inode.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/highuid.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/quotaops.h>
  33. #include <linux/string.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/writeback.h>
  36. #include <linux/mpage.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include "xattr.h"
  40. #include "acl.h"
  41. /*
  42. * Test whether an inode is a fast symlink.
  43. */
  44. static int ext4_inode_is_fast_symlink(struct inode *inode)
  45. {
  46. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  47. (inode->i_sb->s_blocksize >> 9) : 0;
  48. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  49. }
  50. /*
  51. * The ext4 forget function must perform a revoke if we are freeing data
  52. * which has been journaled. Metadata (eg. indirect blocks) must be
  53. * revoked in all cases.
  54. *
  55. * "bh" may be NULL: a metadata block may have been freed from memory
  56. * but there may still be a record of it in the journal, and that record
  57. * still needs to be revoked.
  58. */
  59. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  60. struct buffer_head *bh, ext4_fsblk_t blocknr)
  61. {
  62. int err;
  63. might_sleep();
  64. BUFFER_TRACE(bh, "enter");
  65. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  66. "data mode %lx\n",
  67. bh, is_metadata, inode->i_mode,
  68. test_opt(inode->i_sb, DATA_FLAGS));
  69. /* Never use the revoke function if we are doing full data
  70. * journaling: there is no need to, and a V1 superblock won't
  71. * support it. Otherwise, only skip the revoke on un-journaled
  72. * data blocks. */
  73. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  74. (!is_metadata && !ext4_should_journal_data(inode))) {
  75. if (bh) {
  76. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  77. return ext4_journal_forget(handle, bh);
  78. }
  79. return 0;
  80. }
  81. /*
  82. * data!=journal && (is_metadata || should_journal_data(inode))
  83. */
  84. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  85. err = ext4_journal_revoke(handle, blocknr, bh);
  86. if (err)
  87. ext4_abort(inode->i_sb, __FUNCTION__,
  88. "error %d when attempting revoke", err);
  89. BUFFER_TRACE(bh, "exit");
  90. return err;
  91. }
  92. /*
  93. * Work out how many blocks we need to proceed with the next chunk of a
  94. * truncate transaction.
  95. */
  96. static unsigned long blocks_for_truncate(struct inode *inode)
  97. {
  98. unsigned long needed;
  99. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  100. /* Give ourselves just enough room to cope with inodes in which
  101. * i_blocks is corrupt: we've seen disk corruptions in the past
  102. * which resulted in random data in an inode which looked enough
  103. * like a regular file for ext4 to try to delete it. Things
  104. * will go a bit crazy if that happens, but at least we should
  105. * try not to panic the whole kernel. */
  106. if (needed < 2)
  107. needed = 2;
  108. /* But we need to bound the transaction so we don't overflow the
  109. * journal. */
  110. if (needed > EXT4_MAX_TRANS_DATA)
  111. needed = EXT4_MAX_TRANS_DATA;
  112. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  113. }
  114. /*
  115. * Truncate transactions can be complex and absolutely huge. So we need to
  116. * be able to restart the transaction at a conventient checkpoint to make
  117. * sure we don't overflow the journal.
  118. *
  119. * start_transaction gets us a new handle for a truncate transaction,
  120. * and extend_transaction tries to extend the existing one a bit. If
  121. * extend fails, we need to propagate the failure up and restart the
  122. * transaction in the top-level truncate loop. --sct
  123. */
  124. static handle_t *start_transaction(struct inode *inode)
  125. {
  126. handle_t *result;
  127. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  128. if (!IS_ERR(result))
  129. return result;
  130. ext4_std_error(inode->i_sb, PTR_ERR(result));
  131. return result;
  132. }
  133. /*
  134. * Try to extend this transaction for the purposes of truncation.
  135. *
  136. * Returns 0 if we managed to create more room. If we can't create more
  137. * room, and the transaction must be restarted we return 1.
  138. */
  139. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  140. {
  141. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  142. return 0;
  143. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  144. return 0;
  145. return 1;
  146. }
  147. /*
  148. * Restart the transaction associated with *handle. This does a commit,
  149. * so before we call here everything must be consistently dirtied against
  150. * this transaction.
  151. */
  152. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  153. {
  154. jbd_debug(2, "restarting handle %p\n", handle);
  155. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  156. }
  157. /*
  158. * Called at the last iput() if i_nlink is zero.
  159. */
  160. void ext4_delete_inode (struct inode * inode)
  161. {
  162. handle_t *handle;
  163. truncate_inode_pages(&inode->i_data, 0);
  164. if (is_bad_inode(inode))
  165. goto no_delete;
  166. handle = start_transaction(inode);
  167. if (IS_ERR(handle)) {
  168. /*
  169. * If we're going to skip the normal cleanup, we still need to
  170. * make sure that the in-core orphan linked list is properly
  171. * cleaned up.
  172. */
  173. ext4_orphan_del(NULL, inode);
  174. goto no_delete;
  175. }
  176. if (IS_SYNC(inode))
  177. handle->h_sync = 1;
  178. inode->i_size = 0;
  179. if (inode->i_blocks)
  180. ext4_truncate(inode);
  181. /*
  182. * Kill off the orphan record which ext4_truncate created.
  183. * AKPM: I think this can be inside the above `if'.
  184. * Note that ext4_orphan_del() has to be able to cope with the
  185. * deletion of a non-existent orphan - this is because we don't
  186. * know if ext4_truncate() actually created an orphan record.
  187. * (Well, we could do this if we need to, but heck - it works)
  188. */
  189. ext4_orphan_del(handle, inode);
  190. EXT4_I(inode)->i_dtime = get_seconds();
  191. /*
  192. * One subtle ordering requirement: if anything has gone wrong
  193. * (transaction abort, IO errors, whatever), then we can still
  194. * do these next steps (the fs will already have been marked as
  195. * having errors), but we can't free the inode if the mark_dirty
  196. * fails.
  197. */
  198. if (ext4_mark_inode_dirty(handle, inode))
  199. /* If that failed, just do the required in-core inode clear. */
  200. clear_inode(inode);
  201. else
  202. ext4_free_inode(handle, inode);
  203. ext4_journal_stop(handle);
  204. return;
  205. no_delete:
  206. clear_inode(inode); /* We must guarantee clearing of inode... */
  207. }
  208. typedef struct {
  209. __le32 *p;
  210. __le32 key;
  211. struct buffer_head *bh;
  212. } Indirect;
  213. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  214. {
  215. p->key = *(p->p = v);
  216. p->bh = bh;
  217. }
  218. static int verify_chain(Indirect *from, Indirect *to)
  219. {
  220. while (from <= to && from->key == *from->p)
  221. from++;
  222. return (from > to);
  223. }
  224. /**
  225. * ext4_block_to_path - parse the block number into array of offsets
  226. * @inode: inode in question (we are only interested in its superblock)
  227. * @i_block: block number to be parsed
  228. * @offsets: array to store the offsets in
  229. * @boundary: set this non-zero if the referred-to block is likely to be
  230. * followed (on disk) by an indirect block.
  231. *
  232. * To store the locations of file's data ext4 uses a data structure common
  233. * for UNIX filesystems - tree of pointers anchored in the inode, with
  234. * data blocks at leaves and indirect blocks in intermediate nodes.
  235. * This function translates the block number into path in that tree -
  236. * return value is the path length and @offsets[n] is the offset of
  237. * pointer to (n+1)th node in the nth one. If @block is out of range
  238. * (negative or too large) warning is printed and zero returned.
  239. *
  240. * Note: function doesn't find node addresses, so no IO is needed. All
  241. * we need to know is the capacity of indirect blocks (taken from the
  242. * inode->i_sb).
  243. */
  244. /*
  245. * Portability note: the last comparison (check that we fit into triple
  246. * indirect block) is spelled differently, because otherwise on an
  247. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  248. * if our filesystem had 8Kb blocks. We might use long long, but that would
  249. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  250. * i_block would have to be negative in the very beginning, so we would not
  251. * get there at all.
  252. */
  253. static int ext4_block_to_path(struct inode *inode,
  254. long i_block, int offsets[4], int *boundary)
  255. {
  256. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  257. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  258. const long direct_blocks = EXT4_NDIR_BLOCKS,
  259. indirect_blocks = ptrs,
  260. double_blocks = (1 << (ptrs_bits * 2));
  261. int n = 0;
  262. int final = 0;
  263. if (i_block < 0) {
  264. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  265. } else if (i_block < direct_blocks) {
  266. offsets[n++] = i_block;
  267. final = direct_blocks;
  268. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  269. offsets[n++] = EXT4_IND_BLOCK;
  270. offsets[n++] = i_block;
  271. final = ptrs;
  272. } else if ((i_block -= indirect_blocks) < double_blocks) {
  273. offsets[n++] = EXT4_DIND_BLOCK;
  274. offsets[n++] = i_block >> ptrs_bits;
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  278. offsets[n++] = EXT4_TIND_BLOCK;
  279. offsets[n++] = i_block >> (ptrs_bits * 2);
  280. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  281. offsets[n++] = i_block & (ptrs - 1);
  282. final = ptrs;
  283. } else {
  284. ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
  285. }
  286. if (boundary)
  287. *boundary = final - 1 - (i_block & (ptrs - 1));
  288. return n;
  289. }
  290. /**
  291. * ext4_get_branch - read the chain of indirect blocks leading to data
  292. * @inode: inode in question
  293. * @depth: depth of the chain (1 - direct pointer, etc.)
  294. * @offsets: offsets of pointers in inode/indirect blocks
  295. * @chain: place to store the result
  296. * @err: here we store the error value
  297. *
  298. * Function fills the array of triples <key, p, bh> and returns %NULL
  299. * if everything went OK or the pointer to the last filled triple
  300. * (incomplete one) otherwise. Upon the return chain[i].key contains
  301. * the number of (i+1)-th block in the chain (as it is stored in memory,
  302. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  303. * number (it points into struct inode for i==0 and into the bh->b_data
  304. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  305. * block for i>0 and NULL for i==0. In other words, it holds the block
  306. * numbers of the chain, addresses they were taken from (and where we can
  307. * verify that chain did not change) and buffer_heads hosting these
  308. * numbers.
  309. *
  310. * Function stops when it stumbles upon zero pointer (absent block)
  311. * (pointer to last triple returned, *@err == 0)
  312. * or when it gets an IO error reading an indirect block
  313. * (ditto, *@err == -EIO)
  314. * or when it notices that chain had been changed while it was reading
  315. * (ditto, *@err == -EAGAIN)
  316. * or when it reads all @depth-1 indirect blocks successfully and finds
  317. * the whole chain, all way to the data (returns %NULL, *err == 0).
  318. */
  319. static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
  320. Indirect chain[4], int *err)
  321. {
  322. struct super_block *sb = inode->i_sb;
  323. Indirect *p = chain;
  324. struct buffer_head *bh;
  325. *err = 0;
  326. /* i_data is not going away, no lock needed */
  327. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  328. if (!p->key)
  329. goto no_block;
  330. while (--depth) {
  331. bh = sb_bread(sb, le32_to_cpu(p->key));
  332. if (!bh)
  333. goto failure;
  334. /* Reader: pointers */
  335. if (!verify_chain(chain, p))
  336. goto changed;
  337. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  338. /* Reader: end */
  339. if (!p->key)
  340. goto no_block;
  341. }
  342. return NULL;
  343. changed:
  344. brelse(bh);
  345. *err = -EAGAIN;
  346. goto no_block;
  347. failure:
  348. *err = -EIO;
  349. no_block:
  350. return p;
  351. }
  352. /**
  353. * ext4_find_near - find a place for allocation with sufficient locality
  354. * @inode: owner
  355. * @ind: descriptor of indirect block.
  356. *
  357. * This function returns the prefered place for block allocation.
  358. * It is used when heuristic for sequential allocation fails.
  359. * Rules are:
  360. * + if there is a block to the left of our position - allocate near it.
  361. * + if pointer will live in indirect block - allocate near that block.
  362. * + if pointer will live in inode - allocate in the same
  363. * cylinder group.
  364. *
  365. * In the latter case we colour the starting block by the callers PID to
  366. * prevent it from clashing with concurrent allocations for a different inode
  367. * in the same block group. The PID is used here so that functionally related
  368. * files will be close-by on-disk.
  369. *
  370. * Caller must make sure that @ind is valid and will stay that way.
  371. */
  372. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  373. {
  374. struct ext4_inode_info *ei = EXT4_I(inode);
  375. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  376. __le32 *p;
  377. ext4_fsblk_t bg_start;
  378. ext4_grpblk_t colour;
  379. /* Try to find previous block */
  380. for (p = ind->p - 1; p >= start; p--) {
  381. if (*p)
  382. return le32_to_cpu(*p);
  383. }
  384. /* No such thing, so let's try location of indirect block */
  385. if (ind->bh)
  386. return ind->bh->b_blocknr;
  387. /*
  388. * It is going to be referred to from the inode itself? OK, just put it
  389. * into the same cylinder group then.
  390. */
  391. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  392. colour = (current->pid % 16) *
  393. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  394. return bg_start + colour;
  395. }
  396. /**
  397. * ext4_find_goal - find a prefered place for allocation.
