memory.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <linux/kallsyms.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/tlb.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/pgtable.h>
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  120. {
  121. pgtable_t token = pmd_pgtable(*pmd);
  122. pmd_clear(pmd);
  123. pte_free_tlb(tlb, token);
  124. tlb->mm->nr_ptes--;
  125. }
  126. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  127. unsigned long addr, unsigned long end,
  128. unsigned long floor, unsigned long ceiling)
  129. {
  130. pmd_t *pmd;
  131. unsigned long next;
  132. unsigned long start;
  133. start = addr;
  134. pmd = pmd_offset(pud, addr);
  135. do {
  136. next = pmd_addr_end(addr, end);
  137. if (pmd_none_or_clear_bad(pmd))
  138. continue;
  139. free_pte_range(tlb, pmd);
  140. } while (pmd++, addr = next, addr != end);
  141. start &= PUD_MASK;
  142. if (start < floor)
  143. return;
  144. if (ceiling) {
  145. ceiling &= PUD_MASK;
  146. if (!ceiling)
  147. return;
  148. }
  149. if (end - 1 > ceiling - 1)
  150. return;
  151. pmd = pmd_offset(pud, start);
  152. pud_clear(pud);
  153. pmd_free_tlb(tlb, pmd);
  154. }
  155. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  156. unsigned long addr, unsigned long end,
  157. unsigned long floor, unsigned long ceiling)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. unsigned long start;
  162. start = addr;
  163. pud = pud_offset(pgd, addr);
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (pud_none_or_clear_bad(pud))
  167. continue;
  168. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  169. } while (pud++, addr = next, addr != end);
  170. start &= PGDIR_MASK;
  171. if (start < floor)
  172. return;
  173. if (ceiling) {
  174. ceiling &= PGDIR_MASK;
  175. if (!ceiling)
  176. return;
  177. }
  178. if (end - 1 > ceiling - 1)
  179. return;
  180. pud = pud_offset(pgd, start);
  181. pgd_clear(pgd);
  182. pud_free_tlb(tlb, pud);
  183. }
  184. /*
  185. * This function frees user-level page tables of a process.
  186. *
  187. * Must be called with pagetable lock held.
  188. */
  189. void free_pgd_range(struct mmu_gather *tlb,
  190. unsigned long addr, unsigned long end,
  191. unsigned long floor, unsigned long ceiling)
  192. {
  193. pgd_t *pgd;
  194. unsigned long next;
  195. unsigned long start;
  196. /*
  197. * The next few lines have given us lots of grief...
  198. *
  199. * Why are we testing PMD* at this top level? Because often
  200. * there will be no work to do at all, and we'd prefer not to
  201. * go all the way down to the bottom just to discover that.
  202. *
  203. * Why all these "- 1"s? Because 0 represents both the bottom
  204. * of the address space and the top of it (using -1 for the
  205. * top wouldn't help much: the masks would do the wrong thing).
  206. * The rule is that addr 0 and floor 0 refer to the bottom of
  207. * the address space, but end 0 and ceiling 0 refer to the top
  208. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  209. * that end 0 case should be mythical).
  210. *
  211. * Wherever addr is brought up or ceiling brought down, we must
  212. * be careful to reject "the opposite 0" before it confuses the
  213. * subsequent tests. But what about where end is brought down
  214. * by PMD_SIZE below? no, end can't go down to 0 there.
  215. *
  216. * Whereas we round start (addr) and ceiling down, by different
  217. * masks at different levels, in order to test whether a table
  218. * now has no other vmas using it, so can be freed, we don't
  219. * bother to round floor or end up - the tests don't need that.
  220. */
  221. addr &= PMD_MASK;
  222. if (addr < floor) {
  223. addr += PMD_SIZE;
  224. if (!addr)
  225. return;
  226. }
  227. if (ceiling) {
  228. ceiling &= PMD_MASK;
  229. if (!ceiling)
  230. return;
  231. }
  232. if (end - 1 > ceiling - 1)
  233. end -= PMD_SIZE;
  234. if (addr > end - 1)
  235. return;
  236. start = addr;
  237. pgd = pgd_offset(tlb->mm, addr);
  238. do {
  239. next = pgd_addr_end(addr, end);
  240. if (pgd_none_or_clear_bad(pgd))
  241. continue;
  242. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  243. } while (pgd++, addr = next, addr != end);
  244. }
  245. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  246. unsigned long floor, unsigned long ceiling)
  247. {
  248. while (vma) {
  249. struct vm_area_struct *next = vma->vm_next;
  250. unsigned long addr = vma->vm_start;
  251. /*
  252. * Hide vma from rmap and vmtruncate before freeing pgtables
  253. */
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. if (is_vm_hugetlb_page(vma)) {
  257. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. } else {
  260. /*
  261. * Optimization: gather nearby vmas into one call down
  262. */
  263. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  264. && !is_vm_hugetlb_page(next)) {
  265. vma = next;
  266. next = vma->vm_next;
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. }
  270. free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. }
  273. vma = next;
  274. }
  275. }
  276. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. pgtable_t new = pte_alloc_one(mm, address);
  279. if (!new)
  280. return -ENOMEM;
  281. /*
  282. * Ensure all pte setup (eg. pte page lock and page clearing) are
  283. * visible before the pte is made visible to other CPUs by being
  284. * put into page tables.
  285. *
  286. * The other side of the story is the pointer chasing in the page
  287. * table walking code (when walking the page table without locking;
  288. * ie. most of the time). Fortunately, these data accesses consist
  289. * of a chain of data-dependent loads, meaning most CPUs (alpha
  290. * being the notable exception) will already guarantee loads are
  291. * seen in-order. See the alpha page table accessors for the
  292. * smp_read_barrier_depends() barriers in page table walking code.
  293. */
  294. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  295. spin_lock(&mm->page_table_lock);
  296. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  297. mm->nr_ptes++;
  298. pmd_populate(mm, pmd, new);
  299. new = NULL;
  300. }
  301. spin_unlock(&mm->page_table_lock);
  302. if (new)
  303. pte_free(mm, new);
  304. return 0;
  305. }
  306. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  307. {
  308. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  309. if (!new)
  310. return -ENOMEM;
  311. smp_wmb(); /* See comment in __pte_alloc */
  312. spin_lock(&init_mm.page_table_lock);
  313. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  314. pmd_populate_kernel(&init_mm, pmd, new);
  315. new = NULL;
  316. }
  317. spin_unlock(&init_mm.page_table_lock);
  318. if (new)
  319. pte_free_kernel(&init_mm, new);
  320. return 0;
  321. }
  322. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  323. {
  324. if (file_rss)
  325. add_mm_counter(mm, file_rss, file_rss);
  326. if (anon_rss)
  327. add_mm_counter(mm, anon_rss, anon_rss);
  328. }
  329. /*
  330. * This function is called to print an error when a bad pte
  331. * is found. For example, we might have a PFN-mapped pte in
  332. * a region that doesn't allow it.
  333. *
  334. * The calling function must still handle the error.
  335. */
  336. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  337. pte_t pte, struct page *page)
  338. {
  339. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  340. pud_t *pud = pud_offset(pgd, addr);
  341. pmd_t *pmd = pmd_offset(pud, addr);
  342. struct address_space *mapping;
  343. pgoff_t index;
  344. static unsigned long resume;
  345. static unsigned long nr_shown;
  346. static unsigned long nr_unshown;
  347. /*
  348. * Allow a burst of 60 reports, then keep quiet for that minute;
  349. * or allow a steady drip of one report per second.
  350. */
  351. if (nr_shown == 60) {
  352. if (time_before(jiffies, resume)) {
  353. nr_unshown++;
  354. return;
  355. }
  356. if (nr_unshown) {
  357. printk(KERN_ALERT
  358. "BUG: Bad page map: %lu messages suppressed\n",
  359. nr_unshown);
  360. nr_unshown = 0;
  361. }
  362. nr_shown = 0;
  363. }
  364. if (nr_shown++ == 0)
  365. resume = jiffies + 60 * HZ;
  366. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  367. index = linear_page_index(vma, addr);
  368. printk(KERN_ALERT
  369. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  370. current->comm,
  371. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  372. if (page) {
  373. printk(KERN_ALERT
  374. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  375. page, (void *)page->flags, page_count(page),
  376. page_mapcount(page), page->mapping, page->index);
  377. }
  378. printk(KERN_ALERT
  379. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  380. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  381. /*
  382. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  383. */
  384. if (vma->vm_ops)
  385. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  386. (unsigned long)vma->vm_ops->fault);
  387. if (vma->vm_file && vma->vm_file->f_op)
  388. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  389. (unsigned long)vma->vm_file->f_op->mmap);
  390. dump_stack();
  391. add_taint(TAINT_BAD_PAGE);
  392. }
  393. static inline int is_cow_mapping(unsigned int flags)
  394. {
  395. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  396. }
  397. /*
  398. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  399. *
  400. * "Special" mappings do not wish to be associated with a "struct page" (either
  401. * it doesn't exist, or it exists but they don't want to touch it). In this
  402. * case, NULL is returned here. "Normal" mappings do have a struct page.
  403. *
  404. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  405. * pte bit, in which case this function is trivial. Secondly, an architecture
  406. * may not have a spare pte bit, which requires a more complicated scheme,
  407. * described below.
  408. *
  409. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  410. * special mapping (even if there are underlying and valid "struct pages").
  411. * COWed pages of a VM_PFNMAP are always normal.
  412. *
  413. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  414. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  415. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  416. * mapping will always honor the rule
  417. *
  418. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  419. *
  420. * And for normal mappings this is false.
  421. *
  422. * This restricts such mappings to be a linear translation from virtual address
  423. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  424. * as the vma is not a COW mapping; in that case, we know that all ptes are
  425. * special (because none can have been COWed).
  426. *
  427. *
  428. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  429. *
  430. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  431. * page" backing, however the difference is that _all_ pages with a struct
  432. * page (that is, those where pfn_valid is true) are refcounted and considered
  433. * normal pages by the VM. The disadvantage is that pages are refcounted
  434. * (which can be slower and simply not an option for some PFNMAP users). The
  435. * advantage is that we don't have to follow the strict linearity rule of
  436. * PFNMAP mappings in order to support COWable mappings.
  437. *
  438. */
  439. #ifdef __HAVE_ARCH_PTE_SPECIAL
  440. # define HAVE_PTE_SPECIAL 1
  441. #else
  442. # define HAVE_PTE_SPECIAL 0
  443. #endif
  444. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  445. pte_t pte)
  446. {
  447. unsigned long pfn = pte_pfn(pte);
  448. if (HAVE_PTE_SPECIAL) {
  449. if (likely(!pte_special(pte)))
  450. goto check_pfn;
  451. if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
  452. print_bad_pte(vma, addr, pte, NULL);
  453. return NULL;
  454. }
  455. /* !HAVE_PTE_SPECIAL case follows: */
  456. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  457. if (vma->vm_flags & VM_MIXEDMAP) {
  458. if (!pfn_valid(pfn))
  459. return NULL;
  460. goto out;
  461. } else {
  462. unsigned long off;
  463. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  464. if (pfn == vma->vm_pgoff + off)
  465. return NULL;
  466. if (!is_cow_mapping(vma->vm_flags))
  467. return NULL;
  468. }
  469. }
  470. check_pfn:
  471. if (unlikely(pfn > highest_memmap_pfn)) {
  472. print_bad_pte(vma, addr, pte, NULL);
  473. return NULL;
  474. }
  475. /*
  476. * NOTE! We still have PageReserved() pages in the page tables.
