time.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #ifdef CONFIG_PPC64
  67. #include <asm/firmware.h>
  68. #endif
  69. #ifdef CONFIG_PPC_ISERIES
  70. #include <asm/iseries/it_lp_queue.h>
  71. #include <asm/iseries/hv_call_xm.h>
  72. #endif
  73. /* keep track of when we need to update the rtc */
  74. time_t last_rtc_update;
  75. #ifdef CONFIG_PPC_ISERIES
  76. static unsigned long __initdata iSeries_recal_titan;
  77. static signed long __initdata iSeries_recal_tb;
  78. #endif
  79. /* The decrementer counts down by 128 every 128ns on a 601. */
  80. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  81. #define XSEC_PER_SEC (1024*1024)
  82. #ifdef CONFIG_PPC64
  83. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  84. #else
  85. /* compute ((xsec << 12) * max) >> 32 */
  86. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  87. #endif
  88. unsigned long tb_ticks_per_jiffy;
  89. unsigned long tb_ticks_per_usec = 100; /* sane default */
  90. EXPORT_SYMBOL(tb_ticks_per_usec);
  91. unsigned long tb_ticks_per_sec;
  92. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  93. u64 tb_to_xs;
  94. unsigned tb_to_us;
  95. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  96. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  97. u64 ticklen_to_xs; /* 0.64 fraction */
  98. /* If last_tick_len corresponds to about 1/HZ seconds, then
  99. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  100. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  101. DEFINE_SPINLOCK(rtc_lock);
  102. EXPORT_SYMBOL_GPL(rtc_lock);
  103. static u64 tb_to_ns_scale __read_mostly;
  104. static unsigned tb_to_ns_shift __read_mostly;
  105. static unsigned long boot_tb __read_mostly;
  106. struct gettimeofday_struct do_gtod;
  107. extern struct timezone sys_tz;
  108. static long timezone_offset;
  109. unsigned long ppc_proc_freq;
  110. EXPORT_SYMBOL(ppc_proc_freq);
  111. unsigned long ppc_tb_freq;
  112. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  113. static DEFINE_PER_CPU(u64, last_jiffy);
  114. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  115. /*
  116. * Factors for converting from cputime_t (timebase ticks) to
  117. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  118. * These are all stored as 0.64 fixed-point binary fractions.
  119. */
  120. u64 __cputime_jiffies_factor;
  121. EXPORT_SYMBOL(__cputime_jiffies_factor);
  122. u64 __cputime_msec_factor;
  123. EXPORT_SYMBOL(__cputime_msec_factor);
  124. u64 __cputime_sec_factor;
  125. EXPORT_SYMBOL(__cputime_sec_factor);
  126. u64 __cputime_clockt_factor;
  127. EXPORT_SYMBOL(__cputime_clockt_factor);
  128. static void calc_cputime_factors(void)
  129. {
  130. struct div_result res;
  131. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  132. __cputime_jiffies_factor = res.result_low;
  133. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  134. __cputime_msec_factor = res.result_low;
  135. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  136. __cputime_sec_factor = res.result_low;
  137. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  138. __cputime_clockt_factor = res.result_low;
  139. }
  140. /*
  141. * Read the PURR on systems that have it, otherwise the timebase.
  142. */
  143. static u64 read_purr(void)
  144. {
  145. if (cpu_has_feature(CPU_FTR_PURR))
  146. return mfspr(SPRN_PURR);
  147. return mftb();
  148. }
  149. /*
  150. * Account time for a transition between system, hard irq
  151. * or soft irq state.
  152. */
  153. void account_system_vtime(struct task_struct *tsk)
  154. {
  155. u64 now, delta;
  156. unsigned long flags;
  157. local_irq_save(flags);
  158. now = read_purr();
  159. delta = now - get_paca()->startpurr;
  160. get_paca()->startpurr = now;
  161. if (!in_interrupt()) {
  162. delta += get_paca()->system_time;
  163. get_paca()->system_time = 0;
  164. }
  165. account_system_time(tsk, 0, delta);
  166. local_irq_restore(flags);
  167. }
  168. /*
  169. * Transfer the user and system times accumulated in the paca
  170. * by the exception entry and exit code to the generic process
  171. * user and system time records.
  172. * Must be called with interrupts disabled.