  398. * @inode: owner
  399. * @block: block we want
  400. * @chain: chain of indirect blocks
  401. * @partial: pointer to the last triple within a chain
  402. * @goal: place to store the result.
  403. *
  404. * Normally this function find the prefered place for block allocation,
  405. * stores it in *@goal and returns zero.
  406. */
  407. static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
  408. Indirect chain[4], Indirect *partial)
  409. {
  410. struct ext4_block_alloc_info *block_i;
  411. block_i = EXT4_I(inode)->i_block_alloc_info;
  412. /*
  413. * try the heuristic for sequential allocation,
  414. * failing that at least try to get decent locality.
  415. */
  416. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  417. && (block_i->last_alloc_physical_block != 0)) {
  418. return block_i->last_alloc_physical_block + 1;
  419. }
  420. return ext4_find_near(inode, partial);
  421. }
  422. /**
  423. * ext4_blks_to_allocate: Look up the block map and count the number
  424. * of direct blocks need to be allocated for the given branch.
  425. *
  426. * @branch: chain of indirect blocks
  427. * @k: number of blocks need for indirect blocks
  428. * @blks: number of data blocks to be mapped.
  429. * @blocks_to_boundary: the offset in the indirect block
  430. *
  431. * return the total number of blocks to be allocate, including the
  432. * direct and indirect blocks.
  433. */
  434. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  435. int blocks_to_boundary)
  436. {
  437. unsigned long count = 0;
  438. /*
  439. * Simple case, [t,d]Indirect block(s) has not allocated yet
  440. * then it's clear blocks on that path have not allocated
  441. */
  442. if (k > 0) {
  443. /* right now we don't handle cross boundary allocation */
  444. if (blks < blocks_to_boundary + 1)
  445. count += blks;
  446. else
  447. count += blocks_to_boundary + 1;
  448. return count;
  449. }
  450. count++;
  451. while (count < blks && count <= blocks_to_boundary &&
  452. le32_to_cpu(*(branch[0].p + count)) == 0) {
  453. count++;
  454. }
  455. return count;
  456. }
  457. /**
  458. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  459. * @indirect_blks: the number of blocks need to allocate for indirect
  460. * blocks
  461. *
  462. * @new_blocks: on return it will store the new block numbers for
  463. * the indirect blocks(if needed) and the first direct block,
  464. * @blks: on return it will store the total number of allocated
  465. * direct blocks
  466. */
  467. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  468. ext4_fsblk_t goal, int indirect_blks, int blks,
  469. ext4_fsblk_t new_blocks[4], int *err)
  470. {
  471. int target, i;
  472. unsigned long count = 0;
  473. int index = 0;
  474. ext4_fsblk_t current_block = 0;
  475. int ret = 0;
  476. /*
  477. * Here we try to allocate the requested multiple blocks at once,
  478. * on a best-effort basis.
  479. * To build a branch, we should allocate blocks for
  480. * the indirect blocks(if not allocated yet), and at least
  481. * the first direct block of this branch. That's the
  482. * minimum number of blocks need to allocate(required)
  483. */
  484. target = blks + indirect_blks;
  485. while (1) {
  486. count = target;
  487. /* allocating blocks for indirect blocks and direct blocks */
  488. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  489. if (*err)
  490. goto failed_out;
  491. target -= count;
  492. /* allocate blocks for indirect blocks */
  493. while (index < indirect_blks && count) {
  494. new_blocks[index++] = current_block++;
  495. count--;
  496. }
  497. if (count > 0)
  498. break;
  499. }
  500. /* save the new block number for the first direct block */
  501. new_blocks[index] = current_block;
  502. /* total number of blocks allocated for direct blocks */
  503. ret = count;
  504. *err = 0;
  505. return ret;
  506. failed_out:
  507. for (i = 0; i <index; i++)
  508. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  509. return ret;
  510. }
  511. /**
  512. * ext4_alloc_branch - allocate and set up a chain of blocks.
  513. * @inode: owner
  514. * @indirect_blks: number of allocated indirect blocks
  515. * @blks: number of allocated direct blocks
  516. * @offsets: offsets (in the blocks) to store the pointers to next.
  517. * @branch: place to store the chain in.
  518. *
  519. * This function allocates blocks, zeroes out all but the last one,
  520. * links them into chain and (if we are synchronous) writes them to disk.
  521. * In other words, it prepares a branch that can be spliced onto the
  522. * inode. It stores the information about that chain in the branch[], in
  523. * the same format as ext4_get_branch() would do. We are calling it after
  524. * we had read the existing part of chain and partial points to the last
  525. * triple of that (one with zero ->key). Upon the exit we have the same
  526. * picture as after the successful ext4_get_block(), except that in one
  527. * place chain is disconnected - *branch->p is still zero (we did not
  528. * set the last link), but branch->key contains the number that should
  529. * be placed into *branch->p to fill that gap.
  530. *
  531. * If allocation fails we free all blocks we've allocated (and forget
  532. * their buffer_heads) and return the error value the from failed
  533. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  534. * as described above and return 0.
  535. */
  536. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  537. int indirect_blks, int *blks, ext4_fsblk_t goal,
  538. int *offsets, Indirect *branch)
  539. {
  540. int blocksize = inode->i_sb->s_blocksize;
  541. int i, n = 0;
  542. int err = 0;
  543. struct buffer_head *bh;
  544. int num;
  545. ext4_fsblk_t new_blocks[4];
  546. ext4_fsblk_t current_block;
  547. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  548. *blks, new_blocks, &err);
  549. if (err)
  550. return err;
  551. branch[0].key = cpu_to_le32(new_blocks[0]);
  552. /*
  553. * metadata blocks and data blocks are allocated.
  554. */
  555. for (n = 1; n <= indirect_blks; n++) {
  556. /*
  557. * Get buffer_head for parent block, zero it out
  558. * and set the pointer to new one, then send
  559. * parent to disk.
  560. */
  561. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  562. branch[n].bh = bh;
  563. lock_buffer(bh);
  564. BUFFER_TRACE(bh, "call get_create_access");
  565. err = ext4_journal_get_create_access(handle, bh);
  566. if (err) {
  567. unlock_buffer(bh);
  568. brelse(bh);
  569. goto failed;
  570. }
  571. memset(bh->b_data, 0, blocksize);
  572. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  573. branch[n].key = cpu_to_le32(new_blocks[n]);
  574. *branch[n].p = branch[n].key;
  575. if ( n == indirect_blks) {
  576. current_block = new_blocks[n];
  577. /*
  578. * End of chain, update the last new metablock of
  579. * the chain to point to the new allocated
  580. * data blocks numbers
  581. */
  582. for (i=1; i < num; i++)
  583. *(branch[n].p + i) = cpu_to_le32(++current_block);
  584. }
  585. BUFFER_TRACE(bh, "marking uptodate");
  586. set_buffer_uptodate(bh);
  587. unlock_buffer(bh);
  588. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  589. err = ext4_journal_dirty_metadata(handle, bh);
  590. if (err)
  591. goto failed;
  592. }
  593. *blks = num;
  594. return err;
  595. failed:
  596. /* Allocation failed, free what we already allocated */
  597. for (i = 1; i <= n ; i++) {
  598. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  599. ext4_journal_forget(handle, branch[i].bh);
  600. }
  601. for (i = 0; i <indirect_blks; i++)
  602. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  603. ext4_free_blocks(handle, inode, new_blocks[i], num);
  604. return err;
  605. }
  606. /**
  607. * ext4_splice_branch - splice the allocated branch onto inode.
  608. * @inode: owner
  609. * @block: (logical) number of block we are adding
  610. * @chain: chain of indirect blocks (with a missing link - see
  611. * ext4_alloc_branch)
  612. * @where: location of missing link
  613. * @num: number of indirect blocks we are adding
  614. * @blks: number of direct blocks we are adding
  615. *
  616. * This function fills the missing link and does all housekeeping needed in
  617. * inode (->i_blocks, etc.). In case of success we end up with the full
  618. * chain to new block and return 0.
  619. */
  620. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  621. long block, Indirect *where, int num, int blks)
  622. {
  623. int i;
  624. int err = 0;
  625. struct ext4_block_alloc_info *block_i;
  626. ext4_fsblk_t current_block;
  627. block_i = EXT4_I(inode)->i_block_alloc_info;
  628. /*
  629. * If we're splicing into a [td]indirect block (as opposed to the
  630. * inode) then we need to get write access to the [td]indirect block
  631. * before the splice.
  632. */
  633. if (where->bh) {
  634. BUFFER_TRACE(where->bh, "get_write_access");
  635. err = ext4_journal_get_write_access(handle, where->bh);
  636. if (err)
  637. goto err_out;
  638. }
  639. /* That's it */
  640. *where->p = where->key;
  641. /*
  642. * Update the host buffer_head or inode to point to more just allocated
  643. * direct blocks blocks
  644. */
  645. if (num == 0 && blks > 1) {
  646. current_block = le32_to_cpu(where->key) + 1;
  647. for (i = 1; i < blks; i++)
  648. *(where->p + i ) = cpu_to_le32(current_block++);
  649. }
  650. /*
  651. * update the most recently allocated logical & physical block
  652. * in i_block_alloc_info, to assist find the proper goal block for next
  653. * allocation
  654. */
  655. if (block_i) {
  656. block_i->last_alloc_logical_block = block + blks - 1;
  657. block_i->last_alloc_physical_block =
  658. le32_to_cpu(where[num].key) + blks - 1;
  659. }
  660. /* We are done with atomic stuff, now do the rest of housekeeping */
  661. inode->i_ctime = CURRENT_TIME_SEC;
  662. ext4_mark_inode_dirty(handle, inode);
  663. /* had we spliced it onto indirect block? */
  664. if (where->bh) {
  665. /*
  666. * If we spliced it onto an indirect block, we haven't
  667. * altered the inode. Note however that if it is being spliced
  668. * onto an indirect block at the very end of the file (the
  669. * file is growing) then we *will* alter the inode to reflect
  670. * the new i_size. But that is not done here - it is done in
  671. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  672. */
  673. jbd_debug(5, "splicing indirect only\n");
  674. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  675. err = ext4_journal_dirty_metadata(handle, where->bh);
  676. if (err)
  677. goto err_out;
  678. } else {
  679. /*
  680. * OK, we spliced it into the inode itself on a direct block.
  681. * Inode was dirtied above.
  682. */
  683. jbd_debug(5, "splicing direct\n");
  684. }
  685. return err;
  686. err_out:
  687. for (i = 1; i <= num; i++) {
  688. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  689. ext4_journal_forget(handle, where[i].bh);
  690. ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  691. }
  692. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  693. return err;
  694. }
  695. /*
  696. * Allocation strategy is simple: if we have to allocate something, we will
  697. * have to go the whole way to leaf. So let's do it before attaching anything
  698. * to tree, set linkage between the newborn blocks, write them if sync is
  699. * required, recheck the path, free and repeat if check fails, otherwise
  700. * set the last missing link (that will protect us from any truncate-generated
  701. * removals - all blocks on the path are immune now) and possibly force the
  702. * write on the parent block.
  703. * That has a nice additional property: no special recovery from the failed
  704. * allocations is needed - we simply release blocks and do not touch anything
  705. * reachable from inode.
  706. *
  707. * `handle' can be NULL if create == 0.
  708. *
  709. * The BKL may not be held on entry here. Be sure to take it early.
  710. * return > 0, # of blocks mapped or allocated.
  711. * return = 0, if plain lookup failed.
  712. * return < 0, error case.
  713. */
  714. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. sector_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create, int extend_disksize)
  718. {
  719. int err = -EIO;
  720. int offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext4_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext4_inode_info *ei = EXT4_I(inode);
  728. int count = 0;
  729. ext4_fsblk_t first_block = 0;
  730. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  731. J_ASSERT(handle != NULL || create == 0);
  732. depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  733. if (depth == 0)
  734. goto out;
  735. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  736. /* Simplest case - block found, no allocation needed */
  737. if (!partial) {
  738. first_block = le32_to_cpu(chain[depth - 1].key);
  739. clear_buffer_new(bh_result);
  740. count++;
  741. /*map more blocks*/
  742. while (count < maxblocks && count <= blocks_to_boundary) {
  743. ext4_fsblk_t blk;
  744. if (!verify_chain(chain, partial)) {
  745. /*
  746. * Indirect block might be removed by
  747. * truncate while we were reading it.
  748. * Handling of that case: forget what we've
  749. * got now. Flag the err as EAGAIN, so it
  750. * will reread.
  751. */
  752. err = -EAGAIN;
  753. count = 0;
  754. break;
  755. }
  756. blk = le32_to_cpu(*(chain[depth-1].p + count));
  757. if (blk == first_block + count)
  758. count++;
  759. else
  760. break;
  761. }
  762. if (err != -EAGAIN)
  763. goto got_it;
  764. }
  765. /* Next simple case - plain lookup or failed read of indirect block */
  766. if (!create || err == -EIO)
  767. goto cleanup;
  768. mutex_lock(&ei->truncate_mutex);
  769. /*
  770. * If the indirect block is missing while we are reading
  771. * the chain(ext4_get_branch() returns -EAGAIN err), or
  772. * if the chain has been changed after we grab the semaphore,
  773. * (either because another process truncated this branch, or
  774. * another get_block allocated this branch) re-grab the chain to see if
  775. * the request block has been allocated or not.