  477. * eg. VDSO mappings can cause them to exist.
  478. */
  479. out:
  480. return pfn_to_page(pfn);
  481. }
  482. /*
  483. * copy one vm_area from one task to the other. Assumes the page tables
  484. * already present in the new task to be cleared in the whole range
  485. * covered by this vma.
  486. */
  487. static inline void
  488. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  489. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  490. unsigned long addr, int *rss)
  491. {
  492. unsigned long vm_flags = vma->vm_flags;
  493. pte_t pte = *src_pte;
  494. struct page *page;
  495. /* pte contains position in swap or file, so copy. */
  496. if (unlikely(!pte_present(pte))) {
  497. if (!pte_file(pte)) {
  498. swp_entry_t entry = pte_to_swp_entry(pte);
  499. swap_duplicate(entry);
  500. /* make sure dst_mm is on swapoff's mmlist. */
  501. if (unlikely(list_empty(&dst_mm->mmlist))) {
  502. spin_lock(&mmlist_lock);
  503. if (list_empty(&dst_mm->mmlist))
  504. list_add(&dst_mm->mmlist,
  505. &src_mm->mmlist);
  506. spin_unlock(&mmlist_lock);
  507. }
  508. if (is_write_migration_entry(entry) &&
  509. is_cow_mapping(vm_flags)) {
  510. /*
  511. * COW mappings require pages in both parent
  512. * and child to be set to read.
  513. */
  514. make_migration_entry_read(&entry);
  515. pte = swp_entry_to_pte(entry);
  516. set_pte_at(src_mm, addr, src_pte, pte);
  517. }
  518. }
  519. goto out_set_pte;
  520. }
  521. /*
  522. * If it's a COW mapping, write protect it both
  523. * in the parent and the child
  524. */
  525. if (is_cow_mapping(vm_flags)) {
  526. ptep_set_wrprotect(src_mm, addr, src_pte);
  527. pte = pte_wrprotect(pte);
  528. }
  529. /*
  530. * If it's a shared mapping, mark it clean in
  531. * the child
  532. */
  533. if (vm_flags & VM_SHARED)
  534. pte = pte_mkclean(pte);
  535. pte = pte_mkold(pte);
  536. page = vm_normal_page(vma, addr, pte);
  537. if (page) {
  538. get_page(page);
  539. page_dup_rmap(page, vma, addr);
  540. rss[!!PageAnon(page)]++;
  541. }
  542. out_set_pte:
  543. set_pte_at(dst_mm, addr, dst_pte, pte);
  544. }
  545. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  546. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  547. unsigned long addr, unsigned long end)
  548. {
  549. pte_t *src_pte, *dst_pte;
  550. spinlock_t *src_ptl, *dst_ptl;
  551. int progress = 0;
  552. int rss[2];
  553. again:
  554. rss[1] = rss[0] = 0;
  555. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  556. if (!dst_pte)
  557. return -ENOMEM;
  558. src_pte = pte_offset_map_nested(src_pmd, addr);
  559. src_ptl = pte_lockptr(src_mm, src_pmd);
  560. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  561. arch_enter_lazy_mmu_mode();
  562. do {
  563. /*
  564. * We are holding two locks at this point - either of them
  565. * could generate latencies in another task on another CPU.
  566. */
  567. if (progress >= 32) {
  568. progress = 0;
  569. if (need_resched() ||
  570. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  571. break;
  572. }
  573. if (pte_none(*src_pte)) {
  574. progress++;
  575. continue;
  576. }
  577. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  578. progress += 8;
  579. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  580. arch_leave_lazy_mmu_mode();
  581. spin_unlock(src_ptl);
  582. pte_unmap_nested(src_pte - 1);
  583. add_mm_rss(dst_mm, rss[0], rss[1]);
  584. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  585. cond_resched();
  586. if (addr != end)
  587. goto again;
  588. return 0;
  589. }
  590. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  591. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  592. unsigned long addr, unsigned long end)
  593. {
  594. pmd_t *src_pmd, *dst_pmd;
  595. unsigned long next;
  596. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  597. if (!dst_pmd)
  598. return -ENOMEM;
  599. src_pmd = pmd_offset(src_pud, addr);
  600. do {
  601. next = pmd_addr_end(addr, end);
  602. if (pmd_none_or_clear_bad(src_pmd))
  603. continue;
  604. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  605. vma, addr, next))
  606. return -ENOMEM;
  607. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  608. return 0;
  609. }
  610. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  611. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  612. unsigned long addr, unsigned long end)
  613. {
  614. pud_t *src_pud, *dst_pud;
  615. unsigned long next;
  616. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  617. if (!dst_pud)
  618. return -ENOMEM;
  619. src_pud = pud_offset(src_pgd, addr);
  620. do {
  621. next = pud_addr_end(addr, end);
  622. if (pud_none_or_clear_bad(src_pud))
  623. continue;
  624. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  625. vma, addr, next))
  626. return -ENOMEM;
  627. } while (dst_pud++, src_pud++, addr = next, addr != end);
  628. return 0;
  629. }
  630. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  631. struct vm_area_struct *vma)
  632. {
  633. pgd_t *src_pgd, *dst_pgd;
  634. unsigned long next;
  635. unsigned long addr = vma->vm_start;
  636. unsigned long end = vma->vm_end;
  637. int ret;
  638. /*
  639. * Don't copy ptes where a page fault will fill them correctly.
  640. * Fork becomes much lighter when there are big shared or private
  641. * readonly mappings. The tradeoff is that copy_page_range is more
  642. * efficient than faulting.
  643. */
  644. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  645. if (!vma->anon_vma)
  646. return 0;
  647. }
  648. if (is_vm_hugetlb_page(vma))
  649. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  650. if (unlikely(is_pfn_mapping(vma))) {
  651. /*
  652. * We do not free on error cases below as remove_vma
  653. * gets called on error from higher level routine
  654. */
  655. ret = track_pfn_vma_copy(vma);
  656. if (ret)
  657. return ret;
  658. }
  659. /*
  660. * We need to invalidate the secondary MMU mappings only when
  661. * there could be a permission downgrade on the ptes of the
  662. * parent mm. And a permission downgrade will only happen if
  663. * is_cow_mapping() returns true.
  664. */
  665. if (is_cow_mapping(vma->vm_flags))
  666. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  667. ret = 0;
  668. dst_pgd = pgd_offset(dst_mm, addr);
  669. src_pgd = pgd_offset(src_mm, addr);
  670. do {
  671. next = pgd_addr_end(addr, end);
  672. if (pgd_none_or_clear_bad(src_pgd))
  673. continue;
  674. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  675. vma, addr, next))) {
  676. ret = -ENOMEM;
  677. break;
  678. }
  679. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  680. if (is_cow_mapping(vma->vm_flags))
  681. mmu_notifier_invalidate_range_end(src_mm,
  682. vma->vm_start, end);
  683. return ret;
  684. }
  685. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  686. struct vm_area_struct *vma, pmd_t *pmd,
  687. unsigned long addr, unsigned long end,
  688. long *zap_work, struct zap_details *details)
  689. {
  690. struct mm_struct *mm = tlb->mm;
  691. pte_t *pte;
  692. spinlock_t *ptl;
  693. int file_rss = 0;
  694. int anon_rss = 0;
  695. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  696. arch_enter_lazy_mmu_mode();
  697. do {
  698. pte_t ptent = *pte;
  699. if (pte_none(ptent)) {
  700. (*zap_work)--;
  701. continue;
  702. }
  703. (*zap_work) -= PAGE_SIZE;
  704. if (pte_present(ptent)) {
  705. struct page *page;
  706. page = vm_normal_page(vma, addr, ptent);
  707. if (unlikely(details) && page) {
  708. /*
  709. * unmap_shared_mapping_pages() wants to
  710. * invalidate cache without truncating:
  711. * unmap shared but keep private pages.
  712. */
  713. if (details->check_mapping &&
  714. details->check_mapping != page->mapping)
  715. continue;
  716. /*
  717. * Each page->index must be checked when
  718. * invalidating or truncating nonlinear.
  719. */
  720. if (details->nonlinear_vma &&
  721. (page->index < details->first_index ||
  722. page->index > details->last_index))
  723. continue;
  724. }
  725. ptent = ptep_get_and_clear_full(mm, addr, pte,
  726. tlb->fullmm);
  727. tlb_remove_tlb_entry(tlb, pte, addr);
  728. if (unlikely(!page))
  729. continue;
  730. if (unlikely(details) && details->nonlinear_vma
  731. && linear_page_index(details->nonlinear_vma,
  732. addr) != page->index)
  733. set_pte_at(mm, addr, pte,
  734. pgoff_to_pte(page->index));
  735. if (PageAnon(page))
  736. anon_rss--;
  737. else {
  738. if (pte_dirty(ptent))
  739. set_page_dirty(page);
  740. if (pte_young(ptent) &&
  741. likely(!VM_SequentialReadHint(vma)))
  742. mark_page_accessed(page);
  743. file_rss--;
  744. }
  745. page_remove_rmap(page);
  746. if (unlikely(page_mapcount(page) < 0))
  747. print_bad_pte(vma, addr, ptent, page);
  748. tlb_remove_page(tlb, page);
  749. continue;
  750. }
  751. /*
  752. * If details->check_mapping, we leave swap entries;
  753. * if details->nonlinear_vma, we leave file entries.
