfn)
  3498. return 1;
  3499. if (arange->start_pfn < brange->start_pfn)
  3500. return -1;
  3501. return 0;
  3502. }
  3503. /* sort the node_map by start_pfn */
  3504. static void __init sort_node_map(void)
  3505. {
  3506. sort(early_node_map, (size_t)nr_nodemap_entries,
  3507. sizeof(struct node_active_region),
  3508. cmp_node_active_region, NULL);
  3509. }
  3510. /* Find the lowest pfn for a node */
  3511. static unsigned long __init find_min_pfn_for_node(int nid)
  3512. {
  3513. int i;
  3514. unsigned long min_pfn = ULONG_MAX;
  3515. /* Assuming a sorted map, the first range found has the starting pfn */
  3516. for_each_active_range_index_in_nid(i, nid)
  3517. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3518. if (min_pfn == ULONG_MAX) {
  3519. printk(KERN_WARNING
  3520. "Could not find start_pfn for node %d\n", nid);
  3521. return 0;
  3522. }
  3523. return min_pfn;
  3524. }
  3525. /**
  3526. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3527. *
  3528. * It returns the minimum PFN based on information provided via
  3529. * add_active_range().
  3530. */
  3531. unsigned long __init find_min_pfn_with_active_regions(void)
  3532. {
  3533. return find_min_pfn_for_node(MAX_NUMNODES);
  3534. }
  3535. /*
  3536. * early_calculate_totalpages()
  3537. * Sum pages in active regions for movable zone.
  3538. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3539. */
  3540. static unsigned long __init early_calculate_totalpages(void)
  3541. {
  3542. int i;
  3543. unsigned long totalpages = 0;
  3544. for (i = 0; i < nr_nodemap_entries; i++) {
  3545. unsigned long pages = early_node_map[i].end_pfn -
  3546. early_node_map[i].start_pfn;
  3547. totalpages += pages;
  3548. if (pages)
  3549. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3550. }
  3551. return totalpages;
  3552. }
  3553. /*
  3554. * Find the PFN the Movable zone begins in each node. Kernel memory
  3555. * is spread evenly between nodes as long as the nodes have enough
  3556. * memory. When they don't, some nodes will have more kernelcore than
  3557. * others
  3558. */
  3559. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3560. {
  3561. int i, nid;
  3562. unsigned long usable_startpfn;
  3563. unsigned long kernelcore_node, kernelcore_remaining;
  3564. /* save the state before borrow the nodemask */
  3565. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3566. unsigned long totalpages = early_calculate_totalpages();
  3567. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3568. /*
  3569. * If movablecore was specified, calculate what size of
  3570. * kernelcore that corresponds so that memory usable for
  3571. * any allocation type is evenly spread. If both kernelcore
  3572. * and movablecore are specified, then the value of kernelcore
  3573. * will be used for required_kernelcore if it's greater than
  3574. * what movablecore would have allowed.
