pxa2xx_spi.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/regs-ssp.h>
  38. #include <asm/arch/ssp.h>
  39. #include <asm/arch/pxa2xx_spi.h>
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  46. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  47. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  48. /*
  49. * for testing SSCR1 changes that require SSP restart, basically
  50. * everything except the service and interrupt enables, the pxa270 developer
  51. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  52. * list, but the PXA255 dev man says all bits without really meaning the
  53. * service and interrupt enables
  54. */
  55. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  56. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  57. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  58. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  59. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  60. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  61. #define DEFINE_SSP_REG(reg, off) \
  62. static inline u32 read_##reg(void const __iomem *p) \
  63. { return __raw_readl(p + (off)); } \
  64. \
  65. static inline void write_##reg(u32 v, void __iomem *p) \
  66. { __raw_writel(v, p + (off)); }
  67. DEFINE_SSP_REG(SSCR0, 0x00)
  68. DEFINE_SSP_REG(SSCR1, 0x04)
  69. DEFINE_SSP_REG(SSSR, 0x08)
  70. DEFINE_SSP_REG(SSITR, 0x0c)
  71. DEFINE_SSP_REG(SSDR, 0x10)
  72. DEFINE_SSP_REG(SSTO, 0x28)
  73. DEFINE_SSP_REG(SSPSP, 0x2c)
  74. #define START_STATE ((void*)0)
  75. #define RUNNING_STATE ((void*)1)
  76. #define DONE_STATE ((void*)2)
  77. #define ERROR_STATE ((void*)-1)
  78. #define QUEUE_RUNNING 0
  79. #define QUEUE_STOPPED 1
  80. struct driver_data {
  81. /* Driver model hookup */
  82. struct platform_device *pdev;
  83. /* SSP Info */
  84. struct ssp_device *ssp;
  85. /* SPI framework hookup */
  86. enum pxa_ssp_type ssp_type;
  87. struct spi_master *master;
  88. /* PXA hookup */
  89. struct pxa2xx_spi_master *master_info;
  90. /* DMA setup stuff */
  91. int rx_channel;
  92. int tx_channel;
  93. u32 *null_dma_buf;
  94. /* SSP register addresses */
  95. void __iomem *ioaddr;
  96. u32 ssdr_physical;
  97. /* SSP masks*/
  98. u32 dma_cr1;
  99. u32 int_cr1;
  100. u32 clear_sr;
  101. u32 mask_sr;
  102. /* Driver message queue */
  103. struct workqueue_struct *workqueue;
  104. struct work_struct pump_messages;
  105. spinlock_t lock;
  106. struct list_head queue;
  107. int busy;
  108. int run;
  109. /* Message Transfer pump */
  110. struct tasklet_struct pump_transfers;
  111. /* Current message transfer state info */
  112. struct spi_message* cur_msg;
  113. struct spi_transfer* cur_transfer;
  114. struct chip_data *cur_chip;
  115. size_t len;
  116. void *tx;
  117. void *tx_end;
  118. void *rx;
  119. void *rx_end;
  120. int dma_mapped;
  121. dma_addr_t rx_dma;
  122. dma_addr_t tx_dma;
  123. size_t rx_map_len;
  124. size_t tx_map_len;
  125. u8 n_bytes;
  126. u32 dma_width;
  127. int cs_change;
  128. int (*write)(struct driver_data *drv_data);
  129. int (*read)(struct driver_data *drv_data);
  130. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  131. void (*cs_control)(u32 command);
  132. };
  133. struct chip_data {
  134. u32 cr0;
  135. u32 cr1;
  136. u32 psp;
  137. u32 timeout;
  138. u8 n_bytes;
  139. u32 dma_width;
  140. u32 dma_burst_size;
  141. u32 threshold;
  142. u32 dma_threshold;
  143. u8 enable_dma;
  144. u8 bits_per_word;
  145. u32 speed_hz;
  146. int (*write)(struct driver_data *drv_data);
  147. int (*read)(struct driver_data *drv_data);
  148. void (*cs_control)(u32 command);
  149. };
  150. static void pump_messages(struct work_struct *work);
  151. static int flush(struct driver_data *drv_data)
  152. {
  153. unsigned long limit = loops_per_jiffy << 1;
  154. void __iomem *reg = drv_data->ioaddr;
  155. do {
  156. while (read_SSSR(reg) & SSSR_RNE) {
  157. read_SSDR(reg);
  158. }
  159. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  160. write_SSSR(SSSR_ROR, reg);
  161. return limit;
  162. }
  163. static void null_cs_control(u32 command)
  164. {
  165. }
  166. static int null_writer(struct driver_data *drv_data)
  167. {
  168. void __iomem *reg = drv_data->ioaddr;
  169. u8 n_bytes = drv_data->n_bytes;
  170. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  171. || (drv_data->tx == drv_data->tx_end))
  172. return 0;
  173. write_SSDR(0, reg);
  174. drv_data->tx += n_bytes;
  175. return 1;
  176. }
  177. static int null_reader(struct driver_data *drv_data)
  178. {
  179. void __iomem *reg = drv_data->ioaddr;
  180. u8 n_bytes = drv_data->n_bytes;
  181. while ((read_SSSR(reg) & SSSR_RNE)
  182. && (drv_data->rx < drv_data->rx_end)) {
  183. read_SSDR(reg);
  184. drv_data->rx += n_bytes;
  185. }
  186. return drv_data->rx == drv_data->rx_end;
  187. }
  188. static int u8_writer(struct driver_data *drv_data)
  189. {
  190. void __iomem *reg = drv_data->ioaddr;
  191. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  192. || (drv_data->tx == drv_data->tx_end))
  193. return 0;
  194. write_SSDR(*(u8 *)(drv_data->tx), reg);
  195. ++drv_data->tx;
  196. return 1;
  197. }
  198. static int u8_reader(struct driver_data *drv_data)
  199. {
  200. void __iomem *reg = drv_data->ioaddr;
  201. while ((read_SSSR(reg) & SSSR_RNE)
  202. && (drv_data->rx < drv_data->rx_end)) {
  203. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  204. ++drv_data->rx;
  205. }
  206. return drv_data->rx == drv_data->rx_end;
  207. }
  208. static int u16_writer(struct driver_data *drv_data)
  209. {
  210. void __iomem *reg = drv_data->ioaddr;
  211. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  212. || (drv_data->tx == drv_data->tx_end))
  213. return 0;
  214. write_SSDR(*(u16 *)(drv_data->tx), reg);
  215. drv_data->tx += 2;
  216. return 1;
  217. }
  218. static int u16_reader(struct driver_data *drv_data)
  219. {