  754. */
  755. if (unlikely(details))
  756. continue;
  757. if (pte_file(ptent)) {
  758. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  759. print_bad_pte(vma, addr, ptent, NULL);
  760. } else if
  761. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  762. print_bad_pte(vma, addr, ptent, NULL);
  763. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  764. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  765. add_mm_rss(mm, file_rss, anon_rss);
  766. arch_leave_lazy_mmu_mode();
  767. pte_unmap_unlock(pte - 1, ptl);
  768. return addr;
  769. }
  770. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  771. struct vm_area_struct *vma, pud_t *pud,
  772. unsigned long addr, unsigned long end,
  773. long *zap_work, struct zap_details *details)
  774. {
  775. pmd_t *pmd;
  776. unsigned long next;
  777. pmd = pmd_offset(pud, addr);
  778. do {
  779. next = pmd_addr_end(addr, end);
  780. if (pmd_none_or_clear_bad(pmd)) {
  781. (*zap_work)--;
  782. continue;
  783. }
  784. next = zap_pte_range(tlb, vma, pmd, addr, next,
  785. zap_work, details);
  786. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  787. return addr;
  788. }
  789. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  790. struct vm_area_struct *vma, pgd_t *pgd,
  791. unsigned long addr, unsigned long end,
  792. long *zap_work, struct zap_details *details)
  793. {
  794. pud_t *pud;
  795. unsigned long next;
  796. pud = pud_offset(pgd, addr);
  797. do {
  798. next = pud_addr_end(addr, end);
  799. if (pud_none_or_clear_bad(pud)) {
  800. (*zap_work)--;
  801. continue;
  802. }
  803. next = zap_pmd_range(tlb, vma, pud, addr, next,
  804. zap_work, details);
  805. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  806. return addr;
  807. }
  808. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  809. struct vm_area_struct *vma,
  810. unsigned long addr, unsigned long end,
  811. long *zap_work, struct zap_details *details)
  812. {
  813. pgd_t *pgd;
  814. unsigned long next;
  815. if (details && !details->check_mapping && !details->nonlinear_vma)
  816. details = NULL;
  817. BUG_ON(addr >= end);
  818. tlb_start_vma(tlb, vma);
  819. pgd = pgd_offset(vma->vm_mm, addr);
  820. do {
  821. next = pgd_addr_end(addr, end);
  822. if (pgd_none_or_clear_bad(pgd)) {
  823. (*zap_work)--;
  824. continue;
  825. }
  826. next = zap_pud_range(tlb, vma, pgd, addr, next,
  827. zap_work, details);
  828. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  829. tlb_end_vma(tlb, vma);
  830. return addr;
  831. }
  832. #ifdef CONFIG_PREEMPT
  833. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  834. #else
  835. /* No preempt: go for improved straight-line efficiency */
  836. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  837. #endif
  838. /**
  839. * unmap_vmas - unmap a range of memory covered by a list of vma's
  840. * @tlbp: address of the caller's struct mmu_gather
  841. * @vma: the starting vma
  842. * @start_addr: virtual address at which to start unmapping
  843. * @end_addr: virtual address at which to end unmapping
  844. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  845. * @details: details of nonlinear truncation or shared cache invalidation
  846. *
  847. * Returns the end address of the unmapping (restart addr if interrupted).
  848. *
  849. * Unmap all pages in the vma list.
  850. *
  851. * We aim to not hold locks for too long (for scheduling latency reasons).
  852. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  853. * return the ending mmu_gather to the caller.
  854. *
  855. * Only addresses between `start' and `end' will be unmapped.
  856. *
  857. * The VMA list must be sorted in ascending virtual address order.
  858. *
  859. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  860. * range after unmap_vmas() returns. So the only responsibility here is to
  861. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  862. * drops the lock and schedules.
  863. */
  864. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  865. struct vm_area_struct *vma, unsigned long start_addr,
  866. unsigned long end_addr, unsigned long *nr_accounted,
  867. struct zap_details *details)
  868. {
  869. long zap_work = ZAP_BLOCK_SIZE;
  870. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  871. int tlb_start_valid = 0;
  872. unsigned long start = start_addr;
  873. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  874. int fullmm = (*tlbp)->fullmm;
  875. struct mm_struct *mm = vma->vm_mm;
  876. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  877. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  878. unsigned long end;
  879. start = max(vma->vm_start, start_addr);
  880. if (start >= vma->vm_end)
  881. continue;
  882. end = min(vma->vm_end, end_addr);
  883. if (end <= vma->vm_start)
  884. continue;
  885. if (vma->vm_flags & VM_ACCOUNT)
  886. *nr_accounted += (end - start) >> PAGE_SHIFT;
  887. if (unlikely(is_pfn_mapping(vma)))
  888. untrack_pfn_vma(vma, 0, 0);
  889. while (start != end) {
  890. if (!tlb_start_valid) {
  891. tlb_start = start;
  892. tlb_start_valid = 1;
  893. }
  894. if (unlikely(is_vm_hugetlb_page(vma))) {
  895. /*
  896. * It is undesirable to test vma->vm_file as it
  897. * should be non-null for valid hugetlb area.
  898. * However, vm_file will be NULL in the error
  899. * cleanup path of do_mmap_pgoff. When
  900. * hugetlbfs ->mmap method fails,
  901. * do_mmap_pgoff() nullifies vma->vm_file
  902. * before calling this function to clean up.
  903. * Since no pte has actually been setup, it is
  904. * safe to do nothing in this case.
  905. */
  906. if (vma->vm_file) {
  907. unmap_hugepage_range(vma, start, end, NULL);
  908. zap_work -= (end - start) /
  909. pages_per_huge_page(hstate_vma(vma));
  910. }
  911. start = end;
  912. } else
  913. start = unmap_page_range(*tlbp, vma,
  914. start, end, &zap_work, details);
  915. if (zap_work > 0) {
  916. BUG_ON(start != end);
  917. break;
  918. }
  919. tlb_finish_mmu(*tlbp, tlb_start, start);
  920. if (need_resched() ||
  921. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  922. if (i_mmap_lock) {
  923. *tlbp = NULL;
  924. goto out;
  925. }
  926. cond_resched();
  927. }
  928. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  929. tlb_start_valid = 0;
  930. zap_work = ZAP_BLOCK_SIZE;
  931. }
  932. }
  933. out:
  934. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  935. return start; /* which is now the end (or restart) address */
  936. }
  937. /**
  938. * zap_page_range - remove user pages in a given range
  939. * @vma: vm_area_struct holding the applicable pages
  940. * @address: starting address of pages to zap
  941. * @size: number of bytes to zap
  942. * @details: details of nonlinear truncation or shared cache invalidation
  943. */
  944. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  945. unsigned long size, struct zap_details *details)
  946. {
  947. struct mm_struct *mm = vma->vm_mm;
  948. struct mmu_gather *tlb;
  949. unsigned long end = address + size;
  950. unsigned long nr_accounted = 0;
  951. lru_add_drain();
  952. tlb = tlb_gather_mmu(mm, 0);
  953. update_hiwater_rss(mm);
  954. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  955. if (tlb)
  956. tlb_finish_mmu(tlb, address, end);
  957. return end;
  958. }
  959. /**
  960. * zap_vma_ptes - remove ptes mapping the vma
  961. * @vma: vm_area_struct holding ptes to be zapped
  962. * @address: starting address of pages to zap
  963. * @size: number of bytes to zap
  964. *
  965. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  966. *
  967. * The entire address range must be fully contained within the vma.
  968. *
  969. * Returns 0 if successful.
  970. */
  971. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  972. unsigned long size)
  973. {
  974. if (address < vma->vm_start || address + size > vma->vm_end ||
  975. !(vma->vm_flags & VM_PFNMAP))
  976. return -1;
  977. zap_page_range(vma, address, size, NULL);
  978. return 0;
  979. }
  980. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  981. /*
  982. * Do a quick page-table lookup for a single page.
  983. */
  984. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  985. unsigned int flags)
  986. {
  987. pgd_t *pgd;
  988. pud_t *pud;
  989. pmd_t *pmd;
  990. pte_t *ptep, pte;
  991. spinlock_t *ptl;
  992. struct page *page;
  993. struct mm_struct *mm = vma->vm_mm;
  994. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  995. if (!IS_ERR(page)) {
  996. BUG_ON(flags & FOLL_GET);
  997. goto out;
  998. }
  999. page = NULL;
  1000. pgd = pgd_offset(mm, address);
  1001. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1002. goto no_page_table;
  1003. pud = pud_offset(pgd, address);
  1004. if (pud_none(*pud))
  1005. goto no_page_table;
  1006. if (pud_huge(*pud)) {
  1007. BUG_ON(flags & FOLL_GET);
  1008. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1009. goto out;
  1010. }
  1011. if (unlikely(pud_bad(*pud)))
  1012. goto no_page_table;
  1013. pmd = pmd_offset(pud, address);
  1014. if (pmd_none(*pmd))
  1015. goto no_page_table;
  1016. if (pmd_huge(*pmd)) {
  1017. BUG_ON(flags & FOLL_GET);
  1018. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1019. goto out;
  1020. }
  1021. if (unlikely(pmd_bad(*pmd)))
  1022. goto no_page_table;
  1023. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1024. pte = *ptep;
  1025. if (!pte_present(pte))
  1026. goto no_page;
  1027. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1028. goto unlock;
  1029. page = vm_normal_page(vma, address, pte);
  1030. if (unlikely(!page))
  1031. goto bad_page;
  1032. if (flags & FOLL_GET)
  1033. get_page(page);
  1034. if (flags & FOLL_TOUCH) {
  1035. if ((flags & FOLL_WRITE) &&
  1036. !pte_dirty(pte) && !PageDirty(page))
  1037. set_page_dirty(page);
  1038. mark_page_accessed(page);
  1039. }
  1040. unlock:
  1041. pte_unmap_unlock(ptep, ptl);
  1042. out:
  1043. return page;
  1044. bad_page:
  1045. pte_unmap_unlock(ptep, ptl);
  1046. return ERR_PTR(-EFAULT);
  1047. no_page:
  1048. pte_unmap_unlock(ptep, ptl);
  1049. if (!pte_none(pte))
  1050. return page;
  1051. /* Fall through to ZERO_PAGE handling */
  1052. no_page_table:
  1053. /*
  1054. * When core dumping an enormous anonymous area that nobody
  1055. * has touched so far, we don't want to allocate page tables.
  1056. */
  1057. if (flags & FOLL_ANON) {
  1058. page = ZERO_PAGE(0);
  1059. if (flags & FOLL_GET)
  1060. get_page(page);
  1061. BUG_ON(flags & FOLL_WRITE);
  1062. }
  1063. return page;
  1064. }
  1065. /* Can we do the FOLL_ANON optimization? */
  1066. static inline int use_zero_page(struct vm_area_struct *vma)
  1067. {
  1068. /*
  1069. * We don't want to optimize FOLL_ANON for make_pages_present()
  1070. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1071. * we want to get the page from the page tables to make sure
  1072. * that we serialize and update with any other user of that
  1073. * mapping.
  1074. */
  1075. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1076. return 0;
  1077. /*
  1078. * And if we have a fault routine, it's not an anonymous region.
  1079. */
  1080. return !vma->vm_ops || !vma->vm_ops->fault;
  1081. }
  1082. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1083. unsigned long start, int len, int flags,
  1084. struct page **pages, struct vm_area_struct **vmas)
  1085. {
  1086. int i;
  1087. unsigned int vm_flags = 0;
  1088. int write = !!(flags & GUP_FLAGS_WRITE);
  1089. int force = !!(flags & GUP_FLAGS_FORCE);
  1090. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1091. int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
  1092. if (len <= 0)
  1093. return 0;
  1094. /*
  1095. * Require read or write permissions.
  1096. * If 'force' is set, we only require the "MAY" flags.
