omap-aes.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for OMAP AES HW acceleration.
  5. *
  6. * Copyright (c) 2010 Nokia Corporation
  7. * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
  8. * Copyright (c) 2011 Texas Instruments Incorporated
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. *
  14. */
  15. #define pr_fmt(fmt) "%s: " fmt, __func__
  16. #include <linux/err.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/errno.h>
  20. #include <linux/kernel.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dmaengine.h>
  25. #include <linux/omap-dma.h>
  26. #include <linux/pm_runtime.h>
  27. #include <linux/of.h>
  28. #include <linux/of_device.h>
  29. #include <linux/of_address.h>
  30. #include <linux/io.h>
  31. #include <linux/crypto.h>
  32. #include <linux/interrupt.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/aes.h>
  35. #define DST_MAXBURST 4
  36. #define DMA_MIN (DST_MAXBURST * sizeof(u32))
  37. /* OMAP TRM gives bitfields as start:end, where start is the higher bit
  38. number. For example 7:0 */
  39. #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
  40. #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
  41. #define AES_REG_KEY(dd, x) ((dd)->pdata->key_ofs - \
  42. ((x ^ 0x01) * 0x04))
  43. #define AES_REG_IV(dd, x) ((dd)->pdata->iv_ofs + ((x) * 0x04))
  44. #define AES_REG_CTRL(dd) ((dd)->pdata->ctrl_ofs)
  45. #define AES_REG_CTRL_CTR_WIDTH (1 << 7)
  46. #define AES_REG_CTRL_CTR (1 << 6)
  47. #define AES_REG_CTRL_CBC (1 << 5)
  48. #define AES_REG_CTRL_KEY_SIZE (3 << 3)
  49. #define AES_REG_CTRL_DIRECTION (1 << 2)
  50. #define AES_REG_CTRL_INPUT_READY (1 << 1)
  51. #define AES_REG_CTRL_OUTPUT_READY (1 << 0)
  52. #define AES_REG_DATA_N(dd, x) ((dd)->pdata->data_ofs + ((x) * 0x04))
  53. #define AES_REG_REV(dd) ((dd)->pdata->rev_ofs)
  54. #define AES_REG_MASK(dd) ((dd)->pdata->mask_ofs)
  55. #define AES_REG_MASK_SIDLE (1 << 6)
  56. #define AES_REG_MASK_START (1 << 5)
  57. #define AES_REG_MASK_DMA_OUT_EN (1 << 3)
  58. #define AES_REG_MASK_DMA_IN_EN (1 << 2)
  59. #define AES_REG_MASK_SOFTRESET (1 << 1)
  60. #define AES_REG_AUTOIDLE (1 << 0)
  61. #define AES_REG_LENGTH_N(x) (0x54 + ((x) * 0x04))
  62. #define DEFAULT_TIMEOUT (5*HZ)
  63. #define FLAGS_MODE_MASK 0x000f
  64. #define FLAGS_ENCRYPT BIT(0)
  65. #define FLAGS_CBC BIT(1)
  66. #define FLAGS_GIV BIT(2)
  67. #define FLAGS_INIT BIT(4)
  68. #define FLAGS_FAST BIT(5)
  69. #define FLAGS_BUSY BIT(6)
  70. struct omap_aes_ctx {
  71. struct omap_aes_dev *dd;
  72. int keylen;
  73. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  74. unsigned long flags;
  75. };
  76. struct omap_aes_reqctx {
  77. unsigned long mode;
  78. };
  79. #define OMAP_AES_QUEUE_LENGTH 1
  80. #define OMAP_AES_CACHE_SIZE 0
  81. struct omap_aes_pdata {
  82. void (*trigger)(struct omap_aes_dev *dd, int length);
  83. u32 key_ofs;
  84. u32 iv_ofs;
  85. u32 ctrl_ofs;
  86. u32 data_ofs;
  87. u32 rev_ofs;
  88. u32 mask_ofs;
  89. u32 dma_enable_in;
  90. u32 dma_enable_out;
  91. u32 dma_start;
  92. u32 major_mask;
  93. u32 major_shift;
  94. u32 minor_mask;
  95. u32 minor_shift;
  96. };
  97. struct omap_aes_dev {
  98. struct list_head list;
  99. unsigned long phys_base;
  100. void __iomem *io_base;
  101. struct omap_aes_ctx *ctx;
  102. struct device *dev;
  103. unsigned long flags;
  104. int err;
  105. spinlock_t lock;
  106. struct crypto_queue queue;
  107. struct tasklet_struct done_task;
  108. struct tasklet_struct queue_task;
  109. struct ablkcipher_request *req;
  110. size_t total;
  111. struct scatterlist *in_sg;
  112. struct scatterlist in_sgl;
  113. size_t in_offset;
  114. struct scatterlist *out_sg;
  115. struct scatterlist out_sgl;
  116. size_t out_offset;
  117. size_t buflen;
  118. void *buf_in;
  119. size_t dma_size;
  120. int dma_in;
  121. struct dma_chan *dma_lch_in;
  122. dma_addr_t dma_addr_in;
  123. void *buf_out;
  124. int dma_out;
  125. struct dma_chan *dma_lch_out;