  3575. */
  3576. if (required_movablecore) {
  3577. unsigned long corepages;
  3578. /*
  3579. * Round-up so that ZONE_MOVABLE is at least as large as what
  3580. * was requested by the user
  3581. */
  3582. required_movablecore =
  3583. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3584. corepages = totalpages - required_movablecore;
  3585. required_kernelcore = max(required_kernelcore, corepages);
  3586. }
  3587. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3588. if (!required_kernelcore)
  3589. goto out;
  3590. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3591. find_usable_zone_for_movable();
  3592. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3593. restart:
  3594. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3595. kernelcore_node = required_kernelcore / usable_nodes;
  3596. for_each_node_state(nid, N_HIGH_MEMORY) {
  3597. /*
  3598. * Recalculate kernelcore_node if the division per node
  3599. * now exceeds what is necessary to satisfy the requested
  3600. * amount of memory for the kernel
  3601. */
  3602. if (required_kernelcore < kernelcore_node)
  3603. kernelcore_node = required_kernelcore / usable_nodes;
  3604. /*
  3605. * As the map is walked, we track how much memory is usable
  3606. * by the kernel using kernelcore_remaining. When it is
  3607. * 0, the rest of the node is usable by ZONE_MOVABLE
  3608. */
  3609. kernelcore_remaining = kernelcore_node;
  3610. /* Go through each range of PFNs within this node */
  3611. for_each_active_range_index_in_nid(i, nid) {
  3612. unsigned long start_pfn, end_pfn;
  3613. unsigned long size_pages;
  3614. start_pfn = max(early_node_map[i].start_pfn,
  3615. zone_movable_pfn[nid]);
  3616. end_pfn = early_node_map[i].end_pfn;
  3617. if (start_pfn >= end_pfn)
  3618. continue;
  3619. /* Account for what is only usable for kernelcore */
  3620. if (start_pfn < usable_startpfn) {
  3621. unsigned long kernel_pages;
  3622. kernel_pages = min(end_pfn, usable_startpfn)
  3623. - start_pfn;
  3624. kernelcore_remaining -= min(kernel_pages,
  3625. kernelcore_remaining);
  3626. required_kernelcore -= min(kernel_pages,
  3627. required_kernelcore);
  3628. /* Continue if range is now fully accounted */
  3629. if (end_pfn <= usable_startpfn) {
  3630. /*
  3631. * Push zone_movable_pfn to the end so
  3632. * that if we have to rebalance
  3633. * kernelcore across nodes, we will
  3634. * not double account here
  3635. */
  3636. zone_movable_pfn[nid] = end_pfn;
  3637. continue;
  3638. }
  3639. start_pfn = usable_startpfn;
  3640. }
  3641. /*
  3642. * The usable PFN range for ZONE_MOVABLE is from
  3643. * start_pfn->end_pfn. Calculate size_pages as the
  3644. * number of pages used as kernelcore
  3645. */
  3646. size_pages = end_pfn - start_pfn;
  3647. if (size_pages > kernelcore_remaining)
  3648. size_pages = kernelcore_remaining;
  3649. zone_movable_pfn[nid] = start_pfn + size_pages;
  3650. /*
  3651. * Some kernelcore has been met, update counts and
  3652. * break if the kernelcore for this node has been
  3653. * satisified
  3654. */
  3655. required_kernelcore -= min(required_kernelcore,
  3656. size_pages);
  3657. kernelcore_remaining -= size_pages;
  3658. if (!kernelcore_remaining)
  3659. break;
  3660. }
  3661. }
  3662. /*
  3663. * If there is still required_kernelcore, we do another pass with one
  3664. * less node in the count. This will push zone_movable_pfn[nid] further
  3665. * along on the nodes that still have memory until kernelcore is
  3666. * satisified
  3667. */
  3668. usable_nodes--;
  3669. if (usable_nodes && required_kernelcore > usable_nodes)
  3670. goto restart;
  3671. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3672. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3673. zone_movable_pfn[nid] =
  3674. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3675. out:
  3676. /* restore the node_state */
  3677. node_states[N_HIGH_MEMORY] = saved_node_state;
  3678. }
  3679. /* Any regular memory on that node ? */
  3680. static void check_for_regular_memory(pg_data_t *pgdat)
  3681. {
  3682. #ifdef CONFIG_HIGHMEM
  3683. enum zone_type zone_type;
  3684. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3685. struct zone *zone = &pgdat->node_zones[zone_type];
  3686. if (zone->present_pages)
  3687. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3688. }
  3689. #endif
  3690. }
  3691. /**
  3692. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3693. * @max_zone_pfn: an array of max PFNs for each zone
  3694. *
  3695. * This will call free_area_init_node() for each active node in the system.
  3696. * Using the page ranges provided by add_active_range(), the size of each
  3697. * zone in each node and their holes is calculated. If the maximum PFN
  3698. * between two adjacent zones match, it is assumed that the zone is empty.
