pxa-ssp.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * pxa-ssp.c -- ALSA Soc Audio Layer
  3. *
  4. * Copyright 2005,2008 Wolfson Microelectronics PLC.
  5. * Author: Liam Girdwood
  6. * Mark Brown <broonie@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * TODO:
  14. * o Test network mode for > 16bit sample size
  15. */
  16. #include <linux/init.h>
  17. #include <linux/module.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <asm/irq.h>
  22. #include <sound/core.h>
  23. #include <sound/pcm.h>
  24. #include <sound/initval.h>
  25. #include <sound/pcm_params.h>
  26. #include <sound/soc.h>
  27. #include <sound/pxa2xx-lib.h>
  28. #include <mach/hardware.h>
  29. #include <mach/pxa-regs.h>
  30. #include <mach/regs-ssp.h>
  31. #include <mach/audio.h>
  32. #include <mach/ssp.h>
  33. #include "pxa2xx-pcm.h"
  34. #include "pxa-ssp.h"
  35. /*
  36. * SSP audio private data
  37. */
  38. struct ssp_priv {
  39. struct ssp_dev dev;
  40. unsigned int sysclk;
  41. int dai_fmt;
  42. #ifdef CONFIG_PM
  43. struct ssp_state state;
  44. #endif
  45. };
  46. #define PXA2xx_SSP1_BASE 0x41000000
  47. #define PXA27x_SSP2_BASE 0x41700000
  48. #define PXA27x_SSP3_BASE 0x41900000
  49. #define PXA3xx_SSP4_BASE 0x41a00000
  50. static struct pxa2xx_pcm_dma_params pxa_ssp1_pcm_mono_out = {
  51. .name = "SSP1 PCM Mono out",
  52. .dev_addr = PXA2xx_SSP1_BASE + SSDR,
  53. .drcmr = &DRCMR(14),
  54. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  55. DCMD_BURST16 | DCMD_WIDTH2,
  56. };
  57. static struct pxa2xx_pcm_dma_params pxa_ssp1_pcm_mono_in = {
  58. .name = "SSP1 PCM Mono in",
  59. .dev_addr = PXA2xx_SSP1_BASE + SSDR,
  60. .drcmr = &DRCMR(13),
  61. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  62. DCMD_BURST16 | DCMD_WIDTH2,
  63. };
  64. static struct pxa2xx_pcm_dma_params pxa_ssp1_pcm_stereo_out = {
  65. .name = "SSP1 PCM Stereo out",
  66. .dev_addr = PXA2xx_SSP1_BASE + SSDR,
  67. .drcmr = &DRCMR(14),
  68. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  69. DCMD_BURST16 | DCMD_WIDTH4,
  70. };
  71. static struct pxa2xx_pcm_dma_params pxa_ssp1_pcm_stereo_in = {
  72. .name = "SSP1 PCM Stereo in",
  73. .dev_addr = PXA2xx_SSP1_BASE + SSDR,
  74. .drcmr = &DRCMR(13),
  75. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  76. DCMD_BURST16 | DCMD_WIDTH4,
  77. };
  78. static struct pxa2xx_pcm_dma_params pxa_ssp2_pcm_mono_out = {
  79. .name = "SSP2 PCM Mono out",
  80. .dev_addr = PXA27x_SSP2_BASE + SSDR,
  81. .drcmr = &DRCMR(16),
  82. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  83. DCMD_BURST16 | DCMD_WIDTH2,
  84. };
  85. static struct pxa2xx_pcm_dma_params pxa_ssp2_pcm_mono_in = {
  86. .name = "SSP2 PCM Mono in",
  87. .dev_addr = PXA27x_SSP2_BASE + SSDR,
  88. .drcmr = &DRCMR(15),
  89. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  90. DCMD_BURST16 | DCMD_WIDTH2,
  91. };
  92. static struct pxa2xx_pcm_dma_params pxa_ssp2_pcm_stereo_out = {
  93. .name = "SSP2 PCM Stereo out",
  94. .dev_addr = PXA27x_SSP2_BASE + SSDR,
  95. .drcmr = &DRCMR(16),
  96. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  97. DCMD_BURST16 | DCMD_WIDTH4,
  98. };
  99. static struct pxa2xx_pcm_dma_params pxa_ssp2_pcm_stereo_in = {
  100. .name = "SSP2 PCM Stereo in",
  101. .dev_addr = PXA27x_SSP2_BASE + SSDR,
  102. .drcmr = &DRCMR(15),
  103. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  104. DCMD_BURST16 | DCMD_WIDTH4,
  105. };
