time-ts.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. /* Accelerators for sched_clock()
  23. * convert from cycles(64bits) => nanoseconds (64bits)
  24. * basic equation:
  25. * ns = cycles / (freq / ns_per_sec)
  26. * ns = cycles * (ns_per_sec / freq)
  27. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  28. * ns = cycles * (10^6 / cpu_khz)
  29. *
  30. * Then we use scaling math (suggested by george@mvista.com) to get:
  31. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  32. * ns = cycles * cyc2ns_scale / SC
  33. *
  34. * And since SC is a constant power of two, we can convert the div
  35. * into a shift.
  36. *
  37. * We can use khz divisor instead of mhz to keep a better precision, since
  38. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  39. * (mathieu.desnoyers@polymtl.ca)
  40. *
  41. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  42. */
  43. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  44. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  45. static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
  46. {
  47. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  48. }
  49. static struct clocksource bfin_cs_cycles = {
  50. .name = "bfin_cs_cycles",
  51. .rating = 400,
  52. .read = bfin_read_cycles,
  53. .mask = CLOCKSOURCE_MASK(64),
  54. .shift = CYC2NS_SCALE_FACTOR,
  55. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  56. };
  57. static inline unsigned long long bfin_cs_cycles_sched_clock(void)
  58. {
  59. return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
  60. bfin_cs_cycles.mult, bfin_cs_cycles.shift);
  61. }
  62. static int __init bfin_cs_cycles_init(void)
  63. {
  64. bfin_cs_cycles.mult = \
  65. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  66. if (clocksource_register(&bfin_cs_cycles))
  67. panic("failed to register clocksource");
  68. return 0;
  69. }
  70. #else
  71. # define bfin_cs_cycles_init()
  72. #endif
  73. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  74. void __init setup_gptimer0(void)
  75. {
  76. disable_gptimers(TIMER0bit);
  77. set_gptimer_config(TIMER0_id, \
  78. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  79. set_gptimer_period(TIMER0_id, -1);
  80. set_gptimer_pwidth(TIMER0_id, -2);
  81. SSYNC();
  82. enable_gptimers(TIMER0bit);
  83. }
  84. static cycle_t bfin_read_gptimer0(struct clocksource *cs)
  85. {
  86. return bfin_read_TIMER0_COUNTER();
  87. }
  88. static struct clocksource bfin_cs_gptimer0 = {
  89. .name = "bfin_cs_gptimer0",
  90. .rating = 350,
  91. .read = bfin_read_gptimer0,
  92. .mask = CLOCKSOURCE_MASK(32),
  93. .shift = CYC2NS_SCALE_FACTOR,
  94. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  95. };
  96. static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
  97. {
  98. return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
  99. bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
  100. }
  101. static int __init bfin_cs_gptimer0_init(void)
  102. {
  103. setup_gptimer0();
  104. bfin_cs_gptimer0.mult = \
  105. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  106. if (clocksource_register(&bfin_cs_gptimer0))
  107. panic("failed to register clocksource");
  108. return 0;
  109. }
  110. #else
  111. # define bfin_cs_gptimer0_init()
  112. #endif
  113. #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
  114. /* prefer to use cycles since it has higher rating */
  115. notrace unsigned long long sched_clock(void)
  116. {
  117. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  118. return bfin_cs_cycles_sched_clock();
  119. #else
  120. return bfin_cs_gptimer0_sched_clock();
  121. #endif
  122. }
  123. #endif
  124. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  125. static int bfin_gptmr0_set_next_event(unsigned long cycles,
  126. struct clock_event_device *evt)
  127. {
  128. disable_gptimers(TIMER0bit);
  129. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  130. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  131. enable_gptimers(TIMER0bit);
  132. return 0;
  133. }
  134. static void bfin_gptmr0_set_mode(enum clock_event_mode mode,
  135. struct clock_event_device *evt)
  136. {
  137. switch (mode) {
  138. case CLOCK_EVT_MODE_PERIODIC: {
  139. set_gptimer_config(TIMER0_id, \
  140. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  141. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  142. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  143. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  144. enable_gptimers(TIMER0bit);
  145. break;
  146. }
  147. case CLOCK_EVT_MODE_ONESHOT:
  148. disable_gptimers(TIMER0bit);
  149. set_gptimer_config(TIMER0_id, \
  150. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  151. set_gptimer_period(TIMER0_id, 0);
  152. break;
  153. case CLOCK_EVT_MODE_UNUSED:
  154. case CLOCK_EVT_MODE_SHUTDOWN:
  155. disable_gptimers(TIMER0bit);
  156. break;
  157. case CLOCK_EVT_MODE_RESUME:
  158. break;
  159. }
  160. }
  161. static void bfin_gptmr0_ack(void)
  162. {
  163. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  164. }
  165. static void __init bfin_gptmr0_init(void)
  166. {
  167. disable_gptimers(TIMER0bit);
  168. }
  169. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  170. __attribute__((l1_text))
  171. #endif
  172. irqreturn_t bfin_gptmr0_interrupt(int irq, void *dev_id)
  173. {
  174. struct clock_event_device *evt = dev_id;
  175. smp_mb();
  176. evt->event_handler(evt);