  126. dma_addr_t dma_addr_out;
  127. const struct omap_aes_pdata *pdata;
  128. };
  129. /* keep registered devices data here */
  130. static LIST_HEAD(dev_list);
  131. static DEFINE_SPINLOCK(list_lock);
  132. static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
  133. {
  134. return __raw_readl(dd->io_base + offset);
  135. }
  136. static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
  137. u32 value)
  138. {
  139. __raw_writel(value, dd->io_base + offset);
  140. }
  141. static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
  142. u32 value, u32 mask)
  143. {
  144. u32 val;
  145. val = omap_aes_read(dd, offset);
  146. val &= ~mask;
  147. val |= value;
  148. omap_aes_write(dd, offset, val);
  149. }
  150. static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
  151. u32 *value, int count)
  152. {
  153. for (; count--; value++, offset += 4)
  154. omap_aes_write(dd, offset, *value);
  155. }
  156. static int omap_aes_hw_init(struct omap_aes_dev *dd)
  157. {
  158. /*
  159. * clocks are enabled when request starts and disabled when finished.
  160. * It may be long delays between requests.
  161. * Device might go to off mode to save power.
  162. */
  163. pm_runtime_get_sync(dd->dev);
  164. if (!(dd->flags & FLAGS_INIT)) {
  165. dd->flags |= FLAGS_INIT;
  166. dd->err = 0;
  167. }
  168. return 0;
  169. }
  170. static int omap_aes_write_ctrl(struct omap_aes_dev *dd)
  171. {
  172. unsigned int key32;
  173. int i, err;
  174. u32 val, mask;
  175. err = omap_aes_hw_init(dd);
  176. if (err)
  177. return err;
  178. key32 = dd->ctx->keylen / sizeof(u32);
  179. /* it seems a key should always be set even if it has not changed */
  180. for (i = 0; i < key32; i++) {
  181. omap_aes_write(dd, AES_REG_KEY(dd, i),
  182. __le32_to_cpu(dd->ctx->key[i]));
  183. }
  184. if ((dd->flags & FLAGS_CBC) && dd->req->info)
  185. omap_aes_write_n(dd, AES_REG_IV(dd, 0), dd->req->info, 4);
  186. val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
  187. if (dd->flags & FLAGS_CBC)
  188. val |= AES_REG_CTRL_CBC;
  189. if (dd->flags & FLAGS_ENCRYPT)
  190. val |= AES_REG_CTRL_DIRECTION;
  191. mask = AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION |
  192. AES_REG_CTRL_KEY_SIZE;
  193. omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, mask);
  194. return 0;
  195. }
  196. static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length)
  197. {
  198. u32 mask, val;
  199. val = dd->pdata->dma_start;
  200. if (dd->dma_lch_out != NULL)
  201. val |= dd->pdata->dma_enable_out;
  202. if (dd->dma_lch_in != NULL)
  203. val |= dd->pdata->dma_enable_in;
  204. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  205. dd->pdata->dma_start;
  206. omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask);
  207. }
  208. static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length)
  209. {
  210. omap_aes_write(dd, AES_REG_LENGTH_N(0), length);
  211. omap_aes_write(dd, AES_REG_LENGTH_N(1), 0);
  212. omap_aes_dma_trigger_omap2(dd, length);
  213. }
  214. static void omap_aes_dma_stop(struct omap_aes_dev *dd)
  215. {
  216. u32 mask;
  217. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  218. dd->pdata->dma_start;
  219. omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask);
  220. }
  221. static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx)
  222. {
  223. struct omap_aes_dev *dd = NULL, *tmp;
  224. spin_lock_bh(&list_lock);
  225. if (!ctx->dd) {
  226. list_for_each_entry(tmp, &dev_list, list) {
  227. /* FIXME: take fist available aes core */
  228. dd = tmp;
  229. break;
  230. }
  231. ctx->dd = dd;
  232. } else {
  233. /* already found before */
  234. dd = ctx->dd;
  235. }
  236. spin_unlock_bh(&list_lock);
  237. return dd;
  238. }
  239. static void omap_aes_dma_out_callback(void *data)
  240. {
  241. struct omap_aes_dev *dd = data;
  242. /* dma_lch_out - completed */
  243. tasklet_schedule(&dd->done_task);