  1097. */
  1098. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1099. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1100. i = 0;
  1101. do {
  1102. struct vm_area_struct *vma;
  1103. unsigned int foll_flags;
  1104. vma = find_extend_vma(mm, start);
  1105. if (!vma && in_gate_area(tsk, start)) {
  1106. unsigned long pg = start & PAGE_MASK;
  1107. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1108. pgd_t *pgd;
  1109. pud_t *pud;
  1110. pmd_t *pmd;
  1111. pte_t *pte;
  1112. /* user gate pages are read-only */
  1113. if (!ignore && write)
  1114. return i ? : -EFAULT;
  1115. if (pg > TASK_SIZE)
  1116. pgd = pgd_offset_k(pg);
  1117. else
  1118. pgd = pgd_offset_gate(mm, pg);
  1119. BUG_ON(pgd_none(*pgd));
  1120. pud = pud_offset(pgd, pg);
  1121. BUG_ON(pud_none(*pud));
  1122. pmd = pmd_offset(pud, pg);
  1123. if (pmd_none(*pmd))
  1124. return i ? : -EFAULT;
  1125. pte = pte_offset_map(pmd, pg);
  1126. if (pte_none(*pte)) {
  1127. pte_unmap(pte);
  1128. return i ? : -EFAULT;
  1129. }
  1130. if (pages) {
  1131. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1132. pages[i] = page;
  1133. if (page)
  1134. get_page(page);
  1135. }
  1136. pte_unmap(pte);
  1137. if (vmas)
  1138. vmas[i] = gate_vma;
  1139. i++;
  1140. start += PAGE_SIZE;
  1141. len--;
  1142. continue;
  1143. }
  1144. if (!vma ||
  1145. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1146. (!ignore && !(vm_flags & vma->vm_flags)))
  1147. return i ? : -EFAULT;
  1148. if (is_vm_hugetlb_page(vma)) {
  1149. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1150. &start, &len, i, write);
  1151. continue;
  1152. }
  1153. foll_flags = FOLL_TOUCH;
  1154. if (pages)
  1155. foll_flags |= FOLL_GET;
  1156. if (!write && use_zero_page(vma))
  1157. foll_flags |= FOLL_ANON;
  1158. do {
  1159. struct page *page;
  1160. /*
  1161. * If we have a pending SIGKILL, don't keep faulting
  1162. * pages and potentially allocating memory, unless
  1163. * current is handling munlock--e.g., on exit. In
  1164. * that case, we are not allocating memory. Rather,
  1165. * we're only unlocking already resident/mapped pages.
  1166. */
  1167. if (unlikely(!ignore_sigkill &&
  1168. fatal_signal_pending(current)))
  1169. return i ? i : -ERESTARTSYS;
  1170. if (write)
  1171. foll_flags |= FOLL_WRITE;
  1172. cond_resched();
  1173. while (!(page = follow_page(vma, start, foll_flags))) {
  1174. int ret;
  1175. ret = handle_mm_fault(mm, vma, start,
  1176. foll_flags & FOLL_WRITE);
  1177. if (ret & VM_FAULT_ERROR) {
  1178. if (ret & VM_FAULT_OOM)
  1179. return i ? i : -ENOMEM;
  1180. else if (ret & VM_FAULT_SIGBUS)
  1181. return i ? i : -EFAULT;
  1182. BUG();
  1183. }
  1184. if (ret & VM_FAULT_MAJOR)
  1185. tsk->maj_flt++;
  1186. else
  1187. tsk->min_flt++;
  1188. /*
  1189. * The VM_FAULT_WRITE bit tells us that
  1190. * do_wp_page has broken COW when necessary,
  1191. * even if maybe_mkwrite decided not to set
  1192. * pte_write. We can thus safely do subsequent
  1193. * page lookups as if they were reads. But only
  1194. * do so when looping for pte_write is futile:
  1195. * in some cases userspace may also be wanting
  1196. * to write to the gotten user page, which a
  1197. * read fault here might prevent (a readonly
  1198. * page might get reCOWed by userspace write).
  1199. */
  1200. if ((ret & VM_FAULT_WRITE) &&
  1201. !(vma->vm_flags & VM_WRITE))
  1202. foll_flags &= ~FOLL_WRITE;
  1203. cond_resched();
  1204. }
  1205. if (IS_ERR(page))
  1206. return i ? i : PTR_ERR(page);
  1207. if (pages) {
  1208. pages[i] = page;
  1209. flush_anon_page(vma, page, start);
  1210. flush_dcache_page(page);
  1211. }
  1212. if (vmas)
  1213. vmas[i] = vma;
  1214. i++;
  1215. start += PAGE_SIZE;
  1216. len--;
  1217. } while (len && start < vma->vm_end);
  1218. } while (len);
  1219. return i;
  1220. }
  1221. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1222. unsigned long start, int len, int write, int force,
  1223. struct page **pages, struct vm_area_struct **vmas)
  1224. {
  1225. int flags = 0;
  1226. if (write)
  1227. flags |= GUP_FLAGS_WRITE;
  1228. if (force)
  1229. flags |= GUP_FLAGS_FORCE;
  1230. return __get_user_pages(tsk, mm,
  1231. start, len, flags,
  1232. pages, vmas);
  1233. }
  1234. EXPORT_SYMBOL(get_user_pages);
  1235. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1236. spinlock_t **ptl)
  1237. {
  1238. pgd_t * pgd = pgd_offset(mm, addr);
  1239. pud_t * pud = pud_alloc(mm, pgd, addr);
  1240. if (pud) {
  1241. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1242. if (pmd)
  1243. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1244. }
  1245. return NULL;
  1246. }
  1247. /*
  1248. * This is the old fallback for page remapping.
  1249. *
  1250. * For historical reasons, it only allows reserved pages. Only
  1251. * old drivers should use this, and they needed to mark their
  1252. * pages reserved for the old functions anyway.
  1253. */
  1254. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1255. struct page *page, pgprot_t prot)
  1256. {
  1257. struct mm_struct *mm = vma->vm_mm;
  1258. int retval;
  1259. pte_t *pte;
  1260. spinlock_t *ptl;
  1261. retval = -EINVAL;
  1262. if (PageAnon(page))
  1263. goto out;
  1264. retval = -ENOMEM;
  1265. flush_dcache_page(page);
  1266. pte = get_locked_pte(mm, addr, &ptl);
  1267. if (!pte)
  1268. goto out;
  1269. retval = -EBUSY;
  1270. if (!pte_none(*pte))
  1271. goto out_unlock;
  1272. /* Ok, finally just insert the thing.. */
  1273. get_page(page);
  1274. inc_mm_counter(mm, file_rss);
  1275. page_add_file_rmap(page);
  1276. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1277. retval = 0;
  1278. pte_unmap_unlock(pte, ptl);
  1279. return retval;
  1280. out_unlock:
  1281. pte_unmap_unlock(pte, ptl);
  1282. out:
  1283. return retval;
  1284. }
  1285. /**
  1286. * vm_insert_page - insert single page into user vma
  1287. * @vma: user vma to map to
  1288. * @addr: target user address of this page
  1289. * @page: source kernel page
  1290. *
  1291. * This allows drivers to insert individual pages they've allocated
  1292. * into a user vma.
  1293. *
  1294. * The page has to be a nice clean _individual_ kernel allocation.
  1295. * If you allocate a compound page, you need to have marked it as
  1296. * such (__GFP_COMP), or manually just split the page up yourself
  1297. * (see split_page()).
  1298. *
  1299. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1300. * took an arbitrary page protection parameter. This doesn't allow
  1301. * that. Your vma protection will have to be set up correctly, which
  1302. * means that if you want a shared writable mapping, you'd better
  1303. * ask for a shared writable mapping!
  1304. *
  1305. * The page does not need to be reserved.
  1306. */
  1307. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1308. struct page *page)
  1309. {
  1310. if (addr < vma->vm_start || addr >= vma->vm_end)
  1311. return -EFAULT;
  1312. if (!page_count(page))
  1313. return -EINVAL;
  1314. vma->vm_flags |= VM_INSERTPAGE;
  1315. return insert_page(vma, addr, page, vma->vm_page_prot);
  1316. }
  1317. EXPORT_SYMBOL(vm_insert_page);
  1318. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1319. unsigned long pfn, pgprot_t prot)
  1320. {
  1321. struct mm_struct *mm = vma->vm_mm;
  1322. int retval;
  1323. pte_t *pte, entry;
  1324. spinlock_t *ptl;
  1325. retval = -ENOMEM;
  1326. pte = get_locked_pte(mm, addr, &ptl);
  1327. if (!pte)
  1328. goto out;
  1329. retval = -EBUSY;
  1330. if (!pte_none(*pte))
  1331. goto out_unlock;
  1332. /* Ok, finally just insert the thing.. */
  1333. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1334. set_pte_at(mm, addr, pte, entry);
  1335. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1336. retval = 0;
  1337. out_unlock:
  1338. pte_unmap_unlock(pte, ptl);
  1339. out:
  1340. return retval;
  1341. }
  1342. /**
  1343. * vm_insert_pfn - insert single pfn into user vma
  1344. * @vma: user vma to map to
  1345. * @addr: target user address of this page
  1346. * @pfn: source kernel pfn
  1347. *
  1348. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1349. * they've allocated into a user vma. Same comments apply.
  1350. *
  1351. * This function should only be called from a vm_ops->fault handler, and
  1352. * in that case the handler should return NULL.
  1353. *
  1354. * vma cannot be a COW mapping.
  1355. *
  1356. * As this is called only for pages that do not currently exist, we
  1357. * do not need to flush old virtual caches or the TLB.
  1358. */
  1359. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1360. unsigned long pfn)
  1361. {
  1362. int ret;
  1363. pgprot_t pgprot = vma->vm_page_prot;
  1364. /*
  1365. * Technically, architectures with pte_special can avoid all these
  1366. * restrictions (same for remap_pfn_range). However we would like
  1367. * consistency in testing and feature parity among all, so we should
  1368. * try to keep these invariants in place for everybody.
  1369. */
  1370. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1371. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1372. (VM_PFNMAP|VM_MIXEDMAP));
  1373. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1374. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1375. if (addr < vma->vm_start || addr >= vma->vm_end)
  1376. return -EFAULT;
  1377. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1378. return -EINVAL;
  1379. ret = insert_pfn(vma, addr, pfn, pgprot);
  1380. if (ret)
  1381. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1382. return ret;
  1383. }
  1384. EXPORT_SYMBOL(vm_insert_pfn);
  1385. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1386. unsigned long pfn)
  1387. {
  1388. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1389. if (addr < vma->vm_start || addr >= vma->vm_end)
  1390. return -EFAULT;
  1391. /*
  1392. * If we don't have pte special, then we have to use the pfn_valid()
  1393. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1394. * refcount the page if pfn_valid is true (hence insert_page rather
  1395. * than insert_pfn).