  106. static struct pxa2xx_pcm_dma_params pxa_ssp3_pcm_mono_out = {
  107. .name = "SSP3 PCM Mono out",
  108. .dev_addr = PXA27x_SSP3_BASE + SSDR,
  109. .drcmr = &DRCMR(67),
  110. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  111. DCMD_BURST16 | DCMD_WIDTH2,
  112. };
  113. static struct pxa2xx_pcm_dma_params pxa_ssp3_pcm_mono_in = {
  114. .name = "SSP3 PCM Mono in",
  115. .dev_addr = PXA27x_SSP3_BASE + SSDR,
  116. .drcmr = &DRCMR(66),
  117. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  118. DCMD_BURST16 | DCMD_WIDTH2,
  119. };
  120. static struct pxa2xx_pcm_dma_params pxa_ssp3_pcm_stereo_out = {
  121. .name = "SSP3 PCM Stereo out",
  122. .dev_addr = PXA27x_SSP3_BASE + SSDR,
  123. .drcmr = &DRCMR(67),
  124. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  125. DCMD_BURST16 | DCMD_WIDTH4,
  126. };
  127. static struct pxa2xx_pcm_dma_params pxa_ssp3_pcm_stereo_in = {
  128. .name = "SSP3 PCM Stereo in",
  129. .dev_addr = PXA27x_SSP3_BASE + SSDR,
  130. .drcmr = &DRCMR(66),
  131. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  132. DCMD_BURST16 | DCMD_WIDTH4,
  133. };
  134. static struct pxa2xx_pcm_dma_params pxa_ssp4_pcm_mono_out = {
  135. .name = "SSP4 PCM Mono out",
  136. .dev_addr = PXA3xx_SSP4_BASE + SSDR,
  137. .drcmr = &DRCMR(67),
  138. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  139. DCMD_BURST16 | DCMD_WIDTH2,
  140. };
  141. static struct pxa2xx_pcm_dma_params pxa_ssp4_pcm_mono_in = {
  142. .name = "SSP4 PCM Mono in",
  143. .dev_addr = PXA3xx_SSP4_BASE + SSDR,
  144. .drcmr = &DRCMR(66),
  145. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  146. DCMD_BURST16 | DCMD_WIDTH2,
  147. };
  148. static struct pxa2xx_pcm_dma_params pxa_ssp4_pcm_stereo_out = {
  149. .name = "SSP4 PCM Stereo out",
  150. .dev_addr = PXA3xx_SSP4_BASE + SSDR,
  151. .drcmr = &DRCMR(67),
  152. .dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG |
  153. DCMD_BURST16 | DCMD_WIDTH4,
  154. };
  155. static struct pxa2xx_pcm_dma_params pxa_ssp4_pcm_stereo_in = {
  156. .name = "SSP4 PCM Stereo in",
  157. .dev_addr = PXA3xx_SSP4_BASE + SSDR,
  158. .drcmr = &DRCMR(66),
  159. .dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC |
  160. DCMD_BURST16 | DCMD_WIDTH4,
  161. };
  162. static void dump_registers(struct ssp_device *ssp)
  163. {
  164. dev_dbg(&ssp->pdev->dev, "SSCR0 0x%08x SSCR1 0x%08x SSTO 0x%08x\n",
  165. ssp_read_reg(ssp, SSCR0), ssp_read_reg(ssp, SSCR1),
  166. ssp_read_reg(ssp, SSTO));
  167. dev_dbg(&ssp->pdev->dev, "SSPSP 0x%08x SSSR 0x%08x SSACD 0x%08x\n",
  168. ssp_read_reg(ssp, SSPSP), ssp_read_reg(ssp, SSSR),
  169. ssp_read_reg(ssp, SSACD));
  170. }
  171. static struct pxa2xx_pcm_dma_params *ssp_dma_params[4][4] = {
  172. {
  173. &pxa_ssp1_pcm_mono_out, &pxa_ssp1_pcm_mono_in,
  174. &pxa_ssp1_pcm_stereo_out, &pxa_ssp1_pcm_stereo_in,
  175. },
  176. {
  177. &pxa_ssp2_pcm_mono_out, &pxa_ssp2_pcm_mono_in,
  178. &pxa_ssp2_pcm_stereo_out, &pxa_ssp2_pcm_stereo_in,
  179. },
  180. {
  181. &pxa_ssp3_pcm_mono_out, &pxa_ssp3_pcm_mono_in,
  182. &pxa_ssp3_pcm_stereo_out, &pxa_ssp3_pcm_stereo_in,
  183. },
  184. {
  185. &pxa_ssp4_pcm_mono_out, &pxa_ssp4_pcm_mono_in,
  186. &pxa_ssp4_pcm_stereo_out, &pxa_ssp4_pcm_stereo_in,
  187. },
  188. };
  189. static int pxa_ssp_startup(struct snd_pcm_substream *substream,
  190. struct snd_soc_dai *dai)
  191. {
  192. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  193. struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