  244. }
  245. static int omap_aes_dma_init(struct omap_aes_dev *dd)
  246. {
  247. int err = -ENOMEM;
  248. dma_cap_mask_t mask;
  249. dd->dma_lch_out = NULL;
  250. dd->dma_lch_in = NULL;
  251. dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
  252. dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
  253. dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE;
  254. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  255. if (!dd->buf_in || !dd->buf_out) {
  256. dev_err(dd->dev, "unable to alloc pages.\n");
  257. goto err_alloc;
  258. }
  259. /* MAP here */
  260. dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen,
  261. DMA_TO_DEVICE);
  262. if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
  263. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  264. err = -EINVAL;
  265. goto err_map_in;
  266. }
  267. dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen,
  268. DMA_FROM_DEVICE);
  269. if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
  270. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  271. err = -EINVAL;
  272. goto err_map_out;
  273. }
  274. dma_cap_zero(mask);
  275. dma_cap_set(DMA_SLAVE, mask);
  276. dd->dma_lch_in = dma_request_slave_channel_compat(mask,
  277. omap_dma_filter_fn,
  278. &dd->dma_in,
  279. dd->dev, "rx");
  280. if (!dd->dma_lch_in) {
  281. dev_err(dd->dev, "Unable to request in DMA channel\n");
  282. goto err_dma_in;
  283. }
  284. dd->dma_lch_out = dma_request_slave_channel_compat(mask,
  285. omap_dma_filter_fn,
  286. &dd->dma_out,
  287. dd->dev, "tx");
  288. if (!dd->dma_lch_out) {
  289. dev_err(dd->dev, "Unable to request out DMA channel\n");
  290. goto err_dma_out;
  291. }
  292. return 0;
  293. err_dma_out:
  294. dma_release_channel(dd->dma_lch_in);
  295. err_dma_in:
  296. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  297. DMA_FROM_DEVICE);
  298. err_map_out:
  299. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
  300. err_map_in:
  301. free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
  302. free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
  303. err_alloc:
  304. if (err)
  305. pr_err("error: %d\n", err);
  306. return err;
  307. }
  308. static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
  309. {
  310. dma_release_channel(dd->dma_lch_out);
  311. dma_release_channel(dd->dma_lch_in);
  312. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  313. DMA_FROM_DEVICE);
  314. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
  315. free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
  316. free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
  317. }
  318. static void sg_copy_buf(void *buf, struct scatterlist *sg,
  319. unsigned int start, unsigned int nbytes, int out)
  320. {
  321. struct scatter_walk walk;
  322. if (!nbytes)
  323. return;
  324. scatterwalk_start(&walk, sg);
  325. scatterwalk_advance(&walk, start);
  326. scatterwalk_copychunks(buf, &walk, nbytes, out);
  327. scatterwalk_done(&walk, out, 0);
  328. }
  329. static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf,
  330. size_t buflen, size_t total, int out)
  331. {
  332. unsigned int count, off = 0;
  333. while (buflen && total) {
  334. count = min((*sg)->length - *offset, total);
  335. count = min(count, buflen);
  336. if (!count)
  337. return off;
  338. /*
  339. * buflen and total are AES_BLOCK_SIZE size aligned,
  340. * so count should be also aligned
  341. */
  342. sg_copy_buf(buf + off, *sg, *offset, count, out);
  343. off += count;
  344. buflen -= count;
  345. *offset += count;
  346. total -= count;
  347. if (*offset == (*sg)->length) {
  348. *sg = sg_next(*sg);
  349. if (*sg)
  350. *offset = 0;
  351. else
  352. total = 0;
  353. }
  354. }
  355. return off;
  356. }
  357. static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
  358. struct scatterlist *in_sg, struct scatterlist *out_sg)
  359. {