  776. *
  777. * Since we already block the truncate/other get_block
  778. * at this point, we will have the current copy of the chain when we
  779. * splice the branch into the tree.
  780. */
  781. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  782. while (partial > chain) {
  783. brelse(partial->bh);
  784. partial--;
  785. }
  786. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  787. if (!partial) {
  788. count++;
  789. mutex_unlock(&ei->truncate_mutex);
  790. if (err)
  791. goto cleanup;
  792. clear_buffer_new(bh_result);
  793. goto got_it;
  794. }
  795. }
  796. /*
  797. * Okay, we need to do block allocation. Lazily initialize the block
  798. * allocation info here if necessary
  799. */
  800. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  801. ext4_init_block_alloc_info(inode);
  802. goal = ext4_find_goal(inode, iblock, chain, partial);
  803. /* the number of blocks need to allocate for [d,t]indirect blocks */
  804. indirect_blks = (chain + depth) - partial - 1;
  805. /*
  806. * Next look up the indirect map to count the totoal number of
  807. * direct blocks to allocate for this branch.
  808. */
  809. count = ext4_blks_to_allocate(partial, indirect_blks,
  810. maxblocks, blocks_to_boundary);
  811. /*
  812. * Block out ext4_truncate while we alter the tree
  813. */
  814. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  815. offsets + (partial - chain), partial);
  816. /*
  817. * The ext4_splice_branch call will free and forget any buffers
  818. * on the new chain if there is a failure, but that risks using
  819. * up transaction credits, especially for bitmaps where the
  820. * credits cannot be returned. Can we handle this somehow? We
  821. * may need to return -EAGAIN upwards in the worst case. --sct
  822. */
  823. if (!err)
  824. err = ext4_splice_branch(handle, inode, iblock,
  825. partial, indirect_blks, count);
  826. /*
  827. * i_disksize growing is protected by truncate_mutex. Don't forget to
  828. * protect it if you're about to implement concurrent
  829. * ext4_get_block() -bzzz
  830. */
  831. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  832. ei->i_disksize = inode->i_size;
  833. mutex_unlock(&ei->truncate_mutex);
  834. if (err)
  835. goto cleanup;
  836. set_buffer_new(bh_result);
  837. got_it:
  838. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  839. if (count > blocks_to_boundary)
  840. set_buffer_boundary(bh_result);
  841. err = count;
  842. /* Clean up and exit */
  843. partial = chain + depth - 1; /* the whole chain */
  844. cleanup:
  845. while (partial > chain) {
  846. BUFFER_TRACE(partial->bh, "call brelse");
  847. brelse(partial->bh);
  848. partial--;
  849. }
  850. BUFFER_TRACE(bh_result, "returned");
  851. out:
  852. return err;
  853. }
  854. #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
  855. static int ext4_get_block(struct inode *inode, sector_t iblock,
  856. struct buffer_head *bh_result, int create)
  857. {
  858. handle_t *handle = journal_current_handle();
  859. int ret = 0;
  860. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  861. if (!create)
  862. goto get_block; /* A read */
  863. if (max_blocks == 1)
  864. goto get_block; /* A single block get */
  865. if (handle->h_transaction->t_state == T_LOCKED) {
  866. /*
  867. * Huge direct-io writes can hold off commits for long
  868. * periods of time. Let this commit run.
  869. */
  870. ext4_journal_stop(handle);
  871. handle = ext4_journal_start(inode, DIO_CREDITS);
  872. if (IS_ERR(handle))
  873. ret = PTR_ERR(handle);
  874. goto get_block;
  875. }
  876. if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
  877. /*
  878. * Getting low on buffer credits...
  879. */
  880. ret = ext4_journal_extend(handle, DIO_CREDITS);
  881. if (ret > 0) {
  882. /*
  883. * Couldn't extend the transaction. Start a new one.
  884. */
  885. ret = ext4_journal_restart(handle, DIO_CREDITS);
  886. }
  887. }
  888. get_block:
  889. if (ret == 0) {
  890. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  891. max_blocks, bh_result, create, 0);
  892. if (ret > 0) {
  893. bh_result->b_size = (ret << inode->i_blkbits);
  894. ret = 0;
  895. }
  896. }
  897. return ret;
  898. }
  899. /*
  900. * `handle' can be NULL if create is zero
  901. */
  902. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  903. long block, int create, int *errp)
  904. {
  905. struct buffer_head dummy;
  906. int fatal = 0, err;
  907. J_ASSERT(handle != NULL || create == 0);
  908. dummy.b_state = 0;
  909. dummy.b_blocknr = -1000;
  910. buffer_trace_init(&dummy.b_history);
  911. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  912. &dummy, create, 1);
  913. /*
  914. * ext4_get_blocks_handle() returns number of blocks
  915. * mapped. 0 in case of a HOLE.
  916. */
  917. if (err > 0) {
  918. if (err > 1)
  919. WARN_ON(1);
  920. err = 0;
  921. }
  922. *errp = err;
  923. if (!err && buffer_mapped(&dummy)) {
  924. struct buffer_head *bh;
  925. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  926. if (!bh) {
  927. *errp = -EIO;
  928. goto err;
  929. }
  930. if (buffer_new(&dummy)) {
  931. J_ASSERT(create != 0);
  932. J_ASSERT(handle != 0);
  933. /*
  934. * Now that we do not always journal data, we should
  935. * keep in mind whether this should always journal the
  936. * new buffer as metadata. For now, regular file
  937. * writes use ext4_get_block instead, so it's not a
  938. * problem.
  939. */
  940. lock_buffer(bh);
  941. BUFFER_TRACE(bh, "call get_create_access");
  942. fatal = ext4_journal_get_create_access(handle, bh);
  943. if (!fatal && !buffer_uptodate(bh)) {
  944. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  945. set_buffer_uptodate(bh);
  946. }
  947. unlock_buffer(bh);
  948. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  949. err = ext4_journal_dirty_metadata(handle, bh);
  950. if (!fatal)
  951. fatal = err;
  952. } else {
  953. BUFFER_TRACE(bh, "not a new buffer");
  954. }
  955. if (fatal) {
  956. *errp = fatal;
  957. brelse(bh);
  958. bh = NULL;
  959. }
  960. return bh;
  961. }
  962. err:
  963. return NULL;
  964. }
  965. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  966. int block, int create, int *err)
  967. {
  968. struct buffer_head * bh;
  969. bh = ext4_getblk(handle, inode, block, create, err);
  970. if (!bh)
  971. return bh;
  972. if (buffer_uptodate(bh))
  973. return bh;
  974. ll_rw_block(READ_META, 1, &bh);
  975. wait_on_buffer(bh);
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. put_bh(bh);
  979. *err = -EIO;
  980. return NULL;
  981. }
  982. static int walk_page_buffers( handle_t *handle,
  983. struct buffer_head *head,
  984. unsigned from,
  985. unsigned to,
  986. int *partial,
  987. int (*fn)( handle_t *handle,
  988. struct buffer_head *bh))
  989. {
  990. struct buffer_head *bh;
  991. unsigned block_start, block_end;
  992. unsigned blocksize = head->b_size;
  993. int err, ret = 0;
  994. struct buffer_head *next;
  995. for ( bh = head, block_start = 0;
  996. ret == 0 && (bh != head || !block_start);
  997. block_start = block_end, bh = next)
  998. {
  999. next = bh->b_this_page;
  1000. block_end = block_start + blocksize;
  1001. if (block_end <= from || block_start >= to) {
  1002. if (partial && !buffer_uptodate(bh))
  1003. *partial = 1;
  1004. continue;
  1005. }
  1006. err = (*fn)(handle, bh);
  1007. if (!ret)
  1008. ret = err;
  1009. }
  1010. return ret;
  1011. }
  1012. /*
  1013. * To preserve ordering, it is essential that the hole instantiation and
  1014. * the data write be encapsulated in a single transaction. We cannot
  1015. * close off a transaction and start a new one between the ext4_get_block()
  1016. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1017. * prepare_write() is the right place.
  1018. *
  1019. * Also, this function can nest inside ext4_writepage() ->
  1020. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1021. * has generated enough buffer credits to do the whole page. So we won't
  1022. * block on the journal in that case, which is good, because the caller may
  1023. * be PF_MEMALLOC.
  1024. *
  1025. * By accident, ext4 can be reentered when a transaction is open via
  1026. * quota file writes. If we were to commit the transaction while thus
  1027. * reentered, there can be a deadlock - we would be holding a quota
  1028. * lock, and the commit would never complete if another thread had a
  1029. * transaction open and was blocking on the quota lock - a ranking
  1030. * violation.
  1031. *
  1032. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1033. * will _not_ run commit under these circumstances because handle->h_ref
  1034. * is elevated. We'll still have enough credits for the tiny quotafile
  1035. * write.
  1036. */
  1037. static int do_journal_get_write_access(handle_t *handle,
  1038. struct buffer_head *bh)
  1039. {
  1040. if (!buffer_mapped(bh) || buffer_freed(bh))
  1041. return 0;
  1042. return ext4_journal_get_write_access(handle, bh);
  1043. }
  1044. static int ext4_prepare_write(struct file *file, struct page *page,
  1045. unsigned from, unsigned to)
  1046. {
  1047. struct inode *inode = page->mapping->host;
  1048. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1049. handle_t *handle;
  1050. int retries = 0;
  1051. retry:
  1052. handle = ext4_journal_start(inode, needed_blocks);
  1053. if (IS_ERR(handle)) {
  1054. ret = PTR_ERR(handle);
  1055. goto out;
  1056. }
  1057. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1058. ret = nobh_prepare_write(page, from, to, ext4_get_block);
  1059. else
  1060. ret = block_prepare_write(page, from, to, ext4_get_block);
  1061. if (ret)
  1062. goto prepare_write_failed;
  1063. if (ext4_should_journal_data(inode)) {
  1064. ret = walk_page_buffers(handle, page_buffers(page),
  1065. from, to, NULL, do_journal_get_write_access);
  1066. }
  1067. prepare_write_failed:
  1068. if (ret)
  1069. ext4_journal_stop(handle);
  1070. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1071. goto retry;
  1072. out:
  1073. return ret;
  1074. }
  1075. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1076. {
  1077. int err = jbd2_journal_dirty_data(handle, bh);
  1078. if (err)
  1079. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1080. bh, handle,err);
  1081. return err;
  1082. }
  1083. /* For commit_write() in data=journal mode */
  1084. static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
  1085. {
  1086. if (!buffer_mapped(bh) || buffer_freed(bh))
  1087. return 0;
  1088. set_buffer_uptodate(bh);
  1089. return ext4_journal_dirty_metadata(handle, bh);
  1090. }
  1091. /*
  1092. * We need to pick up the new inode size which generic_commit_write gave us
  1093. * `file' can be NULL - eg, when called from page_symlink().
  1094. *
  1095. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1096. * buffers are managed internally.
  1097. */
  1098. static int ext4_ordered_commit_write(struct file *file, struct page *page,
  1099. unsigned from, unsigned to)
  1100. {
  1101. handle_t *handle = ext4_journal_current_handle();
  1102. struct inode *inode = page->mapping->host;
  1103. int ret = 0, ret2;
  1104. ret = walk_page_buffers(handle, page_buffers(page),
  1105. from, to, NULL, ext4_journal_dirty_data);
  1106. if (ret == 0) {
  1107. /*
  1108. * generic_commit_write() will run mark_inode_dirty() if i_size
  1109. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1110. * into that.
  1111. */
  1112. loff_t new_i_size;
  1113. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1114. if (new_i_size > EXT4_I(inode)->i_disksize)
  1115. EXT4_I(inode)->i_disksize = new_i_size;
  1116. ret = generic_commit_write(file, page, from, to);
  1117. }
  1118. ret2 = ext4_journal_stop(handle);
  1119. if (!ret)
  1120. ret = ret2;
  1121. return ret;
  1122. }
  1123. static int ext4_writeback_commit_write(struct file *file, struct page *page,
  1124. unsigned from, unsigned to)
  1125. {
  1126. handle_t *handle = ext4_journal_current_handle();
  1127. struct inode *inode = page->mapping->host;
  1128. int ret = 0, ret2;
  1129. loff_t new_i_size;
  1130. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1131. if (new_i_size > EXT4_I(inode)->i_disksize)
  1132. EXT4_I(inode)->i_disksize = new_i_size;
  1133. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1134. ret = nobh_commit_write(file, page, from, to);
  1135. else
  1136. ret = generic_commit_write(file, page, from, to);
  1137. ret2 = ext4_journal_stop(handle);
  1138. if (!ret)
  1139. ret = ret2;
  1140. return ret;
  1141. }
  1142. static int ext4_journalled_commit_write(struct file *file,
  1143. struct page *page, unsigned from, unsigned to)
  1144. {
  1145. handle_t *handle = ext4_journal_current_handle();
  1146. struct inode *inode = page->mapping->host;
  1147. int ret = 0, ret2;
  1148. int partial = 0;
  1149. loff_t pos;
  1150. /*
  1151. * Here we duplicate the generic_commit_write() functionality
  1152. */
  1153. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1154. ret = walk_page_buffers(handle, page_buffers(page), from,
  1155. to, &partial, commit_write_fn);
  1156. if (!partial)
  1157. SetPageUptodate(page);
  1158. if (pos > inode->i_size)
  1159. i_size_write(inode, pos);
  1160. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1161. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1162. EXT4_I(inode)->i_disksize = inode->i_size;
  1163. ret2 = ext4_mark_inode_dirty(handle, inode);
  1164. if (!ret)
  1165. ret = ret2;
  1166. }
  1167. ret2 = ext4_journal_stop(handle);
  1168. if (!ret)
  1169. ret = ret2;
  1170. return ret;
  1171. }
  1172. /*
  1173. * bmap() is special. It gets used by applications such as lilo and by
  1174. * the swapper to find the on-disk block of a specific piece of data.