  1396. */
  1397. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1398. struct page *page;
  1399. page = pfn_to_page(pfn);
  1400. return insert_page(vma, addr, page, vma->vm_page_prot);
  1401. }
  1402. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1403. }
  1404. EXPORT_SYMBOL(vm_insert_mixed);
  1405. /*
  1406. * maps a range of physical memory into the requested pages. the old
  1407. * mappings are removed. any references to nonexistent pages results
  1408. * in null mappings (currently treated as "copy-on-access")
  1409. */
  1410. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1411. unsigned long addr, unsigned long end,
  1412. unsigned long pfn, pgprot_t prot)
  1413. {
  1414. pte_t *pte;
  1415. spinlock_t *ptl;
  1416. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1417. if (!pte)
  1418. return -ENOMEM;
  1419. arch_enter_lazy_mmu_mode();
  1420. do {
  1421. BUG_ON(!pte_none(*pte));
  1422. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1423. pfn++;
  1424. } while (pte++, addr += PAGE_SIZE, addr != end);
  1425. arch_leave_lazy_mmu_mode();
  1426. pte_unmap_unlock(pte - 1, ptl);
  1427. return 0;
  1428. }
  1429. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1430. unsigned long addr, unsigned long end,
  1431. unsigned long pfn, pgprot_t prot)
  1432. {
  1433. pmd_t *pmd;
  1434. unsigned long next;
  1435. pfn -= addr >> PAGE_SHIFT;
  1436. pmd = pmd_alloc(mm, pud, addr);
  1437. if (!pmd)
  1438. return -ENOMEM;
  1439. do {
  1440. next = pmd_addr_end(addr, end);
  1441. if (remap_pte_range(mm, pmd, addr, next,
  1442. pfn + (addr >> PAGE_SHIFT), prot))
  1443. return -ENOMEM;
  1444. } while (pmd++, addr = next, addr != end);
  1445. return 0;
  1446. }
  1447. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1448. unsigned long addr, unsigned long end,
  1449. unsigned long pfn, pgprot_t prot)
  1450. {
  1451. pud_t *pud;
  1452. unsigned long next;
  1453. pfn -= addr >> PAGE_SHIFT;
  1454. pud = pud_alloc(mm, pgd, addr);
  1455. if (!pud)
  1456. return -ENOMEM;
  1457. do {
  1458. next = pud_addr_end(addr, end);
  1459. if (remap_pmd_range(mm, pud, addr, next,
  1460. pfn + (addr >> PAGE_SHIFT), prot))
  1461. return -ENOMEM;
  1462. } while (pud++, addr = next, addr != end);
  1463. return 0;
  1464. }
  1465. /**
  1466. * remap_pfn_range - remap kernel memory to userspace
  1467. * @vma: user vma to map to
  1468. * @addr: target user address to start at
  1469. * @pfn: physical address of kernel memory
  1470. * @size: size of map area
  1471. * @prot: page protection flags for this mapping
  1472. *
  1473. * Note: this is only safe if the mm semaphore is held when called.
  1474. */
  1475. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1476. unsigned long pfn, unsigned long size, pgprot_t prot)
  1477. {
  1478. pgd_t *pgd;
  1479. unsigned long next;
  1480. unsigned long end = addr + PAGE_ALIGN(size);
  1481. struct mm_struct *mm = vma->vm_mm;
  1482. int err;
  1483. /*
  1484. * Physically remapped pages are special. Tell the
  1485. * rest of the world about it:
  1486. * VM_IO tells people not to look at these pages
  1487. * (accesses can have side effects).
  1488. * VM_RESERVED is specified all over the place, because
  1489. * in 2.4 it kept swapout's vma scan off this vma; but
  1490. * in 2.6 the LRU scan won't even find its pages, so this
  1491. * flag means no more than count its pages in reserved_vm,
  1492. * and omit it from core dump, even when VM_IO turned off.
  1493. * VM_PFNMAP tells the core MM that the base pages are just
  1494. * raw PFN mappings, and do not have a "struct page" associated
  1495. * with them.
  1496. *
  1497. * There's a horrible special case to handle copy-on-write
  1498. * behaviour that some programs depend on. We mark the "original"
  1499. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1500. */
  1501. if (addr == vma->vm_start && end == vma->vm_end)
  1502. vma->vm_pgoff = pfn;
  1503. else if (is_cow_mapping(vma->vm_flags))
  1504. return -EINVAL;
  1505. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1506. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1507. if (err) {
  1508. /*
  1509. * To indicate that track_pfn related cleanup is not
  1510. * needed from higher level routine calling unmap_vmas
  1511. */
  1512. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1513. return -EINVAL;
  1514. }
  1515. BUG_ON(addr >= end);
  1516. pfn -= addr >> PAGE_SHIFT;
  1517. pgd = pgd_offset(mm, addr);
  1518. flush_cache_range(vma, addr, end);
  1519. do {
  1520. next = pgd_addr_end(addr, end);
  1521. err = remap_pud_range(mm, pgd, addr, next,
  1522. pfn + (addr >> PAGE_SHIFT), prot);
  1523. if (err)
  1524. break;
  1525. } while (pgd++, addr = next, addr != end);
  1526. if (err)
  1527. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1528. return err;
  1529. }
  1530. EXPORT_SYMBOL(remap_pfn_range);
  1531. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1532. unsigned long addr, unsigned long end,
  1533. pte_fn_t fn, void *data)
  1534. {
  1535. pte_t *pte;
  1536. int err;
  1537. pgtable_t token;
  1538. spinlock_t *uninitialized_var(ptl);
  1539. pte = (mm == &init_mm) ?
  1540. pte_alloc_kernel(pmd, addr) :
  1541. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1542. if (!pte)
  1543. return -ENOMEM;
  1544. BUG_ON(pmd_huge(*pmd));
  1545. arch_enter_lazy_mmu_mode();
  1546. token = pmd_pgtable(*pmd);
  1547. do {
  1548. err = fn(pte, token, addr, data);
  1549. if (err)
  1550. break;
  1551. } while (pte++, addr += PAGE_SIZE, addr != end);
  1552. arch_leave_lazy_mmu_mode();
  1553. if (mm != &init_mm)
  1554. pte_unmap_unlock(pte-1, ptl);
  1555. return err;
  1556. }
  1557. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1558. unsigned long addr, unsigned long end,
  1559. pte_fn_t fn, void *data)
  1560. {
  1561. pmd_t *pmd;
  1562. unsigned long next;
  1563. int err;
  1564. BUG_ON(pud_huge(*pud));
  1565. pmd = pmd_alloc(mm, pud, addr);
  1566. if (!pmd)
  1567. return -ENOMEM;
  1568. do {
  1569. next = pmd_addr_end(addr, end);
  1570. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1571. if (err)
  1572. break;
  1573. } while (pmd++, addr = next, addr != end);
  1574. return err;
  1575. }
  1576. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1577. unsigned long addr, unsigned long end,
  1578. pte_fn_t fn, void *data)
  1579. {
  1580. pud_t *pud;
  1581. unsigned long next;
  1582. int err;
  1583. pud = pud_alloc(mm, pgd, addr);
  1584. if (!pud)
  1585. return -ENOMEM;
  1586. do {
  1587. next = pud_addr_end(addr, end);
  1588. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1589. if (err)
  1590. break;
  1591. } while (pud++, addr = next, addr != end);
  1592. return err;
  1593. }
  1594. /*
  1595. * Scan a region of virtual memory, filling in page tables as necessary
  1596. * and calling a provided function on each leaf page table.
  1597. */
  1598. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1599. unsigned long size, pte_fn_t fn, void *data)
  1600. {
  1601. pgd_t *pgd;
  1602. unsigned long next;
  1603. unsigned long start = addr, end = addr + size;
  1604. int err;
  1605. BUG_ON(addr >= end);
  1606. mmu_notifier_invalidate_range_start(mm, start, end);
  1607. pgd = pgd_offset(mm, addr);
  1608. do {
  1609. next = pgd_addr_end(addr, end);
  1610. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1611. if (err)
  1612. break;
  1613. } while (pgd++, addr = next, addr != end);
  1614. mmu_notifier_invalidate_range_end(mm, start, end);
  1615. return err;
  1616. }
  1617. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1618. /*
  1619. * handle_pte_fault chooses page fault handler according to an entry
  1620. * which was read non-atomically. Before making any commitment, on
  1621. * those architectures or configurations (e.g. i386 with PAE) which
  1622. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1623. * must check under lock before unmapping the pte and proceeding
  1624. * (but do_wp_page is only called after already making such a check;
  1625. * and do_anonymous_page and do_no_page can safely check later on).
  1626. */
  1627. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1628. pte_t *page_table, pte_t orig_pte)
  1629. {
  1630. int same = 1;
  1631. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1632. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1633. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1634. spin_lock(ptl);
  1635. same = pte_same(*page_table, orig_pte);
  1636. spin_unlock(ptl);
  1637. }
  1638. #endif
  1639. pte_unmap(page_table);
  1640. return same;
  1641. }
  1642. /*
  1643. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1644. * servicing faults for write access. In the normal case, do always want
  1645. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1646. * that do not have writing enabled, when used by access_process_vm.
  1647. */
  1648. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1649. {
  1650. if (likely(vma->vm_flags & VM_WRITE))
  1651. pte = pte_mkwrite(pte);
  1652. return pte;
  1653. }
  1654. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1655. {
  1656. /*
  1657. * If the source page was a PFN mapping, we don't have
  1658. * a "struct page" for it. We do a best-effort copy by
  1659. * just copying from the original user address. If that
  1660. * fails, we just zero-fill it. Live with it.
  1661. */
  1662. if (unlikely(!src)) {
  1663. void *kaddr = kmap_atomic(dst, KM_USER0);
  1664. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1665. /*
  1666. * This really shouldn't fail, because the page is there
  1667. * in the page tables. But it might just be unreadable,
  1668. * in which case we just give up and fill the result with
  1669. * zeroes.
  1670. */
  1671. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1672. memset(kaddr, 0, PAGE_SIZE);
  1673. kunmap_atomic(kaddr, KM_USER0);
  1674. flush_dcache_page(dst);
  1675. } else
  1676. copy_user_highpage(dst, src, va, vma);
  1677. }
  1678. /*
  1679. * This routine handles present pages, when users try to write
  1680. * to a shared page. It is done by copying the page to a new address
  1681. * and decrementing the shared-page counter for the old page.
  1682. *
  1683. * Note that this routine assumes that the protection checks have been
  1684. * done by the caller (the low-level page fault routine in most cases).
  1685. * Thus we can safely just mark it writable once we've done any necessary
  1686. * COW.
  1687. *
  1688. * We also mark the page dirty at this point even though the page will
  1689. * change only once the write actually happens. This avoids a few races,
  1690. * and potentially makes it more efficient.
  1691. *
  1692. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1693. * but allow concurrent faults), with pte both mapped and locked.
  1694. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1695. */
  1696. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1697. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1698. spinlock_t *ptl, pte_t orig_pte)
  1699. {
  1700. struct page *old_page, *new_page;
  1701. pte_t entry;
  1702. int reuse = 0, ret = 0;
  1703. int page_mkwrite = 0;
  1704. struct page *dirty_page = NULL;
  1705. old_page = vm_normal_page(vma, address, orig_pte);
  1706. if (!old_page) {
  1707. /*
  1708. * VM_MIXEDMAP !pfn_valid() case
  1709. *
  1710. * We should not cow pages in a shared writeable mapping.
  1711. * Just mark the pages writable as we can't do any dirty
  1712. * accounting on raw pfn maps.
  1713. */
  1714. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1715. (VM_WRITE|VM_SHARED))
  1716. goto reuse;
  1717. goto gotten;
  1718. }
  1719. /*
  1720. * Take out anonymous pages first, anonymous shared vmas are
  1721. * not dirty accountable.