  360. struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  361. struct omap_aes_dev *dd = ctx->dd;
  362. struct dma_async_tx_descriptor *tx_in, *tx_out;
  363. struct dma_slave_config cfg;
  364. dma_addr_t dma_addr_in = sg_dma_address(in_sg);
  365. int ret, length = sg_dma_len(in_sg);
  366. pr_debug("len: %d\n", length);
  367. dd->dma_size = length;
  368. if (!(dd->flags & FLAGS_FAST))
  369. dma_sync_single_for_device(dd->dev, dma_addr_in, length,
  370. DMA_TO_DEVICE);
  371. memset(&cfg, 0, sizeof(cfg));
  372. cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  373. cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  374. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  375. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  376. cfg.src_maxburst = DST_MAXBURST;
  377. cfg.dst_maxburst = DST_MAXBURST;
  378. /* IN */
  379. ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
  380. if (ret) {
  381. dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
  382. ret);
  383. return ret;
  384. }
  385. tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, 1,
  386. DMA_MEM_TO_DEV,
  387. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  388. if (!tx_in) {
  389. dev_err(dd->dev, "IN prep_slave_sg() failed\n");
  390. return -EINVAL;
  391. }
  392. /* No callback necessary */
  393. tx_in->callback_param = dd;
  394. /* OUT */
  395. ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
  396. if (ret) {
  397. dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
  398. ret);
  399. return ret;
  400. }
  401. tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, 1,
  402. DMA_DEV_TO_MEM,
  403. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  404. if (!tx_out) {
  405. dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
  406. return -EINVAL;
  407. }
  408. tx_out->callback = omap_aes_dma_out_callback;
  409. tx_out->callback_param = dd;
  410. dmaengine_submit(tx_in);
  411. dmaengine_submit(tx_out);
  412. dma_async_issue_pending(dd->dma_lch_in);
  413. dma_async_issue_pending(dd->dma_lch_out);
  414. /* start DMA */
  415. dd->pdata->trigger(dd, length);
  416. return 0;
  417. }
  418. static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
  419. {
  420. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
  421. crypto_ablkcipher_reqtfm(dd->req));
  422. int err, fast = 0, in, out;
  423. size_t count;
  424. dma_addr_t addr_in, addr_out;
  425. struct scatterlist *in_sg, *out_sg;
  426. int len32;
  427. pr_debug("total: %d\n", dd->total);
  428. if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) {
  429. /* check for alignment */
  430. in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32));
  431. out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32));
  432. fast = in && out;
  433. }
  434. if (fast) {
  435. count = min(dd->total, sg_dma_len(dd->in_sg));
  436. count = min(count, sg_dma_len(dd->out_sg));
  437. if (count != dd->total) {
  438. pr_err("request length != buffer length\n");
  439. return -EINVAL;
  440. }
  441. pr_debug("fast\n");
  442. err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  443. if (!err) {
  444. dev_err(dd->dev, "dma_map_sg() error\n");
  445. return -EINVAL;
  446. }
  447. err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  448. if (!err) {
  449. dev_err(dd->dev, "dma_map_sg() error\n");
  450. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  451. return -EINVAL;
  452. }
  453. addr_in = sg_dma_address(dd->in_sg);
  454. addr_out = sg_dma_address(dd->out_sg);
  455. in_sg = dd->in_sg;
  456. out_sg = dd->out_sg;
  457. dd->flags |= FLAGS_FAST;
  458. } else {
  459. /* use cache buffers */
  460. count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in,
  461. dd->buflen, dd->total, 0);
  462. len32 = DIV_ROUND_UP(count, DMA_MIN) * DMA_MIN;
  463. /*
  464. * The data going into the AES module has been copied
  465. * to a local buffer and the data coming out will go
  466. * into a local buffer so set up local SG entries for
  467. * both.
