slub.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/cpu.h>
  19. #include <linux/cpuset.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/ctype.h>
  22. #include <linux/debugobjects.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/memory.h>
  25. #include <linux/math64.h>
  26. #include <linux/fault-inject.h>
  27. /*
  28. * Lock order:
  29. * 1. slab_lock(page)
  30. * 2. slab->list_lock
  31. *
  32. * The slab_lock protects operations on the object of a particular
  33. * slab and its metadata in the page struct. If the slab lock
  34. * has been taken then no allocations nor frees can be performed
  35. * on the objects in the slab nor can the slab be added or removed
  36. * from the partial or full lists since this would mean modifying
  37. * the page_struct of the slab.
  38. *
  39. * The list_lock protects the partial and full list on each node and
  40. * the partial slab counter. If taken then no new slabs may be added or
  41. * removed from the lists nor make the number of partial slabs be modified.
  42. * (Note that the total number of slabs is an atomic value that may be
  43. * modified without taking the list lock).
  44. *
  45. * The list_lock is a centralized lock and thus we avoid taking it as
  46. * much as possible. As long as SLUB does not have to handle partial
  47. * slabs, operations can continue without any centralized lock. F.e.
  48. * allocating a long series of objects that fill up slabs does not require
  49. * the list lock.
  50. *
  51. * The lock order is sometimes inverted when we are trying to get a slab
  52. * off a list. We take the list_lock and then look for a page on the list
  53. * to use. While we do that objects in the slabs may be freed. We can
  54. * only operate on the slab if we have also taken the slab_lock. So we use
  55. * a slab_trylock() on the slab. If trylock was successful then no frees
  56. * can occur anymore and we can use the slab for allocations etc. If the
  57. * slab_trylock() does not succeed then frees are in progress in the slab and
  58. * we must stay away from it for a while since we may cause a bouncing
  59. * cacheline if we try to acquire the lock. So go onto the next slab.
  60. * If all pages are busy then we may allocate a new slab instead of reusing
  61. * a partial slab. A new slab has noone operating on it and thus there is
  62. * no danger of cacheline contention.
  63. *
  64. * Interrupts are disabled during allocation and deallocation in order to
  65. * make the slab allocator safe to use in the context of an irq. In addition
  66. * interrupts are disabled to ensure that the processor does not change
  67. * while handling per_cpu slabs, due to kernel preemption.
  68. *
  69. * SLUB assigns one slab for allocation to each processor.
  70. * Allocations only occur from these slabs called cpu slabs.
  71. *
  72. * Slabs with free elements are kept on a partial list and during regular
  73. * operations no list for full slabs is used. If an object in a full slab is
  74. * freed then the slab will show up again on the partial lists.
  75. * We track full slabs for debugging purposes though because otherwise we
  76. * cannot scan all objects.
  77. *
  78. * Slabs are freed when they become empty. Teardown and setup is
  79. * minimal so we rely on the page allocators per cpu caches for
  80. * fast frees and allocs.
  81. *
  82. * Overloading of page flags that are otherwise used for LRU management.
  83. *
  84. * PageActive The slab is frozen and exempt from list processing.
  85. * This means that the slab is dedicated to a purpose
  86. * such as satisfying allocations for a specific
  87. * processor. Objects may be freed in the slab while
  88. * it is frozen but slab_free will then skip the usual
  89. * list operations. It is up to the processor holding
  90. * the slab to integrate the slab into the slab lists
  91. * when the slab is no longer needed.
  92. *
  93. * One use of this flag is to mark slabs that are
  94. * used for allocations. Then such a slab becomes a cpu
  95. * slab. The cpu slab may be equipped with an additional
  96. * freelist that allows lockless access to
  97. * free objects in addition to the regular freelist
  98. * that requires the slab lock.
  99. *
  100. * PageError Slab requires special handling due to debug
  101. * options set. This moves slab handling out of
  102. * the fast path and disables lockless freelists.
  103. */
  104. #ifdef CONFIG_SLUB_DEBUG
  105. #define SLABDEBUG 1
  106. #else
  107. #define SLABDEBUG 0
  108. #endif
  109. /*
  110. * Issues still to be resolved:
  111. *
  112. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  113. *
  114. * - Variable sizing of the per node arrays
  115. */
  116. /* Enable to test recovery from slab corruption on boot */
  117. #undef SLUB_RESILIENCY_TEST
  118. /*
  119. * Mininum number of partial slabs. These will be left on the partial
  120. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  121. */
  122. #define MIN_PARTIAL 5
  123. /*
  124. * Maximum number of desirable partial slabs.
  125. * The existence of more partial slabs makes kmem_cache_shrink
  126. * sort the partial list by the number of objects in the.
  127. */
  128. #define MAX_PARTIAL 10
  129. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  130. SLAB_POISON | SLAB_STORE_USER)
  131. /*
  132. * Set of flags that will prevent slab merging
  133. */
  134. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  135. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  136. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  137. SLAB_CACHE_DMA)
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  140. #endif
  141. #ifndef ARCH_SLAB_MINALIGN
  142. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  143. #endif
  144. #define OO_SHIFT 16
  145. #define OO_MASK ((1 << OO_SHIFT) - 1)
  146. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  147. /* Internal SLUB flags */
  148. #define __OBJECT_POISON 0x80000000 /* Poison object */
  149. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  150. static int kmem_size = sizeof(struct kmem_cache);
  151. #ifdef CONFIG_SMP
  152. static struct notifier_block slab_notifier;
  153. #endif
  154. static enum {
  155. DOWN, /* No slab functionality available */
  156. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  157. UP, /* Everything works but does not show up in sysfs */
  158. SYSFS /* Sysfs up */
  159. } slab_state = DOWN;
  160. /* A list of all slab caches on the system */
  161. static DECLARE_RWSEM(slub_lock);
  162. static LIST_HEAD(slab_caches);
  163. /*
  164. * Tracking user of a slab.
  165. */
  166. struct track {
  167. unsigned long addr; /* Called from address */
  168. int cpu; /* Was running on cpu */
  169. int pid; /* Pid context */
  170. unsigned long when; /* When did the operation occur */
  171. };
  172. enum track_item { TRACK_ALLOC, TRACK_FREE };
  173. #ifdef CONFIG_SLUB_DEBUG
  174. static int sysfs_slab_add(struct kmem_cache *);
  175. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  176. static void sysfs_slab_remove(struct kmem_cache *);
  177. #else
  178. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  179. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  180. { return 0; }
  181. static inline void sysfs_slab_remove(struct kmem_cache *s)
  182. {
  183. kfree(s);
  184. }
  185. #endif
  186. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  187. {
  188. #ifdef CONFIG_SLUB_STATS
  189. c->stat[si]++;
  190. #endif
  191. }
  192. /********************************************************************
  193. * Core slab cache functions
  194. *******************************************************************/
  195. int slab_is_available(void)
  196. {
  197. return slab_state >= UP;
  198. }
  199. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  200. {
  201. #ifdef CONFIG_NUMA
  202. return s->node[node];
  203. #else
  204. return &s->local_node;
  205. #endif
  206. }
  207. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  208. {
  209. #ifdef CONFIG_SMP
  210. return s->cpu_slab[cpu];
  211. #else
  212. return &s->cpu_slab;
  213. #endif
  214. }
  215. /* Verify that a pointer has an address that is valid within a slab page */
  216. static inline int check_valid_pointer(struct kmem_cache *s,
  217. struct page *page, const void *object)
  218. {
  219. void *base;
  220. if (!object)
  221. return 1;
  222. base = page_address(page);
  223. if (object < base || object >= base + page->objects * s->size ||
  224. (object - base) % s->size) {
  225. return 0;
  226. }
  227. return 1;
  228. }
  229. /*
  230. * Slow version of get and set free pointer.
  231. *
  232. * This version requires touching the cache lines of kmem_cache which
  233. * we avoid to do in the fast alloc free paths. There we obtain the offset
  234. * from the page struct.
  235. */
  236. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  237. {
  238. return *(void **)(object + s->offset);
  239. }
  240. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  241. {
  242. *(void **)(object + s->offset) = fp;
  243. }
  244. /* Loop over all objects in a slab */
  245. #define for_each_object(__p, __s, __addr, __objects) \
  246. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  247. __p += (__s)->size)
  248. /* Scan freelist */
  249. #define for_each_free_object(__p, __s, __free) \
  250. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  251. /* Determine object index from a given position */
  252. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  253. {
  254. return (p - addr) / s->size;
  255. }
  256. static inline struct kmem_cache_order_objects oo_make(int order,
  257. unsigned long size)
  258. {
  259. struct kmem_cache_order_objects x = {
  260. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  261. };
  262. return x;
  263. }
  264. static inline int oo_order(struct kmem_cache_order_objects x)
  265. {
  266. return x.x >> OO_SHIFT;
  267. }
  268. static inline int oo_objects(struct kmem_cache_order_objects x)
  269. {
  270. return x.x & OO_MASK;
  271. }
  272. #ifdef CONFIG_SLUB_DEBUG
  273. /*
  274. * Debug settings:
  275. */
  276. #ifdef CONFIG_SLUB_DEBUG_ON
  277. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  278. #else
  279. static int slub_debug;
  280. #endif
  281. static char *slub_debug_slabs;
  282. /*
  283. * Object debugging
  284. */
  285. static void print_section(char *text, u8 *addr, unsigned int length)
  286. {
  287. int i, offset;
  288. int newline = 1;
  289. char ascii[17];
  290. ascii[16] = 0;
  291. for (i = 0; i < length; i++) {
  292. if (newline) {
  293. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  294. newline = 0;
  295. }
  296. printk(KERN_CONT " %02x", addr[i]);
  297. offset = i % 16;
  298. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  299. if (offset == 15) {
  300. printk(KERN_CONT " %s\n", ascii);
  301. newline = 1;
  302. }
  303. }
  304. if (!newline) {
  305. i %= 16;
  306. while (i < 16) {
  307. printk(KERN_CONT " ");
  308. ascii[i] = ' ';
  309. i++;
  310. }
  311. printk(KERN_CONT " %s\n", ascii);
  312. }
  313. }
  314. static struct track *get_track(struct kmem_cache *s, void *object,
  315. enum track_item alloc)
  316. {
  317. struct track *p;
  318. if (s->offset)
  319. p = object + s->offset + sizeof(void *);
  320. else
  321. p = object + s->inuse;
  322. return p + alloc;
  323. }
  324. static void set_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc, unsigned long addr)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. p += alloc;
  333. if (addr) {
  334. p->addr = addr;
  335. p->cpu = smp_processor_id();
  336. p->pid = current->pid;
  337. p->when = jiffies;
  338. } else
  339. memset(p, 0, sizeof(struct track));
  340. }
  341. static void init_tracking(struct kmem_cache *s, void *object)
  342. {
  343. if (!(s->flags & SLAB_STORE_USER))
  344. return;
  345. set_track(s, object, TRACK_FREE, 0UL);
  346. set_track(s, object, TRACK_ALLOC, 0UL);
  347. }
  348. static void print_track(const char *s, struct track *t)
  349. {
  350. if (!t->addr)
  351. return;
  352. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  353. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  354. }
  355. static void print_tracking(struct kmem_cache *s, void *object)
  356. {
  357. if (!(s->flags & SLAB_STORE_USER))
  358. return;
  359. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  360. print_track("Freed", get_track(s, object, TRACK_FREE));
  361. }
  362. static void print_page_info(struct page *page)
  363. {
  364. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  365. page, page->objects, page->inuse, page->freelist, page->flags);
  366. }
  367. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  368. {
  369. va_list args;
  370. char buf[100];
  371. va_start(args, fmt);
  372. vsnprintf(buf, sizeof(buf), fmt, args);
  373. va_end(args);
  374. printk(KERN_ERR "========================================"
  375. "=====================================\n");
  376. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  377. printk(KERN_ERR "----------------------------------------"
  378. "-------------------------------------\n\n");
  379. }
  380. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  381. {
  382. va_list args;
  383. char buf[100];
  384. va_start(args, fmt);
  385. vsnprintf(buf, sizeof(buf), fmt, args);
  386. va_end(args);
  387. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  388. }
  389. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  390. {
  391. unsigned int off; /* Offset of last byte */
  392. u8 *addr = page_address(page);
  393. print_tracking(s, p);
  394. print_page_info(page);
  395. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  396. p, p - addr, get_freepointer(s, p));
  397. if (p > addr + 16)
  398. print_section("Bytes b4", p - 16, 16);
  399. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  400. if (s->flags & SLAB_RED_ZONE)
  401. print_section("Redzone", p + s->objsize,
  402. s->inuse - s->objsize);
  403. if (s->offset)
  404. off = s->offset + sizeof(void *);
  405. else
  406. off = s->inuse;
  407. if (s->flags & SLAB_STORE_USER)
  408. off += 2 * sizeof(struct track);
  409. if (off != s->size)
  410. /* Beginning of the filler is the free pointer */
  411. print_section("Padding", p + off, s->size - off);
  412. dump_stack();
  413. }
  414. static void object_err(struct kmem_cache *s, struct page *page,
  415. u8 *object, char *reason)
  416. {
  417. slab_bug(s, "%s", reason);
  418. print_trailer(s, page, object);
  419. }
  420. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  421. {
  422. va_list args;
  423. char buf[100];
  424. va_start(args, fmt);
  425. vsnprintf(buf, sizeof(buf), fmt, args);
  426. va_end(args);
  427. slab_bug(s, "%s", buf);
  428. print_page_info(page);
  429. dump_stack();
  430. }
  431. static void init_object(struct kmem_cache *s, void *object, int active)
  432. {
  433. u8 *p = object;
  434. if (s->flags & __OBJECT_POISON) {
  435. memset(p, POISON_FREE, s->objsize - 1);
  436. p[s->objsize - 1] = POISON_END;
  437. }
  438. if (s->flags & SLAB_RED_ZONE)
  439. memset(p + s->objsize,
  440. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  441. s->inuse - s->objsize);
  442. }
  443. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  444. {
  445. while (bytes) {
  446. if (*start != (u8)value)
  447. return start;
  448. start++;
  449. bytes--;
  450. }
  451. return NULL;
  452. }
  453. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  454. void *from, void *to)
  455. {
  456. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  457. memset(from, data, to - from);
  458. }
  459. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  460. u8 *object, char *what,
  461. u8 *start, unsigned int value, unsigned int bytes)
  462. {
  463. u8 *fault;
  464. u8 *end;
  465. fault = check_bytes(start, value, bytes);
  466. if (!fault)
  467. return 1;
  468. end = start + bytes;
  469. while (end > fault && end[-1] == value)
  470. end--;
  471. slab_bug(s, "%s overwritten", what);
  472. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  473. fault, end - 1, fault[0], value);
  474. print_trailer(s, page, object);
  475. restore_bytes(s, what, value, fault, end);
  476. return 0;
  477. }
  478. /*
  479. * Object layout:
  480. *
  481. * object address
  482. * Bytes of the object to be managed.
  483. * If the freepointer may overlay the object then the free
  484. * pointer is the first word of the object.
  485. *
  486. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  487. * 0xa5 (POISON_END)
  488. *
  489. * object + s->objsize
  490. * Padding to reach word boundary. This is also used for Redzoning.
  491. * Padding is extended by another word if Redzoning is enabled and
  492. * objsize == inuse.
  493. *
  494. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  495. * 0xcc (RED_ACTIVE) for objects in use.
  496. *
  497. * object + s->inuse
  498. * Meta data starts here.
  499. *
  500. * A. Free pointer (if we cannot overwrite object on free)
  501. * B. Tracking data for SLAB_STORE_USER
  502. * C. Padding to reach required alignment boundary or at mininum
  503. * one word if debugging is on to be able to detect writes
  504. * before the word boundary.
  505. *
  506. * Padding is done using 0x5a (POISON_INUSE)
  507. *
  508. * object + s->size
  509. * Nothing is used beyond s->size.
  510. *
  511. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  512. * ignored. And therefore no slab options that rely on these boundaries
  513. * may be used with merged slabcaches.