  173. */
  174. void account_process_vtime(struct task_struct *tsk)
  175. {
  176. cputime_t utime;
  177. utime = get_paca()->user_time;
  178. get_paca()->user_time = 0;
  179. account_user_time(tsk, utime);
  180. }
  181. static void account_process_time(struct pt_regs *regs)
  182. {
  183. int cpu = smp_processor_id();
  184. account_process_vtime(current);
  185. run_local_timers();
  186. if (rcu_pending(cpu))
  187. rcu_check_callbacks(cpu, user_mode(regs));
  188. scheduler_tick();
  189. run_posix_cpu_timers(current);
  190. }
  191. /*
  192. * Stuff for accounting stolen time.
  193. */
  194. struct cpu_purr_data {
  195. int initialized; /* thread is running */
  196. u64 tb; /* last TB value read */
  197. u64 purr; /* last PURR value read */
  198. };
  199. /*
  200. * Each entry in the cpu_purr_data array is manipulated only by its
  201. * "owner" cpu -- usually in the timer interrupt but also occasionally
  202. * in process context for cpu online. As long as cpus do not touch
  203. * each others' cpu_purr_data, disabling local interrupts is
  204. * sufficient to serialize accesses.
  205. */
  206. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  207. static void snapshot_tb_and_purr(void *data)
  208. {
  209. unsigned long flags;
  210. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  211. local_irq_save(flags);
  212. p->tb = get_tb_or_rtc();
  213. p->purr = mfspr(SPRN_PURR);
  214. wmb();
  215. p->initialized = 1;
  216. local_irq_restore(flags);
  217. }
  218. /*
  219. * Called during boot when all cpus have come up.
  220. */
  221. void snapshot_timebases(void)
  222. {
  223. if (!cpu_has_feature(CPU_FTR_PURR))
  224. return;
  225. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  226. }
  227. /*
  228. * Must be called with interrupts disabled.
  229. */
  230. void calculate_steal_time(void)
  231. {
  232. u64 tb, purr;
  233. s64 stolen;
  234. struct cpu_purr_data *pme;
  235. if (!cpu_has_feature(CPU_FTR_PURR))
  236. return;
  237. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  238. if (!pme->initialized)
  239. return; /* this can happen in early boot */
  240. tb = mftb();
  241. purr = mfspr(SPRN_PURR);
  242. stolen = (tb - pme->tb) - (purr - pme->purr);
  243. if (stolen > 0)
  244. account_steal_time(current, stolen);
  245. pme->tb = tb;
  246. pme->purr = purr;
  247. }
  248. #ifdef CONFIG_PPC_SPLPAR
  249. /*
  250. * Must be called before the cpu is added to the online map when
  251. * a cpu is being brought up at runtime.
  252. */
  253. static void snapshot_purr(void)
  254. {
  255. struct cpu_purr_data *pme;
  256. unsigned long flags;
  257. if (!cpu_has_feature(CPU_FTR_PURR))
  258. return;
  259. local_irq_save(flags);
  260. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  261. pme->tb = mftb();
  262. pme->purr = mfspr(SPRN_PURR);
  263. pme->initialized = 1;
  264. local_irq_restore(flags);
  265. }
  266. #endif /* CONFIG_PPC_SPLPAR */
  267. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  268. #define calc_cputime_factors()
  269. #define account_process_time(regs) update_process_times(user_mode(regs))
  270. #define calculate_steal_time() do { } while (0)
  271. #endif
  272. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  273. #define snapshot_purr() do { } while (0)
  274. #endif
  275. /*
  276. * Called when a cpu comes up after the system has finished booting,
  277. * i.e. as a result of a hotplug cpu action.
  278. */
  279. void snapshot_timebase(void)
  280. {
  281. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  282. snapshot_purr();
  283. }
  284. void __delay(unsigned long loops)
  285. {
  286. unsigned long start;
  287. int diff;
  288. if (__USE_RTC()) {
  289. start = get_rtcl();
  290. do {
  291. /* the RTCL register wraps at 1000000000 */
  292. diff = get_rtcl() - start;
  293. if (diff < 0)
  294. diff += 1000000000;
  295. } while (diff < loops);
  296. } else {
  297. start = get_tbl();
  298. while (get_tbl() - start < loops)
  299. HMT_low();
  300. HMT_medium();
  301. }
  302. }
  303. EXPORT_SYMBOL(__delay);
  304. void udelay(unsigned long usecs)
  305. {
  306. __delay(tb_ticks_per_usec * usecs);
  307. }
  308. EXPORT_SYMBOL(udelay);
  309. static __inline__ void timer_check_rtc(void)
  310. {
  311. /*
  312. * update the rtc when needed, this should be performed on the
  313. * right fraction of a second. Half or full second ?