  468. */
  469. sg_init_table(&dd->in_sgl, 1);
  470. dd->in_sgl.offset = dd->in_offset;
  471. sg_dma_len(&dd->in_sgl) = len32;
  472. sg_dma_address(&dd->in_sgl) = dd->dma_addr_in;
  473. sg_init_table(&dd->out_sgl, 1);
  474. dd->out_sgl.offset = dd->out_offset;
  475. sg_dma_len(&dd->out_sgl) = len32;
  476. sg_dma_address(&dd->out_sgl) = dd->dma_addr_out;
  477. in_sg = &dd->in_sgl;
  478. out_sg = &dd->out_sgl;
  479. addr_in = dd->dma_addr_in;
  480. addr_out = dd->dma_addr_out;
  481. dd->flags &= ~FLAGS_FAST;
  482. }
  483. dd->total -= count;
  484. err = omap_aes_crypt_dma(tfm, in_sg, out_sg);
  485. if (err) {
  486. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  487. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
  488. }
  489. return err;
  490. }
  491. static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
  492. {
  493. struct ablkcipher_request *req = dd->req;
  494. pr_debug("err: %d\n", err);
  495. pm_runtime_put_sync(dd->dev);
  496. dd->flags &= ~FLAGS_BUSY;
  497. req->base.complete(&req->base, err);
  498. }
  499. static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
  500. {
  501. int err = 0;
  502. size_t count;
  503. pr_debug("total: %d\n", dd->total);
  504. omap_aes_dma_stop(dd);
  505. dmaengine_terminate_all(dd->dma_lch_in);
  506. dmaengine_terminate_all(dd->dma_lch_out);
  507. if (dd->flags & FLAGS_FAST) {
  508. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  509. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  510. } else {
  511. dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
  512. dd->dma_size, DMA_FROM_DEVICE);
  513. /* copy data */
  514. count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out,
  515. dd->buflen, dd->dma_size, 1);
  516. if (count != dd->dma_size) {
  517. err = -EINVAL;
  518. pr_err("not all data converted: %u\n", count);
  519. }
  520. }
  521. return err;
  522. }
  523. static int omap_aes_handle_queue(struct omap_aes_dev *dd,
  524. struct ablkcipher_request *req)
  525. {
  526. struct crypto_async_request *async_req, *backlog;
  527. struct omap_aes_ctx *ctx;
  528. struct omap_aes_reqctx *rctx;
  529. unsigned long flags;
  530. int err, ret = 0;
  531. spin_lock_irqsave(&dd->lock, flags);
  532. if (req)
  533. ret = ablkcipher_enqueue_request(&dd->queue, req);
  534. if (dd->flags & FLAGS_BUSY) {
  535. spin_unlock_irqrestore(&dd->lock, flags);
  536. return ret;
  537. }
  538. backlog = crypto_get_backlog(&dd->queue);
  539. async_req = crypto_dequeue_request(&dd->queue);
  540. if (async_req)
  541. dd->flags |= FLAGS_BUSY;
  542. spin_unlock_irqrestore(&dd->lock, flags);
  543. if (!async_req)
  544. return ret;
  545. if (backlog)
  546. backlog->complete(backlog, -EINPROGRESS);
  547. req = ablkcipher_request_cast(async_req);
  548. /* assign new request to device */
  549. dd->req = req;
  550. dd->total = req->nbytes;
  551. dd->in_offset = 0;
  552. dd->in_sg = req->src;
  553. dd->out_offset = 0;
  554. dd->out_sg = req->dst;
  555. rctx = ablkcipher_request_ctx(req);
  556. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  557. rctx->mode &= FLAGS_MODE_MASK;
  558. dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
  559. dd->ctx = ctx;
  560. ctx->dd = dd;
  561. err = omap_aes_write_ctrl(dd);
  562. if (!err)
  563. err = omap_aes_crypt_dma_start(dd);
  564. if (err) {
  565. /* aes_task will not finish it, so do it here */
  566. omap_aes_finish_req(dd, err);
  567. tasklet_schedule(&dd->queue_task);
  568. }
  569. return ret; /* return ret, which is enqueue return value */
  570. }
  571. static void omap_aes_done_task(unsigned long data)
  572. {
  573. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  574. int err;
  575. pr_debug("enter\n");
  576. err = omap_aes_crypt_dma_stop(dd);