  220. void __iomem *reg = drv_data->ioaddr;
  221. while ((read_SSSR(reg) & SSSR_RNE)
  222. && (drv_data->rx < drv_data->rx_end)) {
  223. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  224. drv_data->rx += 2;
  225. }
  226. return drv_data->rx == drv_data->rx_end;
  227. }
  228. static int u32_writer(struct driver_data *drv_data)
  229. {
  230. void __iomem *reg = drv_data->ioaddr;
  231. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  232. || (drv_data->tx == drv_data->tx_end))
  233. return 0;
  234. write_SSDR(*(u32 *)(drv_data->tx), reg);
  235. drv_data->tx += 4;
  236. return 1;
  237. }
  238. static int u32_reader(struct driver_data *drv_data)
  239. {
  240. void __iomem *reg = drv_data->ioaddr;
  241. while ((read_SSSR(reg) & SSSR_RNE)
  242. && (drv_data->rx < drv_data->rx_end)) {
  243. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  244. drv_data->rx += 4;
  245. }
  246. return drv_data->rx == drv_data->rx_end;
  247. }
  248. static void *next_transfer(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct spi_transfer *trans = drv_data->cur_transfer;
  252. /* Move to next transfer */
  253. if (trans->transfer_list.next != &msg->transfers) {
  254. drv_data->cur_transfer =
  255. list_entry(trans->transfer_list.next,
  256. struct spi_transfer,
  257. transfer_list);
  258. return RUNNING_STATE;
  259. } else
  260. return DONE_STATE;
  261. }
  262. static int map_dma_buffers(struct driver_data *drv_data)
  263. {
  264. struct spi_message *msg = drv_data->cur_msg;
  265. struct device *dev = &msg->spi->dev;
  266. if (!drv_data->cur_chip->enable_dma)
  267. return 0;
  268. if (msg->is_dma_mapped)
  269. return drv_data->rx_dma && drv_data->tx_dma;
  270. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  271. return 0;
  272. /* Modify setup if rx buffer is null */
  273. if (drv_data->rx == NULL) {
  274. *drv_data->null_dma_buf = 0;
  275. drv_data->rx = drv_data->null_dma_buf;
  276. drv_data->rx_map_len = 4;
  277. } else
  278. drv_data->rx_map_len = drv_data->len;
  279. /* Modify setup if tx buffer is null */
  280. if (drv_data->tx == NULL) {
  281. *drv_data->null_dma_buf = 0;
  282. drv_data->tx = drv_data->null_dma_buf;
  283. drv_data->tx_map_len = 4;
  284. } else
  285. drv_data->tx_map_len = drv_data->len;
  286. /* Stream map the rx buffer */
  287. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  288. drv_data->rx_map_len,
  289. DMA_FROM_DEVICE);
  290. if (dma_mapping_error(drv_data->rx_dma))
  291. return 0;
  292. /* Stream map the tx buffer */
  293. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  294. drv_data->tx_map_len,
  295. DMA_TO_DEVICE);
  296. if (dma_mapping_error(drv_data->tx_dma)) {
  297. dma_unmap_single(dev, drv_data->rx_dma,
  298. drv_data->rx_map_len, DMA_FROM_DEVICE);
  299. return 0;
  300. }
  301. return 1;
  302. }
  303. static void unmap_dma_buffers(struct driver_data *drv_data)
  304. {
  305. struct device *dev;
  306. if (!drv_data->dma_mapped)
  307. return;
  308. if (!drv_data->cur_msg->is_dma_mapped) {
  309. dev = &drv_data->cur_msg->spi->dev;
  310. dma_unmap_single(dev, drv_data->rx_dma,
  311. drv_data->rx_map_len, DMA_FROM_DEVICE);
  312. dma_unmap_single(dev, drv_data->tx_dma,
  313. drv_data->tx_map_len, DMA_TO_DEVICE);
  314. }
  315. drv_data->dma_mapped = 0;
  316. }
  317. /* caller already set message->status; dma and pio irqs are blocked */
  318. static void giveback(struct driver_data *drv_data)
  319. {
  320. struct spi_transfer* last_transfer;
  321. unsigned long flags;
  322. struct spi_message *msg;
  323. spin_lock_irqsave(&drv_data->lock, flags);
  324. msg = drv_data->cur_msg;
  325. drv_data->cur_msg = NULL;
  326. drv_data->cur_transfer = NULL;
  327. drv_data->cur_chip = NULL;
  328. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  329. spin_unlock_irqrestore(&drv_data->lock, flags);
  330. last_transfer = list_entry(msg->transfers.prev,
  331. struct spi_transfer,
  332. transfer_list);
  333. if (!last_transfer->cs_change)
  334. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  335. msg->state = NULL;
  336. if (msg->complete)
  337. msg->complete(msg->context);
  338. }
  339. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  340. {
  341. unsigned long limit = loops_per_jiffy << 1;
  342. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  343. cpu_relax();
  344. return limit;
  345. }
  346. static int wait_dma_channel_stop(int channel)
  347. {
  348. unsigned long limit = loops_per_jiffy << 1;
  349. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  350. cpu_relax();
  351. return limit;
  352. }
  353. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  354. {
  355. void __iomem *reg = drv_data->ioaddr;
  356. /* Stop and reset */
  357. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  358. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  359. write_SSSR(drv_data->clear_sr, reg);
  360. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  361. if (drv_data->ssp_type != PXA25x_SSP)
  362. write_SSTO(0, reg);
  363. flush(drv_data);
  364. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  365. unmap_dma_buffers(drv_data);
  366. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  367. drv_data->cur_msg->state = ERROR_STATE;
  368. tasklet_schedule(&drv_data->pump_transfers);
  369. }
  370. static void dma_transfer_complete(struct driver_data *drv_data)
  371. {
  372. void __iomem *reg = drv_data->ioaddr;
  373. struct spi_message *msg = drv_data->cur_msg;
  374. /* Clear and disable interrupts on SSP and DMA channels*/
  375. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  376. write_SSSR(drv_data->clear_sr, reg);
  377. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  378. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  379. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  380. dev_err(&drv_data->pdev->dev,
  381. "dma_handler: dma rx channel stop failed\n");