  194. struct ssp_priv *priv = cpu_dai->private_data;
  195. int ret = 0;
  196. if (!cpu_dai->active) {
  197. priv->dev.port = cpu_dai->id + 1;
  198. priv->dev.irq = NO_IRQ;
  199. clk_enable(priv->dev.ssp->clk);
  200. ssp_disable(&priv->dev);
  201. }
  202. return ret;
  203. }
  204. static void pxa_ssp_shutdown(struct snd_pcm_substream *substream,
  205. struct snd_soc_dai *dai)
  206. {
  207. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  208. struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
  209. struct ssp_priv *priv = cpu_dai->private_data;
  210. if (!cpu_dai->active) {
  211. ssp_disable(&priv->dev);
  212. clk_disable(priv->dev.ssp->clk);
  213. }
  214. }
  215. #ifdef CONFIG_PM
  216. static int pxa_ssp_suspend(struct snd_soc_dai *cpu_dai)
  217. {
  218. struct ssp_priv *priv = cpu_dai->private_data;
  219. if (!cpu_dai->active)
  220. return 0;
  221. ssp_save_state(&priv->dev, &priv->state);
  222. clk_disable(priv->dev.ssp->clk);
  223. return 0;
  224. }
  225. static int pxa_ssp_resume(struct snd_soc_dai *cpu_dai)
  226. {
  227. struct ssp_priv *priv = cpu_dai->private_data;
  228. if (!cpu_dai->active)
  229. return 0;
  230. clk_enable(priv->dev.ssp->clk);
  231. ssp_restore_state(&priv->dev, &priv->state);
  232. ssp_enable(&priv->dev);
  233. return 0;
  234. }
  235. #else
  236. #define pxa_ssp_suspend NULL
  237. #define pxa_ssp_resume NULL
  238. #endif
  239. /**
  240. * ssp_set_clkdiv - set SSP clock divider
  241. * @div: serial clock rate divider
  242. */
  243. static void ssp_set_scr(struct ssp_dev *dev, u32 div)
  244. {
  245. struct ssp_device *ssp = dev->ssp;
  246. u32 sscr0 = ssp_read_reg(dev->ssp, SSCR0) & ~SSCR0_SCR;
  247. ssp_write_reg(ssp, SSCR0, (sscr0 | SSCR0_SerClkDiv(div)));
  248. }
  249. /*
  250. * Set the SSP ports SYSCLK.
  251. */
  252. static int pxa_ssp_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
  253. int clk_id, unsigned int freq, int dir)
  254. {
  255. struct ssp_priv *priv = cpu_dai->private_data;
  256. struct ssp_device *ssp = priv->dev.ssp;
  257. int val;
  258. u32 sscr0 = ssp_read_reg(ssp, SSCR0) &
  259. ~(SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS);
  260. dev_dbg(&ssp->pdev->dev,
  261. "pxa_ssp_set_dai_sysclk id: %d, clk_id %d, freq %d\n",
  262. cpu_dai->id, clk_id, freq);
  263. switch (clk_id) {
  264. case PXA_SSP_CLK_NET_PLL:
  265. sscr0 |= SSCR0_MOD;
  266. break;
  267. case PXA_SSP_CLK_PLL:
  268. /* Internal PLL is fixed */
  269. if (cpu_is_pxa25x())
  270. priv->sysclk = 1843200;
  271. else
  272. priv->sysclk = 13000000;
  273. break;
  274. case PXA_SSP_CLK_EXT:
  275. priv->sysclk = freq;
  276. sscr0 |= SSCR0_ECS;
  277. break;
  278. case PXA_SSP_CLK_NET:
  279. priv->sysclk = freq;
  280. sscr0 |= SSCR0_NCS | SSCR0_MOD;
  281. break;
  282. case PXA_SSP_CLK_AUDIO:
  283. priv->sysclk = 0;
  284. ssp_set_scr(&priv->dev, 1);
  285. sscr0 |= SSCR0_ACS;
  286. break;
  287. default:
  288. return -ENODEV;
  289. }
  290. /* The SSP clock must be disabled when changing SSP clock mode
  291. * on PXA2xx. On PXA3xx it must be enabled when doing so. */
  292. if (!cpu_is_pxa3xx())
  293. clk_disable(priv->dev.ssp->clk);
  294. val = ssp_read_reg(ssp, SSCR0) | sscr0;
  295. ssp_write_reg(ssp, SSCR0, val);
  296. if (!cpu_is_pxa3xx())
  297. clk_enable(priv->dev.ssp->clk);
  298. return 0;
  299. }
  300. /*
  301. * Set the SSP clock dividers.