  577. err = dd->err ? : err;
  578. if (dd->total && !err) {
  579. err = omap_aes_crypt_dma_start(dd);
  580. if (!err)
  581. return; /* DMA started. Not fininishing. */
  582. }
  583. omap_aes_finish_req(dd, err);
  584. omap_aes_handle_queue(dd, NULL);
  585. pr_debug("exit\n");
  586. }
  587. static void omap_aes_queue_task(unsigned long data)
  588. {
  589. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  590. omap_aes_handle_queue(dd, NULL);
  591. }
  592. static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  593. {
  594. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
  595. crypto_ablkcipher_reqtfm(req));
  596. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  597. struct omap_aes_dev *dd;
  598. pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
  599. !!(mode & FLAGS_ENCRYPT),
  600. !!(mode & FLAGS_CBC));
  601. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  602. pr_err("request size is not exact amount of AES blocks\n");
  603. return -EINVAL;
  604. }
  605. dd = omap_aes_find_dev(ctx);
  606. if (!dd)
  607. return -ENODEV;
  608. rctx->mode = mode;
  609. return omap_aes_handle_queue(dd, req);
  610. }
  611. /* ********************** ALG API ************************************ */
  612. static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  613. unsigned int keylen)
  614. {
  615. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  616. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  617. keylen != AES_KEYSIZE_256)
  618. return -EINVAL;
  619. pr_debug("enter, keylen: %d\n", keylen);
  620. memcpy(ctx->key, key, keylen);
  621. ctx->keylen = keylen;
  622. return 0;
  623. }
  624. static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
  625. {
  626. return omap_aes_crypt(req, FLAGS_ENCRYPT);
  627. }
  628. static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
  629. {
  630. return omap_aes_crypt(req, 0);
  631. }
  632. static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
  633. {
  634. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
  635. }
  636. static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
  637. {
  638. return omap_aes_crypt(req, FLAGS_CBC);
  639. }
  640. static int omap_aes_cra_init(struct crypto_tfm *tfm)
  641. {
  642. pr_debug("enter\n");
  643. tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
  644. return 0;
  645. }
  646. static void omap_aes_cra_exit(struct crypto_tfm *tfm)
  647. {
  648. pr_debug("enter\n");
  649. }
  650. /* ********************** ALGS ************************************ */
  651. static struct crypto_alg algs[] = {
  652. {
  653. .cra_name = "ecb(aes)",
  654. .cra_driver_name = "ecb-aes-omap",
  655. .cra_priority = 100,
  656. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  657. CRYPTO_ALG_KERN_DRIVER_ONLY |
  658. CRYPTO_ALG_ASYNC,
  659. .cra_blocksize = AES_BLOCK_SIZE,
  660. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  661. .cra_alignmask = 0,
  662. .cra_type = &crypto_ablkcipher_type,
  663. .cra_module = THIS_MODULE,
  664. .cra_init = omap_aes_cra_init,
  665. .cra_exit = omap_aes_cra_exit,
  666. .cra_u.ablkcipher = {
  667. .min_keysize = AES_MIN_KEY_SIZE,
  668. .max_keysize = AES_MAX_KEY_SIZE,
  669. .setkey = omap_aes_setkey,
  670. .encrypt = omap_aes_ecb_encrypt,
  671. .decrypt = omap_aes_ecb_decrypt,
  672. }
  673. },
  674. {
  675. .cra_name = "cbc(aes)",
  676. .cra_driver_name = "cbc-aes-omap",
  677. .cra_priority = 100,
  678. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  679. CRYPTO_ALG_KERN_DRIVER_ONLY |
  680. CRYPTO_ALG_ASYNC,
  681. .cra_blocksize = AES_BLOCK_SIZE,
  682. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  683. .cra_alignmask = 0,
  684. .cra_type = &crypto_ablkcipher_type,
  685. .cra_module = THIS_MODULE,
  686. .cra_init = omap_aes_cra_init,