  514. */
  515. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  516. {
  517. unsigned long off = s->inuse; /* The end of info */
  518. if (s->offset)
  519. /* Freepointer is placed after the object. */
  520. off += sizeof(void *);
  521. if (s->flags & SLAB_STORE_USER)
  522. /* We also have user information there */
  523. off += 2 * sizeof(struct track);
  524. if (s->size == off)
  525. return 1;
  526. return check_bytes_and_report(s, page, p, "Object padding",
  527. p + off, POISON_INUSE, s->size - off);
  528. }
  529. /* Check the pad bytes at the end of a slab page */
  530. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  531. {
  532. u8 *start;
  533. u8 *fault;
  534. u8 *end;
  535. int length;
  536. int remainder;
  537. if (!(s->flags & SLAB_POISON))
  538. return 1;
  539. start = page_address(page);
  540. length = (PAGE_SIZE << compound_order(page));
  541. end = start + length;
  542. remainder = length % s->size;
  543. if (!remainder)
  544. return 1;
  545. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  546. if (!fault)
  547. return 1;
  548. while (end > fault && end[-1] == POISON_INUSE)
  549. end--;
  550. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  551. print_section("Padding", end - remainder, remainder);
  552. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  553. return 0;
  554. }
  555. static int check_object(struct kmem_cache *s, struct page *page,
  556. void *object, int active)
  557. {
  558. u8 *p = object;
  559. u8 *endobject = object + s->objsize;
  560. if (s->flags & SLAB_RED_ZONE) {
  561. unsigned int red =
  562. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  563. if (!check_bytes_and_report(s, page, object, "Redzone",
  564. endobject, red, s->inuse - s->objsize))
  565. return 0;
  566. } else {
  567. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  568. check_bytes_and_report(s, page, p, "Alignment padding",
  569. endobject, POISON_INUSE, s->inuse - s->objsize);
  570. }
  571. }
  572. if (s->flags & SLAB_POISON) {
  573. if (!active && (s->flags & __OBJECT_POISON) &&
  574. (!check_bytes_and_report(s, page, p, "Poison", p,
  575. POISON_FREE, s->objsize - 1) ||
  576. !check_bytes_and_report(s, page, p, "Poison",
  577. p + s->objsize - 1, POISON_END, 1)))
  578. return 0;
  579. /*
  580. * check_pad_bytes cleans up on its own.
  581. */
  582. check_pad_bytes(s, page, p);
  583. }
  584. if (!s->offset && active)
  585. /*
  586. * Object and freepointer overlap. Cannot check
  587. * freepointer while object is allocated.
  588. */
  589. return 1;
  590. /* Check free pointer validity */
  591. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  592. object_err(s, page, p, "Freepointer corrupt");
  593. /*
  594. * No choice but to zap it and thus lose the remainder
  595. * of the free objects in this slab. May cause
  596. * another error because the object count is now wrong.
  597. */
  598. set_freepointer(s, p, NULL);
  599. return 0;
  600. }
  601. return 1;
  602. }
  603. static int check_slab(struct kmem_cache *s, struct page *page)
  604. {
  605. int maxobj;
  606. VM_BUG_ON(!irqs_disabled());
  607. if (!PageSlab(page)) {
  608. slab_err(s, page, "Not a valid slab page");
  609. return 0;
  610. }
  611. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  612. if (page->objects > maxobj) {
  613. slab_err(s, page, "objects %u > max %u",
  614. s->name, page->objects, maxobj);
  615. return 0;
  616. }
  617. if (page->inuse > page->objects) {
  618. slab_err(s, page, "inuse %u > max %u",
  619. s->name, page->inuse, page->objects);
  620. return 0;
  621. }
  622. /* Slab_pad_check fixes things up after itself */
  623. slab_pad_check(s, page);
  624. return 1;
  625. }
  626. /*
  627. * Determine if a certain object on a page is on the freelist. Must hold the
  628. * slab lock to guarantee that the chains are in a consistent state.
  629. */
  630. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  631. {
  632. int nr = 0;
  633. void *fp = page->freelist;
  634. void *object = NULL;
  635. unsigned long max_objects;
  636. while (fp && nr <= page->objects) {
  637. if (fp == search)
  638. return 1;
  639. if (!check_valid_pointer(s, page, fp)) {
  640. if (object) {
  641. object_err(s, page, object,
  642. "Freechain corrupt");
  643. set_freepointer(s, object, NULL);
  644. break;
  645. } else {
  646. slab_err(s, page, "Freepointer corrupt");
  647. page->freelist = NULL;
  648. page->inuse = page->objects;
  649. slab_fix(s, "Freelist cleared");
  650. return 0;
  651. }
  652. break;
  653. }
  654. object = fp;
  655. fp = get_freepointer(s, object);
  656. nr++;
  657. }
  658. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  659. if (max_objects > MAX_OBJS_PER_PAGE)
  660. max_objects = MAX_OBJS_PER_PAGE;
  661. if (page->objects != max_objects) {
  662. slab_err(s, page, "Wrong number of objects. Found %d but "
  663. "should be %d", page->objects, max_objects);
  664. page->objects = max_objects;
  665. slab_fix(s, "Number of objects adjusted.");
  666. }
  667. if (page->inuse != page->objects - nr) {
  668. slab_err(s, page, "Wrong object count. Counter is %d but "
  669. "counted were %d", page->inuse, page->objects - nr);
  670. page->inuse = page->objects - nr;
  671. slab_fix(s, "Object count adjusted.");
  672. }
  673. return search == NULL;
  674. }
  675. static void trace(struct kmem_cache *s, struct page *page, void *object,
  676. int alloc)
  677. {
  678. if (s->flags & SLAB_TRACE) {
  679. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  680. s->name,
  681. alloc ? "alloc" : "free",
  682. object, page->inuse,
  683. page->freelist);
  684. if (!alloc)
  685. print_section("Object", (void *)object, s->objsize);
  686. dump_stack();
  687. }
  688. }
  689. /*
  690. * Tracking of fully allocated slabs for debugging purposes.
  691. */
  692. static void add_full(struct kmem_cache_node *n, struct page *page)
  693. {
  694. spin_lock(&n->list_lock);
  695. list_add(&page->lru, &n->full);
  696. spin_unlock(&n->list_lock);
  697. }
  698. static void remove_full(struct kmem_cache *s, struct page *page)
  699. {
  700. struct kmem_cache_node *n;
  701. if (!(s->flags & SLAB_STORE_USER))
  702. return;
  703. n = get_node(s, page_to_nid(page));
  704. spin_lock(&n->list_lock);
  705. list_del(&page->lru);
  706. spin_unlock(&n->list_lock);
  707. }
  708. /* Tracking of the number of slabs for debugging purposes */
  709. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  710. {
  711. struct kmem_cache_node *n = get_node(s, node);
  712. return atomic_long_read(&n->nr_slabs);
  713. }
  714. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  715. {
  716. struct kmem_cache_node *n = get_node(s, node);
  717. /*
  718. * May be called early in order to allocate a slab for the
  719. * kmem_cache_node structure. Solve the chicken-egg
  720. * dilemma by deferring the increment of the count during
  721. * bootstrap (see early_kmem_cache_node_alloc).
  722. */
  723. if (!NUMA_BUILD || n) {
  724. atomic_long_inc(&n->nr_slabs);
  725. atomic_long_add(objects, &n->total_objects);
  726. }
  727. }
  728. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  729. {
  730. struct kmem_cache_node *n = get_node(s, node);
  731. atomic_long_dec(&n->nr_slabs);
  732. atomic_long_sub(objects, &n->total_objects);
  733. }
  734. /* Object debug checks for alloc/free paths */
  735. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  736. void *object)
  737. {
  738. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  739. return;
  740. init_object(s, object, 0);
  741. init_tracking(s, object);
  742. }
  743. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  744. void *object, unsigned long addr)
  745. {
  746. if (!check_slab(s, page))
  747. goto bad;
  748. if (!on_freelist(s, page, object)) {
  749. object_err(s, page, object, "Object already allocated");
  750. goto bad;
  751. }
  752. if (!check_valid_pointer(s, page, object)) {
  753. object_err(s, page, object, "Freelist Pointer check fails");
  754. goto bad;
  755. }
  756. if (!check_object(s, page, object, 0))
  757. goto bad;
  758. /* Success perform special debug activities for allocs */
  759. if (s->flags & SLAB_STORE_USER)
  760. set_track(s, object, TRACK_ALLOC, addr);
  761. trace(s, page, object, 1);
  762. init_object(s, object, 1);
  763. return 1;
  764. bad:
  765. if (PageSlab(page)) {
  766. /*
  767. * If this is a slab page then lets do the best we can
  768. * to avoid issues in the future. Marking all objects
  769. * as used avoids touching the remaining objects.
  770. */
  771. slab_fix(s, "Marking all objects used");
  772. page->inuse = page->objects;
  773. page->freelist = NULL;
  774. }
  775. return 0;
  776. }
  777. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  778. void *object, unsigned long addr)
  779. {
  780. if (!check_slab(s, page))
  781. goto fail;
  782. if (!check_valid_pointer(s, page, object)) {
  783. slab_err(s, page, "Invalid object pointer 0x%p", object);
  784. goto fail;
  785. }
  786. if (on_freelist(s, page, object)) {
  787. object_err(s, page, object, "Object already free");
  788. goto fail;
  789. }
  790. if (!check_object(s, page, object, 1))
  791. return 0;
  792. if (unlikely(s != page->slab)) {
  793. if (!PageSlab(page)) {
  794. slab_err(s, page, "Attempt to free object(0x%p) "
  795. "outside of slab", object);
  796. } else if (!page->slab) {
  797. printk(KERN_ERR
  798. "SLUB <none>: no slab for object 0x%p.\n",
  799. object);
  800. dump_stack();
  801. } else
  802. object_err(s, page, object,
  803. "page slab pointer corrupt.");
  804. goto fail;
  805. }
  806. /* Special debug activities for freeing objects */
  807. if (!PageSlubFrozen(page) && !page->freelist)
  808. remove_full(s, page);
  809. if (s->flags & SLAB_STORE_USER)
  810. set_track(s, object, TRACK_FREE, addr);
  811. trace(s, page, object, 0);
  812. init_object(s, object, 0);
  813. return 1;
  814. fail:
  815. slab_fix(s, "Object at 0x%p not freed", object);
  816. return 0;
  817. }
  818. static int __init setup_slub_debug(char *str)
  819. {
  820. slub_debug = DEBUG_DEFAULT_FLAGS;
  821. if (*str++ != '=' || !*str)
  822. /*
  823. * No options specified. Switch on full debugging.
  824. */
  825. goto out;
  826. if (*str == ',')
  827. /*
  828. * No options but restriction on slabs. This means full
  829. * debugging for slabs matching a pattern.
  830. */
  831. goto check_slabs;
  832. slub_debug = 0;
  833. if (*str == '-')
  834. /*
  835. * Switch off all debugging measures.
  836. */
  837. goto out;
  838. /*
  839. * Determine which debug features should be switched on
  840. */
  841. for (; *str && *str != ','; str++) {
  842. switch (tolower(*str)) {
  843. case 'f':
  844. slub_debug |= SLAB_DEBUG_FREE;
  845. break;
  846. case 'z':
  847. slub_debug |= SLAB_RED_ZONE;
  848. break;
  849. case 'p':
  850. slub_debug |= SLAB_POISON;
  851. break;
  852. case 'u':
  853. slub_debug |= SLAB_STORE_USER;
  854. break;
  855. case 't':
  856. slub_debug |= SLAB_TRACE;
  857. break;
  858. default:
  859. printk(KERN_ERR "slub_debug option '%c' "
  860. "unknown. skipped\n", *str);
  861. }
  862. }
  863. check_slabs:
  864. if (*str == ',')
  865. slub_debug_slabs = str + 1;
  866. out:
  867. return 1;
  868. }
  869. __setup("slub_debug", setup_slub_debug);
  870. static unsigned long kmem_cache_flags(unsigned long objsize,
  871. unsigned long flags, const char *name,
  872. void (*ctor)(void *))
  873. {
  874. /*
  875. * Enable debugging if selected on the kernel commandline.
  876. */
  877. if (slub_debug && (!slub_debug_slabs ||
  878. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  879. flags |= slub_debug;
  880. return flags;
  881. }
  882. #else
  883. static inline void setup_object_debug(struct kmem_cache *s,
  884. struct page *page, void *object) {}
  885. static inline int alloc_debug_processing(struct kmem_cache *s,
  886. struct page *page, void *object, unsigned long addr) { return 0; }
  887. static inline int free_debug_processing(struct kmem_cache *s,
  888. struct page *page, void *object, unsigned long addr) { return 0; }
  889. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  890. { return 1; }
  891. static inline int check_object(struct kmem_cache *s, struct page *page,
  892. void *object, int active) { return 1; }
  893. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  894. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  895. unsigned long flags, const char *name,
  896. void (*ctor)(void *))
  897. {
  898. return flags;
  899. }
  900. #define slub_debug 0
  901. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  902. { return 0; }
  903. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  904. int objects) {}
  905. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  906. int objects) {}
  907. #endif
  908. /*
  909. * Slab allocation and freeing
  910. */
  911. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  912. struct kmem_cache_order_objects oo)
  913. {
  914. int order = oo_order(oo);
  915. if (node == -1)
  916. return alloc_pages(flags, order);
  917. else
  918. return alloc_pages_node(node, flags, order);
  919. }
  920. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  921. {
  922. struct page *page;
  923. struct kmem_cache_order_objects oo = s->oo;
  924. flags |= s->allocflags;
  925. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  926. oo);
  927. if (unlikely(!page)) {
  928. oo = s->min;
  929. /*
  930. * Allocation may have failed due to fragmentation.
  931. * Try a lower order alloc if possible
  932. */
  933. page = alloc_slab_page(flags, node, oo);
  934. if (!page)
  935. return NULL;
  936. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  937. }
  938. page->objects = oo_objects(oo);
  939. mod_zone_page_state(page_zone(page),
  940. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  941. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  942. 1 << oo_order(oo));
  943. return page;
  944. }
  945. static void setup_object(struct kmem_cache *s, struct page *page,
  946. void *object)
  947. {
  948. setup_object_debug(s, page, object);
  949. if (unlikely(s->ctor))
  950. s->ctor(object);
  951. }
  952. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  953. {
  954. struct page *page;
  955. void *start;
  956. void *last;
  957. void *p;
  958. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  959. page = allocate_slab(s,
  960. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  961. if (!page)
  962. goto out;
  963. inc_slabs_node(s, page_to_nid(page), page->objects);
  964. page->slab = s;
  965. page->flags |= 1 << PG_slab;
  966. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  967. SLAB_STORE_USER | SLAB_TRACE))
  968. __SetPageSlubDebug(page);
  969. start = page_address(page);
  970. if (unlikely(s->flags & SLAB_POISON))
  971. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  972. last = start;
  973. for_each_object(p, s, start, page->objects) {
  974. setup_object(s, page, last);
  975. set_freepointer(s, last, p);
  976. last = p;
  977. }
  978. setup_object(s, page, last);
  979. set_freepointer(s, last, NULL);
  980. page->freelist = start;
  981. page->inuse = 0;
  982. out:
  983. return page;
  984. }
  985. static void __free_slab(struct kmem_cache *s, struct page *page)
  986. {
  987. int order = compound_order(page);
  988. int pages = 1 << order;
  989. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  990. void *p;
  991. slab_pad_check(s, page);
  992. for_each_object(p, s, page_address(page),
  993. page->objects)
  994. check_object(s, page, p, 0);
  995. __ClearPageSlubDebug(page);
  996. }
  997. mod_zone_page_state(page_zone(page),
  998. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  999. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1000. -pages);
  1001. __ClearPageSlab(page);
  1002. reset_page_mapcount(page);
  1003. __free_pages(page, order);
  1004. }
  1005. static void rcu_free_slab(struct rcu_head *h)
  1006. {
  1007. struct page *page;
  1008. page = container_of((struct list_head *)h, struct page, lru);
  1009. __free_slab(page->slab, page);
  1010. }
  1011. static void free_slab(struct kmem_cache *s, struct page *page)
  1012. {
  1013. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1014. /*
  1015. * RCU free overloads the RCU head over the LRU
  1016. */
  1017. struct rcu_head *head = (void *)&page->lru;
  1018. call_rcu(head, rcu_free_slab);
  1019. } else
  1020. __free_slab(s, page);
  1021. }
  1022. static void discard_slab(struct kmem_cache *s, struct page *page)
  1023. {
  1024. dec_slabs_node(s, page_to_nid(page), page->objects);
  1025. free_slab(s, page);
  1026. }
  1027. /*
  1028. * Per slab locking using the pagelock
  1029. */
  1030. static __always_inline void slab_lock(struct page *page)
  1031. {
  1032. bit_spin_lock(PG_locked, &page->flags);
  1033. }
  1034. static __always_inline void slab_unlock(struct page *page)
  1035. {
  1036. __bit_spin_unlock(PG_locked, &page->flags);
  1037. }
  1038. static __always_inline int slab_trylock(struct page *page)
  1039. {
  1040. int rc = 1;
  1041. rc = bit_spin_trylock(PG_locked, &page->flags);
  1042. return rc;
  1043. }
  1044. /*
  1045. * Management of partially allocated slabs
  1046. */
  1047. static void add_partial(struct kmem_cache_node *n,
  1048. struct page *page, int tail)
  1049. {
  1050. spin_lock(&n->list_lock);
  1051. n->nr_partial++;
  1052. if (tail)
  1053. list_add_tail(&page->lru, &n->partial);
  1054. else
  1055. list_add(&page->lru, &n->partial);
  1056. spin_unlock(&n->list_lock);
  1057. }
  1058. static void remove_partial(struct kmem_cache *s, struct page *page)
  1059. {
  1060. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1061. spin_lock(&n->list_lock);
  1062. list_del(&page->lru);
  1063. n->nr_partial--;
  1064. spin_unlock(&n->list_lock);
  1065. }
  1066. /*
  1067. * Lock slab and remove from the partial list.