  302. */
  303. static int pxa_ssp_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
  304. int div_id, int div)
  305. {
  306. struct ssp_priv *priv = cpu_dai->private_data;
  307. struct ssp_device *ssp = priv->dev.ssp;
  308. int val;
  309. switch (div_id) {
  310. case PXA_SSP_AUDIO_DIV_ACDS:
  311. val = (ssp_read_reg(ssp, SSACD) & ~0x7) | SSACD_ACDS(div);
  312. ssp_write_reg(ssp, SSACD, val);
  313. break;
  314. case PXA_SSP_AUDIO_DIV_SCDB:
  315. val = ssp_read_reg(ssp, SSACD);
  316. val &= ~SSACD_SCDB;
  317. #if defined(CONFIG_PXA3xx)
  318. if (cpu_is_pxa3xx())
  319. val &= ~SSACD_SCDX8;
  320. #endif
  321. switch (div) {
  322. case PXA_SSP_CLK_SCDB_1:
  323. val |= SSACD_SCDB;
  324. break;
  325. case PXA_SSP_CLK_SCDB_4:
  326. break;
  327. #if defined(CONFIG_PXA3xx)
  328. case PXA_SSP_CLK_SCDB_8:
  329. if (cpu_is_pxa3xx())
  330. val |= SSACD_SCDX8;
  331. else
  332. return -EINVAL;
  333. break;
  334. #endif
  335. default:
  336. return -EINVAL;
  337. }
  338. ssp_write_reg(ssp, SSACD, val);
  339. break;
  340. case PXA_SSP_DIV_SCR:
  341. ssp_set_scr(&priv->dev, div);
  342. break;
  343. default:
  344. return -ENODEV;
  345. }
  346. return 0;
  347. }
  348. /*
  349. * Configure the PLL frequency pxa27x and (afaik - pxa320 only)
  350. */
  351. static int pxa_ssp_set_dai_pll(struct snd_soc_dai *cpu_dai,
  352. int pll_id, unsigned int freq_in, unsigned int freq_out)
  353. {
  354. struct ssp_priv *priv = cpu_dai->private_data;
  355. struct ssp_device *ssp = priv->dev.ssp;
  356. u32 ssacd = ssp_read_reg(ssp, SSACD) & ~0x70;
  357. #if defined(CONFIG_PXA3xx)
  358. if (cpu_is_pxa3xx())
  359. ssp_write_reg(ssp, SSACDD, 0);
  360. #endif
  361. switch (freq_out) {
  362. case 5622000:
  363. break;
  364. case 11345000:
  365. ssacd |= (0x1 << 4);
  366. break;
  367. case 12235000:
  368. ssacd |= (0x2 << 4);
  369. break;
  370. case 14857000:
  371. ssacd |= (0x3 << 4);
  372. break;
  373. case 32842000:
  374. ssacd |= (0x4 << 4);
  375. break;
  376. case 48000000:
  377. ssacd |= (0x5 << 4);
  378. break;
  379. case 0:
  380. /* Disable */
  381. break;
  382. default:
  383. #ifdef CONFIG_PXA3xx
  384. /* PXA3xx has a clock ditherer which can be used to generate
  385. * a wider range of frequencies - calculate a value for it.