  687. .cra_exit = omap_aes_cra_exit,
  688. .cra_u.ablkcipher = {
  689. .min_keysize = AES_MIN_KEY_SIZE,
  690. .max_keysize = AES_MAX_KEY_SIZE,
  691. .ivsize = AES_BLOCK_SIZE,
  692. .setkey = omap_aes_setkey,
  693. .encrypt = omap_aes_cbc_encrypt,
  694. .decrypt = omap_aes_cbc_decrypt,
  695. }
  696. }
  697. };
  698. static const struct omap_aes_pdata omap_aes_pdata_omap2 = {
  699. .trigger = omap_aes_dma_trigger_omap2,
  700. .key_ofs = 0x1c,
  701. .iv_ofs = 0x20,
  702. .ctrl_ofs = 0x30,
  703. .data_ofs = 0x34,
  704. .rev_ofs = 0x44,
  705. .mask_ofs = 0x48,
  706. .dma_enable_in = BIT(2),
  707. .dma_enable_out = BIT(3),
  708. .dma_start = BIT(5),
  709. .major_mask = 0xf0,
  710. .major_shift = 4,
  711. .minor_mask = 0x0f,
  712. .minor_shift = 0,
  713. };
  714. #ifdef CONFIG_OF
  715. static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
  716. .trigger = omap_aes_dma_trigger_omap4,
  717. .key_ofs = 0x3c,
  718. .iv_ofs = 0x40,
  719. .ctrl_ofs = 0x50,
  720. .data_ofs = 0x60,
  721. .rev_ofs = 0x80,
  722. .mask_ofs = 0x84,
  723. .dma_enable_in = BIT(5),
  724. .dma_enable_out = BIT(6),
  725. .major_mask = 0x0700,
  726. .major_shift = 8,
  727. .minor_mask = 0x003f,
  728. .minor_shift = 0,
  729. };
  730. static const struct of_device_id omap_aes_of_match[] = {
  731. {
  732. .compatible = "ti,omap2-aes",
  733. .data = &omap_aes_pdata_omap2,
  734. },
  735. {
  736. .compatible = "ti,omap4-aes",
  737. .data = &omap_aes_pdata_omap4,
  738. },
  739. {},
  740. };
  741. MODULE_DEVICE_TABLE(of, omap_aes_of_match);
  742. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  743. struct device *dev, struct resource *res)
  744. {
  745. struct device_node *node = dev->of_node;
  746. const struct of_device_id *match;
  747. int err = 0;
  748. match = of_match_device(of_match_ptr(omap_aes_of_match), dev);
  749. if (!match) {
  750. dev_err(dev, "no compatible OF match\n");
  751. err = -EINVAL;
  752. goto err;
  753. }
  754. err = of_address_to_resource(node, 0, res);
  755. if (err < 0) {
  756. dev_err(dev, "can't translate OF node address\n");
  757. err = -EINVAL;
  758. goto err;
  759. }
  760. dd->dma_out = -1; /* Dummy value that's unused */
  761. dd->dma_in = -1; /* Dummy value that's unused */
  762. dd->pdata = match->data;
  763. err:
  764. return err;
  765. }
  766. #else
  767. static const struct of_device_id omap_aes_of_match[] = {
  768. {},
  769. };
  770. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  771. struct device *dev, struct resource *res)
  772. {
  773. return -EINVAL;
  774. }
  775. #endif
  776. static int omap_aes_get_res_pdev(struct omap_aes_dev *dd,
  777. struct platform_device *pdev, struct resource *res)
  778. {
  779. struct device *dev = &pdev->dev;
  780. struct resource *r;
  781. int err = 0;
  782. /* Get the base address */
  783. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  784. if (!r) {
  785. dev_err(dev, "no MEM resource info\n");
  786. err = -ENODEV;
  787. goto err;
  788. }
  789. memcpy(res, r, sizeof(*res));
  790. /* Get the DMA out channel */
  791. r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  792. if (!r) {
  793. dev_err(dev, "no DMA out resource info\n");
  794. err = -ENODEV;
  795. goto err;
  796. }
  797. dd->dma_out = r->start;
  798. /* Get the DMA in channel */
  799. r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  800. if (!r) {
  801. dev_err(dev, "no DMA in resource info\n");
  802. err = -ENODEV;
  803. goto err;
  804. }
  805. dd->dma_in = r->start;
  806. /* Only OMAP2/3 can be non-DT */
  807. dd->pdata = &omap_aes_pdata_omap2;
  808. err:
  809. return err;
  810. }
  811. static int omap_aes_probe(struct platform_device *pdev)
  812. {
  813. struct device *dev = &pdev->dev;