  314. * Full second works on mk48t59 clocks, others need testing.
  315. * Note that this update is basically only used through
  316. * the adjtimex system calls. Setting the HW clock in
  317. * any other way is a /dev/rtc and userland business.
  318. * This is still wrong by -0.5/+1.5 jiffies because of the
  319. * timer interrupt resolution and possible delay, but here we
  320. * hit a quantization limit which can only be solved by higher
  321. * resolution timers and decoupling time management from timer
  322. * interrupts. This is also wrong on the clocks
  323. * which require being written at the half second boundary.
  324. * We should have an rtc call that only sets the minutes and
  325. * seconds like on Intel to avoid problems with non UTC clocks.
  326. */
  327. if (ppc_md.set_rtc_time && ntp_synced() &&
  328. xtime.tv_sec - last_rtc_update >= 659 &&
  329. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  330. struct rtc_time tm;
  331. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  332. tm.tm_year -= 1900;
  333. tm.tm_mon -= 1;
  334. if (ppc_md.set_rtc_time(&tm) == 0)
  335. last_rtc_update = xtime.tv_sec + 1;
  336. else
  337. /* Try again one minute later */
  338. last_rtc_update += 60;
  339. }
  340. }
  341. /*
  342. * This version of gettimeofday has microsecond resolution.
  343. */
  344. static inline void __do_gettimeofday(struct timeval *tv)
  345. {
  346. unsigned long sec, usec;
  347. u64 tb_ticks, xsec;
  348. struct gettimeofday_vars *temp_varp;
  349. u64 temp_tb_to_xs, temp_stamp_xsec;
  350. /*
  351. * These calculations are faster (gets rid of divides)
  352. * if done in units of 1/2^20 rather than microseconds.
  353. * The conversion to microseconds at the end is done
  354. * without a divide (and in fact, without a multiply)
  355. */
  356. temp_varp = do_gtod.varp;
  357. /* Sampling the time base must be done after loading
  358. * do_gtod.varp in order to avoid racing with update_gtod.
  359. */
  360. data_barrier(temp_varp);
  361. tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
  362. temp_tb_to_xs = temp_varp->tb_to_xs;
  363. temp_stamp_xsec = temp_varp->stamp_xsec;
  364. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  365. sec = xsec / XSEC_PER_SEC;
  366. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  367. usec = SCALE_XSEC(usec, 1000000);
  368. tv->tv_sec = sec;
  369. tv->tv_usec = usec;
  370. }
  371. void do_gettimeofday(struct timeval *tv)
  372. {
  373. if (__USE_RTC()) {
  374. /* do this the old way */
  375. unsigned long flags, seq;
  376. unsigned int sec, nsec, usec;
  377. do {
  378. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  379. sec = xtime.tv_sec;
  380. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
  381. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  382. usec = nsec / 1000;
  383. while (usec >= 1000000) {
  384. usec -= 1000000;
  385. ++sec;
  386. }
  387. tv->tv_sec = sec;
  388. tv->tv_usec = usec;
  389. return;
  390. }
  391. __do_gettimeofday(tv);
  392. }
  393. EXPORT_SYMBOL(do_gettimeofday);
  394. /*
  395. * There are two copies of tb_to_xs and stamp_xsec so that no
  396. * lock is needed to access and use these values in
  397. * do_gettimeofday. We alternate the copies and as long as a
  398. * reasonable time elapses between changes, there will never
  399. * be inconsistent values. ntpd has a minimum of one minute
  400. * between updates.