  3699. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3700. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3701. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3702. * at arch_max_dma_pfn.
  3703. */
  3704. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3705. {
  3706. unsigned long nid;
  3707. int i;
  3708. /* Sort early_node_map as initialisation assumes it is sorted */
  3709. sort_node_map();
  3710. /* Record where the zone boundaries are */
  3711. memset(arch_zone_lowest_possible_pfn, 0,
  3712. sizeof(arch_zone_lowest_possible_pfn));
  3713. memset(arch_zone_highest_possible_pfn, 0,
  3714. sizeof(arch_zone_highest_possible_pfn));
  3715. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3716. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3717. for (i = 1; i < MAX_NR_ZONES; i++) {
  3718. if (i == ZONE_MOVABLE)
  3719. continue;
  3720. arch_zone_lowest_possible_pfn[i] =
  3721. arch_zone_highest_possible_pfn[i-1];
  3722. arch_zone_highest_possible_pfn[i] =
  3723. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3724. }
  3725. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3726. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3727. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3728. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3729. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3730. /* Print out the zone ranges */
  3731. printk("Zone PFN ranges:\n");
  3732. for (i = 0; i < MAX_NR_ZONES; i++) {
  3733. if (i == ZONE_MOVABLE)
  3734. continue;
  3735. printk(" %-8s %0#10lx -> %0#10lx\n",
  3736. zone_names[i],
  3737. arch_zone_lowest_possible_pfn[i],
  3738. arch_zone_highest_possible_pfn[i]);
  3739. }
  3740. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3741. printk("Movable zone start PFN for each node\n");
  3742. for (i = 0; i < MAX_NUMNODES; i++) {
  3743. if (zone_movable_pfn[i])
  3744. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3745. }
  3746. /* Print out the early_node_map[] */
  3747. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3748. for (i = 0; i < nr_nodemap_entries; i++)
  3749. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3750. early_node_map[i].start_pfn,
  3751. early_node_map[i].end_pfn);
  3752. /* Initialise every node */
  3753. mminit_verify_pageflags_layout();
  3754. setup_nr_node_ids();
  3755. for_each_online_node(nid) {
  3756. pg_data_t *pgdat = NODE_DATA(nid);
  3757. free_area_init_node(nid, NULL,
  3758. find_min_pfn_for_node(nid), NULL);
  3759. /* Any memory on that node */
  3760. if (pgdat->node_present_pages)
  3761. node_set_state(nid, N_HIGH_MEMORY);
  3762. check_for_regular_memory(pgdat);
  3763. }
  3764. }
  3765. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3766. {
  3767. unsigned long long coremem;
  3768. if (!p)
  3769. return -EINVAL;
  3770. coremem = memparse(p, &p);
  3771. *core = coremem >> PAGE_SHIFT;
  3772. /* Paranoid check that UL is enough for the coremem value */
  3773. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3774. return 0;
  3775. }
  3776. /*
  3777. * kernelcore=size sets the amount of memory for use for allocations that
  3778. * cannot be reclaimed or migrated.
  3779. */
  3780. static int __init cmdline_parse_kernelcore(char *p)
  3781. {
  3782. return cmdline_parse_core(p, &required_kernelcore);
  3783. }
  3784. /*
  3785. * movablecore=size sets the amount of memory for use for allocations that
  3786. * can be reclaimed or migrated.
  3787. */
  3788. static int __init cmdline_parse_movablecore(char *p)
  3789. {
  3790. return cmdline_parse_core(p, &required_movablecore);
  3791. }
  3792. early_param("kernelcore", cmdline_parse_kernelcore);
  3793. early_param("movablecore", cmdline_parse_movablecore);
  3794. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3795. /**
  3796. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3797. * @new_dma_reserve: The number of pages to mark reserved
  3798. *
  3799. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3800. * In the DMA zone, a significant percentage may be consumed by kernel image
  3801. * and other unfreeable allocations which can skew the watermarks badly. This
  3802. * function may optionally be used to account for unfreeable pages in the
  3803. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3804. * smaller per-cpu batchsize.