  1722. */
  1723. if (PageAnon(old_page)) {
  1724. if (!trylock_page(old_page)) {
  1725. page_cache_get(old_page);
  1726. pte_unmap_unlock(page_table, ptl);
  1727. lock_page(old_page);
  1728. page_table = pte_offset_map_lock(mm, pmd, address,
  1729. &ptl);
  1730. if (!pte_same(*page_table, orig_pte)) {
  1731. unlock_page(old_page);
  1732. page_cache_release(old_page);
  1733. goto unlock;
  1734. }
  1735. page_cache_release(old_page);
  1736. }
  1737. reuse = reuse_swap_page(old_page);
  1738. unlock_page(old_page);
  1739. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1740. (VM_WRITE|VM_SHARED))) {
  1741. /*
  1742. * Only catch write-faults on shared writable pages,
  1743. * read-only shared pages can get COWed by
  1744. * get_user_pages(.write=1, .force=1).
  1745. */
  1746. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1747. /*
  1748. * Notify the address space that the page is about to
  1749. * become writable so that it can prohibit this or wait
  1750. * for the page to get into an appropriate state.
  1751. *
  1752. * We do this without the lock held, so that it can
  1753. * sleep if it needs to.
  1754. */
  1755. page_cache_get(old_page);
  1756. pte_unmap_unlock(page_table, ptl);
  1757. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1758. goto unwritable_page;
  1759. /*
  1760. * Since we dropped the lock we need to revalidate
  1761. * the PTE as someone else may have changed it. If
  1762. * they did, we just return, as we can count on the
  1763. * MMU to tell us if they didn't also make it writable.
  1764. */
  1765. page_table = pte_offset_map_lock(mm, pmd, address,
  1766. &ptl);
  1767. page_cache_release(old_page);
  1768. if (!pte_same(*page_table, orig_pte))
  1769. goto unlock;
  1770. page_mkwrite = 1;
  1771. }
  1772. dirty_page = old_page;
  1773. get_page(dirty_page);
  1774. reuse = 1;
  1775. }
  1776. if (reuse) {
  1777. reuse:
  1778. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1779. entry = pte_mkyoung(orig_pte);
  1780. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1781. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1782. update_mmu_cache(vma, address, entry);
  1783. ret |= VM_FAULT_WRITE;
  1784. goto unlock;
  1785. }
  1786. /*
  1787. * Ok, we need to copy. Oh, well..
  1788. */
  1789. page_cache_get(old_page);
  1790. gotten:
  1791. pte_unmap_unlock(page_table, ptl);
  1792. if (unlikely(anon_vma_prepare(vma)))
  1793. goto oom;
  1794. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1795. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1796. if (!new_page)
  1797. goto oom;
  1798. /*
  1799. * Don't let another task, with possibly unlocked vma,
  1800. * keep the mlocked page.
  1801. */
  1802. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1803. lock_page(old_page); /* for LRU manipulation */
  1804. clear_page_mlock(old_page);
  1805. unlock_page(old_page);
  1806. }
  1807. cow_user_page(new_page, old_page, address, vma);
  1808. __SetPageUptodate(new_page);
  1809. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1810. goto oom_free_new;
  1811. /*
  1812. * Re-check the pte - we dropped the lock
  1813. */
  1814. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1815. if (likely(pte_same(*page_table, orig_pte))) {
  1816. if (old_page) {
  1817. if (!PageAnon(old_page)) {
  1818. dec_mm_counter(mm, file_rss);
  1819. inc_mm_counter(mm, anon_rss);
  1820. }
  1821. } else
  1822. inc_mm_counter(mm, anon_rss);
  1823. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1824. entry = mk_pte(new_page, vma->vm_page_prot);
  1825. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1826. /*
  1827. * Clear the pte entry and flush it first, before updating the
  1828. * pte with the new entry. This will avoid a race condition
  1829. * seen in the presence of one thread doing SMC and another
  1830. * thread doing COW.
  1831. */
  1832. ptep_clear_flush_notify(vma, address, page_table);
  1833. page_add_new_anon_rmap(new_page, vma, address);
  1834. set_pte_at(mm, address, page_table, entry);
  1835. update_mmu_cache(vma, address, entry);
  1836. if (old_page) {
  1837. /*
  1838. * Only after switching the pte to the new page may
  1839. * we remove the mapcount here. Otherwise another
  1840. * process may come and find the rmap count decremented
  1841. * before the pte is switched to the new page, and
  1842. * "reuse" the old page writing into it while our pte
  1843. * here still points into it and can be read by other
  1844. * threads.
  1845. *
  1846. * The critical issue is to order this
  1847. * page_remove_rmap with the ptp_clear_flush above.
  1848. * Those stores are ordered by (if nothing else,)
  1849. * the barrier present in the atomic_add_negative
  1850. * in page_remove_rmap.
  1851. *
  1852. * Then the TLB flush in ptep_clear_flush ensures that
  1853. * no process can access the old page before the
  1854. * decremented mapcount is visible. And the old page
  1855. * cannot be reused until after the decremented
  1856. * mapcount is visible. So transitively, TLBs to
  1857. * old page will be flushed before it can be reused.
  1858. */
  1859. page_remove_rmap(old_page);
  1860. }
  1861. /* Free the old page.. */
  1862. new_page = old_page;
  1863. ret |= VM_FAULT_WRITE;
  1864. } else
  1865. mem_cgroup_uncharge_page(new_page);
  1866. if (new_page)
  1867. page_cache_release(new_page);
  1868. if (old_page)
  1869. page_cache_release(old_page);
  1870. unlock:
  1871. pte_unmap_unlock(page_table, ptl);
  1872. if (dirty_page) {
  1873. if (vma->vm_file)
  1874. file_update_time(vma->vm_file);
  1875. /*
  1876. * Yes, Virginia, this is actually required to prevent a race
  1877. * with clear_page_dirty_for_io() from clearing the page dirty
  1878. * bit after it clear all dirty ptes, but before a racing
  1879. * do_wp_page installs a dirty pte.
  1880. *
  1881. * do_no_page is protected similarly.
  1882. */
  1883. wait_on_page_locked(dirty_page);
  1884. set_page_dirty_balance(dirty_page, page_mkwrite);
  1885. put_page(dirty_page);
  1886. }
  1887. return ret;
  1888. oom_free_new:
  1889. page_cache_release(new_page);
  1890. oom:
  1891. if (old_page)
  1892. page_cache_release(old_page);
  1893. return VM_FAULT_OOM;
  1894. unwritable_page:
  1895. page_cache_release(old_page);
  1896. return VM_FAULT_SIGBUS;
  1897. }
  1898. /*
  1899. * Helper functions for unmap_mapping_range().
  1900. *
  1901. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1902. *
  1903. * We have to restart searching the prio_tree whenever we drop the lock,
  1904. * since the iterator is only valid while the lock is held, and anyway
  1905. * a later vma might be split and reinserted earlier while lock dropped.
  1906. *
  1907. * The list of nonlinear vmas could be handled more efficiently, using
  1908. * a placeholder, but handle it in the same way until a need is shown.
  1909. * It is important to search the prio_tree before nonlinear list: a vma
  1910. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1911. * while the lock is dropped; but never shifted from list to prio_tree.
  1912. *
  1913. * In order to make forward progress despite restarting the search,
  1914. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1915. * quickly skip it next time around. Since the prio_tree search only
  1916. * shows us those vmas affected by unmapping the range in question, we
  1917. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1918. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1919. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1920. * i_mmap_lock.
  1921. *
  1922. * In order to make forward progress despite repeatedly restarting some
  1923. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1924. * and restart from that address when we reach that vma again. It might
  1925. * have been split or merged, shrunk or extended, but never shifted: so
  1926. * restart_addr remains valid so long as it remains in the vma's range.
  1927. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1928. * values so we can save vma's restart_addr in its truncate_count field.
  1929. */
  1930. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1931. static void reset_vma_truncate_counts(struct address_space *mapping)
  1932. {
  1933. struct vm_area_struct *vma;
  1934. struct prio_tree_iter iter;
  1935. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1936. vma->vm_truncate_count = 0;
  1937. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1938. vma->vm_truncate_count = 0;
  1939. }
  1940. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1941. unsigned long start_addr, unsigned long end_addr,
  1942. struct zap_details *details)
  1943. {
  1944. unsigned long restart_addr;
  1945. int need_break;
  1946. /*
  1947. * files that support invalidating or truncating portions of the
  1948. * file from under mmaped areas must have their ->fault function
  1949. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1950. * This provides synchronisation against concurrent unmapping here.
  1951. */
  1952. again:
  1953. restart_addr = vma->vm_truncate_count;
  1954. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1955. start_addr = restart_addr;
  1956. if (start_addr >= end_addr) {
  1957. /* Top of vma has been split off since last time */
  1958. vma->vm_truncate_count = details->truncate_count;
  1959. return 0;
  1960. }
  1961. }
  1962. restart_addr = zap_page_range(vma, start_addr,
  1963. end_addr - start_addr, details);
  1964. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1965. if (restart_addr >= end_addr) {
  1966. /* We have now completed this vma: mark it so */
  1967. vma->vm_truncate_count = details->truncate_count;
  1968. if (!need_break)
  1969. return 0;
  1970. } else {
  1971. /* Note restart_addr in vma's truncate_count field */
  1972. vma->vm_truncate_count = restart_addr;
  1973. if (!need_break)
  1974. goto again;
  1975. }
  1976. spin_unlock(details->i_mmap_lock);
  1977. cond_resched();
  1978. spin_lock(details->i_mmap_lock);
  1979. return -EINTR;
  1980. }
  1981. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1982. struct zap_details *details)
  1983. {
  1984. struct vm_area_struct *vma;
  1985. struct prio_tree_iter iter;
  1986. pgoff_t vba, vea, zba, zea;
  1987. restart:
  1988. vma_prio_tree_foreach(vma, &iter, root,
  1989. details->first_index, details->last_index) {
  1990. /* Skip quickly over those we have already dealt with */
  1991. if (vma->vm_truncate_count == details->truncate_count)
  1992. continue;
  1993. vba = vma->vm_pgoff;
  1994. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1995. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1996. zba = details->first_index;
  1997. if (zba < vba)
  1998. zba = vba;
  1999. zea = details->last_index;
  2000. if (zea > vea)
  2001. zea = vea;
  2002. if (unmap_mapping_range_vma(vma,
  2003. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2004. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2005. details) < 0)
  2006. goto restart;
  2007. }
  2008. }
  2009. static inline void unmap_mapping_range_list(struct list_head *head,
  2010. struct zap_details *details)
  2011. {
  2012. struct vm_area_struct *vma;
  2013. /*
  2014. * In nonlinear VMAs there is no correspondence between virtual address
  2015. * offset and file offset. So we must perform an exhaustive search
  2016. * across *all* the pages in each nonlinear VMA, not just the pages
  2017. * whose virtual address lies outside the file truncation point.
  2018. */
  2019. restart:
  2020. list_for_each_entry(vma, head, shared.vm_set.list) {
  2021. /* Skip quickly over those we have already dealt with */
  2022. if (vma->vm_truncate_count == details->truncate_count)
  2023. continue;
  2024. details->nonlinear_vma = vma;
  2025. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2026. vma->vm_end, details) < 0)
  2027. goto restart;
  2028. }
  2029. }
  2030. /**
  2031. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2032. * @mapping: the address space containing mmaps to be unmapped.