  401. */
  402. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  403. u64 new_tb_to_xs)
  404. {
  405. unsigned temp_idx;
  406. struct gettimeofday_vars *temp_varp;
  407. temp_idx = (do_gtod.var_idx == 0);
  408. temp_varp = &do_gtod.vars[temp_idx];
  409. temp_varp->tb_to_xs = new_tb_to_xs;
  410. temp_varp->tb_orig_stamp = new_tb_stamp;
  411. temp_varp->stamp_xsec = new_stamp_xsec;
  412. smp_mb();
  413. do_gtod.varp = temp_varp;
  414. do_gtod.var_idx = temp_idx;
  415. /*
  416. * tb_update_count is used to allow the userspace gettimeofday code
  417. * to assure itself that it sees a consistent view of the tb_to_xs and
  418. * stamp_xsec variables. It reads the tb_update_count, then reads
  419. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  420. * the two values of tb_update_count match and are even then the
  421. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  422. * loops back and reads them again until this criteria is met.
  423. * We expect the caller to have done the first increment of
  424. * vdso_data->tb_update_count already.
  425. */
  426. vdso_data->tb_orig_stamp = new_tb_stamp;
  427. vdso_data->stamp_xsec = new_stamp_xsec;
  428. vdso_data->tb_to_xs = new_tb_to_xs;
  429. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  430. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  431. smp_wmb();
  432. ++(vdso_data->tb_update_count);
  433. }
  434. /*
  435. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  436. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  437. * difference tb - tb_orig_stamp small enough to always fit inside a
  438. * 32 bits number. This is a requirement of our fast 32 bits userland
  439. * implementation in the vdso. If we "miss" a call to this function
  440. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  441. * with a too big difference, then the vdso will fallback to calling
  442. * the syscall
  443. */
  444. static __inline__ void timer_recalc_offset(u64 cur_tb)
  445. {
  446. unsigned long offset;
  447. u64 new_stamp_xsec;
  448. u64 tlen, t2x;
  449. u64 tb, xsec_old, xsec_new;
  450. struct gettimeofday_vars *varp;
  451. if (__USE_RTC())
  452. return;
  453. tlen = current_tick_length();
  454. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  455. if (tlen == last_tick_len && offset < 0x80000000u)
  456. return;
  457. if (tlen != last_tick_len) {
  458. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  459. last_tick_len = tlen;
  460. } else
  461. t2x = do_gtod.varp->tb_to_xs;
  462. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  463. do_div(new_stamp_xsec, 1000000000);
  464. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  465. ++vdso_data->tb_update_count;
  466. smp_mb();
  467. /*
  468. * Make sure time doesn't go backwards for userspace gettimeofday.
  469. */
  470. tb = get_tb();
  471. varp = do_gtod.varp;
  472. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  473. + varp->stamp_xsec;
  474. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  475. if (xsec_new < xsec_old)
  476. new_stamp_xsec += xsec_old - xsec_new;
  477. update_gtod(cur_tb, new_stamp_xsec, t2x);
  478. }
  479. #ifdef CONFIG_SMP
  480. unsigned long profile_pc(struct pt_regs *regs)
  481. {
  482. unsigned long pc = instruction_pointer(regs);
  483. if (in_lock_functions(pc))
  484. return regs->link;
  485. return pc;
  486. }
  487. EXPORT_SYMBOL(profile_pc);
  488. #endif
  489. #ifdef CONFIG_PPC_ISERIES
  490. /*
  491. * This function recalibrates the timebase based on the 49-bit time-of-day
  492. * value in the Titan chip. The Titan is much more accurate than the value
  493. * returned by the service processor for the timebase frequency.