  382. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  383. dev_err(&drv_data->pdev->dev,
  384. "dma_transfer: ssp rx stall failed\n");
  385. unmap_dma_buffers(drv_data);
  386. /* update the buffer pointer for the amount completed in dma */
  387. drv_data->rx += drv_data->len -
  388. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  389. /* read trailing data from fifo, it does not matter how many
  390. * bytes are in the fifo just read until buffer is full
  391. * or fifo is empty, which ever occurs first */
  392. drv_data->read(drv_data);
  393. /* return count of what was actually read */
  394. msg->actual_length += drv_data->len -
  395. (drv_data->rx_end - drv_data->rx);
  396. /* Release chip select if requested, transfer delays are
  397. * handled in pump_transfers */
  398. if (drv_data->cs_change)
  399. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  400. /* Move to next transfer */
  401. msg->state = next_transfer(drv_data);
  402. /* Schedule transfer tasklet */
  403. tasklet_schedule(&drv_data->pump_transfers);
  404. }
  405. static void dma_handler(int channel, void *data)
  406. {
  407. struct driver_data *drv_data = data;
  408. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  409. if (irq_status & DCSR_BUSERR) {
  410. if (channel == drv_data->tx_channel)
  411. dma_error_stop(drv_data,
  412. "dma_handler: "
  413. "bad bus address on tx channel");
  414. else
  415. dma_error_stop(drv_data,
  416. "dma_handler: "
  417. "bad bus address on rx channel");
  418. return;
  419. }
  420. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  421. if ((channel == drv_data->tx_channel)
  422. && (irq_status & DCSR_ENDINTR)
  423. && (drv_data->ssp_type == PXA25x_SSP)) {
  424. /* Wait for rx to stall */
  425. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  426. dev_err(&drv_data->pdev->dev,
  427. "dma_handler: ssp rx stall failed\n");
  428. /* finish this transfer, start the next */
  429. dma_transfer_complete(drv_data);
  430. }
  431. }
  432. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  433. {
  434. u32 irq_status;
  435. void __iomem *reg = drv_data->ioaddr;
  436. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  437. if (irq_status & SSSR_ROR) {
  438. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  439. return IRQ_HANDLED;
  440. }
  441. /* Check for false positive timeout */
  442. if ((irq_status & SSSR_TINT)
  443. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  444. write_SSSR(SSSR_TINT, reg);
  445. return IRQ_HANDLED;
  446. }
  447. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  448. /* Clear and disable timeout interrupt, do the rest in
  449. * dma_transfer_complete */
  450. if (drv_data->ssp_type != PXA25x_SSP)
  451. write_SSTO(0, reg);
  452. /* finish this transfer, start the next */
  453. dma_transfer_complete(drv_data);
  454. return IRQ_HANDLED;
  455. }
  456. /* Opps problem detected */
  457. return IRQ_NONE;
  458. }
  459. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  460. {
  461. void __iomem *reg = drv_data->ioaddr;
  462. /* Stop and reset SSP */
  463. write_SSSR(drv_data->clear_sr, reg);
  464. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  465. if (drv_data->ssp_type != PXA25x_SSP)
  466. write_SSTO(0, reg);
  467. flush(drv_data);
  468. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  469. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  470. drv_data->cur_msg->state = ERROR_STATE;
  471. tasklet_schedule(&drv_data->pump_transfers);
  472. }
  473. static void int_transfer_complete(struct driver_data *drv_data)
  474. {
  475. void __iomem *reg = drv_data->ioaddr;
  476. /* Stop SSP */
  477. write_SSSR(drv_data->clear_sr, reg);
  478. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  479. if (drv_data->ssp_type != PXA25x_SSP)
  480. write_SSTO(0, reg);
  481. /* Update total byte transfered return count actual bytes read */
  482. drv_data->cur_msg->actual_length += drv_data->len -
  483. (drv_data->rx_end - drv_data->rx);
  484. /* Release chip select if requested, transfer delays are
  485. * handled in pump_transfers */
  486. if (drv_data->cs_change)
  487. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  488. /* Move to next transfer */
  489. drv_data->cur_msg->state = next_transfer(drv_data);
  490. /* Schedule transfer tasklet */
  491. tasklet_schedule(&drv_data->pump_transfers);
  492. }
  493. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  494. {
  495. void __iomem *reg = drv_data->ioaddr;
  496. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  497. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  498. u32 irq_status = read_SSSR(reg) & irq_mask;
  499. if (irq_status & SSSR_ROR) {
  500. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  501. return IRQ_HANDLED;
  502. }
  503. if (irq_status & SSSR_TINT) {
  504. write_SSSR(SSSR_TINT, reg);
  505. if (drv_data->read(drv_data)) {
  506. int_transfer_complete(drv_data);
  507. return IRQ_HANDLED;
  508. }
  509. }
  510. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  511. do {
  512. if (drv_data->read(drv_data)) {
  513. int_transfer_complete(drv_data);
  514. return IRQ_HANDLED;
  515. }
  516. } while (drv_data->write(drv_data));
  517. if (drv_data->read(drv_data)) {
  518. int_transfer_complete(drv_data);
  519. return IRQ_HANDLED;
  520. }
  521. if (drv_data->tx == drv_data->tx_end) {
  522. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  523. /* PXA25x_SSP has no timeout, read trailing bytes */
  524. if (drv_data->ssp_type == PXA25x_SSP) {
  525. if (!wait_ssp_rx_stall(reg))
  526. {
  527. int_error_stop(drv_data, "interrupt_transfer: "
  528. "rx stall failed");
  529. return IRQ_HANDLED;
  530. }
  531. if (!drv_data->read(drv_data))
  532. {
  533. int_error_stop(drv_data,
  534. "interrupt_transfer: "
  535. "trailing byte read failed");
  536. return IRQ_HANDLED;
  537. }
  538. int_transfer_complete(drv_data);