  386. */
  387. if (cpu_is_pxa3xx()) {
  388. u32 val;
  389. u64 tmp = 19968;
  390. tmp *= 1000000;
  391. do_div(tmp, freq_out);
  392. val = tmp;
  393. val = (val << 16) | 64;;
  394. ssp_write_reg(ssp, SSACDD, val);
  395. ssacd |= (0x6 << 4);
  396. dev_dbg(&ssp->pdev->dev,
  397. "Using SSACDD %x to supply %dHz\n",
  398. val, freq_out);
  399. break;
  400. }
  401. #endif
  402. return -EINVAL;
  403. }
  404. ssp_write_reg(ssp, SSACD, ssacd);
  405. return 0;
  406. }
  407. /*
  408. * Set the active slots in TDM/Network mode
  409. */
  410. static int pxa_ssp_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai,
  411. unsigned int mask, int slots)
  412. {
  413. struct ssp_priv *priv = cpu_dai->private_data;
  414. struct ssp_device *ssp = priv->dev.ssp;
  415. u32 sscr0;
  416. sscr0 = ssp_read_reg(ssp, SSCR0) & ~SSCR0_SlotsPerFrm(7);
  417. /* set number of active slots */
  418. sscr0 |= SSCR0_SlotsPerFrm(slots);
  419. ssp_write_reg(ssp, SSCR0, sscr0);
  420. /* set active slot mask */
  421. ssp_write_reg(ssp, SSTSA, mask);
  422. ssp_write_reg(ssp, SSRSA, mask);
  423. return 0;
  424. }
  425. /*
  426. * Tristate the SSP DAI lines
  427. */
  428. static int pxa_ssp_set_dai_tristate(struct snd_soc_dai *cpu_dai,
  429. int tristate)
  430. {
  431. struct ssp_priv *priv = cpu_dai->private_data;
  432. struct ssp_device *ssp = priv->dev.ssp;
  433. u32 sscr1;
  434. sscr1 = ssp_read_reg(ssp, SSCR1);
  435. if (tristate)
  436. sscr1 &= ~SSCR1_TTE;
  437. else
  438. sscr1 |= SSCR1_TTE;
  439. ssp_write_reg(ssp, SSCR1, sscr1);
  440. return 0;
  441. }
  442. /*
  443. * Set up the SSP DAI format.
  444. * The SSP Port must be inactive before calling this function as the
  445. * physical interface format is changed.
  446. */
  447. static int pxa_ssp_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  448. unsigned int fmt)
  449. {
  450. struct ssp_priv *priv = cpu_dai->private_data;
  451. struct ssp_device *ssp = priv->dev.ssp;
  452. u32 sscr0;
  453. u32 sscr1;
  454. u32 sspsp;
  455. /* check if we need to change anything at all */
  456. if (priv->dai_fmt == fmt)
  457. return 0;
  458. /* we can only change the settings if the port is not in use */
  459. if (ssp_read_reg(ssp, SSCR0) & SSCR0_SSE) {
  460. dev_err(&ssp->pdev->dev,
  461. "can't change hardware dai format: stream is in use");
  462. return -EINVAL;
  463. }
  464. /* reset port settings */
  465. sscr0 = ssp_read_reg(ssp, SSCR0) &
  466. (SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS);
  467. sscr1 = SSCR1_RxTresh(8) | SSCR1_TxTresh(7);
  468. sspsp = 0;
  469. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  470. case SND_SOC_DAIFMT_CBM_CFM:
  471. sscr1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR;
  472. break;
  473. case SND_SOC_DAIFMT_CBM_CFS:
  474. sscr1 |= SSCR1_SCLKDIR;
  475. break;
  476. case SND_SOC_DAIFMT_CBS_CFS:
  477. break;
  478. default:
  479. return -EINVAL;
  480. }
  481. ssp_write_reg(ssp, SSCR0, sscr0);
  482. ssp_write_reg(ssp, SSCR1, sscr1);
  483. ssp_write_reg(ssp, SSPSP, sspsp);
  484. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  485. case SND_SOC_DAIFMT_I2S:
  486. sscr0 |= SSCR0_PSP;
  487. sscr1 |= SSCR1_RWOT | SSCR1_TRAIL;
  488. /* See hw_params() */
  489. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  490. case SND_SOC_DAIFMT_NB_NF:
  491. sspsp |= SSPSP_SFRMP;
  492. break;
  493. case SND_SOC_DAIFMT_NB_IF:
  494. break;
  495. case SND_SOC_DAIFMT_IB_IF:
  496. sspsp |= SSPSP_SCMODE(3);
  497. break;
  498. default:
  499. return -EINVAL;
  500. }
  501. break;
  502. case SND_SOC_DAIFMT_DSP_A:
  503. sspsp |= SSPSP_FSRT;
  504. case SND_SOC_DAIFMT_DSP_B:
  505. sscr0 |= SSCR0_MOD | SSCR0_PSP;
  506. sscr1 |= SSCR1_TRAIL | SSCR1_RWOT;
  507. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  508. case SND_SOC_DAIFMT_NB_NF:
  509. sspsp |= SSPSP_SFRMP;
  510. break;
  511. case SND_SOC_DAIFMT_IB_IF:
  512. break;
  513. default:
  514. return -EINVAL;
  515. }
  516. break;
  517. default:
  518. return -EINVAL;
  519. }
  520. ssp_write_reg(ssp, SSCR0, sscr0);
  521. ssp_write_reg(ssp, SSCR1, sscr1);
  522. ssp_write_reg(ssp, SSPSP, sspsp);
  523. dump_registers(ssp);
  524. /* Since we are configuring the timings for the format by hand
  525. * we have to defer some things until hw_params() where we
  526. * know parameters like the sample size.