  3805. */
  3806. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3807. {
  3808. dma_reserve = new_dma_reserve;
  3809. }
  3810. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3811. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3812. EXPORT_SYMBOL(contig_page_data);
  3813. #endif
  3814. void __init free_area_init(unsigned long *zones_size)
  3815. {
  3816. free_area_init_node(0, zones_size,
  3817. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3818. }
  3819. static int page_alloc_cpu_notify(struct notifier_block *self,
  3820. unsigned long action, void *hcpu)
  3821. {
  3822. int cpu = (unsigned long)hcpu;
  3823. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3824. drain_pages(cpu);
  3825. /*
  3826. * Spill the event counters of the dead processor
  3827. * into the current processors event counters.
  3828. * This artificially elevates the count of the current
  3829. * processor.
  3830. */
  3831. vm_events_fold_cpu(cpu);
  3832. /*
  3833. * Zero the differential counters of the dead processor
  3834. * so that the vm statistics are consistent.
  3835. *
  3836. * This is only okay since the processor is dead and cannot
  3837. * race with what we are doing.
  3838. */
  3839. refresh_cpu_vm_stats(cpu);
  3840. }
  3841. return NOTIFY_OK;
  3842. }
  3843. void __init page_alloc_init(void)
  3844. {
  3845. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3846. }
  3847. /*
  3848. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3849. * or min_free_kbytes changes.
  3850. */
  3851. static void calculate_totalreserve_pages(void)
  3852. {
  3853. struct pglist_data *pgdat;
  3854. unsigned long reserve_pages = 0;
  3855. enum zone_type i, j;
  3856. for_each_online_pgdat(pgdat) {
  3857. for (i = 0; i < MAX_NR_ZONES; i++) {
  3858. struct zone *zone = pgdat->node_zones + i;
  3859. unsigned long max = 0;
  3860. /* Find valid and maximum lowmem_reserve in the zone */
  3861. for (j = i; j < MAX_NR_ZONES; j++) {
  3862. if (zone->lowmem_reserve[j] > max)
  3863. max = zone->lowmem_reserve[j];
  3864. }
  3865. /* we treat the high watermark as reserved pages. */
  3866. max += high_wmark_pages(zone);
  3867. if (max > zone->present_pages)
  3868. max = zone->present_pages;
  3869. reserve_pages += max;
  3870. }
  3871. }
  3872. totalreserve_pages = reserve_pages;
  3873. }
  3874. /*
  3875. * setup_per_zone_lowmem_reserve - called whenever
  3876. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3877. * has a correct pages reserved value, so an adequate number of
  3878. * pages are left in the zone after a successful __alloc_pages().
  3879. */
  3880. static void setup_per_zone_lowmem_reserve(void)
  3881. {
  3882. struct pglist_data *pgdat;
  3883. enum zone_type j, idx;
  3884. for_each_online_pgdat(pgdat) {
  3885. for (j = 0; j < MAX_NR_ZONES; j++) {
  3886. struct zone *zone = pgdat->node_zones + j;
  3887. unsigned long present_pages = zone->present_pages;
  3888. zone->lowmem_reserve[j] = 0;
  3889. idx = j;
  3890. while (idx) {
  3891. struct zone *lower_zone;
  3892. idx--;
  3893. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3894. sysctl_lowmem_reserve_ratio[idx] = 1;
  3895. lower_zone = pgdat->node_zones + idx;
  3896. lower_zone->lowmem_reserve[j] = present_pages /
  3897. sysctl_lowmem_reserve_ratio[idx];
  3898. present_pages += lower_zone->present_pages;
  3899. }
  3900. }
  3901. }
  3902. /* update totalreserve_pages */
  3903. calculate_totalreserve_pages();
  3904. }
  3905. /**
  3906. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3907. * or when memory is hot-{added|removed}
  3908. *
  3909. * Ensures that the watermark[min,low,high] values for each zone are set
  3910. * correctly with respect to min_free_kbytes.