  1068. *
  1069. * Must hold list_lock.
  1070. */
  1071. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1072. struct page *page)
  1073. {
  1074. if (slab_trylock(page)) {
  1075. list_del(&page->lru);
  1076. n->nr_partial--;
  1077. __SetPageSlubFrozen(page);
  1078. return 1;
  1079. }
  1080. return 0;
  1081. }
  1082. /*
  1083. * Try to allocate a partial slab from a specific node.
  1084. */
  1085. static struct page *get_partial_node(struct kmem_cache_node *n)
  1086. {
  1087. struct page *page;
  1088. /*
  1089. * Racy check. If we mistakenly see no partial slabs then we
  1090. * just allocate an empty slab. If we mistakenly try to get a
  1091. * partial slab and there is none available then get_partials()
  1092. * will return NULL.
  1093. */
  1094. if (!n || !n->nr_partial)
  1095. return NULL;
  1096. spin_lock(&n->list_lock);
  1097. list_for_each_entry(page, &n->partial, lru)
  1098. if (lock_and_freeze_slab(n, page))
  1099. goto out;
  1100. page = NULL;
  1101. out:
  1102. spin_unlock(&n->list_lock);
  1103. return page;
  1104. }
  1105. /*
  1106. * Get a page from somewhere. Search in increasing NUMA distances.
  1107. */
  1108. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1109. {
  1110. #ifdef CONFIG_NUMA
  1111. struct zonelist *zonelist;
  1112. struct zoneref *z;
  1113. struct zone *zone;
  1114. enum zone_type high_zoneidx = gfp_zone(flags);
  1115. struct page *page;
  1116. /*
  1117. * The defrag ratio allows a configuration of the tradeoffs between
  1118. * inter node defragmentation and node local allocations. A lower
  1119. * defrag_ratio increases the tendency to do local allocations
  1120. * instead of attempting to obtain partial slabs from other nodes.
  1121. *
  1122. * If the defrag_ratio is set to 0 then kmalloc() always
  1123. * returns node local objects. If the ratio is higher then kmalloc()
  1124. * may return off node objects because partial slabs are obtained
  1125. * from other nodes and filled up.
  1126. *
  1127. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1128. * defrag_ratio = 1000) then every (well almost) allocation will
  1129. * first attempt to defrag slab caches on other nodes. This means
  1130. * scanning over all nodes to look for partial slabs which may be
  1131. * expensive if we do it every time we are trying to find a slab
  1132. * with available objects.
  1133. */
  1134. if (!s->remote_node_defrag_ratio ||
  1135. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1136. return NULL;
  1137. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1138. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1139. struct kmem_cache_node *n;
  1140. n = get_node(s, zone_to_nid(zone));
  1141. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1142. n->nr_partial > n->min_partial) {
  1143. page = get_partial_node(n);
  1144. if (page)
  1145. return page;
  1146. }
  1147. }
  1148. #endif
  1149. return NULL;
  1150. }
  1151. /*
  1152. * Get a partial page, lock it and return it.
  1153. */
  1154. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1155. {
  1156. struct page *page;
  1157. int searchnode = (node == -1) ? numa_node_id() : node;
  1158. page = get_partial_node(get_node(s, searchnode));
  1159. if (page || (flags & __GFP_THISNODE))
  1160. return page;
  1161. return get_any_partial(s, flags);
  1162. }
  1163. /*
  1164. * Move a page back to the lists.
  1165. *
  1166. * Must be called with the slab lock held.
  1167. *
  1168. * On exit the slab lock will have been dropped.
  1169. */
  1170. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1171. {
  1172. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1173. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1174. __ClearPageSlubFrozen(page);
  1175. if (page->inuse) {
  1176. if (page->freelist) {
  1177. add_partial(n, page, tail);
  1178. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1179. } else {
  1180. stat(c, DEACTIVATE_FULL);
  1181. if (SLABDEBUG && PageSlubDebug(page) &&
  1182. (s->flags & SLAB_STORE_USER))
  1183. add_full(n, page);
  1184. }
  1185. slab_unlock(page);
  1186. } else {
  1187. stat(c, DEACTIVATE_EMPTY);
  1188. if (n->nr_partial < n->min_partial) {
  1189. /*
  1190. * Adding an empty slab to the partial slabs in order
  1191. * to avoid page allocator overhead. This slab needs
  1192. * to come after the other slabs with objects in
  1193. * so that the others get filled first. That way the
  1194. * size of the partial list stays small.
  1195. *
  1196. * kmem_cache_shrink can reclaim any empty slabs from
  1197. * the partial list.
  1198. */
  1199. add_partial(n, page, 1);
  1200. slab_unlock(page);
  1201. } else {
  1202. slab_unlock(page);
  1203. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1204. discard_slab(s, page);
  1205. }
  1206. }
  1207. }
  1208. /*
  1209. * Remove the cpu slab
  1210. */
  1211. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1212. {
  1213. struct page *page = c->page;
  1214. int tail = 1;
  1215. if (page->freelist)
  1216. stat(c, DEACTIVATE_REMOTE_FREES);
  1217. /*
  1218. * Merge cpu freelist into slab freelist. Typically we get here
  1219. * because both freelists are empty. So this is unlikely
  1220. * to occur.
  1221. */
  1222. while (unlikely(c->freelist)) {
  1223. void **object;
  1224. tail = 0; /* Hot objects. Put the slab first */
  1225. /* Retrieve object from cpu_freelist */
  1226. object = c->freelist;
  1227. c->freelist = c->freelist[c->offset];
  1228. /* And put onto the regular freelist */
  1229. object[c->offset] = page->freelist;
  1230. page->freelist = object;
  1231. page->inuse--;
  1232. }
  1233. c->page = NULL;
  1234. unfreeze_slab(s, page, tail);
  1235. }
  1236. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1237. {
  1238. stat(c, CPUSLAB_FLUSH);
  1239. slab_lock(c->page);
  1240. deactivate_slab(s, c);
  1241. }
  1242. /*
  1243. * Flush cpu slab.
  1244. *
  1245. * Called from IPI handler with interrupts disabled.
  1246. */
  1247. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1248. {
  1249. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1250. if (likely(c && c->page))
  1251. flush_slab(s, c);
  1252. }
  1253. static void flush_cpu_slab(void *d)
  1254. {
  1255. struct kmem_cache *s = d;
  1256. __flush_cpu_slab(s, smp_processor_id());
  1257. }
  1258. static void flush_all(struct kmem_cache *s)
  1259. {
  1260. on_each_cpu(flush_cpu_slab, s, 1);
  1261. }
  1262. /*
  1263. * Check if the objects in a per cpu structure fit numa
  1264. * locality expectations.
  1265. */
  1266. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1267. {
  1268. #ifdef CONFIG_NUMA
  1269. if (node != -1 && c->node != node)
  1270. return 0;
  1271. #endif
  1272. return 1;
  1273. }
  1274. /*
  1275. * Slow path. The lockless freelist is empty or we need to perform
  1276. * debugging duties.
  1277. *
  1278. * Interrupts are disabled.
  1279. *
  1280. * Processing is still very fast if new objects have been freed to the
  1281. * regular freelist. In that case we simply take over the regular freelist
  1282. * as the lockless freelist and zap the regular freelist.
  1283. *
  1284. * If that is not working then we fall back to the partial lists. We take the
  1285. * first element of the freelist as the object to allocate now and move the
  1286. * rest of the freelist to the lockless freelist.
  1287. *
  1288. * And if we were unable to get a new slab from the partial slab lists then
  1289. * we need to allocate a new slab. This is the slowest path since it involves
  1290. * a call to the page allocator and the setup of a new slab.
  1291. */
  1292. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1293. unsigned long addr, struct kmem_cache_cpu *c)
  1294. {
  1295. void **object;
  1296. struct page *new;
  1297. /* We handle __GFP_ZERO in the caller */
  1298. gfpflags &= ~__GFP_ZERO;
  1299. if (!c->page)
  1300. goto new_slab;
  1301. slab_lock(c->page);
  1302. if (unlikely(!node_match(c, node)))
  1303. goto another_slab;
  1304. stat(c, ALLOC_REFILL);
  1305. load_freelist:
  1306. object = c->page->freelist;
  1307. if (unlikely(!object))
  1308. goto another_slab;
  1309. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1310. goto debug;
  1311. c->freelist = object[c->offset];
  1312. c->page->inuse = c->page->objects;
  1313. c->page->freelist = NULL;
  1314. c->node = page_to_nid(c->page);
  1315. unlock_out:
  1316. slab_unlock(c->page);
  1317. stat(c, ALLOC_SLOWPATH);
  1318. return object;
  1319. another_slab:
  1320. deactivate_slab(s, c);
  1321. new_slab:
  1322. new = get_partial(s, gfpflags, node);
  1323. if (new) {
  1324. c->page = new;
  1325. stat(c, ALLOC_FROM_PARTIAL);
  1326. goto load_freelist;
  1327. }
  1328. if (gfpflags & __GFP_WAIT)
  1329. local_irq_enable();
  1330. new = new_slab(s, gfpflags, node);
  1331. if (gfpflags & __GFP_WAIT)
  1332. local_irq_disable();
  1333. if (new) {
  1334. c = get_cpu_slab(s, smp_processor_id());
  1335. stat(c, ALLOC_SLAB);
  1336. if (c->page)
  1337. flush_slab(s, c);
  1338. slab_lock(new);
  1339. __SetPageSlubFrozen(new);
  1340. c->page = new;
  1341. goto load_freelist;
  1342. }
  1343. return NULL;
  1344. debug:
  1345. if (!alloc_debug_processing(s, c->page, object, addr))
  1346. goto another_slab;
  1347. c->page->inuse++;
  1348. c->page->freelist = object[c->offset];
  1349. c->node = -1;
  1350. goto unlock_out;
  1351. }
  1352. /*
  1353. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1354. * have the fastpath folded into their functions. So no function call
  1355. * overhead for requests that can be satisfied on the fastpath.
  1356. *
  1357. * The fastpath works by first checking if the lockless freelist can be used.
  1358. * If not then __slab_alloc is called for slow processing.
  1359. *
  1360. * Otherwise we can simply pick the next object from the lockless free list.
  1361. */
  1362. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1363. gfp_t gfpflags, int node, unsigned long addr)
  1364. {
  1365. void **object;
  1366. struct kmem_cache_cpu *c;
  1367. unsigned long flags;
  1368. unsigned int objsize;
  1369. might_sleep_if(gfpflags & __GFP_WAIT);
  1370. if (should_failslab(s->objsize, gfpflags))
  1371. return NULL;
  1372. local_irq_save(flags);
  1373. c = get_cpu_slab(s, smp_processor_id());
  1374. objsize = c->objsize;
  1375. if (unlikely(!c->freelist || !node_match(c, node)))
  1376. object = __slab_alloc(s, gfpflags, node, addr, c);
  1377. else {
  1378. object = c->freelist;
  1379. c->freelist = object[c->offset];
  1380. stat(c, ALLOC_FASTPATH);
  1381. }
  1382. local_irq_restore(flags);
  1383. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1384. memset(object, 0, objsize);
  1385. return object;
  1386. }
  1387. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1388. {
  1389. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1390. }
  1391. EXPORT_SYMBOL(kmem_cache_alloc);
  1392. #ifdef CONFIG_NUMA
  1393. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1394. {
  1395. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1396. }
  1397. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1398. #endif
  1399. /*
  1400. * Slow patch handling. This may still be called frequently since objects
  1401. * have a longer lifetime than the cpu slabs in most processing loads.
  1402. *
  1403. * So we still attempt to reduce cache line usage. Just take the slab
  1404. * lock and free the item. If there is no additional partial page
  1405. * handling required then we can return immediately.
  1406. */
  1407. static void __slab_free(struct kmem_cache *s, struct page *page,
  1408. void *x, unsigned long addr, unsigned int offset)
  1409. {
  1410. void *prior;
  1411. void **object = (void *)x;
  1412. struct kmem_cache_cpu *c;
  1413. c = get_cpu_slab(s, raw_smp_processor_id());
  1414. stat(c, FREE_SLOWPATH);
  1415. slab_lock(page);
  1416. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1417. goto debug;
  1418. checks_ok:
  1419. prior = object[offset] = page->freelist;
  1420. page->freelist = object;
  1421. page->inuse--;
  1422. if (unlikely(PageSlubFrozen(page))) {
  1423. stat(c, FREE_FROZEN);
  1424. goto out_unlock;
  1425. }
  1426. if (unlikely(!page->inuse))
  1427. goto slab_empty;
  1428. /*
  1429. * Objects left in the slab. If it was not on the partial list before
  1430. * then add it.
  1431. */
  1432. if (unlikely(!prior)) {
  1433. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1434. stat(c, FREE_ADD_PARTIAL);
  1435. }
  1436. out_unlock:
  1437. slab_unlock(page);
  1438. return;
  1439. slab_empty:
  1440. if (prior) {
  1441. /*
  1442. * Slab still on the partial list.
  1443. */
  1444. remove_partial(s, page);
  1445. stat(c, FREE_REMOVE_PARTIAL);
  1446. }
  1447. slab_unlock(page);
  1448. stat(c, FREE_SLAB);
  1449. discard_slab(s, page);
  1450. return;
  1451. debug:
  1452. if (!free_debug_processing(s, page, x, addr))
  1453. goto out_unlock;
  1454. goto checks_ok;
  1455. }
  1456. /*
  1457. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1458. * can perform fastpath freeing without additional function calls.
  1459. *
  1460. * The fastpath is only possible if we are freeing to the current cpu slab
  1461. * of this processor. This typically the case if we have just allocated
  1462. * the item before.
  1463. *
  1464. * If fastpath is not possible then fall back to __slab_free where we deal
  1465. * with all sorts of special processing.