  527. */
  528. priv->dai_fmt = fmt;
  529. return 0;
  530. }
  531. /*
  532. * Set the SSP audio DMA parameters and sample size.
  533. * Can be called multiple times by oss emulation.
  534. */
  535. static int pxa_ssp_hw_params(struct snd_pcm_substream *substream,
  536. struct snd_pcm_hw_params *params,
  537. struct snd_soc_dai *dai)
  538. {
  539. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  540. struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
  541. struct ssp_priv *priv = cpu_dai->private_data;
  542. struct ssp_device *ssp = priv->dev.ssp;
  543. int dma = 0, chn = params_channels(params);
  544. u32 sscr0;
  545. u32 sspsp;
  546. int width = snd_pcm_format_physical_width(params_format(params));
  547. /* select correct DMA params */
  548. if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
  549. dma = 1; /* capture DMA offset is 1,3 */
  550. if (chn == 2)
  551. dma += 2; /* stereo DMA offset is 2, mono is 0 */
  552. cpu_dai->dma_data = ssp_dma_params[cpu_dai->id][dma];
  553. dev_dbg(&ssp->pdev->dev, "pxa_ssp_hw_params: dma %d\n", dma);
  554. /* we can only change the settings if the port is not in use */
  555. if (ssp_read_reg(ssp, SSCR0) & SSCR0_SSE)
  556. return 0;
  557. /* clear selected SSP bits */
  558. sscr0 = ssp_read_reg(ssp, SSCR0) & ~(SSCR0_DSS | SSCR0_EDSS);
  559. ssp_write_reg(ssp, SSCR0, sscr0);
  560. /* bit size */
  561. sscr0 = ssp_read_reg(ssp, SSCR0);
  562. switch (params_format(params)) {
  563. case SNDRV_PCM_FORMAT_S16_LE:
  564. #ifdef CONFIG_PXA3xx
  565. if (cpu_is_pxa3xx())
  566. sscr0 |= SSCR0_FPCKE;
  567. #endif
  568. sscr0 |= SSCR0_DataSize(16);
  569. break;
  570. case SNDRV_PCM_FORMAT_S24_LE:
  571. sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(8));
  572. break;
  573. case SNDRV_PCM_FORMAT_S32_LE:
  574. sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(16));
  575. break;
  576. }
  577. ssp_write_reg(ssp, SSCR0, sscr0);
  578. switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  579. case SND_SOC_DAIFMT_I2S:
  580. sspsp = ssp_read_reg(ssp, SSPSP);
  581. if (((sscr0 & SSCR0_SCR) == SSCR0_SerClkDiv(4)) &&
  582. (width == 16)) {
  583. /* This is a special case where the bitclk is 64fs
  584. * and we're not dealing with 2*32 bits of audio
  585. * samples.
  586. *
  587. * The SSP values used for that are all found out by
  588. * trying and failing a lot; some of the registers
  589. * needed for that mode are only available on PXA3xx.
  590. */
  591. #ifdef CONFIG_PXA3xx
  592. if (!cpu_is_pxa3xx())
  593. return -EINVAL;
  594. sspsp |= SSPSP_SFRMWDTH(width * 2);
  595. sspsp |= SSPSP_SFRMDLY(width * 4);
  596. sspsp |= SSPSP_EDMYSTOP(3);
  597. sspsp |= SSPSP_DMYSTOP(3);
  598. sspsp |= SSPSP_DMYSTRT(1);
  599. #else
  600. return -EINVAL;
  601. #endif
  602. } else {
  603. /* The frame width is the width the LRCLK is
  604. * asserted for; the delay is expressed in
  605. * half cycle units. We need the extra cycle
  606. * because the data starts clocking out one BCLK
  607. * after LRCLK changes polarity.