  3911. */
  3912. void setup_per_zone_wmarks(void)
  3913. {
  3914. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3915. unsigned long lowmem_pages = 0;
  3916. struct zone *zone;
  3917. unsigned long flags;
  3918. /* Calculate total number of !ZONE_HIGHMEM pages */
  3919. for_each_zone(zone) {
  3920. if (!is_highmem(zone))
  3921. lowmem_pages += zone->present_pages;
  3922. }
  3923. for_each_zone(zone) {
  3924. u64 tmp;
  3925. spin_lock_irqsave(&zone->lock, flags);
  3926. tmp = (u64)pages_min * zone->present_pages;
  3927. do_div(tmp, lowmem_pages);
  3928. if (is_highmem(zone)) {
  3929. /*
  3930. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3931. * need highmem pages, so cap pages_min to a small
  3932. * value here.
  3933. *
  3934. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3935. * deltas controls asynch page reclaim, and so should
  3936. * not be capped for highmem.
  3937. */
  3938. int min_pages;
  3939. min_pages = zone->present_pages / 1024;
  3940. if (min_pages < SWAP_CLUSTER_MAX)
  3941. min_pages = SWAP_CLUSTER_MAX;
  3942. if (min_pages > 128)
  3943. min_pages = 128;
  3944. zone->watermark[WMARK_MIN] = min_pages;
  3945. } else {
  3946. /*
  3947. * If it's a lowmem zone, reserve a number of pages
  3948. * proportionate to the zone's size.
  3949. */
  3950. zone->watermark[WMARK_MIN] = tmp;
  3951. }
  3952. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3953. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3954. setup_zone_migrate_reserve(zone);
  3955. spin_unlock_irqrestore(&zone->lock, flags);
  3956. }
  3957. /* update totalreserve_pages */
  3958. calculate_totalreserve_pages();
  3959. }
  3960. /*
  3961. * The inactive anon list should be small enough that the VM never has to
  3962. * do too much work, but large enough that each inactive page has a chance
  3963. * to be referenced again before it is swapped out.
  3964. *
  3965. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3966. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3967. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3968. * the anonymous pages are kept on the inactive list.
  3969. *
  3970. * total target max
  3971. * memory ratio inactive anon
  3972. * -------------------------------------
  3973. * 10MB 1 5MB
  3974. * 100MB 1 50MB
  3975. * 1GB 3 250MB
  3976. * 10GB 10 0.9GB
  3977. * 100GB 31 3GB
  3978. * 1TB 101 10GB
  3979. * 10TB 320 32GB
  3980. */
  3981. void calculate_zone_inactive_ratio(struct zone *zone)
  3982. {
  3983. unsigned int gb, ratio;
  3984. /* Zone size in gigabytes */
  3985. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3986. if (gb)
  3987. ratio = int_sqrt(10 * gb);
  3988. else
  3989. ratio = 1;
  3990. zone->inactive_ratio = ratio;
  3991. }
  3992. static void __init setup_per_zone_inactive_ratio(void)
  3993. {
  3994. struct zone *zone;
  3995. for_each_zone(zone)
  3996. calculate_zone_inactive_ratio(zone);
  3997. }
  3998. /*
  3999. * Initialise min_free_kbytes.