  1466. */
  1467. static __always_inline void slab_free(struct kmem_cache *s,
  1468. struct page *page, void *x, unsigned long addr)
  1469. {
  1470. void **object = (void *)x;
  1471. struct kmem_cache_cpu *c;
  1472. unsigned long flags;
  1473. local_irq_save(flags);
  1474. c = get_cpu_slab(s, smp_processor_id());
  1475. debug_check_no_locks_freed(object, c->objsize);
  1476. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1477. debug_check_no_obj_freed(object, s->objsize);
  1478. if (likely(page == c->page && c->node >= 0)) {
  1479. object[c->offset] = c->freelist;
  1480. c->freelist = object;
  1481. stat(c, FREE_FASTPATH);
  1482. } else
  1483. __slab_free(s, page, x, addr, c->offset);
  1484. local_irq_restore(flags);
  1485. }
  1486. void kmem_cache_free(struct kmem_cache *s, void *x)
  1487. {
  1488. struct page *page;
  1489. page = virt_to_head_page(x);
  1490. slab_free(s, page, x, _RET_IP_);
  1491. }
  1492. EXPORT_SYMBOL(kmem_cache_free);
  1493. /* Figure out on which slab page the object resides */
  1494. static struct page *get_object_page(const void *x)
  1495. {
  1496. struct page *page = virt_to_head_page(x);
  1497. if (!PageSlab(page))
  1498. return NULL;
  1499. return page;
  1500. }
  1501. /*
  1502. * Object placement in a slab is made very easy because we always start at
  1503. * offset 0. If we tune the size of the object to the alignment then we can
  1504. * get the required alignment by putting one properly sized object after
  1505. * another.
  1506. *
  1507. * Notice that the allocation order determines the sizes of the per cpu
  1508. * caches. Each processor has always one slab available for allocations.
  1509. * Increasing the allocation order reduces the number of times that slabs
  1510. * must be moved on and off the partial lists and is therefore a factor in
  1511. * locking overhead.
  1512. */
  1513. /*
  1514. * Mininum / Maximum order of slab pages. This influences locking overhead
  1515. * and slab fragmentation. A higher order reduces the number of partial slabs
  1516. * and increases the number of allocations possible without having to
  1517. * take the list_lock.
  1518. */
  1519. static int slub_min_order;
  1520. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1521. static int slub_min_objects;
  1522. /*
  1523. * Merge control. If this is set then no merging of slab caches will occur.
  1524. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1525. */
  1526. static int slub_nomerge;
  1527. /*
  1528. * Calculate the order of allocation given an slab object size.
  1529. *
  1530. * The order of allocation has significant impact on performance and other
  1531. * system components. Generally order 0 allocations should be preferred since
  1532. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1533. * be problematic to put into order 0 slabs because there may be too much
  1534. * unused space left. We go to a higher order if more than 1/16th of the slab
  1535. * would be wasted.
  1536. *
  1537. * In order to reach satisfactory performance we must ensure that a minimum
  1538. * number of objects is in one slab. Otherwise we may generate too much
  1539. * activity on the partial lists which requires taking the list_lock. This is
  1540. * less a concern for large slabs though which are rarely used.
  1541. *
  1542. * slub_max_order specifies the order where we begin to stop considering the
  1543. * number of objects in a slab as critical. If we reach slub_max_order then
  1544. * we try to keep the page order as low as possible. So we accept more waste
  1545. * of space in favor of a small page order.
  1546. *
  1547. * Higher order allocations also allow the placement of more objects in a
  1548. * slab and thereby reduce object handling overhead. If the user has
  1549. * requested a higher mininum order then we start with that one instead of
  1550. * the smallest order which will fit the object.
  1551. */
  1552. static inline int slab_order(int size, int min_objects,
  1553. int max_order, int fract_leftover)
  1554. {
  1555. int order;
  1556. int rem;
  1557. int min_order = slub_min_order;
  1558. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1559. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1560. for (order = max(min_order,
  1561. fls(min_objects * size - 1) - PAGE_SHIFT);
  1562. order <= max_order; order++) {
  1563. unsigned long slab_size = PAGE_SIZE << order;
  1564. if (slab_size < min_objects * size)
  1565. continue;
  1566. rem = slab_size % size;
  1567. if (rem <= slab_size / fract_leftover)
  1568. break;
  1569. }
  1570. return order;
  1571. }
  1572. static inline int calculate_order(int size)
  1573. {
  1574. int order;
  1575. int min_objects;
  1576. int fraction;
  1577. /*
  1578. * Attempt to find best configuration for a slab. This
  1579. * works by first attempting to generate a layout with
  1580. * the best configuration and backing off gradually.
  1581. *
  1582. * First we reduce the acceptable waste in a slab. Then
  1583. * we reduce the minimum objects required in a slab.
  1584. */
  1585. min_objects = slub_min_objects;
  1586. if (!min_objects)
  1587. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1588. while (min_objects > 1) {
  1589. fraction = 16;
  1590. while (fraction >= 4) {
  1591. order = slab_order(size, min_objects,
  1592. slub_max_order, fraction);
  1593. if (order <= slub_max_order)
  1594. return order;
  1595. fraction /= 2;
  1596. }
  1597. min_objects /= 2;
  1598. }
  1599. /*
  1600. * We were unable to place multiple objects in a slab. Now
  1601. * lets see if we can place a single object there.
  1602. */
  1603. order = slab_order(size, 1, slub_max_order, 1);
  1604. if (order <= slub_max_order)
  1605. return order;
  1606. /*
  1607. * Doh this slab cannot be placed using slub_max_order.
  1608. */
  1609. order = slab_order(size, 1, MAX_ORDER, 1);
  1610. if (order <= MAX_ORDER)
  1611. return order;
  1612. return -ENOSYS;
  1613. }
  1614. /*
  1615. * Figure out what the alignment of the objects will be.
  1616. */
  1617. static unsigned long calculate_alignment(unsigned long flags,
  1618. unsigned long align, unsigned long size)
  1619. {
  1620. /*
  1621. * If the user wants hardware cache aligned objects then follow that
  1622. * suggestion if the object is sufficiently large.
  1623. *
  1624. * The hardware cache alignment cannot override the specified
  1625. * alignment though. If that is greater then use it.
  1626. */
  1627. if (flags & SLAB_HWCACHE_ALIGN) {
  1628. unsigned long ralign = cache_line_size();
  1629. while (size <= ralign / 2)
  1630. ralign /= 2;
  1631. align = max(align, ralign);
  1632. }
  1633. if (align < ARCH_SLAB_MINALIGN)
  1634. align = ARCH_SLAB_MINALIGN;
  1635. return ALIGN(align, sizeof(void *));
  1636. }
  1637. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1638. struct kmem_cache_cpu *c)
  1639. {
  1640. c->page = NULL;
  1641. c->freelist = NULL;
  1642. c->node = 0;
  1643. c->offset = s->offset / sizeof(void *);
  1644. c->objsize = s->objsize;
  1645. #ifdef CONFIG_SLUB_STATS
  1646. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1647. #endif
  1648. }
  1649. static void
  1650. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1651. {
  1652. n->nr_partial = 0;
  1653. /*
  1654. * The larger the object size is, the more pages we want on the partial
  1655. * list to avoid pounding the page allocator excessively.
  1656. */
  1657. n->min_partial = ilog2(s->size);
  1658. if (n->min_partial < MIN_PARTIAL)
  1659. n->min_partial = MIN_PARTIAL;
  1660. else if (n->min_partial > MAX_PARTIAL)
  1661. n->min_partial = MAX_PARTIAL;
  1662. spin_lock_init(&n->list_lock);
  1663. INIT_LIST_HEAD(&n->partial);
  1664. #ifdef CONFIG_SLUB_DEBUG
  1665. atomic_long_set(&n->nr_slabs, 0);
  1666. atomic_long_set(&n->total_objects, 0);
  1667. INIT_LIST_HEAD(&n->full);
  1668. #endif
  1669. }
  1670. #ifdef CONFIG_SMP
  1671. /*
  1672. * Per cpu array for per cpu structures.
  1673. *
  1674. * The per cpu array places all kmem_cache_cpu structures from one processor
  1675. * close together meaning that it becomes possible that multiple per cpu
  1676. * structures are contained in one cacheline. This may be particularly
  1677. * beneficial for the kmalloc caches.
  1678. *
  1679. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1680. * likely able to get per cpu structures for all caches from the array defined
  1681. * here. We must be able to cover all kmalloc caches during bootstrap.
  1682. *
  1683. * If the per cpu array is exhausted then fall back to kmalloc
  1684. * of individual cachelines. No sharing is possible then.
  1685. */
  1686. #define NR_KMEM_CACHE_CPU 100
  1687. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1688. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1689. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1690. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1691. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1692. int cpu, gfp_t flags)
  1693. {
  1694. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1695. if (c)
  1696. per_cpu(kmem_cache_cpu_free, cpu) =
  1697. (void *)c->freelist;
  1698. else {
  1699. /* Table overflow: So allocate ourselves */
  1700. c = kmalloc_node(
  1701. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1702. flags, cpu_to_node(cpu));
  1703. if (!c)
  1704. return NULL;
  1705. }
  1706. init_kmem_cache_cpu(s, c);
  1707. return c;
  1708. }
  1709. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1710. {
  1711. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1712. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1713. kfree(c);
  1714. return;
  1715. }
  1716. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1717. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1718. }
  1719. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1720. {
  1721. int cpu;
  1722. for_each_online_cpu(cpu) {
  1723. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1724. if (c) {
  1725. s->cpu_slab[cpu] = NULL;
  1726. free_kmem_cache_cpu(c, cpu);
  1727. }
  1728. }
  1729. }
  1730. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1731. {
  1732. int cpu;
  1733. for_each_online_cpu(cpu) {
  1734. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1735. if (c)
  1736. continue;
  1737. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1738. if (!c) {
  1739. free_kmem_cache_cpus(s);
  1740. return 0;
  1741. }
  1742. s->cpu_slab[cpu] = c;
  1743. }
  1744. return 1;
  1745. }
  1746. /*
  1747. * Initialize the per cpu array.
  1748. */
  1749. static void init_alloc_cpu_cpu(int cpu)
  1750. {
  1751. int i;
  1752. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1753. return;
  1754. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1755. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1756. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1757. }
  1758. static void __init init_alloc_cpu(void)
  1759. {
  1760. int cpu;
  1761. for_each_online_cpu(cpu)
  1762. init_alloc_cpu_cpu(cpu);
  1763. }
  1764. #else
  1765. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1766. static inline void init_alloc_cpu(void) {}
  1767. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1768. {
  1769. init_kmem_cache_cpu(s, &s->cpu_slab);
  1770. return 1;
  1771. }
  1772. #endif
  1773. #ifdef CONFIG_NUMA
  1774. /*
  1775. * No kmalloc_node yet so do it by hand. We know that this is the first
  1776. * slab on the node for this slabcache. There are no concurrent accesses
  1777. * possible.
  1778. *
  1779. * Note that this function only works on the kmalloc_node_cache
  1780. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1781. * memory on a fresh node that has no slab structures yet.
  1782. */
  1783. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1784. {
  1785. struct page *page;
  1786. struct kmem_cache_node *n;
  1787. unsigned long flags;
  1788. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1789. page = new_slab(kmalloc_caches, gfpflags, node);
  1790. BUG_ON(!page);
  1791. if (page_to_nid(page) != node) {
  1792. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1793. "node %d\n", node);
  1794. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1795. "in order to be able to continue\n");
  1796. }
  1797. n = page->freelist;
  1798. BUG_ON(!n);
  1799. page->freelist = get_freepointer(kmalloc_caches, n);
  1800. page->inuse++;
  1801. kmalloc_caches->node[node] = n;
  1802. #ifdef CONFIG_SLUB_DEBUG
  1803. init_object(kmalloc_caches, n, 1);
  1804. init_tracking(kmalloc_caches, n);
  1805. #endif
  1806. init_kmem_cache_node(n, kmalloc_caches);
  1807. inc_slabs_node(kmalloc_caches, node, page->objects);
  1808. /*
  1809. * lockdep requires consistent irq usage for each lock
  1810. * so even though there cannot be a race this early in
  1811. * the boot sequence, we still disable irqs.
  1812. */
  1813. local_irq_save(flags);
  1814. add_partial(n, page, 0);
  1815. local_irq_restore(flags);
  1816. }
  1817. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1818. {
  1819. int node;
  1820. for_each_node_state(node, N_NORMAL_MEMORY) {
  1821. struct kmem_cache_node *n = s->node[node];
  1822. if (n && n != &s->local_node)
  1823. kmem_cache_free(kmalloc_caches, n);
  1824. s->node[node] = NULL;
  1825. }
  1826. }
  1827. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1828. {
  1829. int node;
  1830. int local_node;
  1831. if (slab_state >= UP)
  1832. local_node = page_to_nid(virt_to_page(s));
  1833. else
  1834. local_node = 0;
  1835. for_each_node_state(node, N_NORMAL_MEMORY) {
  1836. struct kmem_cache_node *n;
  1837. if (local_node == node)
  1838. n = &s->local_node;
  1839. else {
  1840. if (slab_state == DOWN) {
  1841. early_kmem_cache_node_alloc(gfpflags, node);
  1842. continue;
  1843. }
  1844. n = kmem_cache_alloc_node(kmalloc_caches,
  1845. gfpflags, node);
  1846. if (!n) {
  1847. free_kmem_cache_nodes(s);
  1848. return 0;
  1849. }
  1850. }
  1851. s->node[node] = n;
  1852. init_kmem_cache_node(n, s);
  1853. }
  1854. return 1;
  1855. }
  1856. #else
  1857. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1858. {
  1859. }
  1860. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1861. {
  1862. init_kmem_cache_node(&s->local_node, s);
  1863. return 1;
  1864. }
  1865. #endif
  1866. /*
  1867. * calculate_sizes() determines the order and the distribution of data within
  1868. * a slab object.
  1869. */
  1870. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1871. {
  1872. unsigned long flags = s->flags;
  1873. unsigned long size = s->objsize;
  1874. unsigned long align = s->align;
  1875. int order;
  1876. /*
  1877. * Round up object size to the next word boundary. We can only
  1878. * place the free pointer at word boundaries and this determines
  1879. * the possible location of the free pointer.
  1880. */
  1881. size = ALIGN(size, sizeof(void *));
  1882. #ifdef CONFIG_SLUB_DEBUG
  1883. /*
  1884. * Determine if we can poison the object itself. If the user of
  1885. * the slab may touch the object after free or before allocation
  1886. * then we should never poison the object itself.
  1887. */
  1888. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1889. !s->ctor)
  1890. s->flags |= __OBJECT_POISON;
  1891. else
  1892. s->flags &= ~__OBJECT_POISON;
  1893. /*
  1894. * If we are Redzoning then check if there is some space between the
  1895. * end of the object and the free pointer. If not then add an
  1896. * additional word to have some bytes to store Redzone information.
  1897. */
  1898. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1899. size += sizeof(void *);
  1900. #endif
  1901. /*
  1902. * With that we have determined the number of bytes in actual use
  1903. * by the object. This is the potential offset to the free pointer.
  1904. */
  1905. s->inuse = size;
  1906. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1907. s->ctor)) {
  1908. /*
  1909. * Relocate free pointer after the object if it is not
  1910. * permitted to overwrite the first word of the object on
  1911. * kmem_cache_free.
  1912. *
  1913. * This is the case if we do RCU, have a constructor or
  1914. * destructor or are poisoning the objects.
  1915. */
  1916. s->offset = size;
  1917. size += sizeof(void *);
  1918. }
  1919. #ifdef CONFIG_SLUB_DEBUG
  1920. if (flags & SLAB_STORE_USER)
  1921. /*
  1922. * Need to store information about allocs and frees after
  1923. * the object.
  1924. */
  1925. size += 2 * sizeof(struct track);
  1926. if (flags & SLAB_RED_ZONE)
  1927. /*
  1928. * Add some empty padding so that we can catch
  1929. * overwrites from earlier objects rather than let
  1930. * tracking information or the free pointer be
  1931. * corrupted if a user writes before the start
  1932. * of the object.
  1933. */
  1934. size += sizeof(void *);
  1935. #endif
  1936. /*
  1937. * Determine the alignment based on various parameters that the
  1938. * user specified and the dynamic determination of cache line size
  1939. * on bootup.
  1940. */
  1941. align = calculate_alignment(flags, align, s->objsize);
  1942. /*
  1943. * SLUB stores one object immediately after another beginning from
  1944. * offset 0. In order to align the objects we have to simply size
  1945. * each object to conform to the alignment.