  1175. *
  1176. * Naturally, this is dangerous if the block concerned is still in the
  1177. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1178. * filesystem and enables swap, then they may get a nasty shock when the
  1179. * data getting swapped to that swapfile suddenly gets overwritten by
  1180. * the original zero's written out previously to the journal and
  1181. * awaiting writeback in the kernel's buffer cache.
  1182. *
  1183. * So, if we see any bmap calls here on a modified, data-journaled file,
  1184. * take extra steps to flush any blocks which might be in the cache.
  1185. */
  1186. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1187. {
  1188. struct inode *inode = mapping->host;
  1189. journal_t *journal;
  1190. int err;
  1191. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1192. /*
  1193. * This is a REALLY heavyweight approach, but the use of
  1194. * bmap on dirty files is expected to be extremely rare:
  1195. * only if we run lilo or swapon on a freshly made file
  1196. * do we expect this to happen.
  1197. *
  1198. * (bmap requires CAP_SYS_RAWIO so this does not
  1199. * represent an unprivileged user DOS attack --- we'd be
  1200. * in trouble if mortal users could trigger this path at
  1201. * will.)
  1202. *
  1203. * NB. EXT4_STATE_JDATA is not set on files other than
  1204. * regular files. If somebody wants to bmap a directory
  1205. * or symlink and gets confused because the buffer
  1206. * hasn't yet been flushed to disk, they deserve
  1207. * everything they get.
  1208. */
  1209. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1210. journal = EXT4_JOURNAL(inode);
  1211. jbd2_journal_lock_updates(journal);
  1212. err = jbd2_journal_flush(journal);
  1213. jbd2_journal_unlock_updates(journal);
  1214. if (err)
  1215. return 0;
  1216. }
  1217. return generic_block_bmap(mapping,block,ext4_get_block);
  1218. }
  1219. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1220. {
  1221. get_bh(bh);
  1222. return 0;
  1223. }
  1224. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1225. {
  1226. put_bh(bh);
  1227. return 0;
  1228. }
  1229. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1230. {
  1231. if (buffer_mapped(bh))
  1232. return ext4_journal_dirty_data(handle, bh);
  1233. return 0;
  1234. }
  1235. /*
  1236. * Note that we always start a transaction even if we're not journalling
  1237. * data. This is to preserve ordering: any hole instantiation within
  1238. * __block_write_full_page -> ext4_get_block() should be journalled
  1239. * along with the data so we don't crash and then get metadata which
  1240. * refers to old data.
  1241. *
  1242. * In all journalling modes block_write_full_page() will start the I/O.
  1243. *
  1244. * Problem:
  1245. *
  1246. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1247. * ext4_writepage()
  1248. *
  1249. * Similar for:
  1250. *
  1251. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1252. *
  1253. * Same applies to ext4_get_block(). We will deadlock on various things like
  1254. * lock_journal and i_truncate_mutex.
  1255. *
  1256. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1257. * allocations fail.
  1258. *
  1259. * 16May01: If we're reentered then journal_current_handle() will be
  1260. * non-zero. We simply *return*.
  1261. *
  1262. * 1 July 2001: @@@ FIXME:
  1263. * In journalled data mode, a data buffer may be metadata against the
  1264. * current transaction. But the same file is part of a shared mapping
  1265. * and someone does a writepage() on it.
  1266. *
  1267. * We will move the buffer onto the async_data list, but *after* it has
  1268. * been dirtied. So there's a small window where we have dirty data on
  1269. * BJ_Metadata.
  1270. *
  1271. * Note that this only applies to the last partial page in the file. The
  1272. * bit which block_write_full_page() uses prepare/commit for. (That's
  1273. * broken code anyway: it's wrong for msync()).
  1274. *
  1275. * It's a rare case: affects the final partial page, for journalled data
  1276. * where the file is subject to bith write() and writepage() in the same
  1277. * transction. To fix it we'll need a custom block_write_full_page().
  1278. * We'll probably need that anyway for journalling writepage() output.
  1279. *
  1280. * We don't honour synchronous mounts for writepage(). That would be
  1281. * disastrous. Any write() or metadata operation will sync the fs for
  1282. * us.
  1283. *
  1284. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1285. * we don't need to open a transaction here.
  1286. */
  1287. static int ext4_ordered_writepage(struct page *page,
  1288. struct writeback_control *wbc)
  1289. {
  1290. struct inode *inode = page->mapping->host;
  1291. struct buffer_head *page_bufs;
  1292. handle_t *handle = NULL;
  1293. int ret = 0;
  1294. int err;
  1295. J_ASSERT(PageLocked(page));
  1296. /*
  1297. * We give up here if we're reentered, because it might be for a
  1298. * different filesystem.
  1299. */
  1300. if (ext4_journal_current_handle())
  1301. goto out_fail;
  1302. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1303. if (IS_ERR(handle)) {
  1304. ret = PTR_ERR(handle);
  1305. goto out_fail;
  1306. }
  1307. if (!page_has_buffers(page)) {
  1308. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1309. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1310. }
  1311. page_bufs = page_buffers(page);
  1312. walk_page_buffers(handle, page_bufs, 0,
  1313. PAGE_CACHE_SIZE, NULL, bget_one);
  1314. ret = block_write_full_page(page, ext4_get_block, wbc);
  1315. /*
  1316. * The page can become unlocked at any point now, and
  1317. * truncate can then come in and change things. So we
  1318. * can't touch *page from now on. But *page_bufs is
  1319. * safe due to elevated refcount.
  1320. */
  1321. /*
  1322. * And attach them to the current transaction. But only if
  1323. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1324. * and generally junk.
  1325. */
  1326. if (ret == 0) {
  1327. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1328. NULL, jbd2_journal_dirty_data_fn);
  1329. if (!ret)
  1330. ret = err;
  1331. }
  1332. walk_page_buffers(handle, page_bufs, 0,
  1333. PAGE_CACHE_SIZE, NULL, bput_one);
  1334. err = ext4_journal_stop(handle);
  1335. if (!ret)
  1336. ret = err;
  1337. return ret;
  1338. out_fail:
  1339. redirty_page_for_writepage(wbc, page);
  1340. unlock_page(page);
  1341. return ret;
  1342. }
  1343. static int ext4_writeback_writepage(struct page *page,
  1344. struct writeback_control *wbc)
  1345. {
  1346. struct inode *inode = page->mapping->host;
  1347. handle_t *handle = NULL;
  1348. int ret = 0;
  1349. int err;
  1350. if (ext4_journal_current_handle())
  1351. goto out_fail;
  1352. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1353. if (IS_ERR(handle)) {
  1354. ret = PTR_ERR(handle);
  1355. goto out_fail;
  1356. }
  1357. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1358. ret = nobh_writepage(page, ext4_get_block, wbc);
  1359. else
  1360. ret = block_write_full_page(page, ext4_get_block, wbc);
  1361. err = ext4_journal_stop(handle);
  1362. if (!ret)
  1363. ret = err;
  1364. return ret;
  1365. out_fail:
  1366. redirty_page_for_writepage(wbc, page);
  1367. unlock_page(page);
  1368. return ret;
  1369. }
  1370. static int ext4_journalled_writepage(struct page *page,
  1371. struct writeback_control *wbc)
  1372. {
  1373. struct inode *inode = page->mapping->host;
  1374. handle_t *handle = NULL;
  1375. int ret = 0;
  1376. int err;
  1377. if (ext4_journal_current_handle())
  1378. goto no_write;
  1379. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1380. if (IS_ERR(handle)) {
  1381. ret = PTR_ERR(handle);
  1382. goto no_write;
  1383. }
  1384. if (!page_has_buffers(page) || PageChecked(page)) {
  1385. /*
  1386. * It's mmapped pagecache. Add buffers and journal it. There
  1387. * doesn't seem much point in redirtying the page here.
  1388. */
  1389. ClearPageChecked(page);
  1390. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1391. ext4_get_block);
  1392. if (ret != 0) {
  1393. ext4_journal_stop(handle);
  1394. goto out_unlock;
  1395. }
  1396. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1397. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1398. err = walk_page_buffers(handle, page_buffers(page), 0,
  1399. PAGE_CACHE_SIZE, NULL, commit_write_fn);
  1400. if (ret == 0)
  1401. ret = err;
  1402. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1403. unlock_page(page);
  1404. } else {
  1405. /*
  1406. * It may be a page full of checkpoint-mode buffers. We don't
  1407. * really know unless we go poke around in the buffer_heads.
  1408. * But block_write_full_page will do the right thing.
  1409. */
  1410. ret = block_write_full_page(page, ext4_get_block, wbc);
  1411. }
  1412. err = ext4_journal_stop(handle);
  1413. if (!ret)
  1414. ret = err;
  1415. out:
  1416. return ret;
  1417. no_write:
  1418. redirty_page_for_writepage(wbc, page);
  1419. out_unlock:
  1420. unlock_page(page);
  1421. goto out;
  1422. }
  1423. static int ext4_readpage(struct file *file, struct page *page)
  1424. {
  1425. return mpage_readpage(page, ext4_get_block);
  1426. }
  1427. static int
  1428. ext4_readpages(struct file *file, struct address_space *mapping,
  1429. struct list_head *pages, unsigned nr_pages)
  1430. {
  1431. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1432. }
  1433. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1434. {
  1435. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1436. /*
  1437. * If it's a full truncate we just forget about the pending dirtying
  1438. */
  1439. if (offset == 0)
  1440. ClearPageChecked(page);
  1441. jbd2_journal_invalidatepage(journal, page, offset);
  1442. }
  1443. static int ext4_releasepage(struct page *page, gfp_t wait)
  1444. {
  1445. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1446. WARN_ON(PageChecked(page));
  1447. if (!page_has_buffers(page))
  1448. return 0;
  1449. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1450. }
  1451. /*
  1452. * If the O_DIRECT write will extend the file then add this inode to the
  1453. * orphan list. So recovery will truncate it back to the original size
  1454. * if the machine crashes during the write.
  1455. *
  1456. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1457. * crashes then stale disk data _may_ be exposed inside the file.
  1458. */
  1459. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1460. const struct iovec *iov, loff_t offset,
  1461. unsigned long nr_segs)
  1462. {
  1463. struct file *file = iocb->ki_filp;
  1464. struct inode *inode = file->f_mapping->host;
  1465. struct ext4_inode_info *ei = EXT4_I(inode);
  1466. handle_t *handle = NULL;
  1467. ssize_t ret;
  1468. int orphan = 0;
  1469. size_t count = iov_length(iov, nr_segs);
  1470. if (rw == WRITE) {
  1471. loff_t final_size = offset + count;
  1472. handle = ext4_journal_start(inode, DIO_CREDITS);
  1473. if (IS_ERR(handle)) {
  1474. ret = PTR_ERR(handle);
  1475. goto out;
  1476. }
  1477. if (final_size > inode->i_size) {
  1478. ret = ext4_orphan_add(handle, inode);
  1479. if (ret)
  1480. goto out_stop;
  1481. orphan = 1;
  1482. ei->i_disksize = inode->i_size;
  1483. }
  1484. }
  1485. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1486. offset, nr_segs,
  1487. ext4_get_block, NULL);
  1488. /*
  1489. * Reacquire the handle: ext4_get_block() can restart the transaction
  1490. */
  1491. handle = journal_current_handle();
  1492. out_stop:
  1493. if (handle) {
  1494. int err;
  1495. if (orphan && inode->i_nlink)
  1496. ext4_orphan_del(handle, inode);
  1497. if (orphan && ret > 0) {
  1498. loff_t end = offset + ret;
  1499. if (end > inode->i_size) {
  1500. ei->i_disksize = end;
  1501. i_size_write(inode, end);
  1502. /*
  1503. * We're going to return a positive `ret'
  1504. * here due to non-zero-length I/O, so there's
  1505. * no way of reporting error returns from
  1506. * ext4_mark_inode_dirty() to userspace. So
  1507. * ignore it.
  1508. */
  1509. ext4_mark_inode_dirty(handle, inode);
  1510. }
  1511. }
  1512. err = ext4_journal_stop(handle);
  1513. if (ret == 0)
  1514. ret = err;
  1515. }
  1516. out:
  1517. return ret;
  1518. }
  1519. /*
  1520. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1521. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1522. * much here because ->set_page_dirty is called under VFS locks. The page is
  1523. * not necessarily locked.