  4000. *
  4001. * For small machines we want it small (128k min). For large machines
  4002. * we want it large (64MB max). But it is not linear, because network
  4003. * bandwidth does not increase linearly with machine size. We use
  4004. *
  4005. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4006. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4007. *
  4008. * which yields
  4009. *
  4010. * 16MB: 512k
  4011. * 32MB: 724k
  4012. * 64MB: 1024k
  4013. * 128MB: 1448k
  4014. * 256MB: 2048k
  4015. * 512MB: 2896k
  4016. * 1024MB: 4096k
  4017. * 2048MB: 5792k
  4018. * 4096MB: 8192k
  4019. * 8192MB: 11584k
  4020. * 16384MB: 16384k
  4021. */
  4022. static int __init init_per_zone_wmark_min(void)
  4023. {
  4024. unsigned long lowmem_kbytes;
  4025. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4026. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4027. if (min_free_kbytes < 128)
  4028. min_free_kbytes = 128;
  4029. if (min_free_kbytes > 65536)
  4030. min_free_kbytes = 65536;
  4031. setup_per_zone_wmarks();
  4032. setup_per_zone_lowmem_reserve();
  4033. setup_per_zone_inactive_ratio();
  4034. return 0;
  4035. }
  4036. module_init(init_per_zone_wmark_min)
  4037. /*
  4038. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4039. * that we can call two helper functions whenever min_free_kbytes
  4040. * changes.
  4041. */
  4042. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4043. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4044. {
  4045. proc_dointvec(table, write, file, buffer, length, ppos);
  4046. if (write)
  4047. setup_per_zone_wmarks();
  4048. return 0;
  4049. }
  4050. #ifdef CONFIG_NUMA
  4051. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4052. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4053. {
  4054. struct zone *zone;
  4055. int rc;
  4056. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4057. if (rc)
  4058. return rc;
  4059. for_each_zone(zone)
  4060. zone->min_unmapped_pages = (zone->present_pages *
  4061. sysctl_min_unmapped_ratio) / 100;
  4062. return 0;
  4063. }
  4064. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4065. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4066. {
  4067. struct zone *zone;
  4068. int rc;
  4069. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4070. if (rc)
  4071. return rc;
  4072. for_each_zone(zone)
  4073. zone->min_slab_pages = (zone->present_pages *
  4074. sysctl_min_slab_ratio) / 100;
  4075. return 0;
  4076. }
  4077. #endif
  4078. /*
  4079. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4080. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4081. * whenever sysctl_lowmem_reserve_ratio changes.
  4082. *
  4083. * The reserve ratio obviously has absolutely no relation with the
  4084. * minimum watermarks. The lowmem reserve ratio can only make sense
  4085. * if in function of the boot time zone sizes.
  4086. */
  4087. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4088. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4089. {
  4090. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4091. setup_per_zone_lowmem_reserve();
  4092. return 0;
  4093. }
  4094. /*
  4095. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4096. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4097. * can have before it gets flushed back to buddy allocator.
  4098. */
  4099. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4100. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  4101. {
  4102. struct zone *zone;
  4103. unsigned int cpu;
  4104. int ret;
  4105. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  4106. if (!write || (ret == -EINVAL))
  4107. return ret;
  4108. for_each_populated_zone(zone) {
  4109. for_each_online_cpu(cpu) {
  4110. unsigned long high;
  4111. high = zone->present_pages / percpu_pagelist_fraction;
  4112. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  4113. }
  4114. }
  4115. return 0;
  4116. }
  4117. int hashdist = HASHDIST_DEFAULT;
  4118. #ifdef CONFIG_NUMA
  4119. static int __init set_hashdist(char *str)
  4120. {
  4121. if (!str)
  4122. return 0;
  4123. hashdist = simple_strtoul(str, &str, 0);
  4124. return 1;
  4125. }
  4126. __setup("hashdist=", set_hashdist);
  4127. #endif
  4128. /*
  4129. * allocate a large system hash table from bootmem
  4130. * - it is assumed that the hash table must contain an exact power-of-2
  4131. * quantity of entries
  4132. * - limit is the number of hash buckets, not the total allocation size
  4133. */
  4134. void *__init alloc_large_system_hash(const char *tablename,
  4135. unsigned long bucketsize,
  4136. unsigned long numentries,
  4137. int scale,
  4138. int flags,
  4139. unsigned int *_hash_shift,
  4140. unsigned int *_hash_mask,
  4141. unsigned long limit)
  4142. {