  2033. * @holebegin: byte in first page to unmap, relative to the start of
  2034. * the underlying file. This will be rounded down to a PAGE_SIZE
  2035. * boundary. Note that this is different from vmtruncate(), which
  2036. * must keep the partial page. In contrast, we must get rid of
  2037. * partial pages.
  2038. * @holelen: size of prospective hole in bytes. This will be rounded
  2039. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2040. * end of the file.
  2041. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2042. * but 0 when invalidating pagecache, don't throw away private data.
  2043. */
  2044. void unmap_mapping_range(struct address_space *mapping,
  2045. loff_t const holebegin, loff_t const holelen, int even_cows)
  2046. {
  2047. struct zap_details details;
  2048. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2049. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2050. /* Check for overflow. */
  2051. if (sizeof(holelen) > sizeof(hlen)) {
  2052. long long holeend =
  2053. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2054. if (holeend & ~(long long)ULONG_MAX)
  2055. hlen = ULONG_MAX - hba + 1;
  2056. }
  2057. details.check_mapping = even_cows? NULL: mapping;
  2058. details.nonlinear_vma = NULL;
  2059. details.first_index = hba;
  2060. details.last_index = hba + hlen - 1;
  2061. if (details.last_index < details.first_index)
  2062. details.last_index = ULONG_MAX;
  2063. details.i_mmap_lock = &mapping->i_mmap_lock;
  2064. spin_lock(&mapping->i_mmap_lock);
  2065. /* Protect against endless unmapping loops */
  2066. mapping->truncate_count++;
  2067. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2068. if (mapping->truncate_count == 0)
  2069. reset_vma_truncate_counts(mapping);
  2070. mapping->truncate_count++;
  2071. }
  2072. details.truncate_count = mapping->truncate_count;
  2073. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2074. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2075. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2076. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2077. spin_unlock(&mapping->i_mmap_lock);
  2078. }
  2079. EXPORT_SYMBOL(unmap_mapping_range);
  2080. /**
  2081. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2082. * @inode: inode of the file used
  2083. * @offset: file offset to start truncating
  2084. *
  2085. * NOTE! We have to be ready to update the memory sharing
  2086. * between the file and the memory map for a potential last
  2087. * incomplete page. Ugly, but necessary.
  2088. */
  2089. int vmtruncate(struct inode * inode, loff_t offset)
  2090. {
  2091. if (inode->i_size < offset) {
  2092. unsigned long limit;
  2093. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2094. if (limit != RLIM_INFINITY && offset > limit)
  2095. goto out_sig;
  2096. if (offset > inode->i_sb->s_maxbytes)
  2097. goto out_big;
  2098. i_size_write(inode, offset);
  2099. } else {
  2100. struct address_space *mapping = inode->i_mapping;
  2101. /*
  2102. * truncation of in-use swapfiles is disallowed - it would
  2103. * cause subsequent swapout to scribble on the now-freed
  2104. * blocks.
  2105. */
  2106. if (IS_SWAPFILE(inode))
  2107. return -ETXTBSY;
  2108. i_size_write(inode, offset);
  2109. /*
  2110. * unmap_mapping_range is called twice, first simply for
  2111. * efficiency so that truncate_inode_pages does fewer
  2112. * single-page unmaps. However after this first call, and
  2113. * before truncate_inode_pages finishes, it is possible for
  2114. * private pages to be COWed, which remain after
  2115. * truncate_inode_pages finishes, hence the second
  2116. * unmap_mapping_range call must be made for correctness.
  2117. */
  2118. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2119. truncate_inode_pages(mapping, offset);
  2120. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2121. }
  2122. if (inode->i_op->truncate)
  2123. inode->i_op->truncate(inode);
  2124. return 0;
  2125. out_sig:
  2126. send_sig(SIGXFSZ, current, 0);
  2127. out_big:
  2128. return -EFBIG;
  2129. }
  2130. EXPORT_SYMBOL(vmtruncate);
  2131. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2132. {
  2133. struct address_space *mapping = inode->i_mapping;
  2134. /*
  2135. * If the underlying filesystem is not going to provide
  2136. * a way to truncate a range of blocks (punch a hole) -
  2137. * we should return failure right now.
  2138. */
  2139. if (!inode->i_op->truncate_range)
  2140. return -ENOSYS;
  2141. mutex_lock(&inode->i_mutex);
  2142. down_write(&inode->i_alloc_sem);
  2143. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2144. truncate_inode_pages_range(mapping, offset, end);
  2145. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2146. inode->i_op->truncate_range(inode, offset, end);
  2147. up_write(&inode->i_alloc_sem);
  2148. mutex_unlock(&inode->i_mutex);
  2149. return 0;
  2150. }
  2151. /*
  2152. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2153. * but allow concurrent faults), and pte mapped but not yet locked.
  2154. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2155. */
  2156. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2157. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2158. int write_access, pte_t orig_pte)
  2159. {
  2160. spinlock_t *ptl;
  2161. struct page *page;
  2162. swp_entry_t entry;
  2163. pte_t pte;
  2164. struct mem_cgroup *ptr = NULL;
  2165. int ret = 0;
  2166. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2167. goto out;
  2168. entry = pte_to_swp_entry(orig_pte);
  2169. if (is_migration_entry(entry)) {
  2170. migration_entry_wait(mm, pmd, address);
  2171. goto out;
  2172. }
  2173. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2174. page = lookup_swap_cache(entry);
  2175. if (!page) {
  2176. grab_swap_token(); /* Contend for token _before_ read-in */
  2177. page = swapin_readahead(entry,
  2178. GFP_HIGHUSER_MOVABLE, vma, address);
  2179. if (!page) {
  2180. /*
  2181. * Back out if somebody else faulted in this pte
  2182. * while we released the pte lock.
  2183. */
  2184. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2185. if (likely(pte_same(*page_table, orig_pte)))
  2186. ret = VM_FAULT_OOM;
  2187. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2188. goto unlock;
  2189. }
  2190. /* Had to read the page from swap area: Major fault */
  2191. ret = VM_FAULT_MAJOR;
  2192. count_vm_event(PGMAJFAULT);
  2193. }
  2194. mark_page_accessed(page);
  2195. lock_page(page);
  2196. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2197. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2198. ret = VM_FAULT_OOM;
  2199. unlock_page(page);
  2200. goto out;
  2201. }
  2202. /*
  2203. * Back out if somebody else already faulted in this pte.
  2204. */
  2205. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2206. if (unlikely(!pte_same(*page_table, orig_pte)))
  2207. goto out_nomap;
  2208. if (unlikely(!PageUptodate(page))) {
  2209. ret = VM_FAULT_SIGBUS;
  2210. goto out_nomap;
  2211. }
  2212. /*
  2213. * The page isn't present yet, go ahead with the fault.
  2214. *
  2215. * Be careful about the sequence of operations here.
  2216. * To get its accounting right, reuse_swap_page() must be called
  2217. * while the page is counted on swap but not yet in mapcount i.e.
  2218. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2219. * must be called after the swap_free(), or it will never succeed.
  2220. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2221. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2222. * in page->private. In this case, a record in swap_cgroup is silently
  2223. * discarded at swap_free().
  2224. */
  2225. inc_mm_counter(mm, anon_rss);
  2226. pte = mk_pte(page, vma->vm_page_prot);
  2227. if (write_access && reuse_swap_page(page)) {
  2228. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2229. write_access = 0;
  2230. }
  2231. flush_icache_page(vma, page);
  2232. set_pte_at(mm, address, page_table, pte);
  2233. page_add_anon_rmap(page, vma, address);
  2234. /* It's better to call commit-charge after rmap is established */
  2235. mem_cgroup_commit_charge_swapin(page, ptr);
  2236. swap_free(entry);
  2237. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2238. try_to_free_swap(page);
  2239. unlock_page(page);
  2240. if (write_access) {
  2241. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2242. if (ret & VM_FAULT_ERROR)
  2243. ret &= VM_FAULT_ERROR;
  2244. goto out;
  2245. }
  2246. /* No need to invalidate - it was non-present before */
  2247. update_mmu_cache(vma, address, pte);
  2248. unlock:
  2249. pte_unmap_unlock(page_table, ptl);
  2250. out:
  2251. return ret;
  2252. out_nomap:
  2253. mem_cgroup_cancel_charge_swapin(ptr);
  2254. pte_unmap_unlock(page_table, ptl);
  2255. unlock_page(page);
  2256. page_cache_release(page);
  2257. return ret;
  2258. }
  2259. /*
  2260. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2261. * but allow concurrent faults), and pte mapped but not yet locked.
  2262. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2263. */
  2264. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2265. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2266. int write_access)
  2267. {
  2268. struct page *page;
  2269. spinlock_t *ptl;
  2270. pte_t entry;
  2271. /* Allocate our own private page. */
  2272. pte_unmap(page_table);
  2273. if (unlikely(anon_vma_prepare(vma)))
  2274. goto oom;
  2275. page = alloc_zeroed_user_highpage_movable(vma, address);
  2276. if (!page)
  2277. goto oom;
  2278. __SetPageUptodate(page);
  2279. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2280. goto oom_free_page;
  2281. entry = mk_pte(page, vma->vm_page_prot);
  2282. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2283. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2284. if (!pte_none(*page_table))
  2285. goto release;
  2286. inc_mm_counter(mm, anon_rss);
  2287. page_add_new_anon_rmap(page, vma, address);
  2288. set_pte_at(mm, address, page_table, entry);
  2289. /* No need to invalidate - it was non-present before */
  2290. update_mmu_cache(vma, address, entry);
  2291. unlock:
  2292. pte_unmap_unlock(page_table, ptl);
  2293. return 0;
  2294. release:
  2295. mem_cgroup_uncharge_page(page);
  2296. page_cache_release(page);
  2297. goto unlock;
  2298. oom_free_page:
  2299. page_cache_release(page);
  2300. oom:
  2301. return VM_FAULT_OOM;
  2302. }
  2303. /*
  2304. * __do_fault() tries to create a new page mapping. It aggressively
  2305. * tries to share with existing pages, but makes a separate copy if
  2306. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2307. * the next page fault.
  2308. *
  2309. * As this is called only for pages that do not currently exist, we
  2310. * do not need to flush old virtual caches or the TLB.
  2311. *
  2312. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2313. * but allow concurrent faults), and pte neither mapped nor locked.
  2314. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2315. */
  2316. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2317. unsigned long address, pmd_t *pmd,
  2318. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2319. {
  2320. pte_t *page_table;
  2321. spinlock_t *ptl;
  2322. struct page *page;
  2323. pte_t entry;
  2324. int anon = 0;
  2325. int charged = 0;
  2326. struct page *dirty_page = NULL;
  2327. struct vm_fault vmf;
  2328. int ret;
  2329. int page_mkwrite = 0;
  2330. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2331. vmf.pgoff = pgoff;
  2332. vmf.flags = flags;
  2333. vmf.page = NULL;
  2334. ret = vma->vm_ops->fault(vma, &vmf);
  2335. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2336. return ret;
  2337. /*
  2338. * For consistency in subsequent calls, make the faulted page always
  2339. * locked.