  814. struct omap_aes_dev *dd;
  815. struct resource res;
  816. int err = -ENOMEM, i, j;
  817. u32 reg;
  818. dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
  819. if (dd == NULL) {
  820. dev_err(dev, "unable to alloc data struct.\n");
  821. goto err_data;
  822. }
  823. dd->dev = dev;
  824. platform_set_drvdata(pdev, dd);
  825. spin_lock_init(&dd->lock);
  826. crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH);
  827. err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) :
  828. omap_aes_get_res_pdev(dd, pdev, &res);
  829. if (err)
  830. goto err_res;
  831. dd->io_base = devm_request_and_ioremap(dev, &res);
  832. if (!dd->io_base) {
  833. dev_err(dev, "can't ioremap\n");
  834. err = -ENOMEM;
  835. goto err_res;
  836. }
  837. dd->phys_base = res.start;
  838. pm_runtime_enable(dev);
  839. pm_runtime_get_sync(dev);
  840. omap_aes_dma_stop(dd);
  841. reg = omap_aes_read(dd, AES_REG_REV(dd));
  842. pm_runtime_put_sync(dev);
  843. dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
  844. (reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
  845. (reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
  846. tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
  847. tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
  848. err = omap_aes_dma_init(dd);
  849. if (err)
  850. goto err_dma;
  851. INIT_LIST_HEAD(&dd->list);
  852. spin_lock(&list_lock);
  853. list_add_tail(&dd->list, &dev_list);
  854. spin_unlock(&list_lock);
  855. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  856. pr_debug("i: %d\n", i);
  857. err = crypto_register_alg(&algs[i]);
  858. if (err)
  859. goto err_algs;
  860. }
  861. return 0;
  862. err_algs:
  863. for (j = 0; j < i; j++)
  864. crypto_unregister_alg(&algs[j]);
  865. omap_aes_dma_cleanup(dd);
  866. err_dma:
  867. tasklet_kill(&dd->done_task);
  868. tasklet_kill(&dd->queue_task);
  869. pm_runtime_disable(dev);
  870. err_res:
  871. kfree(dd);
  872. dd = NULL;
  873. err_data:
  874. dev_err(dev, "initialization failed.\n");
  875. return err;
  876. }
  877. static int omap_aes_remove(struct platform_device *pdev)
  878. {
  879. struct omap_aes_dev *dd = platform_get_drvdata(pdev);
  880. int i;
  881. if (!dd)
  882. return -ENODEV;
  883. spin_lock(&list_lock);
  884. list_del(&dd->list);
  885. spin_unlock(&list_lock);
  886. for (i = 0; i < ARRAY_SIZE(algs); i++)
  887. crypto_unregister_alg(&algs[i]);
  888. tasklet_kill(&dd->done_task);
  889. tasklet_kill(&dd->queue_task);
  890. omap_aes_dma_cleanup(dd);
  891. pm_runtime_disable(dd->dev);
  892. kfree(dd);
  893. dd = NULL;
  894. return 0;
  895. }
  896. #ifdef CONFIG_PM_SLEEP
  897. static int omap_aes_suspend(struct device *dev)
  898. {
  899. pm_runtime_put_sync(dev);
  900. return 0;
  901. }
  902. static int omap_aes_resume(struct device *dev)
  903. {
  904. pm_runtime_get_sync(dev);
  905. return 0;
  906. }
  907. #endif
  908. static const struct dev_pm_ops omap_aes_pm_ops = {
  909. SET_SYSTEM_SLEEP_PM_OPS(omap_aes_suspend, omap_aes_resume)
  910. };
  911. static struct platform_driver omap_aes_driver = {
  912. .probe = omap_aes_probe,
  913. .remove = omap_aes_remove,
  914. .driver = {
  915. .name = "omap-aes",
  916. .owner = THIS_MODULE,
  917. .pm = &omap_aes_pm_ops,
  918. .of_match_table = omap_aes_of_match,
  919. },
  920. };
  921. static int __init omap_aes_mod_init(void)
  922. {
  923. return platform_driver_register(&omap_aes_driver);
  924. }
  925. static void __exit omap_aes_mod_exit(void)
  926. {
  927. platform_driver_unregister(&omap_aes_driver);
  928. }
  929. module_init(omap_aes_mod_init);
  930. module_exit(omap_aes_mod_exit);
  931. MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
  932. MODULE_LICENSE("GPL v2");
  933. MODULE_AUTHOR("Dmitry Kasatkin");