  539. }
  540. }
  541. /* We did something */
  542. return IRQ_HANDLED;
  543. }
  544. static irqreturn_t ssp_int(int irq, void *dev_id)
  545. {
  546. struct driver_data *drv_data = dev_id;
  547. void __iomem *reg = drv_data->ioaddr;
  548. if (!drv_data->cur_msg) {
  549. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  550. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  551. if (drv_data->ssp_type != PXA25x_SSP)
  552. write_SSTO(0, reg);
  553. write_SSSR(drv_data->clear_sr, reg);
  554. dev_err(&drv_data->pdev->dev, "bad message state "
  555. "in interrupt handler\n");
  556. /* Never fail */
  557. return IRQ_HANDLED;
  558. }
  559. return drv_data->transfer_handler(drv_data);
  560. }
  561. static int set_dma_burst_and_threshold(struct chip_data *chip,
  562. struct spi_device *spi,
  563. u8 bits_per_word, u32 *burst_code,
  564. u32 *threshold)
  565. {
  566. struct pxa2xx_spi_chip *chip_info =
  567. (struct pxa2xx_spi_chip *)spi->controller_data;
  568. int bytes_per_word;
  569. int burst_bytes;
  570. int thresh_words;
  571. int req_burst_size;
  572. int retval = 0;
  573. /* Set the threshold (in registers) to equal the same amount of data
  574. * as represented by burst size (in bytes). The computation below
  575. * is (burst_size rounded up to nearest 8 byte, word or long word)
  576. * divided by (bytes/register); the tx threshold is the inverse of
  577. * the rx, so that there will always be enough data in the rx fifo
  578. * to satisfy a burst, and there will always be enough space in the
  579. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  580. * there is not enough space), there must always remain enough empty
  581. * space in the rx fifo for any data loaded to the tx fifo.
  582. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  583. * will be 8, or half the fifo;
  584. * The threshold can only be set to 2, 4 or 8, but not 16, because
  585. * to burst 16 to the tx fifo, the fifo would have to be empty;
  586. * however, the minimum fifo trigger level is 1, and the tx will
  587. * request service when the fifo is at this level, with only 15 spaces.
  588. */
  589. /* find bytes/word */
  590. if (bits_per_word <= 8)
  591. bytes_per_word = 1;
  592. else if (bits_per_word <= 16)
  593. bytes_per_word = 2;
  594. else
  595. bytes_per_word = 4;
  596. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  597. if (chip_info)
  598. req_burst_size = chip_info->dma_burst_size;
  599. else {
  600. switch (chip->dma_burst_size) {
  601. default:
  602. /* if the default burst size is not set,
  603. * do it now */
  604. chip->dma_burst_size = DCMD_BURST8;
  605. case DCMD_BURST8:
  606. req_burst_size = 8;
  607. break;
  608. case DCMD_BURST16:
  609. req_burst_size = 16;
  610. break;
  611. case DCMD_BURST32:
  612. req_burst_size = 32;
  613. break;
  614. }
  615. }
  616. if (req_burst_size <= 8) {
  617. *burst_code = DCMD_BURST8;
  618. burst_bytes = 8;
  619. } else if (req_burst_size <= 16) {
  620. if (bytes_per_word == 1) {
  621. /* don't burst more than 1/2 the fifo */
  622. *burst_code = DCMD_BURST8;
  623. burst_bytes = 8;
  624. retval = 1;
  625. } else {
  626. *burst_code = DCMD_BURST16;
  627. burst_bytes = 16;
  628. }
  629. } else {
  630. if (bytes_per_word == 1) {
  631. /* don't burst more than 1/2 the fifo */
  632. *burst_code = DCMD_BURST8;
  633. burst_bytes = 8;
  634. retval = 1;
  635. } else if (bytes_per_word == 2) {
  636. /* don't burst more than 1/2 the fifo */
  637. *burst_code = DCMD_BURST16;
  638. burst_bytes = 16;
  639. retval = 1;
  640. } else {
  641. *burst_code = DCMD_BURST32;
  642. burst_bytes = 32;
  643. }
  644. }
  645. thresh_words = burst_bytes / bytes_per_word;
  646. /* thresh_words will be between 2 and 8 */
  647. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  648. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  649. return retval;
  650. }
  651. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  652. {
  653. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  654. if (ssp->type == PXA25x_SSP)
  655. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  656. else
  657. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  658. }
  659. static void pump_transfers(unsigned long data)
  660. {
  661. struct driver_data *drv_data = (struct driver_data *)data;
  662. struct spi_message *message = NULL;
  663. struct spi_transfer *transfer = NULL;
  664. struct spi_transfer *previous = NULL;
  665. struct chip_data *chip = NULL;
  666. struct ssp_device *ssp = drv_data->ssp;
  667. void __iomem *reg = drv_data->ioaddr;
  668. u32 clk_div = 0;
  669. u8 bits = 0;
  670. u32 speed = 0;
  671. u32 cr0;
  672. u32 cr1;
  673. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  674. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  675. /* Get current state information */
  676. message = drv_data->cur_msg;
  677. transfer = drv_data->cur_transfer;
  678. chip = drv_data->cur_chip;
  679. /* Handle for abort */
  680. if (message->state == ERROR_STATE) {
  681. message->status = -EIO;
  682. giveback(drv_data);
  683. return;
  684. }
  685. /* Handle end of message */
  686. if (message->state == DONE_STATE) {
  687. message->status = 0;
  688. giveback(drv_data);
  689. return;
  690. }
  691. /* Delay if requested at end of transfer*/
  692. if (message->state == RUNNING_STATE) {
  693. previous = list_entry(transfer->transfer_list.prev,
  694. struct spi_transfer,
  695. transfer_list);
  696. if (previous->delay_usecs)
  697. udelay(previous->delay_usecs);
  698. }
  699. /* Check transfer length */
  700. if (transfer->len > 8191)
  701. {
  702. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  703. "length greater than 8191\n");
  704. message->status = -EINVAL;
  705. giveback(drv_data);
  706. return;
  707. }
  708. /* Setup the transfer state based on the type of transfer */
  709. if (flush(drv_data) == 0) {