  1946. */
  1947. size = ALIGN(size, align);
  1948. s->size = size;
  1949. if (forced_order >= 0)
  1950. order = forced_order;
  1951. else
  1952. order = calculate_order(size);
  1953. if (order < 0)
  1954. return 0;
  1955. s->allocflags = 0;
  1956. if (order)
  1957. s->allocflags |= __GFP_COMP;
  1958. if (s->flags & SLAB_CACHE_DMA)
  1959. s->allocflags |= SLUB_DMA;
  1960. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1961. s->allocflags |= __GFP_RECLAIMABLE;
  1962. /*
  1963. * Determine the number of objects per slab
  1964. */
  1965. s->oo = oo_make(order, size);
  1966. s->min = oo_make(get_order(size), size);
  1967. if (oo_objects(s->oo) > oo_objects(s->max))
  1968. s->max = s->oo;
  1969. return !!oo_objects(s->oo);
  1970. }
  1971. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1972. const char *name, size_t size,
  1973. size_t align, unsigned long flags,
  1974. void (*ctor)(void *))
  1975. {
  1976. memset(s, 0, kmem_size);
  1977. s->name = name;
  1978. s->ctor = ctor;
  1979. s->objsize = size;
  1980. s->align = align;
  1981. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1982. if (!calculate_sizes(s, -1))
  1983. goto error;
  1984. s->refcount = 1;
  1985. #ifdef CONFIG_NUMA
  1986. s->remote_node_defrag_ratio = 1000;
  1987. #endif
  1988. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1989. goto error;
  1990. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1991. return 1;
  1992. free_kmem_cache_nodes(s);
  1993. error:
  1994. if (flags & SLAB_PANIC)
  1995. panic("Cannot create slab %s size=%lu realsize=%u "
  1996. "order=%u offset=%u flags=%lx\n",
  1997. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  1998. s->offset, flags);
  1999. return 0;
  2000. }
  2001. /*
  2002. * Check if a given pointer is valid
  2003. */
  2004. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2005. {
  2006. struct page *page;
  2007. page = get_object_page(object);
  2008. if (!page || s != page->slab)
  2009. /* No slab or wrong slab */
  2010. return 0;
  2011. if (!check_valid_pointer(s, page, object))
  2012. return 0;
  2013. /*
  2014. * We could also check if the object is on the slabs freelist.
  2015. * But this would be too expensive and it seems that the main
  2016. * purpose of kmem_ptr_valid() is to check if the object belongs
  2017. * to a certain slab.
  2018. */
  2019. return 1;
  2020. }
  2021. EXPORT_SYMBOL(kmem_ptr_validate);
  2022. /*
  2023. * Determine the size of a slab object
  2024. */
  2025. unsigned int kmem_cache_size(struct kmem_cache *s)
  2026. {
  2027. return s->objsize;
  2028. }
  2029. EXPORT_SYMBOL(kmem_cache_size);
  2030. const char *kmem_cache_name(struct kmem_cache *s)
  2031. {
  2032. return s->name;
  2033. }
  2034. EXPORT_SYMBOL(kmem_cache_name);
  2035. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2036. const char *text)
  2037. {
  2038. #ifdef CONFIG_SLUB_DEBUG
  2039. void *addr = page_address(page);
  2040. void *p;
  2041. DECLARE_BITMAP(map, page->objects);
  2042. bitmap_zero(map, page->objects);
  2043. slab_err(s, page, "%s", text);
  2044. slab_lock(page);
  2045. for_each_free_object(p, s, page->freelist)
  2046. set_bit(slab_index(p, s, addr), map);
  2047. for_each_object(p, s, addr, page->objects) {
  2048. if (!test_bit(slab_index(p, s, addr), map)) {
  2049. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2050. p, p - addr);
  2051. print_tracking(s, p);
  2052. }
  2053. }
  2054. slab_unlock(page);
  2055. #endif
  2056. }
  2057. /*
  2058. * Attempt to free all partial slabs on a node.
  2059. */
  2060. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2061. {
  2062. unsigned long flags;
  2063. struct page *page, *h;
  2064. spin_lock_irqsave(&n->list_lock, flags);
  2065. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2066. if (!page->inuse) {
  2067. list_del(&page->lru);
  2068. discard_slab(s, page);
  2069. n->nr_partial--;
  2070. } else {
  2071. list_slab_objects(s, page,
  2072. "Objects remaining on kmem_cache_close()");
  2073. }
  2074. }
  2075. spin_unlock_irqrestore(&n->list_lock, flags);
  2076. }
  2077. /*
  2078. * Release all resources used by a slab cache.
  2079. */
  2080. static inline int kmem_cache_close(struct kmem_cache *s)
  2081. {
  2082. int node;
  2083. flush_all(s);
  2084. /* Attempt to free all objects */
  2085. free_kmem_cache_cpus(s);
  2086. for_each_node_state(node, N_NORMAL_MEMORY) {
  2087. struct kmem_cache_node *n = get_node(s, node);
  2088. free_partial(s, n);
  2089. if (n->nr_partial || slabs_node(s, node))
  2090. return 1;
  2091. }
  2092. free_kmem_cache_nodes(s);
  2093. return 0;
  2094. }
  2095. /*
  2096. * Close a cache and release the kmem_cache structure
  2097. * (must be used for caches created using kmem_cache_create)
  2098. */
  2099. void kmem_cache_destroy(struct kmem_cache *s)
  2100. {
  2101. down_write(&slub_lock);
  2102. s->refcount--;
  2103. if (!s->refcount) {
  2104. list_del(&s->list);
  2105. up_write(&slub_lock);
  2106. if (kmem_cache_close(s)) {
  2107. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2108. "still has objects.\n", s->name, __func__);
  2109. dump_stack();
  2110. }
  2111. sysfs_slab_remove(s);
  2112. } else
  2113. up_write(&slub_lock);
  2114. }
  2115. EXPORT_SYMBOL(kmem_cache_destroy);
  2116. /********************************************************************
  2117. * Kmalloc subsystem
  2118. *******************************************************************/
  2119. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2120. EXPORT_SYMBOL(kmalloc_caches);
  2121. static int __init setup_slub_min_order(char *str)
  2122. {
  2123. get_option(&str, &slub_min_order);
  2124. return 1;
  2125. }
  2126. __setup("slub_min_order=", setup_slub_min_order);
  2127. static int __init setup_slub_max_order(char *str)
  2128. {
  2129. get_option(&str, &slub_max_order);
  2130. return 1;
  2131. }
  2132. __setup("slub_max_order=", setup_slub_max_order);
  2133. static int __init setup_slub_min_objects(char *str)
  2134. {
  2135. get_option(&str, &slub_min_objects);
  2136. return 1;
  2137. }
  2138. __setup("slub_min_objects=", setup_slub_min_objects);
  2139. static int __init setup_slub_nomerge(char *str)
  2140. {
  2141. slub_nomerge = 1;
  2142. return 1;
  2143. }
  2144. __setup("slub_nomerge", setup_slub_nomerge);
  2145. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2146. const char *name, int size, gfp_t gfp_flags)
  2147. {
  2148. unsigned int flags = 0;
  2149. if (gfp_flags & SLUB_DMA)
  2150. flags = SLAB_CACHE_DMA;
  2151. down_write(&slub_lock);
  2152. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2153. flags, NULL))
  2154. goto panic;
  2155. list_add(&s->list, &slab_caches);
  2156. up_write(&slub_lock);
  2157. if (sysfs_slab_add(s))
  2158. goto panic;
  2159. return s;
  2160. panic:
  2161. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2162. }
  2163. #ifdef CONFIG_ZONE_DMA
  2164. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2165. static void sysfs_add_func(struct work_struct *w)
  2166. {
  2167. struct kmem_cache *s;
  2168. down_write(&slub_lock);
  2169. list_for_each_entry(s, &slab_caches, list) {
  2170. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2171. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2172. sysfs_slab_add(s);
  2173. }
  2174. }
  2175. up_write(&slub_lock);
  2176. }
  2177. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2178. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2179. {
  2180. struct kmem_cache *s;
  2181. char *text;
  2182. size_t realsize;
  2183. s = kmalloc_caches_dma[index];
  2184. if (s)
  2185. return s;
  2186. /* Dynamically create dma cache */
  2187. if (flags & __GFP_WAIT)
  2188. down_write(&slub_lock);
  2189. else {
  2190. if (!down_write_trylock(&slub_lock))
  2191. goto out;
  2192. }
  2193. if (kmalloc_caches_dma[index])
  2194. goto unlock_out;
  2195. realsize = kmalloc_caches[index].objsize;
  2196. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2197. (unsigned int)realsize);
  2198. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2199. if (!s || !text || !kmem_cache_open(s, flags, text,
  2200. realsize, ARCH_KMALLOC_MINALIGN,
  2201. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2202. kfree(s);
  2203. kfree(text);
  2204. goto unlock_out;
  2205. }
  2206. list_add(&s->list, &slab_caches);
  2207. kmalloc_caches_dma[index] = s;
  2208. schedule_work(&sysfs_add_work);
  2209. unlock_out:
  2210. up_write(&slub_lock);
  2211. out:
  2212. return kmalloc_caches_dma[index];
  2213. }
  2214. #endif
  2215. /*
  2216. * Conversion table for small slabs sizes / 8 to the index in the
  2217. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2218. * of two cache sizes there. The size of larger slabs can be determined using
  2219. * fls.
  2220. */
  2221. static s8 size_index[24] = {
  2222. 3, /* 8 */
  2223. 4, /* 16 */
  2224. 5, /* 24 */
  2225. 5, /* 32 */
  2226. 6, /* 40 */
  2227. 6, /* 48 */
  2228. 6, /* 56 */
  2229. 6, /* 64 */
  2230. 1, /* 72 */
  2231. 1, /* 80 */
  2232. 1, /* 88 */
  2233. 1, /* 96 */
  2234. 7, /* 104 */
  2235. 7, /* 112 */
  2236. 7, /* 120 */
  2237. 7, /* 128 */
  2238. 2, /* 136 */
  2239. 2, /* 144 */
  2240. 2, /* 152 */
  2241. 2, /* 160 */
  2242. 2, /* 168 */
  2243. 2, /* 176 */
  2244. 2, /* 184 */
  2245. 2 /* 192 */
  2246. };
  2247. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2248. {
  2249. int index;
  2250. if (size <= 192) {
  2251. if (!size)
  2252. return ZERO_SIZE_PTR;
  2253. index = size_index[(size - 1) / 8];
  2254. } else
  2255. index = fls(size - 1);
  2256. #ifdef CONFIG_ZONE_DMA
  2257. if (unlikely((flags & SLUB_DMA)))
  2258. return dma_kmalloc_cache(index, flags);
  2259. #endif
  2260. return &kmalloc_caches[index];
  2261. }
  2262. void *__kmalloc(size_t size, gfp_t flags)
  2263. {
  2264. struct kmem_cache *s;
  2265. if (unlikely(size > PAGE_SIZE))
  2266. return kmalloc_large(size, flags);
  2267. s = get_slab(size, flags);
  2268. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2269. return s;
  2270. return slab_alloc(s, flags, -1, _RET_IP_);
  2271. }
  2272. EXPORT_SYMBOL(__kmalloc);
  2273. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2274. {
  2275. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2276. get_order(size));
  2277. if (page)
  2278. return page_address(page);
  2279. else
  2280. return NULL;
  2281. }
  2282. #ifdef CONFIG_NUMA
  2283. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2284. {
  2285. struct kmem_cache *s;
  2286. if (unlikely(size > PAGE_SIZE))
  2287. return kmalloc_large_node(size, flags, node);
  2288. s = get_slab(size, flags);
  2289. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2290. return s;
  2291. return slab_alloc(s, flags, node, _RET_IP_);
  2292. }
  2293. EXPORT_SYMBOL(__kmalloc_node);
  2294. #endif
  2295. size_t ksize(const void *object)
  2296. {
  2297. struct page *page;
  2298. struct kmem_cache *s;
  2299. if (unlikely(object == ZERO_SIZE_PTR))
  2300. return 0;
  2301. page = virt_to_head_page(object);
  2302. if (unlikely(!PageSlab(page))) {
  2303. WARN_ON(!PageCompound(page));
  2304. return PAGE_SIZE << compound_order(page);
  2305. }
  2306. s = page->slab;
  2307. #ifdef CONFIG_SLUB_DEBUG
  2308. /*
  2309. * Debugging requires use of the padding between object
  2310. * and whatever may come after it.
  2311. */
  2312. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2313. return s->objsize;
  2314. #endif
  2315. /*
  2316. * If we have the need to store the freelist pointer
  2317. * back there or track user information then we can
  2318. * only use the space before that information.
  2319. */
  2320. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2321. return s->inuse;
  2322. /*
  2323. * Else we can use all the padding etc for the allocation
  2324. */
  2325. return s->size;
  2326. }
  2327. EXPORT_SYMBOL(ksize);
  2328. void kfree(const void *x)
  2329. {
  2330. struct page *page;
  2331. void *object = (void *)x;
  2332. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2333. return;
  2334. page = virt_to_head_page(x);
  2335. if (unlikely(!PageSlab(page))) {
  2336. BUG_ON(!PageCompound(page));
  2337. put_page(page);
  2338. return;
  2339. }
  2340. slab_free(page->slab, page, object, _RET_IP_);
  2341. }
  2342. EXPORT_SYMBOL(kfree);
  2343. /*
  2344. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2345. * the remaining slabs by the number of items in use. The slabs with the
  2346. * most items in use come first. New allocations will then fill those up
  2347. * and thus they can be removed from the partial lists.
  2348. *
  2349. * The slabs with the least items are placed last. This results in them
  2350. * being allocated from last increasing the chance that the last objects
  2351. * are freed in them.
  2352. */
  2353. int kmem_cache_shrink(struct kmem_cache *s)
  2354. {
  2355. int node;
  2356. int i;
  2357. struct kmem_cache_node *n;
  2358. struct page *page;
  2359. struct page *t;
  2360. int objects = oo_objects(s->max);
  2361. struct list_head *slabs_by_inuse =
  2362. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2363. unsigned long flags;
  2364. if (!slabs_by_inuse)
  2365. return -ENOMEM;
  2366. flush_all(s);
  2367. for_each_node_state(node, N_NORMAL_MEMORY) {
  2368. n = get_node(s, node);
  2369. if (!n->nr_partial)
  2370. continue;
  2371. for (i = 0; i < objects; i++)
  2372. INIT_LIST_HEAD(slabs_by_inuse + i);
  2373. spin_lock_irqsave(&n->list_lock, flags);
  2374. /*
  2375. * Build lists indexed by the items in use in each slab.
  2376. *
  2377. * Note that concurrent frees may occur while we hold the
  2378. * list_lock. page->inuse here is the upper limit.
  2379. */
  2380. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2381. if (!page->inuse && slab_trylock(page)) {
  2382. /*
  2383. * Must hold slab lock here because slab_free
  2384. * may have freed the last object and be
  2385. * waiting to release the slab.
  2386. */
  2387. list_del(&page->lru);
  2388. n->nr_partial--;
  2389. slab_unlock(page);
  2390. discard_slab(s, page);
  2391. } else {
  2392. list_move(&page->lru,
  2393. slabs_by_inuse + page->inuse);
  2394. }
  2395. }
  2396. /*
  2397. * Rebuild the partial list with the slabs filled up most
  2398. * first and the least used slabs at the end.
  2399. */
  2400. for (i = objects - 1; i >= 0; i--)
  2401. list_splice(slabs_by_inuse + i, n->partial.prev);
  2402. spin_unlock_irqrestore(&n->list_lock, flags);
  2403. }
  2404. kfree(slabs_by_inuse);
  2405. return 0;
  2406. }
  2407. EXPORT_SYMBOL(kmem_cache_shrink);
  2408. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2409. static int slab_mem_going_offline_callback(void *arg)
  2410. {
  2411. struct kmem_cache *s;
  2412. down_read(&slub_lock);
  2413. list_for_each_entry(s, &slab_caches, list)
  2414. kmem_cache_shrink(s);
  2415. up_read(&slub_lock);
  2416. return 0;
  2417. }
  2418. static void slab_mem_offline_callback(void *arg)
  2419. {
  2420. struct kmem_cache_node *n;
  2421. struct kmem_cache *s;
  2422. struct memory_notify *marg = arg;
  2423. int offline_node;
  2424. offline_node = marg->status_change_nid;
  2425. /*
  2426. * If the node still has available memory. we need kmem_cache_node
  2427. * for it yet.