  1524. *
  1525. * We cannot just dirty the page and leave attached buffers clean, because the
  1526. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1527. * or jbddirty because all the journalling code will explode.
  1528. *
  1529. * So what we do is to mark the page "pending dirty" and next time writepage
  1530. * is called, propagate that into the buffers appropriately.
  1531. */
  1532. static int ext4_journalled_set_page_dirty(struct page *page)
  1533. {
  1534. SetPageChecked(page);
  1535. return __set_page_dirty_nobuffers(page);
  1536. }
  1537. static const struct address_space_operations ext4_ordered_aops = {
  1538. .readpage = ext4_readpage,
  1539. .readpages = ext4_readpages,
  1540. .writepage = ext4_ordered_writepage,
  1541. .sync_page = block_sync_page,
  1542. .prepare_write = ext4_prepare_write,
  1543. .commit_write = ext4_ordered_commit_write,
  1544. .bmap = ext4_bmap,
  1545. .invalidatepage = ext4_invalidatepage,
  1546. .releasepage = ext4_releasepage,
  1547. .direct_IO = ext4_direct_IO,
  1548. .migratepage = buffer_migrate_page,
  1549. };
  1550. static const struct address_space_operations ext4_writeback_aops = {
  1551. .readpage = ext4_readpage,
  1552. .readpages = ext4_readpages,
  1553. .writepage = ext4_writeback_writepage,
  1554. .sync_page = block_sync_page,
  1555. .prepare_write = ext4_prepare_write,
  1556. .commit_write = ext4_writeback_commit_write,
  1557. .bmap = ext4_bmap,
  1558. .invalidatepage = ext4_invalidatepage,
  1559. .releasepage = ext4_releasepage,
  1560. .direct_IO = ext4_direct_IO,
  1561. .migratepage = buffer_migrate_page,
  1562. };
  1563. static const struct address_space_operations ext4_journalled_aops = {
  1564. .readpage = ext4_readpage,
  1565. .readpages = ext4_readpages,
  1566. .writepage = ext4_journalled_writepage,
  1567. .sync_page = block_sync_page,
  1568. .prepare_write = ext4_prepare_write,
  1569. .commit_write = ext4_journalled_commit_write,
  1570. .set_page_dirty = ext4_journalled_set_page_dirty,
  1571. .bmap = ext4_bmap,
  1572. .invalidatepage = ext4_invalidatepage,
  1573. .releasepage = ext4_releasepage,
  1574. };
  1575. void ext4_set_aops(struct inode *inode)
  1576. {
  1577. if (ext4_should_order_data(inode))
  1578. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1579. else if (ext4_should_writeback_data(inode))
  1580. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1581. else
  1582. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1583. }
  1584. /*
  1585. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1586. * up to the end of the block which corresponds to `from'.
  1587. * This required during truncate. We need to physically zero the tail end
  1588. * of that block so it doesn't yield old data if the file is later grown.
  1589. */
  1590. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1591. struct address_space *mapping, loff_t from)
  1592. {
  1593. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1594. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1595. unsigned blocksize, iblock, length, pos;
  1596. struct inode *inode = mapping->host;
  1597. struct buffer_head *bh;
  1598. int err = 0;
  1599. void *kaddr;
  1600. blocksize = inode->i_sb->s_blocksize;
  1601. length = blocksize - (offset & (blocksize - 1));
  1602. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1603. /*
  1604. * For "nobh" option, we can only work if we don't need to
  1605. * read-in the page - otherwise we create buffers to do the IO.
  1606. */
  1607. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1608. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1609. kaddr = kmap_atomic(page, KM_USER0);
  1610. memset(kaddr + offset, 0, length);
  1611. flush_dcache_page(page);
  1612. kunmap_atomic(kaddr, KM_USER0);
  1613. set_page_dirty(page);
  1614. goto unlock;
  1615. }
  1616. if (!page_has_buffers(page))
  1617. create_empty_buffers(page, blocksize, 0);
  1618. /* Find the buffer that contains "offset" */
  1619. bh = page_buffers(page);
  1620. pos = blocksize;
  1621. while (offset >= pos) {
  1622. bh = bh->b_this_page;
  1623. iblock++;
  1624. pos += blocksize;
  1625. }
  1626. err = 0;
  1627. if (buffer_freed(bh)) {
  1628. BUFFER_TRACE(bh, "freed: skip");
  1629. goto unlock;
  1630. }
  1631. if (!buffer_mapped(bh)) {
  1632. BUFFER_TRACE(bh, "unmapped");
  1633. ext4_get_block(inode, iblock, bh, 0);
  1634. /* unmapped? It's a hole - nothing to do */
  1635. if (!buffer_mapped(bh)) {
  1636. BUFFER_TRACE(bh, "still unmapped");
  1637. goto unlock;
  1638. }
  1639. }
  1640. /* Ok, it's mapped. Make sure it's up-to-date */
  1641. if (PageUptodate(page))
  1642. set_buffer_uptodate(bh);
  1643. if (!buffer_uptodate(bh)) {
  1644. err = -EIO;
  1645. ll_rw_block(READ, 1, &bh);
  1646. wait_on_buffer(bh);
  1647. /* Uhhuh. Read error. Complain and punt. */
  1648. if (!buffer_uptodate(bh))
  1649. goto unlock;
  1650. }
  1651. if (ext4_should_journal_data(inode)) {
  1652. BUFFER_TRACE(bh, "get write access");
  1653. err = ext4_journal_get_write_access(handle, bh);
  1654. if (err)
  1655. goto unlock;
  1656. }
  1657. kaddr = kmap_atomic(page, KM_USER0);
  1658. memset(kaddr + offset, 0, length);
  1659. flush_dcache_page(page);
  1660. kunmap_atomic(kaddr, KM_USER0);
  1661. BUFFER_TRACE(bh, "zeroed end of block");
  1662. err = 0;
  1663. if (ext4_should_journal_data(inode)) {
  1664. err = ext4_journal_dirty_metadata(handle, bh);
  1665. } else {
  1666. if (ext4_should_order_data(inode))
  1667. err = ext4_journal_dirty_data(handle, bh);
  1668. mark_buffer_dirty(bh);
  1669. }
  1670. unlock:
  1671. unlock_page(page);
  1672. page_cache_release(page);
  1673. return err;
  1674. }
  1675. /*
  1676. * Probably it should be a library function... search for first non-zero word
  1677. * or memcmp with zero_page, whatever is better for particular architecture.
  1678. * Linus?
  1679. */
  1680. static inline int all_zeroes(__le32 *p, __le32 *q)
  1681. {
  1682. while (p < q)
  1683. if (*p++)
  1684. return 0;
  1685. return 1;
  1686. }
  1687. /**
  1688. * ext4_find_shared - find the indirect blocks for partial truncation.
  1689. * @inode: inode in question
  1690. * @depth: depth of the affected branch
  1691. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1692. * @chain: place to store the pointers to partial indirect blocks
  1693. * @top: place to the (detached) top of branch
  1694. *
  1695. * This is a helper function used by ext4_truncate().
  1696. *
  1697. * When we do truncate() we may have to clean the ends of several
  1698. * indirect blocks but leave the blocks themselves alive. Block is
  1699. * partially truncated if some data below the new i_size is refered
  1700. * from it (and it is on the path to the first completely truncated
  1701. * data block, indeed). We have to free the top of that path along
  1702. * with everything to the right of the path. Since no allocation
  1703. * past the truncation point is possible until ext4_truncate()
  1704. * finishes, we may safely do the latter, but top of branch may
  1705. * require special attention - pageout below the truncation point
  1706. * might try to populate it.
  1707. *
  1708. * We atomically detach the top of branch from the tree, store the
  1709. * block number of its root in *@top, pointers to buffer_heads of
  1710. * partially truncated blocks - in @chain[].bh and pointers to
  1711. * their last elements that should not be removed - in
  1712. * @chain[].p. Return value is the pointer to last filled element
  1713. * of @chain.
  1714. *
  1715. * The work left to caller to do the actual freeing of subtrees:
  1716. * a) free the subtree starting from *@top
  1717. * b) free the subtrees whose roots are stored in
  1718. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1719. * c) free the subtrees growing from the inode past the @chain[0].
  1720. * (no partially truncated stuff there). */
  1721. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1722. int offsets[4], Indirect chain[4], __le32 *top)
  1723. {
  1724. Indirect *partial, *p;
  1725. int k, err;
  1726. *top = 0;
  1727. /* Make k index the deepest non-null offest + 1 */
  1728. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1729. ;
  1730. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1731. /* Writer: pointers */
  1732. if (!partial)
  1733. partial = chain + k-1;
  1734. /*
  1735. * If the branch acquired continuation since we've looked at it -
  1736. * fine, it should all survive and (new) top doesn't belong to us.
  1737. */
  1738. if (!partial->key && *partial->p)
  1739. /* Writer: end */
  1740. goto no_top;
  1741. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1742. ;
  1743. /*
  1744. * OK, we've found the last block that must survive. The rest of our
  1745. * branch should be detached before unlocking. However, if that rest
  1746. * of branch is all ours and does not grow immediately from the inode
  1747. * it's easier to cheat and just decrement partial->p.
  1748. */
  1749. if (p == chain + k - 1 && p > chain) {
  1750. p->p--;
  1751. } else {
  1752. *top = *p->p;
  1753. /* Nope, don't do this in ext4. Must leave the tree intact */
  1754. #if 0
  1755. *p->p = 0;
  1756. #endif
  1757. }
  1758. /* Writer: end */
  1759. while(partial > p) {
  1760. brelse(partial->bh);
  1761. partial--;
  1762. }
  1763. no_top:
  1764. return partial;
  1765. }
  1766. /*
  1767. * Zero a number of block pointers in either an inode or an indirect block.
  1768. * If we restart the transaction we must again get write access to the
  1769. * indirect block for further modification.
  1770. *
  1771. * We release `count' blocks on disk, but (last - first) may be greater
  1772. * than `count' because there can be holes in there.
  1773. */
  1774. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1775. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1776. unsigned long count, __le32 *first, __le32 *last)
  1777. {
  1778. __le32 *p;
  1779. if (try_to_extend_transaction(handle, inode)) {
  1780. if (bh) {
  1781. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1782. ext4_journal_dirty_metadata(handle, bh);
  1783. }
  1784. ext4_mark_inode_dirty(handle, inode);
  1785. ext4_journal_test_restart(handle, inode);
  1786. if (bh) {
  1787. BUFFER_TRACE(bh, "retaking write access");
  1788. ext4_journal_get_write_access(handle, bh);
  1789. }
  1790. }
  1791. /*
  1792. * Any buffers which are on the journal will be in memory. We find
  1793. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1794. * on them. We've already detached each block from the file, so
  1795. * bforget() in jbd2_journal_forget() should be safe.
  1796. *
  1797. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1798. */
  1799. for (p = first; p < last; p++) {
  1800. u32 nr = le32_to_cpu(*p);
  1801. if (nr) {
  1802. struct buffer_head *bh;
  1803. *p = 0;
  1804. bh = sb_find_get_block(inode->i_sb, nr);
  1805. ext4_forget(handle, 0, inode, bh, nr);
  1806. }
  1807. }
  1808. ext4_free_blocks(handle, inode, block_to_free, count);
  1809. }
  1810. /**
  1811. * ext4_free_data - free a list of data blocks
  1812. * @handle: handle for this transaction
  1813. * @inode: inode we are dealing with
  1814. * @this_bh: indirect buffer_head which contains *@first and *@last
  1815. * @first: array of block numbers
  1816. * @last: points immediately past the end of array
  1817. *
  1818. * We are freeing all blocks refered from that array (numbers are stored as
  1819. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1820. *
  1821. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1822. * blocks are contiguous then releasing them at one time will only affect one
  1823. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1824. * actually use a lot of journal space.
  1825. *
  1826. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1827. * block pointers.
  1828. */
  1829. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1830. struct buffer_head *this_bh,
  1831. __le32 *first, __le32 *last)
  1832. {
  1833. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1834. unsigned long count = 0; /* Number of blocks in the run */
  1835. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1836. corresponding to
  1837. block_to_free */
  1838. ext4_fsblk_t nr; /* Current block # */
  1839. __le32 *p; /* Pointer into inode/ind
  1840. for current block */
  1841. int err;
  1842. if (this_bh) { /* For indirect block */
  1843. BUFFER_TRACE(this_bh, "get_write_access");
  1844. err = ext4_journal_get_write_access(handle, this_bh);
  1845. /* Important: if we can't update the indirect pointers
  1846. * to the blocks, we can't free them. */
  1847. if (err)
  1848. return;
  1849. }
  1850. for (p = first; p < last; p++) {
  1851. nr = le32_to_cpu(*p);
  1852. if (nr) {
  1853. /* accumulate blocks to free if they're contiguous */
  1854. if (count == 0) {
  1855. block_to_free = nr;
  1856. block_to_free_p = p;
  1857. count = 1;
  1858. } else if (nr == block_to_free + count) {
  1859. count++;
  1860. } else {
  1861. ext4_clear_blocks(handle, inode, this_bh,
  1862. block_to_free,
  1863. count, block_to_free_p, p);
  1864. block_to_free = nr;
  1865. block_to_free_p = p;
  1866. count = 1;
  1867. }
  1868. }
  1869. }
  1870. if (count > 0)
  1871. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1872. count, block_to_free_p, p);
  1873. if (this_bh) {
  1874. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1875. ext4_journal_dirty_metadata(handle, this_bh);
  1876. }
  1877. }
  1878. /**
  1879. * ext4_free_branches - free an array of branches
  1880. * @handle: JBD handle for this transaction
  1881. * @inode: inode we are dealing with
  1882. * @parent_bh: the buffer_head which contains *@first and *@last
  1883. * @first: array of block numbers
  1884. * @last: pointer immediately past the end of array
  1885. * @depth: depth of the branches to free
  1886. *
  1887. * We are freeing all blocks refered from these branches (numbers are
  1888. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1889. * appropriately.