  710. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  711. message->status = -EIO;
  712. giveback(drv_data);
  713. return;
  714. }
  715. drv_data->n_bytes = chip->n_bytes;
  716. drv_data->dma_width = chip->dma_width;
  717. drv_data->cs_control = chip->cs_control;
  718. drv_data->tx = (void *)transfer->tx_buf;
  719. drv_data->tx_end = drv_data->tx + transfer->len;
  720. drv_data->rx = transfer->rx_buf;
  721. drv_data->rx_end = drv_data->rx + transfer->len;
  722. drv_data->rx_dma = transfer->rx_dma;
  723. drv_data->tx_dma = transfer->tx_dma;
  724. drv_data->len = transfer->len & DCMD_LENGTH;
  725. drv_data->write = drv_data->tx ? chip->write : null_writer;
  726. drv_data->read = drv_data->rx ? chip->read : null_reader;
  727. drv_data->cs_change = transfer->cs_change;
  728. /* Change speed and bit per word on a per transfer */
  729. cr0 = chip->cr0;
  730. if (transfer->speed_hz || transfer->bits_per_word) {
  731. bits = chip->bits_per_word;
  732. speed = chip->speed_hz;
  733. if (transfer->speed_hz)
  734. speed = transfer->speed_hz;
  735. if (transfer->bits_per_word)
  736. bits = transfer->bits_per_word;
  737. clk_div = ssp_get_clk_div(ssp, speed);
  738. if (bits <= 8) {
  739. drv_data->n_bytes = 1;
  740. drv_data->dma_width = DCMD_WIDTH1;
  741. drv_data->read = drv_data->read != null_reader ?
  742. u8_reader : null_reader;
  743. drv_data->write = drv_data->write != null_writer ?
  744. u8_writer : null_writer;
  745. } else if (bits <= 16) {
  746. drv_data->n_bytes = 2;
  747. drv_data->dma_width = DCMD_WIDTH2;
  748. drv_data->read = drv_data->read != null_reader ?
  749. u16_reader : null_reader;
  750. drv_data->write = drv_data->write != null_writer ?
  751. u16_writer : null_writer;
  752. } else if (bits <= 32) {
  753. drv_data->n_bytes = 4;
  754. drv_data->dma_width = DCMD_WIDTH4;
  755. drv_data->read = drv_data->read != null_reader ?
  756. u32_reader : null_reader;
  757. drv_data->write = drv_data->write != null_writer ?
  758. u32_writer : null_writer;
  759. }
  760. /* if bits/word is changed in dma mode, then must check the
  761. * thresholds and burst also */
  762. if (chip->enable_dma) {
  763. if (set_dma_burst_and_threshold(chip, message->spi,
  764. bits, &dma_burst,
  765. &dma_thresh))
  766. if (printk_ratelimit())
  767. dev_warn(&message->spi->dev,
  768. "pump_transfer: "
  769. "DMA burst size reduced to "
  770. "match bits_per_word\n");
  771. }
  772. cr0 = clk_div
  773. | SSCR0_Motorola
  774. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  775. | SSCR0_SSE
  776. | (bits > 16 ? SSCR0_EDSS : 0);
  777. }
  778. message->state = RUNNING_STATE;
  779. /* Try to map dma buffer and do a dma transfer if successful */
  780. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  781. /* Ensure we have the correct interrupt handler */
  782. drv_data->transfer_handler = dma_transfer;
  783. /* Setup rx DMA Channel */
  784. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  785. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  786. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  787. if (drv_data->rx == drv_data->null_dma_buf)
  788. /* No target address increment */
  789. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  790. | drv_data->dma_width
  791. | dma_burst
  792. | drv_data->len;
  793. else
  794. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  795. | DCMD_FLOWSRC
  796. | drv_data->dma_width
  797. | dma_burst
  798. | drv_data->len;
  799. /* Setup tx DMA Channel */
  800. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  801. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  802. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  803. if (drv_data->tx == drv_data->null_dma_buf)
  804. /* No source address increment */
  805. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  806. | drv_data->dma_width
  807. | dma_burst
  808. | drv_data->len;
  809. else
  810. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  811. | DCMD_FLOWTRG
  812. | drv_data->dma_width
  813. | dma_burst
  814. | drv_data->len;
  815. /* Enable dma end irqs on SSP to detect end of transfer */
  816. if (drv_data->ssp_type == PXA25x_SSP)
  817. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  818. /* Clear status and start DMA engine */
  819. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  820. write_SSSR(drv_data->clear_sr, reg);
  821. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  822. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  823. } else {
  824. /* Ensure we have the correct interrupt handler */
  825. drv_data->transfer_handler = interrupt_transfer;
  826. /* Clear status */
  827. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  828. write_SSSR(drv_data->clear_sr, reg);
  829. }
  830. /* see if we need to reload the config registers */
  831. if ((read_SSCR0(reg) != cr0)
  832. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  833. (cr1 & SSCR1_CHANGE_MASK)) {
  834. /* stop the SSP, and update the other bits */
  835. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  836. if (drv_data->ssp_type != PXA25x_SSP)
  837. write_SSTO(chip->timeout, reg);
  838. /* first set CR1 without interrupt and service enables */
  839. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  840. /* restart the SSP */
  841. write_SSCR0(cr0, reg);
  842. } else {
  843. if (drv_data->ssp_type != PXA25x_SSP)
  844. write_SSTO(chip->timeout, reg);
  845. }
  846. /* FIXME, need to handle cs polarity,
  847. * this driver uses struct pxa2xx_spi_chip.cs_control to
  848. * specify a CS handling function, and it ignores most
  849. * struct spi_device.mode[s], including SPI_CS_HIGH */
  850. drv_data->cs_control(PXA2XX_CS_ASSERT);
  851. /* after chip select, release the data by enabling service
  852. * requests and interrupts, without changing any mode bits */
  853. write_SSCR1(cr1, reg);
  854. }