  494. */
  495. static int __init iSeries_tb_recal(void)
  496. {
  497. struct div_result divres;
  498. unsigned long titan, tb;
  499. /* Make sure we only run on iSeries */
  500. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  501. return -ENODEV;
  502. tb = get_tb();
  503. titan = HvCallXm_loadTod();
  504. if ( iSeries_recal_titan ) {
  505. unsigned long tb_ticks = tb - iSeries_recal_tb;
  506. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  507. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  508. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  509. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  510. char sign = '+';
  511. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  512. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  513. if ( tick_diff < 0 ) {
  514. tick_diff = -tick_diff;
  515. sign = '-';
  516. }
  517. if ( tick_diff ) {
  518. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  519. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  520. new_tb_ticks_per_jiffy, sign, tick_diff );
  521. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  522. tb_ticks_per_sec = new_tb_ticks_per_sec;
  523. calc_cputime_factors();
  524. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  525. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  526. tb_to_xs = divres.result_low;
  527. do_gtod.varp->tb_to_xs = tb_to_xs;
  528. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  529. vdso_data->tb_to_xs = tb_to_xs;
  530. }
  531. else {
  532. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  533. " new tb_ticks_per_jiffy = %lu\n"
  534. " old tb_ticks_per_jiffy = %lu\n",
  535. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  536. }
  537. }
  538. }
  539. iSeries_recal_titan = titan;
  540. iSeries_recal_tb = tb;
  541. return 0;
  542. }
  543. late_initcall(iSeries_tb_recal);
  544. /* Called from platform early init */
  545. void __init iSeries_time_init_early(void)
  546. {
  547. iSeries_recal_tb = get_tb();
  548. iSeries_recal_titan = HvCallXm_loadTod();
  549. }
  550. #endif /* CONFIG_PPC_ISERIES */
  551. /*
  552. * For iSeries shared processors, we have to let the hypervisor
  553. * set the hardware decrementer. We set a virtual decrementer
  554. * in the lppaca and call the hypervisor if the virtual
  555. * decrementer is less than the current value in the hardware
  556. * decrementer. (almost always the new decrementer value will
  557. * be greater than the current hardware decementer so the hypervisor
  558. * call will not be needed)
  559. */
  560. /*
  561. * timer_interrupt - gets called when the decrementer overflows,
  562. * with interrupts disabled.
  563. */
  564. void timer_interrupt(struct pt_regs * regs)
  565. {
  566. struct pt_regs *old_regs;
  567. int next_dec;
  568. int cpu = smp_processor_id();
  569. unsigned long ticks;
  570. u64 tb_next_jiffy;
  571. #ifdef CONFIG_PPC32
  572. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  573. do_IRQ(regs);
  574. #endif
  575. old_regs = set_irq_regs(regs);
  576. irq_enter();
  577. profile_tick(CPU_PROFILING);
  578. calculate_steal_time();
  579. #ifdef CONFIG_PPC_ISERIES
  580. if (firmware_has_feature(FW_FEATURE_ISERIES))
  581. get_lppaca()->int_dword.fields.decr_int = 0;
  582. #endif
  583. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  584. >= tb_ticks_per_jiffy) {
  585. /* Update last_jiffy */
  586. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  587. /* Handle RTCL overflow on 601 */
  588. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  589. per_cpu(last_jiffy, cpu) -= 1000000000;
  590. /*
  591. * We cannot disable the decrementer, so in the period
  592. * between this cpu's being marked offline in cpu_online_map
  593. * and calling stop-self, it is taking timer interrupts.
  594. * Avoid calling into the scheduler rebalancing code if this
  595. * is the case.
  596. */
  597. if (!cpu_is_offline(cpu))
  598. account_process_time(regs);
  599. /*
  600. * No need to check whether cpu is offline here; boot_cpuid
  601. * should have been fixed up by now.
  602. */
  603. if (cpu != boot_cpuid)
  604. continue;
  605. write_seqlock(&xtime_lock);
  606. tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
  607. if (__USE_RTC() && tb_next_jiffy >= 1000000000)
  608. tb_next_jiffy -= 1000000000;
  609. if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
  610. tb_last_jiffy = tb_next_jiffy;
  611. do_timer(1);
  612. timer_recalc_offset(tb_last_jiffy);
  613. timer_check_rtc();
  614. }
  615. write_sequnlock(&xtime_lock);
  616. }
  617. next_dec = tb_ticks_per_jiffy - ticks;
  618. set_dec(next_dec);
  619. #ifdef CONFIG_PPC_ISERIES
  620. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  621. process_hvlpevents();
  622. #endif
  623. #ifdef CONFIG_PPC64
  624. /* collect purr register values often, for accurate calculations */
  625. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  626. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  627. cu->current_tb = mfspr(SPRN_PURR);
  628. }
  629. #endif
  630. irq_exit();
  631. set_irq_regs(old_regs);
  632. }
  633. void wakeup_decrementer(void)
  634. {
  635. unsigned long ticks;
  636. /*
  637. * The timebase gets saved on sleep and restored on wakeup,
  638. * so all we need to do is to reset the decrementer.