  1890. */
  1891. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1892. struct buffer_head *parent_bh,
  1893. __le32 *first, __le32 *last, int depth)
  1894. {
  1895. ext4_fsblk_t nr;
  1896. __le32 *p;
  1897. if (is_handle_aborted(handle))
  1898. return;
  1899. if (depth--) {
  1900. struct buffer_head *bh;
  1901. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1902. p = last;
  1903. while (--p >= first) {
  1904. nr = le32_to_cpu(*p);
  1905. if (!nr)
  1906. continue; /* A hole */
  1907. /* Go read the buffer for the next level down */
  1908. bh = sb_bread(inode->i_sb, nr);
  1909. /*
  1910. * A read failure? Report error and clear slot
  1911. * (should be rare).
  1912. */
  1913. if (!bh) {
  1914. ext4_error(inode->i_sb, "ext4_free_branches",
  1915. "Read failure, inode=%lu, block=%llu",
  1916. inode->i_ino, nr);
  1917. continue;
  1918. }
  1919. /* This zaps the entire block. Bottom up. */
  1920. BUFFER_TRACE(bh, "free child branches");
  1921. ext4_free_branches(handle, inode, bh,
  1922. (__le32*)bh->b_data,
  1923. (__le32*)bh->b_data + addr_per_block,
  1924. depth);
  1925. /*
  1926. * We've probably journalled the indirect block several
  1927. * times during the truncate. But it's no longer
  1928. * needed and we now drop it from the transaction via
  1929. * jbd2_journal_revoke().
  1930. *
  1931. * That's easy if it's exclusively part of this
  1932. * transaction. But if it's part of the committing
  1933. * transaction then jbd2_journal_forget() will simply
  1934. * brelse() it. That means that if the underlying
  1935. * block is reallocated in ext4_get_block(),
  1936. * unmap_underlying_metadata() will find this block
  1937. * and will try to get rid of it. damn, damn.
  1938. *
  1939. * If this block has already been committed to the
  1940. * journal, a revoke record will be written. And
  1941. * revoke records must be emitted *before* clearing
  1942. * this block's bit in the bitmaps.
  1943. */
  1944. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  1945. /*
  1946. * Everything below this this pointer has been
  1947. * released. Now let this top-of-subtree go.
  1948. *
  1949. * We want the freeing of this indirect block to be
  1950. * atomic in the journal with the updating of the
  1951. * bitmap block which owns it. So make some room in
  1952. * the journal.
  1953. *
  1954. * We zero the parent pointer *after* freeing its
  1955. * pointee in the bitmaps, so if extend_transaction()
  1956. * for some reason fails to put the bitmap changes and
  1957. * the release into the same transaction, recovery
  1958. * will merely complain about releasing a free block,
  1959. * rather than leaking blocks.
  1960. */
  1961. if (is_handle_aborted(handle))
  1962. return;
  1963. if (try_to_extend_transaction(handle, inode)) {
  1964. ext4_mark_inode_dirty(handle, inode);
  1965. ext4_journal_test_restart(handle, inode);
  1966. }
  1967. ext4_free_blocks(handle, inode, nr, 1);
  1968. if (parent_bh) {
  1969. /*
  1970. * The block which we have just freed is
  1971. * pointed to by an indirect block: journal it
  1972. */
  1973. BUFFER_TRACE(parent_bh, "get_write_access");
  1974. if (!ext4_journal_get_write_access(handle,
  1975. parent_bh)){
  1976. *p = 0;
  1977. BUFFER_TRACE(parent_bh,
  1978. "call ext4_journal_dirty_metadata");
  1979. ext4_journal_dirty_metadata(handle,
  1980. parent_bh);
  1981. }
  1982. }
  1983. }
  1984. } else {
  1985. /* We have reached the bottom of the tree. */
  1986. BUFFER_TRACE(parent_bh, "free data blocks");
  1987. ext4_free_data(handle, inode, parent_bh, first, last);
  1988. }
  1989. }
  1990. /*
  1991. * ext4_truncate()
  1992. *
  1993. * We block out ext4_get_block() block instantiations across the entire
  1994. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  1995. * simultaneously on behalf of the same inode.
  1996. *
  1997. * As we work through the truncate and commmit bits of it to the journal there
  1998. * is one core, guiding principle: the file's tree must always be consistent on
  1999. * disk. We must be able to restart the truncate after a crash.
  2000. *
  2001. * The file's tree may be transiently inconsistent in memory (although it
  2002. * probably isn't), but whenever we close off and commit a journal transaction,
  2003. * the contents of (the filesystem + the journal) must be consistent and
  2004. * restartable. It's pretty simple, really: bottom up, right to left (although
  2005. * left-to-right works OK too).
  2006. *
  2007. * Note that at recovery time, journal replay occurs *before* the restart of
  2008. * truncate against the orphan inode list.
  2009. *
  2010. * The committed inode has the new, desired i_size (which is the same as
  2011. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2012. * that this inode's truncate did not complete and it will again call
  2013. * ext4_truncate() to have another go. So there will be instantiated blocks
  2014. * to the right of the truncation point in a crashed ext4 filesystem. But
  2015. * that's fine - as long as they are linked from the inode, the post-crash
  2016. * ext4_truncate() run will find them and release them.
  2017. */
  2018. void ext4_truncate(struct inode *inode)
  2019. {
  2020. handle_t *handle;
  2021. struct ext4_inode_info *ei = EXT4_I(inode);
  2022. __le32 *i_data = ei->i_data;
  2023. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2024. struct address_space *mapping = inode->i_mapping;
  2025. int offsets[4];
  2026. Indirect chain[4];
  2027. Indirect *partial;
  2028. __le32 nr = 0;
  2029. int n;
  2030. long last_block;
  2031. unsigned blocksize = inode->i_sb->s_blocksize;
  2032. struct page *page;
  2033. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2034. S_ISLNK(inode->i_mode)))
  2035. return;
  2036. if (ext4_inode_is_fast_symlink(inode))
  2037. return;
  2038. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2039. return;
  2040. /*
  2041. * We have to lock the EOF page here, because lock_page() nests
  2042. * outside jbd2_journal_start().
  2043. */
  2044. if ((inode->i_size & (blocksize - 1)) == 0) {
  2045. /* Block boundary? Nothing to do */
  2046. page = NULL;
  2047. } else {
  2048. page = grab_cache_page(mapping,
  2049. inode->i_size >> PAGE_CACHE_SHIFT);
  2050. if (!page)
  2051. return;
  2052. }
  2053. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2054. return ext4_ext_truncate(inode, page);
  2055. handle = start_transaction(inode);
  2056. if (IS_ERR(handle)) {
  2057. if (page) {
  2058. clear_highpage(page);
  2059. flush_dcache_page(page);
  2060. unlock_page(page);
  2061. page_cache_release(page);
  2062. }
  2063. return; /* AKPM: return what? */
  2064. }
  2065. last_block = (inode->i_size + blocksize-1)
  2066. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2067. if (page)
  2068. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2069. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2070. if (n == 0)
  2071. goto out_stop; /* error */
  2072. /*
  2073. * OK. This truncate is going to happen. We add the inode to the
  2074. * orphan list, so that if this truncate spans multiple transactions,
  2075. * and we crash, we will resume the truncate when the filesystem
  2076. * recovers. It also marks the inode dirty, to catch the new size.
  2077. *
  2078. * Implication: the file must always be in a sane, consistent
  2079. * truncatable state while each transaction commits.
  2080. */
  2081. if (ext4_orphan_add(handle, inode))
  2082. goto out_stop;
  2083. /*
  2084. * The orphan list entry will now protect us from any crash which
  2085. * occurs before the truncate completes, so it is now safe to propagate
  2086. * the new, shorter inode size (held for now in i_size) into the
  2087. * on-disk inode. We do this via i_disksize, which is the value which
  2088. * ext4 *really* writes onto the disk inode.
  2089. */
  2090. ei->i_disksize = inode->i_size;
  2091. /*
  2092. * From here we block out all ext4_get_block() callers who want to
  2093. * modify the block allocation tree.
  2094. */
  2095. mutex_lock(&ei->truncate_mutex);
  2096. if (n == 1) { /* direct blocks */
  2097. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2098. i_data + EXT4_NDIR_BLOCKS);
  2099. goto do_indirects;
  2100. }
  2101. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2102. /* Kill the top of shared branch (not detached) */
  2103. if (nr) {
  2104. if (partial == chain) {
  2105. /* Shared branch grows from the inode */
  2106. ext4_free_branches(handle, inode, NULL,
  2107. &nr, &nr+1, (chain+n-1) - partial);
  2108. *partial->p = 0;
  2109. /*
  2110. * We mark the inode dirty prior to restart,
  2111. * and prior to stop. No need for it here.
  2112. */
  2113. } else {
  2114. /* Shared branch grows from an indirect block */
  2115. BUFFER_TRACE(partial->bh, "get_write_access");
  2116. ext4_free_branches(handle, inode, partial->bh,
  2117. partial->p,
  2118. partial->p+1, (chain+n-1) - partial);
  2119. }
  2120. }
  2121. /* Clear the ends of indirect blocks on the shared branch */
  2122. while (partial > chain) {
  2123. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2124. (__le32*)partial->bh->b_data+addr_per_block,
  2125. (chain+n-1) - partial);
  2126. BUFFER_TRACE(partial->bh, "call brelse");
  2127. brelse (partial->bh);
  2128. partial--;
  2129. }
  2130. do_indirects:
  2131. /* Kill the remaining (whole) subtrees */
  2132. switch (offsets[0]) {
  2133. default:
  2134. nr = i_data[EXT4_IND_BLOCK];
  2135. if (nr) {
  2136. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2137. i_data[EXT4_IND_BLOCK] = 0;
  2138. }
  2139. case EXT4_IND_BLOCK:
  2140. nr = i_data[EXT4_DIND_BLOCK];
  2141. if (nr) {
  2142. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2143. i_data[EXT4_DIND_BLOCK] = 0;
  2144. }
  2145. case EXT4_DIND_BLOCK:
  2146. nr = i_data[EXT4_TIND_BLOCK];
  2147. if (nr) {
  2148. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2149. i_data[EXT4_TIND_BLOCK] = 0;
  2150. }
  2151. case EXT4_TIND_BLOCK:
  2152. ;
  2153. }
  2154. ext4_discard_reservation(inode);
  2155. mutex_unlock(&ei->truncate_mutex);
  2156. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2157. ext4_mark_inode_dirty(handle, inode);
  2158. /*
  2159. * In a multi-transaction truncate, we only make the final transaction
  2160. * synchronous
  2161. */
  2162. if (IS_SYNC(inode))
  2163. handle->h_sync = 1;
  2164. out_stop:
  2165. /*
  2166. * If this was a simple ftruncate(), and the file will remain alive
  2167. * then we need to clear up the orphan record which we created above.
  2168. * However, if this was a real unlink then we were called by
  2169. * ext4_delete_inode(), and we allow that function to clean up the
  2170. * orphan info for us.
  2171. */
  2172. if (inode->i_nlink)
  2173. ext4_orphan_del(handle, inode);
  2174. ext4_journal_stop(handle);
  2175. }
  2176. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2177. unsigned long ino, struct ext4_iloc *iloc)
  2178. {
  2179. unsigned long desc, group_desc, block_group;
  2180. unsigned long offset;
  2181. ext4_fsblk_t block;
  2182. struct buffer_head *bh;
  2183. struct ext4_group_desc * gdp;
  2184. if (!ext4_valid_inum(sb, ino)) {
  2185. /*
  2186. * This error is already checked for in namei.c unless we are
  2187. * looking at an NFS filehandle, in which case no error
  2188. * report is needed
  2189. */
  2190. return 0;
  2191. }
  2192. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2193. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2194. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2195. return 0;
  2196. }
  2197. smp_rmb();
  2198. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2199. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2200. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2201. if (!bh) {
  2202. ext4_error (sb, "ext4_get_inode_block",
  2203. "Descriptor not loaded");
  2204. return 0;
  2205. }
  2206. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2207. desc * EXT4_DESC_SIZE(sb));
  2208. /*
  2209. * Figure out the offset within the block group inode table
  2210. */
  2211. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2212. EXT4_INODE_SIZE(sb);
  2213. block = ext4_inode_table(gdp) + (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2214. iloc->block_group = block_group;
  2215. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2216. return block;
  2217. }
  2218. /*
  2219. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2220. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2221. * data in memory that is needed to recreate the on-disk version of this
  2222. * inode.