  2428. */
  2429. if (offline_node < 0)
  2430. return;
  2431. down_read(&slub_lock);
  2432. list_for_each_entry(s, &slab_caches, list) {
  2433. n = get_node(s, offline_node);
  2434. if (n) {
  2435. /*
  2436. * if n->nr_slabs > 0, slabs still exist on the node
  2437. * that is going down. We were unable to free them,
  2438. * and offline_pages() function shoudn't call this
  2439. * callback. So, we must fail.
  2440. */
  2441. BUG_ON(slabs_node(s, offline_node));
  2442. s->node[offline_node] = NULL;
  2443. kmem_cache_free(kmalloc_caches, n);
  2444. }
  2445. }
  2446. up_read(&slub_lock);
  2447. }
  2448. static int slab_mem_going_online_callback(void *arg)
  2449. {
  2450. struct kmem_cache_node *n;
  2451. struct kmem_cache *s;
  2452. struct memory_notify *marg = arg;
  2453. int nid = marg->status_change_nid;
  2454. int ret = 0;
  2455. /*
  2456. * If the node's memory is already available, then kmem_cache_node is
  2457. * already created. Nothing to do.
  2458. */
  2459. if (nid < 0)
  2460. return 0;
  2461. /*
  2462. * We are bringing a node online. No memory is available yet. We must
  2463. * allocate a kmem_cache_node structure in order to bring the node
  2464. * online.
  2465. */
  2466. down_read(&slub_lock);
  2467. list_for_each_entry(s, &slab_caches, list) {
  2468. /*
  2469. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2470. * since memory is not yet available from the node that
  2471. * is brought up.
  2472. */
  2473. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2474. if (!n) {
  2475. ret = -ENOMEM;
  2476. goto out;
  2477. }
  2478. init_kmem_cache_node(n, s);
  2479. s->node[nid] = n;
  2480. }
  2481. out:
  2482. up_read(&slub_lock);
  2483. return ret;
  2484. }
  2485. static int slab_memory_callback(struct notifier_block *self,
  2486. unsigned long action, void *arg)
  2487. {
  2488. int ret = 0;
  2489. switch (action) {
  2490. case MEM_GOING_ONLINE:
  2491. ret = slab_mem_going_online_callback(arg);
  2492. break;
  2493. case MEM_GOING_OFFLINE:
  2494. ret = slab_mem_going_offline_callback(arg);
  2495. break;
  2496. case MEM_OFFLINE:
  2497. case MEM_CANCEL_ONLINE:
  2498. slab_mem_offline_callback(arg);
  2499. break;
  2500. case MEM_ONLINE:
  2501. case MEM_CANCEL_OFFLINE:
  2502. break;
  2503. }
  2504. if (ret)
  2505. ret = notifier_from_errno(ret);
  2506. else
  2507. ret = NOTIFY_OK;
  2508. return ret;
  2509. }
  2510. #endif /* CONFIG_MEMORY_HOTPLUG */
  2511. /********************************************************************
  2512. * Basic setup of slabs
  2513. *******************************************************************/
  2514. void __init kmem_cache_init(void)
  2515. {
  2516. int i;
  2517. int caches = 0;
  2518. init_alloc_cpu();
  2519. #ifdef CONFIG_NUMA
  2520. /*
  2521. * Must first have the slab cache available for the allocations of the
  2522. * struct kmem_cache_node's. There is special bootstrap code in
  2523. * kmem_cache_open for slab_state == DOWN.
  2524. */
  2525. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2526. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2527. kmalloc_caches[0].refcount = -1;
  2528. caches++;
  2529. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2530. #endif
  2531. /* Able to allocate the per node structures */
  2532. slab_state = PARTIAL;
  2533. /* Caches that are not of the two-to-the-power-of size */
  2534. if (KMALLOC_MIN_SIZE <= 64) {
  2535. create_kmalloc_cache(&kmalloc_caches[1],
  2536. "kmalloc-96", 96, GFP_KERNEL);
  2537. caches++;
  2538. create_kmalloc_cache(&kmalloc_caches[2],
  2539. "kmalloc-192", 192, GFP_KERNEL);
  2540. caches++;
  2541. }
  2542. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2543. create_kmalloc_cache(&kmalloc_caches[i],
  2544. "kmalloc", 1 << i, GFP_KERNEL);
  2545. caches++;
  2546. }
  2547. /*
  2548. * Patch up the size_index table if we have strange large alignment
  2549. * requirements for the kmalloc array. This is only the case for
  2550. * MIPS it seems. The standard arches will not generate any code here.
  2551. *
  2552. * Largest permitted alignment is 256 bytes due to the way we
  2553. * handle the index determination for the smaller caches.
  2554. *
  2555. * Make sure that nothing crazy happens if someone starts tinkering
  2556. * around with ARCH_KMALLOC_MINALIGN
  2557. */
  2558. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2559. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2560. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2561. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2562. if (KMALLOC_MIN_SIZE == 128) {
  2563. /*
  2564. * The 192 byte sized cache is not used if the alignment
  2565. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2566. * instead.
  2567. */
  2568. for (i = 128 + 8; i <= 192; i += 8)
  2569. size_index[(i - 1) / 8] = 8;
  2570. }
  2571. slab_state = UP;
  2572. /* Provide the correct kmalloc names now that the caches are up */
  2573. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2574. kmalloc_caches[i]. name =
  2575. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2576. #ifdef CONFIG_SMP
  2577. register_cpu_notifier(&slab_notifier);
  2578. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2579. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2580. #else
  2581. kmem_size = sizeof(struct kmem_cache);
  2582. #endif
  2583. printk(KERN_INFO
  2584. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2585. " CPUs=%d, Nodes=%d\n",
  2586. caches, cache_line_size(),
  2587. slub_min_order, slub_max_order, slub_min_objects,
  2588. nr_cpu_ids, nr_node_ids);
  2589. }
  2590. /*
  2591. * Find a mergeable slab cache
  2592. */
  2593. static int slab_unmergeable(struct kmem_cache *s)
  2594. {
  2595. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2596. return 1;
  2597. if (s->ctor)
  2598. return 1;
  2599. /*
  2600. * We may have set a slab to be unmergeable during bootstrap.
  2601. */
  2602. if (s->refcount < 0)
  2603. return 1;
  2604. return 0;
  2605. }
  2606. static struct kmem_cache *find_mergeable(size_t size,
  2607. size_t align, unsigned long flags, const char *name,
  2608. void (*ctor)(void *))
  2609. {
  2610. struct kmem_cache *s;
  2611. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2612. return NULL;
  2613. if (ctor)
  2614. return NULL;
  2615. size = ALIGN(size, sizeof(void *));
  2616. align = calculate_alignment(flags, align, size);
  2617. size = ALIGN(size, align);
  2618. flags = kmem_cache_flags(size, flags, name, NULL);
  2619. list_for_each_entry(s, &slab_caches, list) {
  2620. if (slab_unmergeable(s))
  2621. continue;
  2622. if (size > s->size)
  2623. continue;
  2624. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2625. continue;
  2626. /*
  2627. * Check if alignment is compatible.
  2628. * Courtesy of Adrian Drzewiecki
  2629. */
  2630. if ((s->size & ~(align - 1)) != s->size)
  2631. continue;
  2632. if (s->size - size >= sizeof(void *))
  2633. continue;
  2634. return s;
  2635. }
  2636. return NULL;
  2637. }
  2638. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2639. size_t align, unsigned long flags, void (*ctor)(void *))
  2640. {
  2641. struct kmem_cache *s;
  2642. down_write(&slub_lock);
  2643. s = find_mergeable(size, align, flags, name, ctor);
  2644. if (s) {
  2645. int cpu;
  2646. s->refcount++;
  2647. /*
  2648. * Adjust the object sizes so that we clear
  2649. * the complete object on kzalloc.
  2650. */
  2651. s->objsize = max(s->objsize, (int)size);
  2652. /*
  2653. * And then we need to update the object size in the
  2654. * per cpu structures
  2655. */
  2656. for_each_online_cpu(cpu)
  2657. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2658. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2659. up_write(&slub_lock);
  2660. if (sysfs_slab_alias(s, name)) {
  2661. down_write(&slub_lock);
  2662. s->refcount--;
  2663. up_write(&slub_lock);
  2664. goto err;
  2665. }
  2666. return s;
  2667. }
  2668. s = kmalloc(kmem_size, GFP_KERNEL);
  2669. if (s) {
  2670. if (kmem_cache_open(s, GFP_KERNEL, name,
  2671. size, align, flags, ctor)) {
  2672. list_add(&s->list, &slab_caches);
  2673. up_write(&slub_lock);
  2674. if (sysfs_slab_add(s)) {
  2675. down_write(&slub_lock);
  2676. list_del(&s->list);
  2677. up_write(&slub_lock);
  2678. kfree(s);
  2679. goto err;
  2680. }
  2681. return s;
  2682. }
  2683. kfree(s);
  2684. }
  2685. up_write(&slub_lock);
  2686. err:
  2687. if (flags & SLAB_PANIC)
  2688. panic("Cannot create slabcache %s\n", name);
  2689. else
  2690. s = NULL;
  2691. return s;
  2692. }
  2693. EXPORT_SYMBOL(kmem_cache_create);
  2694. #ifdef CONFIG_SMP
  2695. /*
  2696. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2697. * necessary.
  2698. */
  2699. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2700. unsigned long action, void *hcpu)
  2701. {
  2702. long cpu = (long)hcpu;
  2703. struct kmem_cache *s;
  2704. unsigned long flags;
  2705. switch (action) {
  2706. case CPU_UP_PREPARE:
  2707. case CPU_UP_PREPARE_FROZEN:
  2708. init_alloc_cpu_cpu(cpu);
  2709. down_read(&slub_lock);
  2710. list_for_each_entry(s, &slab_caches, list)
  2711. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2712. GFP_KERNEL);
  2713. up_read(&slub_lock);
  2714. break;
  2715. case CPU_UP_CANCELED:
  2716. case CPU_UP_CANCELED_FROZEN:
  2717. case CPU_DEAD:
  2718. case CPU_DEAD_FROZEN:
  2719. down_read(&slub_lock);
  2720. list_for_each_entry(s, &slab_caches, list) {
  2721. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2722. local_irq_save(flags);
  2723. __flush_cpu_slab(s, cpu);
  2724. local_irq_restore(flags);
  2725. free_kmem_cache_cpu(c, cpu);
  2726. s->cpu_slab[cpu] = NULL;
  2727. }
  2728. up_read(&slub_lock);
  2729. break;
  2730. default:
  2731. break;
  2732. }
  2733. return NOTIFY_OK;
  2734. }
  2735. static struct notifier_block __cpuinitdata slab_notifier = {
  2736. .notifier_call = slab_cpuup_callback
  2737. };
  2738. #endif
  2739. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2740. {
  2741. struct kmem_cache *s;
  2742. if (unlikely(size > PAGE_SIZE))
  2743. return kmalloc_large(size, gfpflags);
  2744. s = get_slab(size, gfpflags);
  2745. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2746. return s;
  2747. return slab_alloc(s, gfpflags, -1, caller);
  2748. }
  2749. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2750. int node, unsigned long caller)
  2751. {
  2752. struct kmem_cache *s;
  2753. if (unlikely(size > PAGE_SIZE))
  2754. return kmalloc_large_node(size, gfpflags, node);
  2755. s = get_slab(size, gfpflags);
  2756. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2757. return s;
  2758. return slab_alloc(s, gfpflags, node, caller);
  2759. }
  2760. #ifdef CONFIG_SLUB_DEBUG
  2761. static unsigned long count_partial(struct kmem_cache_node *n,
  2762. int (*get_count)(struct page *))
  2763. {
  2764. unsigned long flags;
  2765. unsigned long x = 0;
  2766. struct page *page;
  2767. spin_lock_irqsave(&n->list_lock, flags);
  2768. list_for_each_entry(page, &n->partial, lru)
  2769. x += get_count(page);
  2770. spin_unlock_irqrestore(&n->list_lock, flags);
  2771. return x;
  2772. }
  2773. static int count_inuse(struct page *page)
  2774. {
  2775. return page->inuse;
  2776. }
  2777. static int count_total(struct page *page)
  2778. {
  2779. return page->objects;
  2780. }
  2781. static int count_free(struct page *page)
  2782. {
  2783. return page->objects - page->inuse;
  2784. }
  2785. static int validate_slab(struct kmem_cache *s, struct page *page,
  2786. unsigned long *map)
  2787. {
  2788. void *p;
  2789. void *addr = page_address(page);
  2790. if (!check_slab(s, page) ||
  2791. !on_freelist(s, page, NULL))
  2792. return 0;
  2793. /* Now we know that a valid freelist exists */
  2794. bitmap_zero(map, page->objects);
  2795. for_each_free_object(p, s, page->freelist) {
  2796. set_bit(slab_index(p, s, addr), map);
  2797. if (!check_object(s, page, p, 0))
  2798. return 0;
  2799. }
  2800. for_each_object(p, s, addr, page->objects)
  2801. if (!test_bit(slab_index(p, s, addr), map))
  2802. if (!check_object(s, page, p, 1))
  2803. return 0;
  2804. return 1;
  2805. }
  2806. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2807. unsigned long *map)
  2808. {
  2809. if (slab_trylock(page)) {
  2810. validate_slab(s, page, map);
  2811. slab_unlock(page);
  2812. } else
  2813. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2814. s->name, page);
  2815. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2816. if (!PageSlubDebug(page))
  2817. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2818. "on slab 0x%p\n", s->name, page);
  2819. } else {
  2820. if (PageSlubDebug(page))
  2821. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2822. "slab 0x%p\n", s->name, page);
  2823. }
  2824. }
  2825. static int validate_slab_node(struct kmem_cache *s,
  2826. struct kmem_cache_node *n, unsigned long *map)
  2827. {
  2828. unsigned long count = 0;
  2829. struct page *page;
  2830. unsigned long flags;
  2831. spin_lock_irqsave(&n->list_lock, flags);
  2832. list_for_each_entry(page, &n->partial, lru) {
  2833. validate_slab_slab(s, page, map);
  2834. count++;
  2835. }
  2836. if (count != n->nr_partial)
  2837. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2838. "counter=%ld\n", s->name, count, n->nr_partial);
  2839. if (!(s->flags & SLAB_STORE_USER))
  2840. goto out;
  2841. list_for_each_entry(page, &n->full, lru) {
  2842. validate_slab_slab(s, page, map);
  2843. count++;
  2844. }
  2845. if (count != atomic_long_read(&n->nr_slabs))
  2846. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2847. "counter=%ld\n", s->name, count,
  2848. atomic_long_read(&n->nr_slabs));
  2849. out:
  2850. spin_unlock_irqrestore(&n->list_lock, flags);
  2851. return count;
  2852. }
  2853. static long validate_slab_cache(struct kmem_cache *s)
  2854. {
  2855. int node;
  2856. unsigned long count = 0;
  2857. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2858. sizeof(unsigned long), GFP_KERNEL);
  2859. if (!map)
  2860. return -ENOMEM;
  2861. flush_all(s);
  2862. for_each_node_state(node, N_NORMAL_MEMORY) {
  2863. struct kmem_cache_node *n = get_node(s, node);
  2864. count += validate_slab_node(s, n, map);
  2865. }
  2866. kfree(map);
  2867. return count;
  2868. }
  2869. #ifdef SLUB_RESILIENCY_TEST
  2870. static void resiliency_test(void)
  2871. {
  2872. u8 *p;
  2873. printk(KERN_ERR "SLUB resiliency testing\n");
  2874. printk(KERN_ERR "-----------------------\n");
  2875. printk(KERN_ERR "A. Corruption after allocation\n");
  2876. p = kzalloc(16, GFP_KERNEL);
  2877. p[16] = 0x12;
  2878. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2879. " 0x12->0x%p\n\n", p + 16);
  2880. validate_slab_cache(kmalloc_caches + 4);
  2881. /* Hmmm... The next two are dangerous */
  2882. p = kzalloc(32, GFP_KERNEL);
  2883. p[32 + sizeof(void *)] = 0x34;
  2884. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2885. " 0x34 -> -0x%p\n", p);
  2886. printk(KERN_ERR
  2887. "If allocated object is overwritten then not detectable\n\n");
  2888. validate_slab_cache(kmalloc_caches + 5);
  2889. p = kzalloc(64, GFP_KERNEL);
  2890. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2891. *p = 0x56;
  2892. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2893. p);
  2894. printk(KERN_ERR
  2895. "If allocated object is overwritten then not detectable\n\n");
  2896. validate_slab_cache(kmalloc_caches + 6);
  2897. printk(KERN_ERR "\nB. Corruption after free\n");
  2898. p = kzalloc(128, GFP_KERNEL);
  2899. kfree(p);
  2900. *p = 0x78;
  2901. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2902. validate_slab_cache(kmalloc_caches + 7);
  2903. p = kzalloc(256, GFP_KERNEL);
  2904. kfree(p);
  2905. p[50] = 0x9a;
  2906. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2907. p);
  2908. validate_slab_cache(kmalloc_caches + 8);
  2909. p = kzalloc(512, GFP_KERNEL);
  2910. kfree(p);
  2911. p[512] = 0xab;
  2912. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2913. validate_slab_cache(kmalloc_caches + 9);
  2914. }
  2915. #else
  2916. static void resiliency_test(void) {};
  2917. #endif
  2918. /*
  2919. * Generate lists of code addresses where slabcache objects are allocated
  2920. * and freed.