  855. static void pump_messages(struct work_struct *work)
  856. {
  857. struct driver_data *drv_data =
  858. container_of(work, struct driver_data, pump_messages);
  859. unsigned long flags;
  860. /* Lock queue and check for queue work */
  861. spin_lock_irqsave(&drv_data->lock, flags);
  862. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  863. drv_data->busy = 0;
  864. spin_unlock_irqrestore(&drv_data->lock, flags);
  865. return;
  866. }
  867. /* Make sure we are not already running a message */
  868. if (drv_data->cur_msg) {
  869. spin_unlock_irqrestore(&drv_data->lock, flags);
  870. return;
  871. }
  872. /* Extract head of queue */
  873. drv_data->cur_msg = list_entry(drv_data->queue.next,
  874. struct spi_message, queue);
  875. list_del_init(&drv_data->cur_msg->queue);
  876. /* Initial message state*/
  877. drv_data->cur_msg->state = START_STATE;
  878. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  879. struct spi_transfer,
  880. transfer_list);
  881. /* prepare to setup the SSP, in pump_transfers, using the per
  882. * chip configuration */
  883. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  884. /* Mark as busy and launch transfers */
  885. tasklet_schedule(&drv_data->pump_transfers);
  886. drv_data->busy = 1;
  887. spin_unlock_irqrestore(&drv_data->lock, flags);
  888. }
  889. static int transfer(struct spi_device *spi, struct spi_message *msg)
  890. {
  891. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  892. unsigned long flags;
  893. spin_lock_irqsave(&drv_data->lock, flags);
  894. if (drv_data->run == QUEUE_STOPPED) {
  895. spin_unlock_irqrestore(&drv_data->lock, flags);
  896. return -ESHUTDOWN;
  897. }
  898. msg->actual_length = 0;
  899. msg->status = -EINPROGRESS;
  900. msg->state = START_STATE;
  901. list_add_tail(&msg->queue, &drv_data->queue);
  902. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  903. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  904. spin_unlock_irqrestore(&drv_data->lock, flags);
  905. return 0;
  906. }
  907. /* the spi->mode bits understood by this driver: */
  908. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  909. static int setup(struct spi_device *spi)
  910. {
  911. struct pxa2xx_spi_chip *chip_info = NULL;
  912. struct chip_data *chip;
  913. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  914. struct ssp_device *ssp = drv_data->ssp;
  915. unsigned int clk_div;
  916. if (!spi->bits_per_word)
  917. spi->bits_per_word = 8;
  918. if (drv_data->ssp_type != PXA25x_SSP
  919. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  920. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  921. "b/w not 4-32 for type non-PXA25x_SSP\n",
  922. drv_data->ssp_type, spi->bits_per_word);
  923. return -EINVAL;
  924. }
  925. else if (drv_data->ssp_type == PXA25x_SSP
  926. && (spi->bits_per_word < 4
  927. || spi->bits_per_word > 16)) {
  928. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  929. "b/w not 4-16 for type PXA25x_SSP\n",
  930. drv_data->ssp_type, spi->bits_per_word);
  931. return -EINVAL;
  932. }
  933. if (spi->mode & ~MODEBITS) {
  934. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  935. spi->mode & ~MODEBITS);
  936. return -EINVAL;
  937. }
  938. /* Only alloc on first setup */
  939. chip = spi_get_ctldata(spi);
  940. if (!chip) {
  941. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  942. if (!chip) {
  943. dev_err(&spi->dev,
  944. "failed setup: can't allocate chip data\n");
  945. return -ENOMEM;
  946. }
  947. chip->cs_control = null_cs_control;
  948. chip->enable_dma = 0;
  949. chip->timeout = 1000;
  950. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  951. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  952. DCMD_BURST8 : 0;
  953. }
  954. /* protocol drivers may change the chip settings, so...
  955. * if chip_info exists, use it */
  956. chip_info = spi->controller_data;
  957. /* chip_info isn't always needed */
  958. chip->cr1 = 0;
  959. if (chip_info) {
  960. if (chip_info->cs_control)
  961. chip->cs_control = chip_info->cs_control;
  962. chip->timeout = chip_info->timeout;
  963. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  964. SSCR1_RFT) |
  965. (SSCR1_TxTresh(chip_info->tx_threshold) &
  966. SSCR1_TFT);
  967. chip->enable_dma = chip_info->dma_burst_size != 0
  968. && drv_data->master_info->enable_dma;
  969. chip->dma_threshold = 0;
  970. if (chip_info->enable_loopback)
  971. chip->cr1 = SSCR1_LBM;
  972. }
  973. /* set dma burst and threshold outside of chip_info path so that if
  974. * chip_info goes away after setting chip->enable_dma, the
  975. * burst and threshold can still respond to changes in bits_per_word */
  976. if (chip->enable_dma) {
  977. /* set up legal burst and threshold for dma */
  978. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  979. &chip->dma_burst_size,
  980. &chip->dma_threshold)) {
  981. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  982. "to match bits_per_word\n");
  983. }
  984. }
  985. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  986. chip->speed_hz = spi->max_speed_hz;
  987. chip->cr0 = clk_div
  988. | SSCR0_Motorola
  989. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  990. spi->bits_per_word - 16 : spi->bits_per_word)
  991. | SSCR0_SSE
  992. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  993. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  994. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  995. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  996. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  997. if (drv_data->ssp_type != PXA25x_SSP)
  998. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  999. spi->bits_per_word,
  1000. clk_get_rate(ssp->clk)
  1001. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1002. spi->mode & 0x3);
  1003. else
  1004. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1005. spi->bits_per_word,
  1006. clk_get_rate(ssp->clk)