  608. */
  609. sspsp |= SSPSP_SFRMWDTH(width + 1);
  610. sspsp |= SSPSP_SFRMDLY((width + 1) * 2);
  611. sspsp |= SSPSP_DMYSTRT(1);
  612. }
  613. ssp_write_reg(ssp, SSPSP, sspsp);
  614. break;
  615. default:
  616. break;
  617. }
  618. /* When we use a network mode, we always require TDM slots
  619. * - complain loudly and fail if they've not been set up yet.
  620. */
  621. if ((sscr0 & SSCR0_MOD) && !(ssp_read_reg(ssp, SSTSA) & 0xf)) {
  622. dev_err(&ssp->pdev->dev, "No TDM timeslot configured\n");
  623. return -EINVAL;
  624. }
  625. dump_registers(ssp);
  626. return 0;
  627. }
  628. static int pxa_ssp_trigger(struct snd_pcm_substream *substream, int cmd,
  629. struct snd_soc_dai *dai)
  630. {
  631. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  632. struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
  633. int ret = 0;
  634. struct ssp_priv *priv = cpu_dai->private_data;
  635. struct ssp_device *ssp = priv->dev.ssp;
  636. int val;
  637. switch (cmd) {
  638. case SNDRV_PCM_TRIGGER_RESUME:
  639. ssp_enable(&priv->dev);
  640. break;
  641. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  642. val = ssp_read_reg(ssp, SSCR1);
  643. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  644. val |= SSCR1_TSRE;
  645. else
  646. val |= SSCR1_RSRE;
  647. ssp_write_reg(ssp, SSCR1, val);
  648. val = ssp_read_reg(ssp, SSSR);
  649. ssp_write_reg(ssp, SSSR, val);
  650. break;
  651. case SNDRV_PCM_TRIGGER_START:
  652. val = ssp_read_reg(ssp, SSCR1);
  653. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  654. val |= SSCR1_TSRE;
  655. else
  656. val |= SSCR1_RSRE;
  657. ssp_write_reg(ssp, SSCR1, val);
  658. ssp_enable(&priv->dev);
  659. break;
  660. case SNDRV_PCM_TRIGGER_STOP:
  661. val = ssp_read_reg(ssp, SSCR1);
  662. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  663. val &= ~SSCR1_TSRE;
  664. else
  665. val &= ~SSCR1_RSRE;
  666. ssp_write_reg(ssp, SSCR1, val);
  667. break;
  668. case SNDRV_PCM_TRIGGER_SUSPEND:
  669. ssp_disable(&priv->dev);
  670. break;
  671. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  672. val = ssp_read_reg(ssp, SSCR1);
  673. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  674. val &= ~SSCR1_TSRE;
  675. else
  676. val &= ~SSCR1_RSRE;
  677. ssp_write_reg(ssp, SSCR1, val);
  678. break;
  679. default:
  680. ret = -EINVAL;
  681. }
  682. dump_registers(ssp);
  683. return ret;
  684. }
  685. static int pxa_ssp_probe(struct platform_device *pdev,
  686. struct snd_soc_dai *dai)
  687. {
  688. struct ssp_priv *priv;
  689. int ret;
  690. priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL);
  691. if (!priv)
  692. return -ENOMEM;
  693. priv->dev.ssp = ssp_request(dai->id + 1, "SoC audio");
  694. if (priv->dev.ssp == NULL) {
  695. ret = -ENODEV;
  696. goto err_priv;
  697. }
  698. dai->private_data = priv;
  699. return 0;
  700. err_priv:
  701. kfree(priv);
  702. return ret;
  703. }
  704. static void pxa_ssp_remove(struct platform_device *pdev,
  705. struct snd_soc_dai *dai)
  706. {
  707. struct ssp_priv *priv = dai->private_data;
  708. ssp_free(priv->dev.ssp);
  709. }
  710. #define PXA_SSP_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
  711. SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \
  712. SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | \
  713. SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
  714. #define PXA_SSP_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  715. SNDRV_PCM_FMTBIT_S24_LE | \
  716. SNDRV_PCM_FMTBIT_S32_LE)
  717. static struct snd_soc_dai_ops pxa_ssp_dai_ops = {
  718. .startup = pxa_ssp_startup,
  719. .shutdown = pxa_ssp_shutdown,
  720. .trigger = pxa_ssp_trigger,
  721. .hw_params = pxa_ssp_hw_params,
  722. .set_sysclk = pxa_ssp_set_dai_sysclk,
  723. .set_clkdiv = pxa_ssp_set_dai_clkdiv,
  724. .set_pll = pxa_ssp_set_dai_pll,
  725. .set_fmt = pxa_ssp_set_dai_fmt,
  726. .set_tdm_slot = pxa_ssp_set_dai_tdm_slot,
  727. .set_tristate = pxa_ssp_set_dai_tristate,
  728. };
  729. struct snd_soc_dai pxa_ssp_dai[] = {
  730. {
  731. .name = "pxa2xx-ssp1",
  732. .id = 0,
  733. .probe = pxa_ssp_probe,
  734. .remove = pxa_ssp_remove,
  735. .suspend = pxa_ssp_suspend,
  736. .resume = pxa_ssp_resume,
  737. .playback = {
  738. .channels_min = 1,
  739. .channels_max = 2,
  740. .rates = PXA_SSP_RATES,
  741. .formats = PXA_SSP_FORMATS,
  742. },
  743. .capture = {
  744. .channels_min = 1,
  745. .channels_max = 2,
  746. .rates = PXA_SSP_RATES,
  747. .formats = PXA_SSP_FORMATS,
  748. },
  749. .ops = &pxa_ssp_dai_ops,
  750. },
  751. { .name = "pxa2xx-ssp2",
  752. .id = 1,
  753. .probe = pxa_ssp_probe,
  754. .remove = pxa_ssp_remove,
  755. .suspend = pxa_ssp_suspend,
  756. .resume = pxa_ssp_resume,
  757. .playback = {
  758. .channels_min = 1,
  759. .channels_max = 2,
  760. .rates = PXA_SSP_RATES,
  761. .formats = PXA_SSP_FORMATS,
  762. },
  763. .capture = {
  764. .channels_min = 1,
  765. .channels_max = 2,
  766. .rates = PXA_SSP_RATES,
  767. .formats = PXA_SSP_FORMATS,
  768. },
  769. .ops = &pxa_ssp_dai_ops,
  770. },
  771. {
  772. .name = "pxa2xx-ssp3",
  773. .id = 2,
  774. .probe = pxa_ssp_probe,
  775. .remove = pxa_ssp_remove,
  776. .suspend = pxa_ssp_suspend,
  777. .resume = pxa_ssp_resume,
  778. .playback = {
  779. .channels_min = 1,
  780. .channels_max = 2,
  781. .rates = PXA_SSP_RATES,
  782. .formats = PXA_SSP_FORMATS,
  783. },
  784. .capture = {
  785. .channels_min = 1,
  786. .channels_max = 2,
  787. .rates = PXA_SSP_RATES,
  788. .formats = PXA_SSP_FORMATS,
  789. },
  790. .ops = &pxa_ssp_dai_ops,
  791. },
  792. {
  793. .name = "pxa2xx-ssp4",
  794. .id = 3,
  795. .probe = pxa_ssp_probe,
  796. .remove = pxa_ssp_remove,
  797. .suspend = pxa_ssp_suspend,
  798. .resume = pxa_ssp_resume,
  799. .playback = {
  800. .channels_min = 1,
  801. .channels_max = 2,
  802. .rates = PXA_SSP_RATES,
  803. .formats = PXA_SSP_FORMATS,
  804. },
  805. .capture = {
  806. .channels_min = 1,
  807. .channels_max = 2,
  808. .rates = PXA_SSP_RATES,
  809. .formats = PXA_SSP_FORMATS,
  810. },
  811. .ops = &pxa_ssp_dai_ops,
  812. },
  813. };
  814. EXPORT_SYMBOL_GPL(pxa_ssp_dai);
  815. static int __init pxa_ssp_init(void)
  816. {
  817. return snd_soc_register_dais(pxa_ssp_dai, ARRAY_SIZE(pxa_ssp_dai));
  818. }
  819. module_init(pxa_ssp_init);
  820. static void __exit pxa_ssp_exit(void)
  821. {
  822. snd_soc_unregister_dais(pxa_ssp_dai, ARRAY_SIZE(pxa_ssp_dai));
  823. }
  824. module_exit(pxa_ssp_exit);
  825. /* Module information */
  826. MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
  827. MODULE_DESCRIPTION("PXA SSP/PCM SoC Interface");
  828. MODULE_LICENSE("GPL");