  4143. unsigned long long max = limit;
  4144. unsigned long log2qty, size;
  4145. void *table = NULL;
  4146. /* allow the kernel cmdline to have a say */
  4147. if (!numentries) {
  4148. /* round applicable memory size up to nearest megabyte */
  4149. numentries = nr_kernel_pages;
  4150. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4151. numentries >>= 20 - PAGE_SHIFT;
  4152. numentries <<= 20 - PAGE_SHIFT;
  4153. /* limit to 1 bucket per 2^scale bytes of low memory */
  4154. if (scale > PAGE_SHIFT)
  4155. numentries >>= (scale - PAGE_SHIFT);
  4156. else
  4157. numentries <<= (PAGE_SHIFT - scale);
  4158. /* Make sure we've got at least a 0-order allocation.. */
  4159. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4160. numentries = PAGE_SIZE / bucketsize;
  4161. }
  4162. numentries = roundup_pow_of_two(numentries);
  4163. /* limit allocation size to 1/16 total memory by default */
  4164. if (max == 0) {
  4165. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4166. do_div(max, bucketsize);
  4167. }
  4168. if (numentries > max)
  4169. numentries = max;
  4170. log2qty = ilog2(numentries);
  4171. do {
  4172. size = bucketsize << log2qty;
  4173. if (flags & HASH_EARLY)
  4174. table = alloc_bootmem_nopanic(size);
  4175. else if (hashdist)
  4176. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4177. else {
  4178. /*
  4179. * If bucketsize is not a power-of-two, we may free
  4180. * some pages at the end of hash table which
  4181. * alloc_pages_exact() automatically does
  4182. */
  4183. if (get_order(size) < MAX_ORDER) {
  4184. table = alloc_pages_exact(size, GFP_ATOMIC);
  4185. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4186. }
  4187. }
  4188. } while (!table && size > PAGE_SIZE && --log2qty);
  4189. if (!table)
  4190. panic("Failed to allocate %s hash table\n", tablename);
  4191. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4192. tablename,
  4193. (1U << log2qty),
  4194. ilog2(size) - PAGE_SHIFT,
  4195. size);
  4196. if (_hash_shift)
  4197. *_hash_shift = log2qty;
  4198. if (_hash_mask)
  4199. *_hash_mask = (1 << log2qty) - 1;
  4200. return table;
  4201. }
  4202. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4203. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4204. unsigned long pfn)
  4205. {
  4206. #ifdef CONFIG_SPARSEMEM
  4207. return __pfn_to_section(pfn)->pageblock_flags;
  4208. #else
  4209. return zone->pageblock_flags;
  4210. #endif /* CONFIG_SPARSEMEM */
  4211. }
  4212. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4213. {
  4214. #ifdef CONFIG_SPARSEMEM
  4215. pfn &= (PAGES_PER_SECTION-1);
  4216. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4217. #else
  4218. pfn = pfn - zone->zone_start_pfn;
  4219. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4220. #endif /* CONFIG_SPARSEMEM */
  4221. }
  4222. /**
  4223. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4224. * @page: The page within the block of interest
  4225. * @start_bitidx: The first bit of interest to retrieve
  4226. * @end_bitidx: The last bit of interest
  4227. * returns pageblock_bits flags
  4228. */
  4229. unsigned long get_pageblock_flags_group(struct page *page,
  4230. int start_bitidx, int end_bitidx)
  4231. {
  4232. struct zone *zone;
  4233. unsigned long *bitmap;
  4234. unsigned long pfn, bitidx;
  4235. unsigned long flags = 0;
  4236. unsigned long value = 1;
  4237. zone = page_zone(page);
  4238. pfn = page_to_pfn(page);
  4239. bitmap = get_pageblock_bitmap(zone, pfn);
  4240. bitidx = pfn_to_bitidx(zone, pfn);
  4241. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4242. if (test_bit(bitidx + start_bitidx, bitmap))
  4243. flags |= value;
  4244. return flags;
  4245. }
  4246. /**
  4247. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4248. * @page: The page within the block of interest
  4249. * @start_bitidx: The first bit of interest
  4250. * @end_bitidx: The last bit of interest
  4251. * @flags: The flags to set
  4252. */
  4253. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4254. int start_bitidx, int end_bitidx)
  4255. {
  4256. struct zone *zone;
  4257. unsigned long *bitmap;
  4258. unsigned long pfn, bitidx;
  4259. unsigned long value = 1;
  4260. zone = page_zone(page);
  4261. pfn = page_to_pfn(page);
  4262. bitmap = get_pageblock_bitmap(zone, pfn);
  4263. bitidx = pfn_to_bitidx(zone, pfn);
  4264. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4265. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4266. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4267. if (flags & value)
  4268. __set_bit(bitidx + start_bitidx, bitmap);
  4269. else
  4270. __clear_bit(bitidx + start_bitidx, bitmap);
  4271. }
  4272. /*
  4273. * This is designed as sub function...plz see page_isolation.c also.