  1007. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1008. spi->mode & 0x3);
  1009. if (spi->bits_per_word <= 8) {
  1010. chip->n_bytes = 1;
  1011. chip->dma_width = DCMD_WIDTH1;
  1012. chip->read = u8_reader;
  1013. chip->write = u8_writer;
  1014. } else if (spi->bits_per_word <= 16) {
  1015. chip->n_bytes = 2;
  1016. chip->dma_width = DCMD_WIDTH2;
  1017. chip->read = u16_reader;
  1018. chip->write = u16_writer;
  1019. } else if (spi->bits_per_word <= 32) {
  1020. chip->cr0 |= SSCR0_EDSS;
  1021. chip->n_bytes = 4;
  1022. chip->dma_width = DCMD_WIDTH4;
  1023. chip->read = u32_reader;
  1024. chip->write = u32_writer;
  1025. } else {
  1026. dev_err(&spi->dev, "invalid wordsize\n");
  1027. return -ENODEV;
  1028. }
  1029. chip->bits_per_word = spi->bits_per_word;
  1030. spi_set_ctldata(spi, chip);
  1031. return 0;
  1032. }
  1033. static void cleanup(struct spi_device *spi)
  1034. {
  1035. struct chip_data *chip = spi_get_ctldata(spi);
  1036. kfree(chip);
  1037. }
  1038. static int __init init_queue(struct driver_data *drv_data)
  1039. {
  1040. INIT_LIST_HEAD(&drv_data->queue);
  1041. spin_lock_init(&drv_data->lock);
  1042. drv_data->run = QUEUE_STOPPED;
  1043. drv_data->busy = 0;
  1044. tasklet_init(&drv_data->pump_transfers,
  1045. pump_transfers, (unsigned long)drv_data);
  1046. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1047. drv_data->workqueue = create_singlethread_workqueue(
  1048. drv_data->master->dev.parent->bus_id);
  1049. if (drv_data->workqueue == NULL)
  1050. return -EBUSY;
  1051. return 0;
  1052. }
  1053. static int start_queue(struct driver_data *drv_data)
  1054. {
  1055. unsigned long flags;
  1056. spin_lock_irqsave(&drv_data->lock, flags);
  1057. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1058. spin_unlock_irqrestore(&drv_data->lock, flags);
  1059. return -EBUSY;
  1060. }
  1061. drv_data->run = QUEUE_RUNNING;
  1062. drv_data->cur_msg = NULL;
  1063. drv_data->cur_transfer = NULL;
  1064. drv_data->cur_chip = NULL;
  1065. spin_unlock_irqrestore(&drv_data->lock, flags);
  1066. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1067. return 0;
  1068. }
  1069. static int stop_queue(struct driver_data *drv_data)
  1070. {
  1071. unsigned long flags;
  1072. unsigned limit = 500;
  1073. int status = 0;
  1074. spin_lock_irqsave(&drv_data->lock, flags);
  1075. /* This is a bit lame, but is optimized for the common execution path.
  1076. * A wait_queue on the drv_data->busy could be used, but then the common
  1077. * execution path (pump_messages) would be required to call wake_up or
  1078. * friends on every SPI message. Do this instead */
  1079. drv_data->run = QUEUE_STOPPED;
  1080. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1081. spin_unlock_irqrestore(&drv_data->lock, flags);
  1082. msleep(10);
  1083. spin_lock_irqsave(&drv_data->lock, flags);
  1084. }
  1085. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1086. status = -EBUSY;
  1087. spin_unlock_irqrestore(&drv_data->lock, flags);
  1088. return status;
  1089. }
  1090. static int destroy_queue(struct driver_data *drv_data)
  1091. {
  1092. int status;
  1093. status = stop_queue(drv_data);
  1094. /* we are unloading the module or failing to load (only two calls
  1095. * to this routine), and neither call can handle a return value.
  1096. * However, destroy_workqueue calls flush_workqueue, and that will
  1097. * block until all work is done. If the reason that stop_queue
  1098. * timed out is that the work will never finish, then it does no
  1099. * good to call destroy_workqueue, so return anyway. */
  1100. if (status != 0)
  1101. return status;
  1102. destroy_workqueue(drv_data->workqueue);
  1103. return 0;
  1104. }
  1105. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1106. {
  1107. struct device *dev = &pdev->dev;
  1108. struct pxa2xx_spi_master *platform_info;
  1109. struct spi_master *master;
  1110. struct driver_data *drv_data = NULL;
  1111. struct ssp_device *ssp;
  1112. int status = 0;
  1113. platform_info = dev->platform_data;
  1114. ssp = ssp_request(pdev->id, pdev->name);
  1115. if (ssp == NULL) {
  1116. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1117. return -ENODEV;
  1118. }
  1119. /* Allocate master with space for drv_data and null dma buffer */
  1120. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1121. if (!master) {
  1122. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1123. ssp_free(ssp);
  1124. return -ENOMEM;
  1125. }
  1126. drv_data = spi_master_get_devdata(master);
  1127. drv_data->master = master;
  1128. drv_data->master_info = platform_info;
  1129. drv_data->pdev = pdev;
  1130. drv_data->ssp = ssp;
  1131. master->bus_num = pdev->id;
  1132. master->num_chipselect = platform_info->num_chipselect;
  1133. master->cleanup = cleanup;
  1134. master->setup = setup;
  1135. master->transfer = transfer;
  1136. drv_data->ssp_type = ssp->type;
  1137. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1138. sizeof(struct driver_data)), 8);
  1139. drv_data->ioaddr = ssp->mmio_base;
  1140. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1141. if (ssp->type == PXA25x_SSP) {
  1142. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1143. drv_data->dma_cr1 = 0;
  1144. drv_data->clear_sr = SSSR_ROR;
  1145. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1146. } else {
  1147. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1148. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1149. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1150. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1151. }
  1152. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1153. if (status < 0) {
  1154. dev_err(&pdev->dev, "can not get IRQ\n");
  1155. goto out_error_master_alloc;
  1156. }
  1157. /* Setup DMA if requested */
  1158. drv_data->tx_channel = -1;
  1159. drv_data->rx_channel = -1;