  639. */
  640. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  641. if (ticks < tb_ticks_per_jiffy)
  642. ticks = tb_ticks_per_jiffy - ticks;
  643. else
  644. ticks = 1;
  645. set_dec(ticks);
  646. }
  647. #ifdef CONFIG_SMP
  648. void __init smp_space_timers(unsigned int max_cpus)
  649. {
  650. int i;
  651. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  652. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  653. previous_tb -= tb_ticks_per_jiffy;
  654. for_each_possible_cpu(i) {
  655. if (i == boot_cpuid)
  656. continue;
  657. per_cpu(last_jiffy, i) = previous_tb;
  658. }
  659. }
  660. #endif
  661. /*
  662. * Scheduler clock - returns current time in nanosec units.
  663. *
  664. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  665. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  666. * are 64-bit unsigned numbers.
  667. */
  668. unsigned long long sched_clock(void)
  669. {
  670. if (__USE_RTC())
  671. return get_rtc();
  672. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  673. }
  674. int do_settimeofday(struct timespec *tv)
  675. {
  676. time_t wtm_sec, new_sec = tv->tv_sec;
  677. long wtm_nsec, new_nsec = tv->tv_nsec;
  678. unsigned long flags;
  679. u64 new_xsec;
  680. unsigned long tb_delta;
  681. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  682. return -EINVAL;
  683. write_seqlock_irqsave(&xtime_lock, flags);
  684. /*
  685. * Updating the RTC is not the job of this code. If the time is
  686. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  687. * is cleared. Tools like clock/hwclock either copy the RTC
  688. * to the system time, in which case there is no point in writing
  689. * to the RTC again, or write to the RTC but then they don't call
  690. * settimeofday to perform this operation.
  691. */
  692. /* Make userspace gettimeofday spin until we're done. */
  693. ++vdso_data->tb_update_count;
  694. smp_mb();
  695. /*
  696. * Subtract off the number of nanoseconds since the
  697. * beginning of the last tick.
  698. */
  699. tb_delta = tb_ticks_since(tb_last_jiffy);
  700. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  701. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  702. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  703. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  704. set_normalized_timespec(&xtime, new_sec, new_nsec);
  705. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  706. /* In case of a large backwards jump in time with NTP, we want the
  707. * clock to be updated as soon as the PLL is again in lock.
  708. */
  709. last_rtc_update = new_sec - 658;
  710. ntp_clear();
  711. new_xsec = xtime.tv_nsec;
  712. if (new_xsec != 0) {
  713. new_xsec *= XSEC_PER_SEC;
  714. do_div(new_xsec, NSEC_PER_SEC);
  715. }
  716. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  717. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  718. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  719. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  720. write_sequnlock_irqrestore(&xtime_lock, flags);
  721. clock_was_set();
  722. return 0;
  723. }
  724. EXPORT_SYMBOL(do_settimeofday);
  725. static int __init get_freq(char *name, int cells, unsigned long *val)
  726. {
  727. struct device_node *cpu;
  728. const unsigned int *fp;
  729. int found = 0;
  730. /* The cpu node should have timebase and clock frequency properties */
  731. cpu = of_find_node_by_type(NULL, "cpu");
  732. if (cpu) {
  733. fp = of_get_property(cpu, name, NULL);
  734. if (fp) {
  735. found = 1;
  736. *val = of_read_ulong(fp, cells);
  737. }
  738. of_node_put(cpu);
  739. }
  740. return found;
  741. }
  742. void __init generic_calibrate_decr(void)
  743. {
  744. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  745. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  746. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  747. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  748. "(not found)\n");
  749. }
  750. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  751. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  752. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  753. printk(KERN_ERR "WARNING: Estimating processor frequency "
  754. "(not found)\n");
  755. }
  756. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  757. /* Set the time base to zero */
  758. mtspr(SPRN_TBWL, 0);
  759. mtspr(SPRN_TBWU, 0);
  760. /* Clear any pending timer interrupts */
  761. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  762. /* Enable decrementer interrupt */
  763. mtspr(SPRN_TCR, TCR_DIE);
  764. #endif
  765. }
  766. unsigned long get_boot_time(void)
  767. {
  768. struct rtc_time tm;
  769. if (ppc_md.get_boot_time)
  770. return ppc_md.get_boot_time();
  771. if (!ppc_md.get_rtc_time)
  772. return 0;
  773. ppc_md.get_rtc_time(&tm);
  774. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  775. tm.tm_hour, tm.tm_min, tm.tm_sec);
  776. }
  777. /* This function is only called on the boot processor */
  778. void __init time_init(void)
  779. {
  780. unsigned long flags;
  781. unsigned long tm = 0;
  782. struct div_result res;
  783. u64 scale, x;
  784. unsigned shift;
  785. if (ppc_md.time_init != NULL)
  786. timezone_offset = ppc_md.time_init();
  787. if (__USE_RTC()) {
  788. /* 601 processor: dec counts down by 128 every 128ns */
  789. ppc_tb_freq = 1000000000;
  790. tb_last_jiffy = get_rtcl();
  791. } else {
  792. /* Normal PowerPC with timebase register */
  793. ppc_md.calibrate_decr();
  794. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  795. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  796. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  797. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  798. tb_last_jiffy = get_tb();
  799. }
  800. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  801. tb_ticks_per_sec = ppc_tb_freq;
  802. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  803. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  804. calc_cputime_factors();
  805. /*
  806. * Calculate the length of each tick in ns. It will not be
  807. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  808. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  809. * rounded up.