  2223. */
  2224. static int __ext4_get_inode_loc(struct inode *inode,
  2225. struct ext4_iloc *iloc, int in_mem)
  2226. {
  2227. ext4_fsblk_t block;
  2228. struct buffer_head *bh;
  2229. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2230. if (!block)
  2231. return -EIO;
  2232. bh = sb_getblk(inode->i_sb, block);
  2233. if (!bh) {
  2234. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2235. "unable to read inode block - "
  2236. "inode=%lu, block=%llu",
  2237. inode->i_ino, block);
  2238. return -EIO;
  2239. }
  2240. if (!buffer_uptodate(bh)) {
  2241. lock_buffer(bh);
  2242. if (buffer_uptodate(bh)) {
  2243. /* someone brought it uptodate while we waited */
  2244. unlock_buffer(bh);
  2245. goto has_buffer;
  2246. }
  2247. /*
  2248. * If we have all information of the inode in memory and this
  2249. * is the only valid inode in the block, we need not read the
  2250. * block.
  2251. */
  2252. if (in_mem) {
  2253. struct buffer_head *bitmap_bh;
  2254. struct ext4_group_desc *desc;
  2255. int inodes_per_buffer;
  2256. int inode_offset, i;
  2257. int block_group;
  2258. int start;
  2259. block_group = (inode->i_ino - 1) /
  2260. EXT4_INODES_PER_GROUP(inode->i_sb);
  2261. inodes_per_buffer = bh->b_size /
  2262. EXT4_INODE_SIZE(inode->i_sb);
  2263. inode_offset = ((inode->i_ino - 1) %
  2264. EXT4_INODES_PER_GROUP(inode->i_sb));
  2265. start = inode_offset & ~(inodes_per_buffer - 1);
  2266. /* Is the inode bitmap in cache? */
  2267. desc = ext4_get_group_desc(inode->i_sb,
  2268. block_group, NULL);
  2269. if (!desc)
  2270. goto make_io;
  2271. bitmap_bh = sb_getblk(inode->i_sb,
  2272. ext4_inode_bitmap(desc));
  2273. if (!bitmap_bh)
  2274. goto make_io;
  2275. /*
  2276. * If the inode bitmap isn't in cache then the
  2277. * optimisation may end up performing two reads instead
  2278. * of one, so skip it.
  2279. */
  2280. if (!buffer_uptodate(bitmap_bh)) {
  2281. brelse(bitmap_bh);
  2282. goto make_io;
  2283. }
  2284. for (i = start; i < start + inodes_per_buffer; i++) {
  2285. if (i == inode_offset)
  2286. continue;
  2287. if (ext4_test_bit(i, bitmap_bh->b_data))
  2288. break;
  2289. }
  2290. brelse(bitmap_bh);
  2291. if (i == start + inodes_per_buffer) {
  2292. /* all other inodes are free, so skip I/O */
  2293. memset(bh->b_data, 0, bh->b_size);
  2294. set_buffer_uptodate(bh);
  2295. unlock_buffer(bh);
  2296. goto has_buffer;
  2297. }
  2298. }
  2299. make_io:
  2300. /*
  2301. * There are other valid inodes in the buffer, this inode
  2302. * has in-inode xattrs, or we don't have this inode in memory.
  2303. * Read the block from disk.
  2304. */
  2305. get_bh(bh);
  2306. bh->b_end_io = end_buffer_read_sync;
  2307. submit_bh(READ_META, bh);
  2308. wait_on_buffer(bh);
  2309. if (!buffer_uptodate(bh)) {
  2310. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2311. "unable to read inode block - "
  2312. "inode=%lu, block=%llu",
  2313. inode->i_ino, block);
  2314. brelse(bh);
  2315. return -EIO;
  2316. }
  2317. }
  2318. has_buffer:
  2319. iloc->bh = bh;
  2320. return 0;
  2321. }
  2322. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2323. {
  2324. /* We have all inode data except xattrs in memory here. */
  2325. return __ext4_get_inode_loc(inode, iloc,
  2326. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2327. }
  2328. void ext4_set_inode_flags(struct inode *inode)
  2329. {
  2330. unsigned int flags = EXT4_I(inode)->i_flags;
  2331. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2332. if (flags & EXT4_SYNC_FL)
  2333. inode->i_flags |= S_SYNC;
  2334. if (flags & EXT4_APPEND_FL)
  2335. inode->i_flags |= S_APPEND;
  2336. if (flags & EXT4_IMMUTABLE_FL)
  2337. inode->i_flags |= S_IMMUTABLE;
  2338. if (flags & EXT4_NOATIME_FL)
  2339. inode->i_flags |= S_NOATIME;
  2340. if (flags & EXT4_DIRSYNC_FL)
  2341. inode->i_flags |= S_DIRSYNC;
  2342. }
  2343. void ext4_read_inode(struct inode * inode)
  2344. {
  2345. struct ext4_iloc iloc;
  2346. struct ext4_inode *raw_inode;
  2347. struct ext4_inode_info *ei = EXT4_I(inode);
  2348. struct buffer_head *bh;
  2349. int block;
  2350. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2351. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2352. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2353. #endif
  2354. ei->i_block_alloc_info = NULL;
  2355. if (__ext4_get_inode_loc(inode, &iloc, 0))
  2356. goto bad_inode;
  2357. bh = iloc.bh;
  2358. raw_inode = ext4_raw_inode(&iloc);
  2359. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2360. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2361. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2362. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2363. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2364. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2365. }
  2366. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2367. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2368. inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
  2369. inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
  2370. inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
  2371. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2372. ei->i_state = 0;
  2373. ei->i_dir_start_lookup = 0;
  2374. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2375. /* We now have enough fields to check if the inode was active or not.
  2376. * This is needed because nfsd might try to access dead inodes
  2377. * the test is that same one that e2fsck uses
  2378. * NeilBrown 1999oct15
  2379. */
  2380. if (inode->i_nlink == 0) {
  2381. if (inode->i_mode == 0 ||
  2382. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2383. /* this inode is deleted */
  2384. brelse (bh);
  2385. goto bad_inode;
  2386. }
  2387. /* The only unlinked inodes we let through here have
  2388. * valid i_mode and are being read by the orphan
  2389. * recovery code: that's fine, we're about to complete
  2390. * the process of deleting those. */
  2391. }
  2392. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2393. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2394. #ifdef EXT4_FRAGMENTS
  2395. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2396. ei->i_frag_no = raw_inode->i_frag;
  2397. ei->i_frag_size = raw_inode->i_fsize;
  2398. #endif
  2399. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2400. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2401. cpu_to_le32(EXT4_OS_HURD))
  2402. ei->i_file_acl |=
  2403. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2404. if (!S_ISREG(inode->i_mode)) {
  2405. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2406. } else {
  2407. inode->i_size |=
  2408. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2409. }
  2410. ei->i_disksize = inode->i_size;
  2411. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2412. ei->i_block_group = iloc.block_group;
  2413. /*
  2414. * NOTE! The in-memory inode i_data array is in little-endian order
  2415. * even on big-endian machines: we do NOT byteswap the block numbers!
  2416. */
  2417. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2418. ei->i_data[block] = raw_inode->i_block[block];
  2419. INIT_LIST_HEAD(&ei->i_orphan);
  2420. if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
  2421. EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2422. /*
  2423. * When mke2fs creates big inodes it does not zero out
  2424. * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
  2425. * so ignore those first few inodes.
  2426. */
  2427. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2428. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2429. EXT4_INODE_SIZE(inode->i_sb))
  2430. goto bad_inode;
  2431. if (ei->i_extra_isize == 0) {
  2432. /* The extra space is currently unused. Use it. */
  2433. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2434. EXT4_GOOD_OLD_INODE_SIZE;
  2435. } else {
  2436. __le32 *magic = (void *)raw_inode +
  2437. EXT4_GOOD_OLD_INODE_SIZE +
  2438. ei->i_extra_isize;
  2439. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2440. ei->i_state |= EXT4_STATE_XATTR;
  2441. }
  2442. } else
  2443. ei->i_extra_isize = 0;
  2444. if (S_ISREG(inode->i_mode)) {
  2445. inode->i_op = &ext4_file_inode_operations;
  2446. inode->i_fop = &ext4_file_operations;
  2447. ext4_set_aops(inode);
  2448. } else if (S_ISDIR(inode->i_mode)) {
  2449. inode->i_op = &ext4_dir_inode_operations;
  2450. inode->i_fop = &ext4_dir_operations;
  2451. } else if (S_ISLNK(inode->i_mode)) {
  2452. if (ext4_inode_is_fast_symlink(inode))
  2453. inode->i_op = &ext4_fast_symlink_inode_operations;
  2454. else {
  2455. inode->i_op = &ext4_symlink_inode_operations;
  2456. ext4_set_aops(inode);
  2457. }
  2458. } else {
  2459. inode->i_op = &ext4_special_inode_operations;
  2460. if (raw_inode->i_block[0])
  2461. init_special_inode(inode, inode->i_mode,
  2462. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2463. else
  2464. init_special_inode(inode, inode->i_mode,
  2465. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2466. }
  2467. brelse (iloc.bh);
  2468. ext4_set_inode_flags(inode);
  2469. return;
  2470. bad_inode:
  2471. make_bad_inode(inode);
  2472. return;
  2473. }
  2474. /*
  2475. * Post the struct inode info into an on-disk inode location in the
  2476. * buffer-cache. This gobbles the caller's reference to the
  2477. * buffer_head in the inode location struct.
  2478. *
  2479. * The caller must have write access to iloc->bh.
  2480. */
  2481. static int ext4_do_update_inode(handle_t *handle,
  2482. struct inode *inode,
  2483. struct ext4_iloc *iloc)
  2484. {
  2485. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2486. struct ext4_inode_info *ei = EXT4_I(inode);
  2487. struct buffer_head *bh = iloc->bh;
  2488. int err = 0, rc, block;
  2489. /* For fields not not tracking in the in-memory inode,
  2490. * initialise them to zero for new inodes. */
  2491. if (ei->i_state & EXT4_STATE_NEW)
  2492. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2493. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2494. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2495. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2496. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2497. /*
  2498. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2499. * re-used with the upper 16 bits of the uid/gid intact
  2500. */
  2501. if(!ei->i_dtime) {
  2502. raw_inode->i_uid_high =
  2503. cpu_to_le16(high_16_bits(inode->i_uid));
  2504. raw_inode->i_gid_high =
  2505. cpu_to_le16(high_16_bits(inode->i_gid));
  2506. } else {
  2507. raw_inode->i_uid_high = 0;
  2508. raw_inode->i_gid_high = 0;
  2509. }
  2510. } else {
  2511. raw_inode->i_uid_low =
  2512. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2513. raw_inode->i_gid_low =
  2514. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2515. raw_inode->i_uid_high = 0;
  2516. raw_inode->i_gid_high = 0;
  2517. }
  2518. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2519. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2520. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2521. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2522. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2523. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2524. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2525. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2526. #ifdef EXT4_FRAGMENTS
  2527. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2528. raw_inode->i_frag = ei->i_frag_no;
  2529. raw_inode->i_fsize = ei->i_frag_size;
  2530. #endif
  2531. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2532. cpu_to_le32(EXT4_OS_HURD))
  2533. raw_inode->i_file_acl_high =
  2534. cpu_to_le16(ei->i_file_acl >> 32);
  2535. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2536. if (!S_ISREG(inode->i_mode)) {
  2537. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2538. } else {
  2539. raw_inode->i_size_high =
  2540. cpu_to_le32(ei->i_disksize >> 32);
  2541. if (ei->i_disksize > 0x7fffffffULL) {
  2542. struct super_block *sb = inode->i_sb;
  2543. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2544. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2545. EXT4_SB(sb)->s_es->s_rev_level ==
  2546. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2547. /* If this is the first large file
  2548. * created, add a flag to the superblock.
  2549. */
  2550. err = ext4_journal_get_write_access(handle,
  2551. EXT4_SB(sb)->s_sbh);
  2552. if (err)
  2553. goto out_brelse;
  2554. ext4_update_dynamic_rev(sb);
  2555. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2556. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2557. sb->s_dirt = 1;
  2558. handle->h_sync = 1;
  2559. err = ext4_journal_dirty_metadata(handle,
  2560. EXT4_SB(sb)->s_sbh);
  2561. }
  2562. }
  2563. }
  2564. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2565. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2566. if (old_valid_dev(inode->i_rdev)) {
  2567. raw_inode->i_block[0] =
  2568. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2569. raw_inode->i_block[1] = 0;
  2570. } else {
  2571. raw_inode->i_block[0] = 0;
  2572. raw_inode->i_block[1] =
  2573. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2574. raw_inode->i_block[2] = 0;
  2575. }
  2576. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2577. raw_inode->i_block[block] = ei->i_data[block];
  2578. if (ei->i_extra_isize)
  2579. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2580. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2581. rc = ext4_journal_dirty_metadata(handle, bh);
  2582. if (!err)
  2583. err = rc;
  2584. ei->i_state &= ~EXT4_STATE_NEW;
  2585. out_brelse:
  2586. brelse (bh);
  2587. ext4_std_error(inode->i_sb, err);
  2588. return err;
  2589. }
  2590. /*
  2591. * ext4_write_inode()
  2592. *
  2593. * We are called from a few places:
  2594. *
  2595. * - Within generic_file_write() for O_SYNC files.