  1160. if (platform_info->enable_dma) {
  1161. /* Get two DMA channels (rx and tx) */
  1162. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1163. DMA_PRIO_HIGH,
  1164. dma_handler,
  1165. drv_data);
  1166. if (drv_data->rx_channel < 0) {
  1167. dev_err(dev, "problem (%d) requesting rx channel\n",
  1168. drv_data->rx_channel);
  1169. status = -ENODEV;
  1170. goto out_error_irq_alloc;
  1171. }
  1172. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1173. DMA_PRIO_MEDIUM,
  1174. dma_handler,
  1175. drv_data);
  1176. if (drv_data->tx_channel < 0) {
  1177. dev_err(dev, "problem (%d) requesting tx channel\n",
  1178. drv_data->tx_channel);
  1179. status = -ENODEV;
  1180. goto out_error_dma_alloc;
  1181. }
  1182. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1183. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1184. }
  1185. /* Enable SOC clock */
  1186. clk_enable(ssp->clk);
  1187. /* Load default SSP configuration */
  1188. write_SSCR0(0, drv_data->ioaddr);
  1189. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1190. write_SSCR0(SSCR0_SerClkDiv(2)
  1191. | SSCR0_Motorola
  1192. | SSCR0_DataSize(8),
  1193. drv_data->ioaddr);
  1194. if (drv_data->ssp_type != PXA25x_SSP)
  1195. write_SSTO(0, drv_data->ioaddr);
  1196. write_SSPSP(0, drv_data->ioaddr);
  1197. /* Initial and start queue */
  1198. status = init_queue(drv_data);
  1199. if (status != 0) {
  1200. dev_err(&pdev->dev, "problem initializing queue\n");
  1201. goto out_error_clock_enabled;
  1202. }
  1203. status = start_queue(drv_data);
  1204. if (status != 0) {
  1205. dev_err(&pdev->dev, "problem starting queue\n");
  1206. goto out_error_clock_enabled;
  1207. }
  1208. /* Register with the SPI framework */
  1209. platform_set_drvdata(pdev, drv_data);
  1210. status = spi_register_master(master);
  1211. if (status != 0) {
  1212. dev_err(&pdev->dev, "problem registering spi master\n");
  1213. goto out_error_queue_alloc;
  1214. }
  1215. return status;
  1216. out_error_queue_alloc:
  1217. destroy_queue(drv_data);
  1218. out_error_clock_enabled:
  1219. clk_disable(ssp->clk);
  1220. out_error_dma_alloc:
  1221. if (drv_data->tx_channel != -1)
  1222. pxa_free_dma(drv_data->tx_channel);
  1223. if (drv_data->rx_channel != -1)
  1224. pxa_free_dma(drv_data->rx_channel);
  1225. out_error_irq_alloc:
  1226. free_irq(ssp->irq, drv_data);
  1227. out_error_master_alloc:
  1228. spi_master_put(master);
  1229. ssp_free(ssp);
  1230. return status;
  1231. }
  1232. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1233. {
  1234. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1235. struct ssp_device *ssp = drv_data->ssp;
  1236. int status = 0;
  1237. if (!drv_data)
  1238. return 0;
  1239. /* Remove the queue */
  1240. status = destroy_queue(drv_data);
  1241. if (status != 0)
  1242. /* the kernel does not check the return status of this
  1243. * this routine (mod->exit, within the kernel). Therefore
  1244. * nothing is gained by returning from here, the module is
  1245. * going away regardless, and we should not leave any more
  1246. * resources allocated than necessary. We cannot free the
  1247. * message memory in drv_data->queue, but we can release the
  1248. * resources below. I think the kernel should honor -EBUSY
  1249. * returns but... */
  1250. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1251. "complete, message memory not freed\n");
  1252. /* Disable the SSP at the peripheral and SOC level */
  1253. write_SSCR0(0, drv_data->ioaddr);
  1254. clk_disable(ssp->clk);
  1255. /* Release DMA */
  1256. if (drv_data->master_info->enable_dma) {
  1257. DRCMR(ssp->drcmr_rx) = 0;
  1258. DRCMR(ssp->drcmr_tx) = 0;
  1259. pxa_free_dma(drv_data->tx_channel);
  1260. pxa_free_dma(drv_data->rx_channel);
  1261. }
  1262. /* Release IRQ */
  1263. free_irq(ssp->irq, drv_data);
  1264. /* Release SSP */
  1265. ssp_free(ssp);
  1266. /* Disconnect from the SPI framework */
  1267. spi_unregister_master(drv_data->master);
  1268. /* Prevent double remove */
  1269. platform_set_drvdata(pdev, NULL);
  1270. return 0;
  1271. }
  1272. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1273. {
  1274. int status = 0;
  1275. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1276. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1277. }
  1278. #ifdef CONFIG_PM
  1279. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1280. {
  1281. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1282. struct ssp_device *ssp = drv_data->ssp;
  1283. int status = 0;
  1284. status = stop_queue(drv_data);
  1285. if (status != 0)
  1286. return status;
  1287. write_SSCR0(0, drv_data->ioaddr);
  1288. clk_disable(ssp->clk);
  1289. return 0;
  1290. }
  1291. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1292. {
  1293. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1294. struct ssp_device *ssp = drv_data->ssp;
  1295. int status = 0;
  1296. /* Enable the SSP clock */
  1297. clk_enable(ssp->clk);
  1298. /* Start the queue running */
  1299. status = start_queue(drv_data);
  1300. if (status != 0) {
  1301. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1302. return status;
  1303. }
  1304. return 0;
  1305. }
  1306. #else
  1307. #define pxa2xx_spi_suspend NULL
  1308. #define pxa2xx_spi_resume NULL
  1309. #endif /* CONFIG_PM */
  1310. static struct platform_driver driver = {
  1311. .driver = {
  1312. .name = "pxa2xx-spi",
  1313. .owner = THIS_MODULE,
  1314. },
  1315. .remove = pxa2xx_spi_remove,
  1316. .shutdown = pxa2xx_spi_shutdown,
  1317. .suspend = pxa2xx_spi_suspend,
  1318. .resume = pxa2xx_spi_resume,
  1319. };
  1320. static int __init pxa2xx_spi_init(void)
  1321. {
  1322. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1323. }
  1324. module_init(pxa2xx_spi_init);
  1325. static void __exit pxa2xx_spi_exit(void)
  1326. {
  1327. platform_driver_unregister(&driver);
  1328. }
  1329. module_exit(pxa2xx_spi_exit);