  2921. */
  2922. struct location {
  2923. unsigned long count;
  2924. unsigned long addr;
  2925. long long sum_time;
  2926. long min_time;
  2927. long max_time;
  2928. long min_pid;
  2929. long max_pid;
  2930. DECLARE_BITMAP(cpus, NR_CPUS);
  2931. nodemask_t nodes;
  2932. };
  2933. struct loc_track {
  2934. unsigned long max;
  2935. unsigned long count;
  2936. struct location *loc;
  2937. };
  2938. static void free_loc_track(struct loc_track *t)
  2939. {
  2940. if (t->max)
  2941. free_pages((unsigned long)t->loc,
  2942. get_order(sizeof(struct location) * t->max));
  2943. }
  2944. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2945. {
  2946. struct location *l;
  2947. int order;
  2948. order = get_order(sizeof(struct location) * max);
  2949. l = (void *)__get_free_pages(flags, order);
  2950. if (!l)
  2951. return 0;
  2952. if (t->count) {
  2953. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2954. free_loc_track(t);
  2955. }
  2956. t->max = max;
  2957. t->loc = l;
  2958. return 1;
  2959. }
  2960. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2961. const struct track *track)
  2962. {
  2963. long start, end, pos;
  2964. struct location *l;
  2965. unsigned long caddr;
  2966. unsigned long age = jiffies - track->when;
  2967. start = -1;
  2968. end = t->count;
  2969. for ( ; ; ) {
  2970. pos = start + (end - start + 1) / 2;
  2971. /*
  2972. * There is nothing at "end". If we end up there
  2973. * we need to add something to before end.
  2974. */
  2975. if (pos == end)
  2976. break;
  2977. caddr = t->loc[pos].addr;
  2978. if (track->addr == caddr) {
  2979. l = &t->loc[pos];
  2980. l->count++;
  2981. if (track->when) {
  2982. l->sum_time += age;
  2983. if (age < l->min_time)
  2984. l->min_time = age;
  2985. if (age > l->max_time)
  2986. l->max_time = age;
  2987. if (track->pid < l->min_pid)
  2988. l->min_pid = track->pid;
  2989. if (track->pid > l->max_pid)
  2990. l->max_pid = track->pid;
  2991. cpumask_set_cpu(track->cpu,
  2992. to_cpumask(l->cpus));
  2993. }
  2994. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2995. return 1;
  2996. }
  2997. if (track->addr < caddr)
  2998. end = pos;
  2999. else
  3000. start = pos;
  3001. }
  3002. /*
  3003. * Not found. Insert new tracking element.
  3004. */
  3005. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3006. return 0;
  3007. l = t->loc + pos;
  3008. if (pos < t->count)
  3009. memmove(l + 1, l,
  3010. (t->count - pos) * sizeof(struct location));
  3011. t->count++;
  3012. l->count = 1;
  3013. l->addr = track->addr;
  3014. l->sum_time = age;
  3015. l->min_time = age;
  3016. l->max_time = age;
  3017. l->min_pid = track->pid;
  3018. l->max_pid = track->pid;
  3019. cpumask_clear(to_cpumask(l->cpus));
  3020. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3021. nodes_clear(l->nodes);
  3022. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3023. return 1;
  3024. }
  3025. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3026. struct page *page, enum track_item alloc)
  3027. {
  3028. void *addr = page_address(page);
  3029. DECLARE_BITMAP(map, page->objects);
  3030. void *p;
  3031. bitmap_zero(map, page->objects);
  3032. for_each_free_object(p, s, page->freelist)
  3033. set_bit(slab_index(p, s, addr), map);
  3034. for_each_object(p, s, addr, page->objects)
  3035. if (!test_bit(slab_index(p, s, addr), map))
  3036. add_location(t, s, get_track(s, p, alloc));
  3037. }
  3038. static int list_locations(struct kmem_cache *s, char *buf,
  3039. enum track_item alloc)
  3040. {
  3041. int len = 0;
  3042. unsigned long i;
  3043. struct loc_track t = { 0, 0, NULL };
  3044. int node;
  3045. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3046. GFP_TEMPORARY))
  3047. return sprintf(buf, "Out of memory\n");
  3048. /* Push back cpu slabs */
  3049. flush_all(s);
  3050. for_each_node_state(node, N_NORMAL_MEMORY) {
  3051. struct kmem_cache_node *n = get_node(s, node);
  3052. unsigned long flags;
  3053. struct page *page;
  3054. if (!atomic_long_read(&n->nr_slabs))
  3055. continue;
  3056. spin_lock_irqsave(&n->list_lock, flags);
  3057. list_for_each_entry(page, &n->partial, lru)
  3058. process_slab(&t, s, page, alloc);
  3059. list_for_each_entry(page, &n->full, lru)
  3060. process_slab(&t, s, page, alloc);
  3061. spin_unlock_irqrestore(&n->list_lock, flags);
  3062. }
  3063. for (i = 0; i < t.count; i++) {
  3064. struct location *l = &t.loc[i];
  3065. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3066. break;
  3067. len += sprintf(buf + len, "%7ld ", l->count);
  3068. if (l->addr)
  3069. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3070. else
  3071. len += sprintf(buf + len, "<not-available>");
  3072. if (l->sum_time != l->min_time) {
  3073. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3074. l->min_time,
  3075. (long)div_u64(l->sum_time, l->count),
  3076. l->max_time);
  3077. } else
  3078. len += sprintf(buf + len, " age=%ld",
  3079. l->min_time);
  3080. if (l->min_pid != l->max_pid)
  3081. len += sprintf(buf + len, " pid=%ld-%ld",
  3082. l->min_pid, l->max_pid);
  3083. else
  3084. len += sprintf(buf + len, " pid=%ld",
  3085. l->min_pid);
  3086. if (num_online_cpus() > 1 &&
  3087. !cpumask_empty(to_cpumask(l->cpus)) &&
  3088. len < PAGE_SIZE - 60) {
  3089. len += sprintf(buf + len, " cpus=");
  3090. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3091. to_cpumask(l->cpus));
  3092. }
  3093. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3094. len < PAGE_SIZE - 60) {
  3095. len += sprintf(buf + len, " nodes=");
  3096. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3097. l->nodes);
  3098. }
  3099. len += sprintf(buf + len, "\n");
  3100. }
  3101. free_loc_track(&t);
  3102. if (!t.count)
  3103. len += sprintf(buf, "No data\n");
  3104. return len;
  3105. }
  3106. enum slab_stat_type {
  3107. SL_ALL, /* All slabs */
  3108. SL_PARTIAL, /* Only partially allocated slabs */
  3109. SL_CPU, /* Only slabs used for cpu caches */
  3110. SL_OBJECTS, /* Determine allocated objects not slabs */
  3111. SL_TOTAL /* Determine object capacity not slabs */
  3112. };
  3113. #define SO_ALL (1 << SL_ALL)
  3114. #define SO_PARTIAL (1 << SL_PARTIAL)
  3115. #define SO_CPU (1 << SL_CPU)
  3116. #define SO_OBJECTS (1 << SL_OBJECTS)
  3117. #define SO_TOTAL (1 << SL_TOTAL)
  3118. static ssize_t show_slab_objects(struct kmem_cache *s,
  3119. char *buf, unsigned long flags)
  3120. {
  3121. unsigned long total = 0;
  3122. int node;
  3123. int x;
  3124. unsigned long *nodes;
  3125. unsigned long *per_cpu;
  3126. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3127. if (!nodes)
  3128. return -ENOMEM;
  3129. per_cpu = nodes + nr_node_ids;
  3130. if (flags & SO_CPU) {
  3131. int cpu;
  3132. for_each_possible_cpu(cpu) {
  3133. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3134. if (!c || c->node < 0)
  3135. continue;
  3136. if (c->page) {
  3137. if (flags & SO_TOTAL)
  3138. x = c->page->objects;
  3139. else if (flags & SO_OBJECTS)
  3140. x = c->page->inuse;
  3141. else
  3142. x = 1;
  3143. total += x;
  3144. nodes[c->node] += x;
  3145. }
  3146. per_cpu[c->node]++;
  3147. }
  3148. }
  3149. if (flags & SO_ALL) {
  3150. for_each_node_state(node, N_NORMAL_MEMORY) {
  3151. struct kmem_cache_node *n = get_node(s, node);
  3152. if (flags & SO_TOTAL)
  3153. x = atomic_long_read(&n->total_objects);
  3154. else if (flags & SO_OBJECTS)
  3155. x = atomic_long_read(&n->total_objects) -
  3156. count_partial(n, count_free);
  3157. else
  3158. x = atomic_long_read(&n->nr_slabs);
  3159. total += x;
  3160. nodes[node] += x;
  3161. }
  3162. } else if (flags & SO_PARTIAL) {
  3163. for_each_node_state(node, N_NORMAL_MEMORY) {
  3164. struct kmem_cache_node *n = get_node(s, node);
  3165. if (flags & SO_TOTAL)
  3166. x = count_partial(n, count_total);
  3167. else if (flags & SO_OBJECTS)
  3168. x = count_partial(n, count_inuse);
  3169. else
  3170. x = n->nr_partial;
  3171. total += x;
  3172. nodes[node] += x;
  3173. }
  3174. }
  3175. x = sprintf(buf, "%lu", total);
  3176. #ifdef CONFIG_NUMA
  3177. for_each_node_state(node, N_NORMAL_MEMORY)
  3178. if (nodes[node])
  3179. x += sprintf(buf + x, " N%d=%lu",
  3180. node, nodes[node]);
  3181. #endif
  3182. kfree(nodes);
  3183. return x + sprintf(buf + x, "\n");
  3184. }
  3185. static int any_slab_objects(struct kmem_cache *s)
  3186. {
  3187. int node;
  3188. for_each_online_node(node) {
  3189. struct kmem_cache_node *n = get_node(s, node);
  3190. if (!n)
  3191. continue;
  3192. if (atomic_long_read(&n->total_objects))
  3193. return 1;
  3194. }
  3195. return 0;
  3196. }
  3197. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3198. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3199. struct slab_attribute {
  3200. struct attribute attr;
  3201. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3202. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3203. };
  3204. #define SLAB_ATTR_RO(_name) \
  3205. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3206. #define SLAB_ATTR(_name) \
  3207. static struct slab_attribute _name##_attr = \
  3208. __ATTR(_name, 0644, _name##_show, _name##_store)
  3209. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3210. {
  3211. return sprintf(buf, "%d\n", s->size);
  3212. }
  3213. SLAB_ATTR_RO(slab_size);
  3214. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3215. {
  3216. return sprintf(buf, "%d\n", s->align);
  3217. }
  3218. SLAB_ATTR_RO(align);
  3219. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3220. {
  3221. return sprintf(buf, "%d\n", s->objsize);
  3222. }
  3223. SLAB_ATTR_RO(object_size);
  3224. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3225. {
  3226. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3227. }
  3228. SLAB_ATTR_RO(objs_per_slab);
  3229. static ssize_t order_store(struct kmem_cache *s,
  3230. const char *buf, size_t length)
  3231. {
  3232. unsigned long order;
  3233. int err;
  3234. err = strict_strtoul(buf, 10, &order);
  3235. if (err)
  3236. return err;
  3237. if (order > slub_max_order || order < slub_min_order)
  3238. return -EINVAL;
  3239. calculate_sizes(s, order);
  3240. return length;
  3241. }
  3242. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3243. {
  3244. return sprintf(buf, "%d\n", oo_order(s->oo));
  3245. }
  3246. SLAB_ATTR(order);
  3247. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3248. {
  3249. if (s->ctor) {
  3250. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3251. return n + sprintf(buf + n, "\n");
  3252. }
  3253. return 0;
  3254. }
  3255. SLAB_ATTR_RO(ctor);
  3256. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3257. {
  3258. return sprintf(buf, "%d\n", s->refcount - 1);
  3259. }
  3260. SLAB_ATTR_RO(aliases);
  3261. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3262. {
  3263. return show_slab_objects(s, buf, SO_ALL);
  3264. }
  3265. SLAB_ATTR_RO(slabs);
  3266. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3267. {
  3268. return show_slab_objects(s, buf, SO_PARTIAL);
  3269. }
  3270. SLAB_ATTR_RO(partial);
  3271. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3272. {
  3273. return show_slab_objects(s, buf, SO_CPU);
  3274. }
  3275. SLAB_ATTR_RO(cpu_slabs);
  3276. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3277. {
  3278. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3279. }
  3280. SLAB_ATTR_RO(objects);
  3281. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3282. {
  3283. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3284. }
  3285. SLAB_ATTR_RO(objects_partial);
  3286. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3287. {
  3288. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3289. }
  3290. SLAB_ATTR_RO(total_objects);
  3291. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3292. {
  3293. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3294. }
  3295. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3296. const char *buf, size_t length)
  3297. {
  3298. s->flags &= ~SLAB_DEBUG_FREE;
  3299. if (buf[0] == '1')
  3300. s->flags |= SLAB_DEBUG_FREE;
  3301. return length;
  3302. }
  3303. SLAB_ATTR(sanity_checks);
  3304. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3305. {
  3306. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3307. }
  3308. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3309. size_t length)
  3310. {
  3311. s->flags &= ~SLAB_TRACE;
  3312. if (buf[0] == '1')
  3313. s->flags |= SLAB_TRACE;
  3314. return length;
  3315. }
  3316. SLAB_ATTR(trace);
  3317. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3318. {
  3319. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3320. }
  3321. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3322. const char *buf, size_t length)
  3323. {
  3324. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3325. if (buf[0] == '1')
  3326. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3327. return length;
  3328. }
  3329. SLAB_ATTR(reclaim_account);
  3330. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3331. {
  3332. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3333. }
  3334. SLAB_ATTR_RO(hwcache_align);
  3335. #ifdef CONFIG_ZONE_DMA
  3336. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3337. {
  3338. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3339. }
  3340. SLAB_ATTR_RO(cache_dma);
  3341. #endif
  3342. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3343. {
  3344. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3345. }
  3346. SLAB_ATTR_RO(destroy_by_rcu);
  3347. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3348. {
  3349. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3350. }
  3351. static ssize_t red_zone_store(struct kmem_cache *s,
  3352. const char *buf, size_t length)
  3353. {
  3354. if (any_slab_objects(s))
  3355. return -EBUSY;
  3356. s->flags &= ~SLAB_RED_ZONE;
  3357. if (buf[0] == '1')
  3358. s->flags |= SLAB_RED_ZONE;
  3359. calculate_sizes(s, -1);
  3360. return length;
  3361. }
  3362. SLAB_ATTR(red_zone);
  3363. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3364. {
  3365. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3366. }
  3367. static ssize_t poison_store(struct kmem_cache *s,
  3368. const char *buf, size_t length)
  3369. {
  3370. if (any_slab_objects(s))
  3371. return -EBUSY;
  3372. s->flags &= ~SLAB_POISON;
  3373. if (buf[0] == '1')
  3374. s->flags |= SLAB_POISON;
  3375. calculate_sizes(s, -1);