  810. */
  811. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  812. do_div(x, ppc_tb_freq);
  813. tick_nsec = x;
  814. last_tick_len = x << TICKLEN_SCALE;
  815. /*
  816. * Compute ticklen_to_xs, which is a factor which gets multiplied
  817. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  818. * It is computed as:
  819. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  820. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  821. * which turns out to be N = 51 - SHIFT_HZ.
  822. * This gives the result as a 0.64 fixed-point fraction.
  823. * That value is reduced by an offset amounting to 1 xsec per
  824. * 2^31 timebase ticks to avoid problems with time going backwards
  825. * by 1 xsec when we do timer_recalc_offset due to losing the
  826. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  827. * since there are 2^20 xsec in a second.
  828. */
  829. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  830. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  831. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  832. ticklen_to_xs = res.result_low;
  833. /* Compute tb_to_xs from tick_nsec */
  834. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  835. /*
  836. * Compute scale factor for sched_clock.
  837. * The calibrate_decr() function has set tb_ticks_per_sec,
  838. * which is the timebase frequency.
  839. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  840. * the 128-bit result as a 64.64 fixed-point number.
  841. * We then shift that number right until it is less than 1.0,
  842. * giving us the scale factor and shift count to use in
  843. * sched_clock().
  844. */
  845. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  846. scale = res.result_low;
  847. for (shift = 0; res.result_high != 0; ++shift) {
  848. scale = (scale >> 1) | (res.result_high << 63);
  849. res.result_high >>= 1;
  850. }
  851. tb_to_ns_scale = scale;
  852. tb_to_ns_shift = shift;
  853. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  854. boot_tb = get_tb_or_rtc();
  855. tm = get_boot_time();
  856. write_seqlock_irqsave(&xtime_lock, flags);
  857. /* If platform provided a timezone (pmac), we correct the time */
  858. if (timezone_offset) {
  859. sys_tz.tz_minuteswest = -timezone_offset / 60;
  860. sys_tz.tz_dsttime = 0;
  861. tm -= timezone_offset;
  862. }
  863. xtime.tv_sec = tm;
  864. xtime.tv_nsec = 0;
  865. do_gtod.varp = &do_gtod.vars[0];
  866. do_gtod.var_idx = 0;
  867. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  868. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  869. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  870. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  871. do_gtod.varp->tb_to_xs = tb_to_xs;
  872. do_gtod.tb_to_us = tb_to_us;
  873. vdso_data->tb_orig_stamp = tb_last_jiffy;
  874. vdso_data->tb_update_count = 0;
  875. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  876. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  877. vdso_data->tb_to_xs = tb_to_xs;
  878. time_freq = 0;
  879. last_rtc_update = xtime.tv_sec;
  880. set_normalized_timespec(&wall_to_monotonic,
  881. -xtime.tv_sec, -xtime.tv_nsec);
  882. write_sequnlock_irqrestore(&xtime_lock, flags);
  883. /* Not exact, but the timer interrupt takes care of this */
  884. set_dec(tb_ticks_per_jiffy);
  885. }
  886. #define FEBRUARY 2
  887. #define STARTOFTIME 1970
  888. #define SECDAY 86400L
  889. #define SECYR (SECDAY * 365)
  890. #define leapyear(year) ((year) % 4 == 0 && \
  891. ((year) % 100 != 0 || (year) % 400 == 0))
  892. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  893. #define days_in_month(a) (month_days[(a) - 1])
  894. static int month_days[12] = {
  895. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  896. };