  177. bfin_gptmr0_ack();
  178. return IRQ_HANDLED;
  179. }
  180. static struct irqaction gptmr0_irq = {
  181. .name = "Blackfin GPTimer0",
  182. .flags = IRQF_DISABLED | IRQF_TIMER | \
  183. IRQF_IRQPOLL | IRQF_PERCPU,
  184. .handler = bfin_gptmr0_interrupt,
  185. };
  186. static struct clock_event_device clockevent_gptmr0 = {
  187. .name = "bfin_gptimer0",
  188. .rating = 300,
  189. .irq = IRQ_TIMER0,
  190. .shift = 32,
  191. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  192. .set_next_event = bfin_gptmr0_set_next_event,
  193. .set_mode = bfin_gptmr0_set_mode,
  194. };
  195. static void __init bfin_gptmr0_clockevent_init(struct clock_event_device *evt)
  196. {
  197. unsigned long clock_tick;
  198. clock_tick = get_sclk();
  199. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  200. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  201. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  202. evt->cpumask = cpumask_of(0);
  203. clockevents_register_device(evt);
  204. }
  205. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  206. #if defined(CONFIG_TICKSOURCE_CORETMR)
  207. /* per-cpu local core timer */
  208. static DEFINE_PER_CPU(struct clock_event_device, coretmr_events);
  209. static int bfin_coretmr_set_next_event(unsigned long cycles,
  210. struct clock_event_device *evt)
  211. {
  212. bfin_write_TCNTL(TMPWR);
  213. CSYNC();
  214. bfin_write_TCOUNT(cycles);
  215. CSYNC();
  216. bfin_write_TCNTL(TMPWR | TMREN);
  217. return 0;
  218. }
  219. static void bfin_coretmr_set_mode(enum clock_event_mode mode,
  220. struct clock_event_device *evt)
  221. {
  222. switch (mode) {
  223. case CLOCK_EVT_MODE_PERIODIC: {
  224. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  225. bfin_write_TCNTL(TMPWR);
  226. CSYNC();
  227. bfin_write_TSCALE(TIME_SCALE - 1);
  228. bfin_write_TPERIOD(tcount);
  229. bfin_write_TCOUNT(tcount);
  230. CSYNC();
  231. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  232. break;
  233. }
  234. case CLOCK_EVT_MODE_ONESHOT:
  235. bfin_write_TCNTL(TMPWR);
  236. CSYNC();
  237. bfin_write_TSCALE(TIME_SCALE - 1);
  238. bfin_write_TPERIOD(0);
  239. bfin_write_TCOUNT(0);
  240. break;
  241. case CLOCK_EVT_MODE_UNUSED:
  242. case CLOCK_EVT_MODE_SHUTDOWN:
  243. bfin_write_TCNTL(0);
  244. CSYNC();
  245. break;
  246. case CLOCK_EVT_MODE_RESUME:
  247. break;
  248. }
  249. }
  250. void bfin_coretmr_init(void)
  251. {
  252. /* power up the timer, but don't enable it just yet */
  253. bfin_write_TCNTL(TMPWR);
  254. CSYNC();
  255. /* the TSCALE prescaler counter. */
  256. bfin_write_TSCALE(TIME_SCALE - 1);
  257. bfin_write_TPERIOD(0);
  258. bfin_write_TCOUNT(0);
  259. CSYNC();
  260. }
  261. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  262. __attribute__((l1_text))
  263. #endif
  264. irqreturn_t bfin_coretmr_interrupt(int irq, void *dev_id)
  265. {
  266. int cpu = smp_processor_id();
  267. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  268. smp_mb();
  269. evt->event_handler(evt);
  270. return IRQ_HANDLED;
  271. }
  272. static struct irqaction coretmr_irq = {
  273. .name = "Blackfin CoreTimer",
  274. .flags = IRQF_DISABLED | IRQF_TIMER | \
  275. IRQF_IRQPOLL | IRQF_PERCPU,
  276. .handler = bfin_coretmr_interrupt,
  277. };
  278. void bfin_coretmr_clockevent_init(void)
  279. {
  280. unsigned long clock_tick;
  281. unsigned int cpu = smp_processor_id();
  282. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  283. evt->name = "bfin_core_timer";
  284. evt->rating = 350;
  285. evt->irq = -1;
  286. evt->shift = 32;
  287. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  288. evt->set_next_event = bfin_coretmr_set_next_event;
  289. evt->set_mode = bfin_coretmr_set_mode;
  290. clock_tick = get_cclk() / TIME_SCALE;
  291. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  292. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  293. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  294. evt->cpumask = cpumask_of(cpu);
  295. clockevents_register_device(evt);
  296. }
  297. #endif /* CONFIG_TICKSOURCE_CORETMR */
  298. void __init time_init(void)
  299. {
  300. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  301. #ifdef CONFIG_RTC_DRV_BFIN
  302. /* [#2663] hack to filter junk RTC values that would cause
  303. * userspace to have to deal with time values greater than
  304. * 2^31 seconds (which uClibc cannot cope with yet)
  305. */
  306. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  307. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  308. bfin_write_RTC_STAT(0);
  309. }
  310. #endif
  311. /* Initialize xtime. From now on, xtime is updated with timer interrupts */
  312. xtime.tv_sec = secs_since_1970;
  313. xtime.tv_nsec = 0;
  314. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  315. bfin_cs_cycles_init();
  316. bfin_cs_gptimer0_init();
  317. #if defined(CONFIG_TICKSOURCE_CORETMR)
  318. bfin_coretmr_init();
  319. setup_irq(IRQ_CORETMR, &coretmr_irq);
  320. bfin_coretmr_clockevent_init();
  321. #endif
  322. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  323. bfin_gptmr0_init();
  324. setup_irq(IRQ_TIMER0, &gptmr0_irq);
  325. gptmr0_irq.dev_id = &clockevent_gptmr0;
  326. bfin_gptmr0_clockevent_init(&clockevent_gptmr0);
  327. #endif
  328. #if !defined(CONFIG_TICKSOURCE_CORETMR) && !defined(CONFIG_TICKSOURCE_GPTMR0)
  329. # error at least one clock event device is required
  330. #endif
  331. }