  3376. return length;
  3377. }
  3378. SLAB_ATTR(poison);
  3379. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3380. {
  3381. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3382. }
  3383. static ssize_t store_user_store(struct kmem_cache *s,
  3384. const char *buf, size_t length)
  3385. {
  3386. if (any_slab_objects(s))
  3387. return -EBUSY;
  3388. s->flags &= ~SLAB_STORE_USER;
  3389. if (buf[0] == '1')
  3390. s->flags |= SLAB_STORE_USER;
  3391. calculate_sizes(s, -1);
  3392. return length;
  3393. }
  3394. SLAB_ATTR(store_user);
  3395. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3396. {
  3397. return 0;
  3398. }
  3399. static ssize_t validate_store(struct kmem_cache *s,
  3400. const char *buf, size_t length)
  3401. {
  3402. int ret = -EINVAL;
  3403. if (buf[0] == '1') {
  3404. ret = validate_slab_cache(s);
  3405. if (ret >= 0)
  3406. ret = length;
  3407. }
  3408. return ret;
  3409. }
  3410. SLAB_ATTR(validate);
  3411. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3412. {
  3413. return 0;
  3414. }
  3415. static ssize_t shrink_store(struct kmem_cache *s,
  3416. const char *buf, size_t length)
  3417. {
  3418. if (buf[0] == '1') {
  3419. int rc = kmem_cache_shrink(s);
  3420. if (rc)
  3421. return rc;
  3422. } else
  3423. return -EINVAL;
  3424. return length;
  3425. }
  3426. SLAB_ATTR(shrink);
  3427. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3428. {
  3429. if (!(s->flags & SLAB_STORE_USER))
  3430. return -ENOSYS;
  3431. return list_locations(s, buf, TRACK_ALLOC);
  3432. }
  3433. SLAB_ATTR_RO(alloc_calls);
  3434. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3435. {
  3436. if (!(s->flags & SLAB_STORE_USER))
  3437. return -ENOSYS;
  3438. return list_locations(s, buf, TRACK_FREE);
  3439. }
  3440. SLAB_ATTR_RO(free_calls);
  3441. #ifdef CONFIG_NUMA
  3442. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3443. {
  3444. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3445. }
  3446. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3447. const char *buf, size_t length)
  3448. {
  3449. unsigned long ratio;
  3450. int err;
  3451. err = strict_strtoul(buf, 10, &ratio);
  3452. if (err)
  3453. return err;
  3454. if (ratio <= 100)
  3455. s->remote_node_defrag_ratio = ratio * 10;
  3456. return length;
  3457. }
  3458. SLAB_ATTR(remote_node_defrag_ratio);
  3459. #endif
  3460. #ifdef CONFIG_SLUB_STATS
  3461. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3462. {
  3463. unsigned long sum = 0;
  3464. int cpu;
  3465. int len;
  3466. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3467. if (!data)
  3468. return -ENOMEM;
  3469. for_each_online_cpu(cpu) {
  3470. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3471. data[cpu] = x;
  3472. sum += x;
  3473. }
  3474. len = sprintf(buf, "%lu", sum);
  3475. #ifdef CONFIG_SMP
  3476. for_each_online_cpu(cpu) {
  3477. if (data[cpu] && len < PAGE_SIZE - 20)
  3478. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3479. }
  3480. #endif
  3481. kfree(data);
  3482. return len + sprintf(buf + len, "\n");
  3483. }
  3484. #define STAT_ATTR(si, text) \
  3485. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3486. { \
  3487. return show_stat(s, buf, si); \
  3488. } \
  3489. SLAB_ATTR_RO(text); \
  3490. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3491. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3492. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3493. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3494. STAT_ATTR(FREE_FROZEN, free_frozen);
  3495. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3496. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3497. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3498. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3499. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3500. STAT_ATTR(FREE_SLAB, free_slab);
  3501. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3502. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3503. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3504. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3505. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3506. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3507. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3508. #endif
  3509. static struct attribute *slab_attrs[] = {
  3510. &slab_size_attr.attr,
  3511. &object_size_attr.attr,
  3512. &objs_per_slab_attr.attr,
  3513. &order_attr.attr,
  3514. &objects_attr.attr,
  3515. &objects_partial_attr.attr,
  3516. &total_objects_attr.attr,
  3517. &slabs_attr.attr,
  3518. &partial_attr.attr,
  3519. &cpu_slabs_attr.attr,
  3520. &ctor_attr.attr,
  3521. &aliases_attr.attr,
  3522. &align_attr.attr,
  3523. &sanity_checks_attr.attr,
  3524. &trace_attr.attr,
  3525. &hwcache_align_attr.attr,
  3526. &reclaim_account_attr.attr,
  3527. &destroy_by_rcu_attr.attr,
  3528. &red_zone_attr.attr,
  3529. &poison_attr.attr,
  3530. &store_user_attr.attr,
  3531. &validate_attr.attr,
  3532. &shrink_attr.attr,
  3533. &alloc_calls_attr.attr,
  3534. &free_calls_attr.attr,
  3535. #ifdef CONFIG_ZONE_DMA
  3536. &cache_dma_attr.attr,
  3537. #endif
  3538. #ifdef CONFIG_NUMA
  3539. &remote_node_defrag_ratio_attr.attr,
  3540. #endif
  3541. #ifdef CONFIG_SLUB_STATS
  3542. &alloc_fastpath_attr.attr,
  3543. &alloc_slowpath_attr.attr,
  3544. &free_fastpath_attr.attr,
  3545. &free_slowpath_attr.attr,
  3546. &free_frozen_attr.attr,
  3547. &free_add_partial_attr.attr,
  3548. &free_remove_partial_attr.attr,
  3549. &alloc_from_partial_attr.attr,
  3550. &alloc_slab_attr.attr,
  3551. &alloc_refill_attr.attr,
  3552. &free_slab_attr.attr,
  3553. &cpuslab_flush_attr.attr,
  3554. &deactivate_full_attr.attr,
  3555. &deactivate_empty_attr.attr,
  3556. &deactivate_to_head_attr.attr,
  3557. &deactivate_to_tail_attr.attr,
  3558. &deactivate_remote_frees_attr.attr,
  3559. &order_fallback_attr.attr,
  3560. #endif
  3561. NULL
  3562. };
  3563. static struct attribute_group slab_attr_group = {
  3564. .attrs = slab_attrs,
  3565. };
  3566. static ssize_t slab_attr_show(struct kobject *kobj,
  3567. struct attribute *attr,
  3568. char *buf)
  3569. {
  3570. struct slab_attribute *attribute;
  3571. struct kmem_cache *s;
  3572. int err;
  3573. attribute = to_slab_attr(attr);
  3574. s = to_slab(kobj);
  3575. if (!attribute->show)
  3576. return -EIO;
  3577. err = attribute->show(s, buf);
  3578. return err;
  3579. }
  3580. static ssize_t slab_attr_store(struct kobject *kobj,
  3581. struct attribute *attr,
  3582. const char *buf, size_t len)
  3583. {
  3584. struct slab_attribute *attribute;
  3585. struct kmem_cache *s;
  3586. int err;
  3587. attribute = to_slab_attr(attr);
  3588. s = to_slab(kobj);
  3589. if (!attribute->store)
  3590. return -EIO;
  3591. err = attribute->store(s, buf, len);
  3592. return err;
  3593. }
  3594. static void kmem_cache_release(struct kobject *kobj)
  3595. {
  3596. struct kmem_cache *s = to_slab(kobj);
  3597. kfree(s);
  3598. }
  3599. static struct sysfs_ops slab_sysfs_ops = {
  3600. .show = slab_attr_show,
  3601. .store = slab_attr_store,
  3602. };
  3603. static struct kobj_type slab_ktype = {
  3604. .sysfs_ops = &slab_sysfs_ops,
  3605. .release = kmem_cache_release
  3606. };
  3607. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3608. {
  3609. struct kobj_type *ktype = get_ktype(kobj);
  3610. if (ktype == &slab_ktype)
  3611. return 1;
  3612. return 0;
  3613. }
  3614. static struct kset_uevent_ops slab_uevent_ops = {
  3615. .filter = uevent_filter,
  3616. };
  3617. static struct kset *slab_kset;
  3618. #define ID_STR_LENGTH 64
  3619. /* Create a unique string id for a slab cache:
  3620. *
  3621. * Format :[flags-]size
  3622. */
  3623. static char *create_unique_id(struct kmem_cache *s)
  3624. {
  3625. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3626. char *p = name;
  3627. BUG_ON(!name);
  3628. *p++ = ':';
  3629. /*
  3630. * First flags affecting slabcache operations. We will only
  3631. * get here for aliasable slabs so we do not need to support
  3632. * too many flags. The flags here must cover all flags that
  3633. * are matched during merging to guarantee that the id is
  3634. * unique.
  3635. */
  3636. if (s->flags & SLAB_CACHE_DMA)
  3637. *p++ = 'd';
  3638. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3639. *p++ = 'a';
  3640. if (s->flags & SLAB_DEBUG_FREE)
  3641. *p++ = 'F';
  3642. if (p != name + 1)
  3643. *p++ = '-';
  3644. p += sprintf(p, "%07d", s->size);
  3645. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3646. return name;
  3647. }
  3648. static int sysfs_slab_add(struct kmem_cache *s)
  3649. {
  3650. int err;
  3651. const char *name;
  3652. int unmergeable;
  3653. if (slab_state < SYSFS)
  3654. /* Defer until later */
  3655. return 0;
  3656. unmergeable = slab_unmergeable(s);
  3657. if (unmergeable) {
  3658. /*
  3659. * Slabcache can never be merged so we can use the name proper.
  3660. * This is typically the case for debug situations. In that
  3661. * case we can catch duplicate names easily.
  3662. */
  3663. sysfs_remove_link(&slab_kset->kobj, s->name);
  3664. name = s->name;
  3665. } else {
  3666. /*
  3667. * Create a unique name for the slab as a target
  3668. * for the symlinks.
  3669. */
  3670. name = create_unique_id(s);
  3671. }
  3672. s->kobj.kset = slab_kset;
  3673. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3674. if (err) {
  3675. kobject_put(&s->kobj);
  3676. return err;
  3677. }
  3678. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3679. if (err)
  3680. return err;
  3681. kobject_uevent(&s->kobj, KOBJ_ADD);
  3682. if (!unmergeable) {
  3683. /* Setup first alias */
  3684. sysfs_slab_alias(s, s->name);
  3685. kfree(name);
  3686. }
  3687. return 0;
  3688. }
  3689. static void sysfs_slab_remove(struct kmem_cache *s)
  3690. {
  3691. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3692. kobject_del(&s->kobj);
  3693. kobject_put(&s->kobj);
  3694. }
  3695. /*
  3696. * Need to buffer aliases during bootup until sysfs becomes
  3697. * available lest we lose that information.
  3698. */
  3699. struct saved_alias {
  3700. struct kmem_cache *s;
  3701. const char *name;
  3702. struct saved_alias *next;
  3703. };
  3704. static struct saved_alias *alias_list;
  3705. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3706. {
  3707. struct saved_alias *al;
  3708. if (slab_state == SYSFS) {
  3709. /*
  3710. * If we have a leftover link then remove it.
  3711. */
  3712. sysfs_remove_link(&slab_kset->kobj, name);
  3713. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3714. }
  3715. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3716. if (!al)
  3717. return -ENOMEM;
  3718. al->s = s;
  3719. al->name = name;
  3720. al->next = alias_list;
  3721. alias_list = al;
  3722. return 0;
  3723. }
  3724. static int __init slab_sysfs_init(void)
  3725. {
  3726. struct kmem_cache *s;
  3727. int err;
  3728. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3729. if (!slab_kset) {
  3730. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3731. return -ENOSYS;
  3732. }
  3733. slab_state = SYSFS;
  3734. list_for_each_entry(s, &slab_caches, list) {
  3735. err = sysfs_slab_add(s);
  3736. if (err)
  3737. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3738. " to sysfs\n", s->name);
  3739. }
  3740. while (alias_list) {
  3741. struct saved_alias *al = alias_list;
  3742. alias_list = alias_list->next;
  3743. err = sysfs_slab_alias(al->s, al->name);
  3744. if (err)
  3745. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3746. " %s to sysfs\n", s->name);
  3747. kfree(al);
  3748. }
  3749. resiliency_test();
  3750. return 0;
  3751. }
  3752. __initcall(slab_sysfs_init);
  3753. #endif
  3754. /*
  3755. * The /proc/slabinfo ABI
  3756. */
  3757. #ifdef CONFIG_SLABINFO
  3758. static void print_slabinfo_header(struct seq_file *m)
  3759. {
  3760. seq_puts(m, "slabinfo - version: 2.1\n");
  3761. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3762. "<objperslab> <pagesperslab>");
  3763. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3764. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3765. seq_putc(m, '\n');
  3766. }
  3767. static void *s_start(struct seq_file *m, loff_t *pos)
  3768. {
  3769. loff_t n = *pos;
  3770. down_read(&slub_lock);
  3771. if (!n)
  3772. print_slabinfo_header(m);
  3773. return seq_list_start(&slab_caches, *pos);
  3774. }
  3775. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3776. {
  3777. return seq_list_next(p, &slab_caches, pos);
  3778. }
  3779. static void s_stop(struct seq_file *m, void *p)
  3780. {
  3781. up_read(&slub_lock);
  3782. }
  3783. static int s_show(struct seq_file *m, void *p)
  3784. {
  3785. unsigned long nr_partials = 0;
  3786. unsigned long nr_slabs = 0;
  3787. unsigned long nr_inuse = 0;
  3788. unsigned long nr_objs = 0;
  3789. unsigned long nr_free = 0;
  3790. struct kmem_cache *s;
  3791. int node;
  3792. s = list_entry(p, struct kmem_cache, list);
  3793. for_each_online_node(node) {
  3794. struct kmem_cache_node *n = get_node(s, node);
  3795. if (!n)
  3796. continue;
  3797. nr_partials += n->nr_partial;
  3798. nr_slabs += atomic_long_read(&n->nr_slabs);
  3799. nr_objs += atomic_long_read(&n->total_objects);
  3800. nr_free += count_partial(n, count_free);
  3801. }
  3802. nr_inuse = nr_objs - nr_free;
  3803. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3804. nr_objs, s->size, oo_objects(s->oo),
  3805. (1 << oo_order(s->oo)));
  3806. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3807. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3808. 0UL);
  3809. seq_putc(m, '\n');
  3810. return 0;
  3811. }
  3812. static const struct seq_operations slabinfo_op = {
  3813. .start = s_start,
  3814. .next = s_next,
  3815. .stop = s_stop,
  3816. .show = s_show,
  3817. };
  3818. static int slabinfo_open(struct inode *inode, struct file *file)
  3819. {
  3820. return seq_open(file, &slabinfo_op);
  3821. }
  3822. static const struct file_operations proc_slabinfo_operations = {
  3823. .open = slabinfo_open,
  3824. .read = seq_read,
  3825. .llseek = seq_lseek,
  3826. .release = seq_release,
  3827. };
  3828. static int __init slab_proc_init(void)
  3829. {
  3830. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3831. return 0;
  3832. }
  3833. module_init(slab_proc_init);
  3834. #endif /* CONFIG_SLABINFO */