  2596. * Here, there will be no transaction running. We wait for any running
  2597. * trasnaction to commit.
  2598. *
  2599. * - Within sys_sync(), kupdate and such.
  2600. * We wait on commit, if tol to.
  2601. *
  2602. * - Within prune_icache() (PF_MEMALLOC == true)
  2603. * Here we simply return. We can't afford to block kswapd on the
  2604. * journal commit.
  2605. *
  2606. * In all cases it is actually safe for us to return without doing anything,
  2607. * because the inode has been copied into a raw inode buffer in
  2608. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2609. * knfsd.
  2610. *
  2611. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2612. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2613. * which we are interested.
  2614. *
  2615. * It would be a bug for them to not do this. The code:
  2616. *
  2617. * mark_inode_dirty(inode)
  2618. * stuff();
  2619. * inode->i_size = expr;
  2620. *
  2621. * is in error because a kswapd-driven write_inode() could occur while
  2622. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2623. * will no longer be on the superblock's dirty inode list.
  2624. */
  2625. int ext4_write_inode(struct inode *inode, int wait)
  2626. {
  2627. if (current->flags & PF_MEMALLOC)
  2628. return 0;
  2629. if (ext4_journal_current_handle()) {
  2630. jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
  2631. dump_stack();
  2632. return -EIO;
  2633. }
  2634. if (!wait)
  2635. return 0;
  2636. return ext4_force_commit(inode->i_sb);
  2637. }
  2638. /*
  2639. * ext4_setattr()
  2640. *
  2641. * Called from notify_change.
  2642. *
  2643. * We want to trap VFS attempts to truncate the file as soon as
  2644. * possible. In particular, we want to make sure that when the VFS
  2645. * shrinks i_size, we put the inode on the orphan list and modify
  2646. * i_disksize immediately, so that during the subsequent flushing of
  2647. * dirty pages and freeing of disk blocks, we can guarantee that any
  2648. * commit will leave the blocks being flushed in an unused state on
  2649. * disk. (On recovery, the inode will get truncated and the blocks will
  2650. * be freed, so we have a strong guarantee that no future commit will
  2651. * leave these blocks visible to the user.)
  2652. *
  2653. * Called with inode->sem down.
  2654. */
  2655. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2656. {
  2657. struct inode *inode = dentry->d_inode;
  2658. int error, rc = 0;
  2659. const unsigned int ia_valid = attr->ia_valid;
  2660. error = inode_change_ok(inode, attr);
  2661. if (error)
  2662. return error;
  2663. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2664. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2665. handle_t *handle;
  2666. /* (user+group)*(old+new) structure, inode write (sb,
  2667. * inode block, ? - but truncate inode update has it) */
  2668. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2669. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2670. if (IS_ERR(handle)) {
  2671. error = PTR_ERR(handle);
  2672. goto err_out;
  2673. }
  2674. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2675. if (error) {
  2676. ext4_journal_stop(handle);
  2677. return error;
  2678. }
  2679. /* Update corresponding info in inode so that everything is in
  2680. * one transaction */
  2681. if (attr->ia_valid & ATTR_UID)
  2682. inode->i_uid = attr->ia_uid;
  2683. if (attr->ia_valid & ATTR_GID)
  2684. inode->i_gid = attr->ia_gid;
  2685. error = ext4_mark_inode_dirty(handle, inode);
  2686. ext4_journal_stop(handle);
  2687. }
  2688. if (S_ISREG(inode->i_mode) &&
  2689. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2690. handle_t *handle;
  2691. handle = ext4_journal_start(inode, 3);
  2692. if (IS_ERR(handle)) {
  2693. error = PTR_ERR(handle);
  2694. goto err_out;
  2695. }
  2696. error = ext4_orphan_add(handle, inode);
  2697. EXT4_I(inode)->i_disksize = attr->ia_size;
  2698. rc = ext4_mark_inode_dirty(handle, inode);
  2699. if (!error)
  2700. error = rc;
  2701. ext4_journal_stop(handle);
  2702. }
  2703. rc = inode_setattr(inode, attr);
  2704. /* If inode_setattr's call to ext4_truncate failed to get a
  2705. * transaction handle at all, we need to clean up the in-core
  2706. * orphan list manually. */
  2707. if (inode->i_nlink)
  2708. ext4_orphan_del(NULL, inode);
  2709. if (!rc && (ia_valid & ATTR_MODE))
  2710. rc = ext4_acl_chmod(inode);
  2711. err_out:
  2712. ext4_std_error(inode->i_sb, error);
  2713. if (!error)
  2714. error = rc;
  2715. return error;
  2716. }
  2717. /*
  2718. * How many blocks doth make a writepage()?
  2719. *
  2720. * With N blocks per page, it may be:
  2721. * N data blocks
  2722. * 2 indirect block
  2723. * 2 dindirect
  2724. * 1 tindirect
  2725. * N+5 bitmap blocks (from the above)
  2726. * N+5 group descriptor summary blocks
  2727. * 1 inode block
  2728. * 1 superblock.
  2729. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2730. *
  2731. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2732. *
  2733. * With ordered or writeback data it's the same, less the N data blocks.
  2734. *
  2735. * If the inode's direct blocks can hold an integral number of pages then a
  2736. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2737. * and dindirect block, and the "5" above becomes "3".
  2738. *
  2739. * This still overestimates under most circumstances. If we were to pass the
  2740. * start and end offsets in here as well we could do block_to_path() on each
  2741. * block and work out the exact number of indirects which are touched. Pah.
  2742. */
  2743. int ext4_writepage_trans_blocks(struct inode *inode)
  2744. {
  2745. int bpp = ext4_journal_blocks_per_page(inode);
  2746. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2747. int ret;
  2748. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2749. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2750. if (ext4_should_journal_data(inode))
  2751. ret = 3 * (bpp + indirects) + 2;
  2752. else
  2753. ret = 2 * (bpp + indirects) + 2;
  2754. #ifdef CONFIG_QUOTA
  2755. /* We know that structure was already allocated during DQUOT_INIT so
  2756. * we will be updating only the data blocks + inodes */
  2757. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2758. #endif
  2759. return ret;
  2760. }
  2761. /*
  2762. * The caller must have previously called ext4_reserve_inode_write().
  2763. * Give this, we know that the caller already has write access to iloc->bh.
  2764. */
  2765. int ext4_mark_iloc_dirty(handle_t *handle,
  2766. struct inode *inode, struct ext4_iloc *iloc)
  2767. {
  2768. int err = 0;
  2769. /* the do_update_inode consumes one bh->b_count */
  2770. get_bh(iloc->bh);
  2771. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2772. err = ext4_do_update_inode(handle, inode, iloc);
  2773. put_bh(iloc->bh);
  2774. return err;
  2775. }
  2776. /*
  2777. * On success, We end up with an outstanding reference count against
  2778. * iloc->bh. This _must_ be cleaned up later.
  2779. */
  2780. int
  2781. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2782. struct ext4_iloc *iloc)
  2783. {
  2784. int err = 0;
  2785. if (handle) {
  2786. err = ext4_get_inode_loc(inode, iloc);
  2787. if (!err) {
  2788. BUFFER_TRACE(iloc->bh, "get_write_access");
  2789. err = ext4_journal_get_write_access(handle, iloc->bh);
  2790. if (err) {
  2791. brelse(iloc->bh);
  2792. iloc->bh = NULL;
  2793. }
  2794. }
  2795. }
  2796. ext4_std_error(inode->i_sb, err);
  2797. return err;
  2798. }
  2799. /*
  2800. * What we do here is to mark the in-core inode as clean with respect to inode
  2801. * dirtiness (it may still be data-dirty).
  2802. * This means that the in-core inode may be reaped by prune_icache
  2803. * without having to perform any I/O. This is a very good thing,
  2804. * because *any* task may call prune_icache - even ones which
  2805. * have a transaction open against a different journal.
  2806. *
  2807. * Is this cheating? Not really. Sure, we haven't written the
  2808. * inode out, but prune_icache isn't a user-visible syncing function.
  2809. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2810. * we start and wait on commits.
  2811. *
  2812. * Is this efficient/effective? Well, we're being nice to the system
  2813. * by cleaning up our inodes proactively so they can be reaped
  2814. * without I/O. But we are potentially leaving up to five seconds'
  2815. * worth of inodes floating about which prune_icache wants us to
  2816. * write out. One way to fix that would be to get prune_icache()
  2817. * to do a write_super() to free up some memory. It has the desired
  2818. * effect.
  2819. */
  2820. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2821. {
  2822. struct ext4_iloc iloc;
  2823. int err;
  2824. might_sleep();
  2825. err = ext4_reserve_inode_write(handle, inode, &iloc);
  2826. if (!err)
  2827. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  2828. return err;
  2829. }
  2830. /*
  2831. * ext4_dirty_inode() is called from __mark_inode_dirty()
  2832. *
  2833. * We're really interested in the case where a file is being extended.
  2834. * i_size has been changed by generic_commit_write() and we thus need
  2835. * to include the updated inode in the current transaction.
  2836. *
  2837. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2838. * are allocated to the file.
  2839. *
  2840. * If the inode is marked synchronous, we don't honour that here - doing
  2841. * so would cause a commit on atime updates, which we don't bother doing.
  2842. * We handle synchronous inodes at the highest possible level.
  2843. */
  2844. void ext4_dirty_inode(struct inode *inode)
  2845. {
  2846. handle_t *current_handle = ext4_journal_current_handle();
  2847. handle_t *handle;
  2848. handle = ext4_journal_start(inode, 2);
  2849. if (IS_ERR(handle))
  2850. goto out;
  2851. if (current_handle &&
  2852. current_handle->h_transaction != handle->h_transaction) {
  2853. /* This task has a transaction open against a different fs */
  2854. printk(KERN_EMERG "%s: transactions do not match!\n",
  2855. __FUNCTION__);
  2856. } else {
  2857. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2858. current_handle);
  2859. ext4_mark_inode_dirty(handle, inode);
  2860. }
  2861. ext4_journal_stop(handle);
  2862. out:
  2863. return;
  2864. }
  2865. #if 0
  2866. /*
  2867. * Bind an inode's backing buffer_head into this transaction, to prevent
  2868. * it from being flushed to disk early. Unlike
  2869. * ext4_reserve_inode_write, this leaves behind no bh reference and
  2870. * returns no iloc structure, so the caller needs to repeat the iloc
  2871. * lookup to mark the inode dirty later.
  2872. */
  2873. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  2874. {
  2875. struct ext4_iloc iloc;
  2876. int err = 0;
  2877. if (handle) {
  2878. err = ext4_get_inode_loc(inode, &iloc);
  2879. if (!err) {
  2880. BUFFER_TRACE(iloc.bh, "get_write_access");
  2881. err = jbd2_journal_get_write_access(handle, iloc.bh);
  2882. if (!err)
  2883. err = ext4_journal_dirty_metadata(handle,
  2884. iloc.bh);
  2885. brelse(iloc.bh);
  2886. }
  2887. }
  2888. ext4_std_error(inode->i_sb, err);
  2889. return err;
  2890. }
  2891. #endif
  2892. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  2893. {
  2894. journal_t *journal;
  2895. handle_t *handle;
  2896. int err;
  2897. /*
  2898. * We have to be very careful here: changing a data block's
  2899. * journaling status dynamically is dangerous. If we write a
  2900. * data block to the journal, change the status and then delete
  2901. * that block, we risk forgetting to revoke the old log record
  2902. * from the journal and so a subsequent replay can corrupt data.
  2903. * So, first we make sure that the journal is empty and that
  2904. * nobody is changing anything.
  2905. */
  2906. journal = EXT4_JOURNAL(inode);
  2907. if (is_journal_aborted(journal) || IS_RDONLY(inode))
  2908. return -EROFS;
  2909. jbd2_journal_lock_updates(journal);
  2910. jbd2_journal_flush(journal);
  2911. /*
  2912. * OK, there are no updates running now, and all cached data is
  2913. * synced to disk. We are now in a completely consistent state
  2914. * which doesn't have anything in the journal, and we know that
  2915. * no filesystem updates are running, so it is safe to modify
  2916. * the inode's in-core data-journaling state flag now.
  2917. */
  2918. if (val)
  2919. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  2920. else
  2921. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  2922. ext4_set_aops(inode);
  2923. jbd2_journal_unlock_updates(journal);
  2924. /* Finally we can mark the inode as dirty. */
  2925. handle = ext4_journal_start(inode, 1);
  2926. if (IS_ERR(handle))
  2927. return PTR_ERR(handle);
  2928. err = ext4_mark_inode_dirty(handle, inode);
  2929. handle->h_sync = 1;
  2930. ext4_journal_stop(handle);
  2931. ext4_std_error(inode->i_sb, err);
  2932. return err;
  2933. }