  897. /*
  898. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  899. */
  900. void GregorianDay(struct rtc_time * tm)
  901. {
  902. int leapsToDate;
  903. int lastYear;
  904. int day;
  905. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  906. lastYear = tm->tm_year - 1;
  907. /*
  908. * Number of leap corrections to apply up to end of last year
  909. */
  910. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  911. /*
  912. * This year is a leap year if it is divisible by 4 except when it is
  913. * divisible by 100 unless it is divisible by 400
  914. *
  915. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  916. */
  917. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  918. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  919. tm->tm_mday;
  920. tm->tm_wday = day % 7;
  921. }
  922. void to_tm(int tim, struct rtc_time * tm)
  923. {
  924. register int i;
  925. register long hms, day;
  926. day = tim / SECDAY;
  927. hms = tim % SECDAY;
  928. /* Hours, minutes, seconds are easy */
  929. tm->tm_hour = hms / 3600;
  930. tm->tm_min = (hms % 3600) / 60;
  931. tm->tm_sec = (hms % 3600) % 60;
  932. /* Number of years in days */
  933. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  934. day -= days_in_year(i);
  935. tm->tm_year = i;
  936. /* Number of months in days left */
  937. if (leapyear(tm->tm_year))
  938. days_in_month(FEBRUARY) = 29;
  939. for (i = 1; day >= days_in_month(i); i++)
  940. day -= days_in_month(i);
  941. days_in_month(FEBRUARY) = 28;
  942. tm->tm_mon = i;
  943. /* Days are what is left over (+1) from all that. */
  944. tm->tm_mday = day + 1;
  945. /*
  946. * Determine the day of week
  947. */
  948. GregorianDay(tm);
  949. }
  950. /* Auxiliary function to compute scaling factors */
  951. /* Actually the choice of a timebase running at 1/4 the of the bus
  952. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  953. * It makes this computation very precise (27-28 bits typically) which
  954. * is optimistic considering the stability of most processor clock
  955. * oscillators and the precision with which the timebase frequency
  956. * is measured but does not harm.
  957. */
  958. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  959. {
  960. unsigned mlt=0, tmp, err;
  961. /* No concern for performance, it's done once: use a stupid
  962. * but safe and compact method to find the multiplier.
  963. */
  964. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  965. if (mulhwu(inscale, mlt|tmp) < outscale)
  966. mlt |= tmp;
  967. }
  968. /* We might still be off by 1 for the best approximation.
  969. * A side effect of this is that if outscale is too large
  970. * the returned value will be zero.
  971. * Many corner cases have been checked and seem to work,
  972. * some might have been forgotten in the test however.
  973. */
  974. err = inscale * (mlt+1);
  975. if (err <= inscale/2)
  976. mlt++;
  977. return mlt;
  978. }
  979. /*
  980. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  981. * result.
  982. */
  983. void div128_by_32(u64 dividend_high, u64 dividend_low,
  984. unsigned divisor, struct div_result *dr)
  985. {
  986. unsigned long a, b, c, d;
  987. unsigned long w, x, y, z;
  988. u64 ra, rb, rc;
  989. a = dividend_high >> 32;
  990. b = dividend_high & 0xffffffff;
  991. c = dividend_low >> 32;
  992. d = dividend_low & 0xffffffff;
  993. w = a / divisor;
  994. ra = ((u64)(a - (w * divisor)) << 32) + b;
  995. rb = ((u64) do_div(ra, divisor) << 32) + c;
  996. x = ra;
  997. rc = ((u64) do_div(rb, divisor) << 32) + d;
  998. y = rb;
  999. do_div(rc, divisor);
  1000. z = rc;
  1001. dr->result_high = ((u64)w << 32) + x;
  1002. dr->result_low = ((u64)y << 32) + z;
  1003. }