  4274. * set/clear page block's type to be ISOLATE.
  4275. * page allocater never alloc memory from ISOLATE block.
  4276. */
  4277. int set_migratetype_isolate(struct page *page)
  4278. {
  4279. struct zone *zone;
  4280. unsigned long flags;
  4281. int ret = -EBUSY;
  4282. int zone_idx;
  4283. zone = page_zone(page);
  4284. zone_idx = zone_idx(zone);
  4285. spin_lock_irqsave(&zone->lock, flags);
  4286. /*
  4287. * In future, more migrate types will be able to be isolation target.
  4288. */
  4289. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
  4290. zone_idx != ZONE_MOVABLE)
  4291. goto out;
  4292. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4293. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4294. ret = 0;
  4295. out:
  4296. spin_unlock_irqrestore(&zone->lock, flags);
  4297. if (!ret)
  4298. drain_all_pages();
  4299. return ret;
  4300. }
  4301. void unset_migratetype_isolate(struct page *page)
  4302. {
  4303. struct zone *zone;
  4304. unsigned long flags;
  4305. zone = page_zone(page);
  4306. spin_lock_irqsave(&zone->lock, flags);
  4307. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4308. goto out;
  4309. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4310. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4311. out:
  4312. spin_unlock_irqrestore(&zone->lock, flags);
  4313. }
  4314. #ifdef CONFIG_MEMORY_HOTREMOVE
  4315. /*
  4316. * All pages in the range must be isolated before calling this.
  4317. */
  4318. void
  4319. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4320. {
  4321. struct page *page;
  4322. struct zone *zone;
  4323. int order, i;
  4324. unsigned long pfn;
  4325. unsigned long flags;
  4326. /* find the first valid pfn */
  4327. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4328. if (pfn_valid(pfn))
  4329. break;
  4330. if (pfn == end_pfn)
  4331. return;
  4332. zone = page_zone(pfn_to_page(pfn));
  4333. spin_lock_irqsave(&zone->lock, flags);
  4334. pfn = start_pfn;
  4335. while (pfn < end_pfn) {
  4336. if (!pfn_valid(pfn)) {
  4337. pfn++;
  4338. continue;
  4339. }
  4340. page = pfn_to_page(pfn);
  4341. BUG_ON(page_count(page));
  4342. BUG_ON(!PageBuddy(page));
  4343. order = page_order(page);
  4344. #ifdef CONFIG_DEBUG_VM
  4345. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4346. pfn, 1 << order, end_pfn);
  4347. #endif
  4348. list_del(&page->lru);
  4349. rmv_page_order(page);
  4350. zone->free_area[order].nr_free--;
  4351. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4352. - (1UL << order));
  4353. for (i = 0; i < (1 << order); i++)
  4354. SetPageReserved((page+i));
  4355. pfn += (1 << order);
  4356. }
  4357. spin_unlock_irqrestore(&zone->lock, flags);
  4358. }
  4359. #endif