  2340. */
  2341. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2342. lock_page(vmf.page);
  2343. else
  2344. VM_BUG_ON(!PageLocked(vmf.page));
  2345. /*
  2346. * Should we do an early C-O-W break?
  2347. */
  2348. page = vmf.page;
  2349. if (flags & FAULT_FLAG_WRITE) {
  2350. if (!(vma->vm_flags & VM_SHARED)) {
  2351. anon = 1;
  2352. if (unlikely(anon_vma_prepare(vma))) {
  2353. ret = VM_FAULT_OOM;
  2354. goto out;
  2355. }
  2356. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2357. vma, address);
  2358. if (!page) {
  2359. ret = VM_FAULT_OOM;
  2360. goto out;
  2361. }
  2362. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2363. ret = VM_FAULT_OOM;
  2364. page_cache_release(page);
  2365. goto out;
  2366. }
  2367. charged = 1;
  2368. /*
  2369. * Don't let another task, with possibly unlocked vma,
  2370. * keep the mlocked page.
  2371. */
  2372. if (vma->vm_flags & VM_LOCKED)
  2373. clear_page_mlock(vmf.page);
  2374. copy_user_highpage(page, vmf.page, address, vma);
  2375. __SetPageUptodate(page);
  2376. } else {
  2377. /*
  2378. * If the page will be shareable, see if the backing
  2379. * address space wants to know that the page is about
  2380. * to become writable
  2381. */
  2382. if (vma->vm_ops->page_mkwrite) {
  2383. unlock_page(page);
  2384. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2385. ret = VM_FAULT_SIGBUS;
  2386. anon = 1; /* no anon but release vmf.page */
  2387. goto out_unlocked;
  2388. }
  2389. lock_page(page);
  2390. /*
  2391. * XXX: this is not quite right (racy vs
  2392. * invalidate) to unlock and relock the page
  2393. * like this, however a better fix requires
  2394. * reworking page_mkwrite locking API, which
  2395. * is better done later.
  2396. */
  2397. if (!page->mapping) {
  2398. ret = 0;
  2399. anon = 1; /* no anon but release vmf.page */
  2400. goto out;
  2401. }
  2402. page_mkwrite = 1;
  2403. }
  2404. }
  2405. }
  2406. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2407. /*
  2408. * This silly early PAGE_DIRTY setting removes a race
  2409. * due to the bad i386 page protection. But it's valid
  2410. * for other architectures too.
  2411. *
  2412. * Note that if write_access is true, we either now have
  2413. * an exclusive copy of the page, or this is a shared mapping,
  2414. * so we can make it writable and dirty to avoid having to
  2415. * handle that later.
  2416. */
  2417. /* Only go through if we didn't race with anybody else... */
  2418. if (likely(pte_same(*page_table, orig_pte))) {
  2419. flush_icache_page(vma, page);
  2420. entry = mk_pte(page, vma->vm_page_prot);
  2421. if (flags & FAULT_FLAG_WRITE)
  2422. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2423. if (anon) {
  2424. inc_mm_counter(mm, anon_rss);
  2425. page_add_new_anon_rmap(page, vma, address);
  2426. } else {
  2427. inc_mm_counter(mm, file_rss);
  2428. page_add_file_rmap(page);
  2429. if (flags & FAULT_FLAG_WRITE) {
  2430. dirty_page = page;
  2431. get_page(dirty_page);
  2432. }
  2433. }
  2434. set_pte_at(mm, address, page_table, entry);
  2435. /* no need to invalidate: a not-present page won't be cached */
  2436. update_mmu_cache(vma, address, entry);
  2437. } else {
  2438. if (charged)
  2439. mem_cgroup_uncharge_page(page);
  2440. if (anon)
  2441. page_cache_release(page);
  2442. else
  2443. anon = 1; /* no anon but release faulted_page */
  2444. }
  2445. pte_unmap_unlock(page_table, ptl);
  2446. out:
  2447. unlock_page(vmf.page);
  2448. out_unlocked:
  2449. if (anon)
  2450. page_cache_release(vmf.page);
  2451. else if (dirty_page) {
  2452. if (vma->vm_file)
  2453. file_update_time(vma->vm_file);
  2454. set_page_dirty_balance(dirty_page, page_mkwrite);
  2455. put_page(dirty_page);
  2456. }
  2457. return ret;
  2458. }
  2459. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2460. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2461. int write_access, pte_t orig_pte)
  2462. {
  2463. pgoff_t pgoff = (((address & PAGE_MASK)
  2464. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2465. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2466. pte_unmap(page_table);
  2467. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2468. }
  2469. /*
  2470. * Fault of a previously existing named mapping. Repopulate the pte
  2471. * from the encoded file_pte if possible. This enables swappable
  2472. * nonlinear vmas.
  2473. *
  2474. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2475. * but allow concurrent faults), and pte mapped but not yet locked.
  2476. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2477. */
  2478. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2479. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2480. int write_access, pte_t orig_pte)
  2481. {
  2482. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2483. (write_access ? FAULT_FLAG_WRITE : 0);
  2484. pgoff_t pgoff;
  2485. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2486. return 0;
  2487. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2488. /*
  2489. * Page table corrupted: show pte and kill process.
  2490. */
  2491. print_bad_pte(vma, address, orig_pte, NULL);
  2492. return VM_FAULT_OOM;
  2493. }
  2494. pgoff = pte_to_pgoff(orig_pte);
  2495. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2496. }
  2497. /*
  2498. * These routines also need to handle stuff like marking pages dirty
  2499. * and/or accessed for architectures that don't do it in hardware (most
  2500. * RISC architectures). The early dirtying is also good on the i386.
  2501. *
  2502. * There is also a hook called "update_mmu_cache()" that architectures
  2503. * with external mmu caches can use to update those (ie the Sparc or
  2504. * PowerPC hashed page tables that act as extended TLBs).
  2505. *
  2506. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2507. * but allow concurrent faults), and pte mapped but not yet locked.
  2508. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2509. */
  2510. static inline int handle_pte_fault(struct mm_struct *mm,
  2511. struct vm_area_struct *vma, unsigned long address,
  2512. pte_t *pte, pmd_t *pmd, int write_access)
  2513. {
  2514. pte_t entry;
  2515. spinlock_t *ptl;
  2516. entry = *pte;
  2517. if (!pte_present(entry)) {
  2518. if (pte_none(entry)) {
  2519. if (vma->vm_ops) {
  2520. if (likely(vma->vm_ops->fault))
  2521. return do_linear_fault(mm, vma, address,
  2522. pte, pmd, write_access, entry);
  2523. }
  2524. return do_anonymous_page(mm, vma, address,
  2525. pte, pmd, write_access);
  2526. }
  2527. if (pte_file(entry))
  2528. return do_nonlinear_fault(mm, vma, address,
  2529. pte, pmd, write_access, entry);
  2530. return do_swap_page(mm, vma, address,
  2531. pte, pmd, write_access, entry);
  2532. }
  2533. ptl = pte_lockptr(mm, pmd);
  2534. spin_lock(ptl);
  2535. if (unlikely(!pte_same(*pte, entry)))
  2536. goto unlock;
  2537. if (write_access) {
  2538. if (!pte_write(entry))
  2539. return do_wp_page(mm, vma, address,
  2540. pte, pmd, ptl, entry);
  2541. entry = pte_mkdirty(entry);
  2542. }
  2543. entry = pte_mkyoung(entry);
  2544. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2545. update_mmu_cache(vma, address, entry);
  2546. } else {
  2547. /*
  2548. * This is needed only for protection faults but the arch code
  2549. * is not yet telling us if this is a protection fault or not.
  2550. * This still avoids useless tlb flushes for .text page faults
  2551. * with threads.
  2552. */
  2553. if (write_access)
  2554. flush_tlb_page(vma, address);
  2555. }
  2556. unlock:
  2557. pte_unmap_unlock(pte, ptl);
  2558. return 0;
  2559. }
  2560. /*
  2561. * By the time we get here, we already hold the mm semaphore
  2562. */
  2563. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2564. unsigned long address, int write_access)
  2565. {
  2566. pgd_t *pgd;
  2567. pud_t *pud;
  2568. pmd_t *pmd;
  2569. pte_t *pte;
  2570. __set_current_state(TASK_RUNNING);
  2571. count_vm_event(PGFAULT);
  2572. if (unlikely(is_vm_hugetlb_page(vma)))
  2573. return hugetlb_fault(mm, vma, address, write_access);
  2574. pgd = pgd_offset(mm, address);
  2575. pud = pud_alloc(mm, pgd, address);
  2576. if (!pud)
  2577. return VM_FAULT_OOM;
  2578. pmd = pmd_alloc(mm, pud, address);
  2579. if (!pmd)
  2580. return VM_FAULT_OOM;
  2581. pte = pte_alloc_map(mm, pmd, address);
  2582. if (!pte)
  2583. return VM_FAULT_OOM;
  2584. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2585. }
  2586. #ifndef __PAGETABLE_PUD_FOLDED
  2587. /*
  2588. * Allocate page upper directory.
  2589. * We've already handled the fast-path in-line.
  2590. */
  2591. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2592. {
  2593. pud_t *new = pud_alloc_one(mm, address);
  2594. if (!new)
  2595. return -ENOMEM;
  2596. smp_wmb(); /* See comment in __pte_alloc */
  2597. spin_lock(&mm->page_table_lock);
  2598. if (pgd_present(*pgd)) /* Another has populated it */
  2599. pud_free(mm, new);
  2600. else
  2601. pgd_populate(mm, pgd, new);
  2602. spin_unlock(&mm->page_table_lock);
  2603. return 0;
  2604. }
  2605. #endif /* __PAGETABLE_PUD_FOLDED */
  2606. #ifndef __PAGETABLE_PMD_FOLDED
  2607. /*
  2608. * Allocate page middle directory.
  2609. * We've already handled the fast-path in-line.
  2610. */
  2611. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2612. {
  2613. pmd_t *new = pmd_alloc_one(mm, address);
  2614. if (!new)
  2615. return -ENOMEM;
  2616. smp_wmb(); /* See comment in __pte_alloc */
  2617. spin_lock(&mm->page_table_lock);
  2618. #ifndef __ARCH_HAS_4LEVEL_HACK
  2619. if (pud_present(*pud)) /* Another has populated it */
  2620. pmd_free(mm, new);
  2621. else
  2622. pud_populate(mm, pud, new);
  2623. #else
  2624. if (pgd_present(*pud)) /* Another has populated it */
  2625. pmd_free(mm, new);
  2626. else
  2627. pgd_populate(mm, pud, new);
  2628. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2629. spin_unlock(&mm->page_table_lock);
  2630. return 0;
  2631. }
  2632. #endif /* __PAGETABLE_PMD_FOLDED */
  2633. int make_pages_present(unsigned long addr, unsigned long end)
  2634. {
  2635. int ret, len, write;
  2636. struct vm_area_struct * vma;
  2637. vma = find_vma(current->mm, addr);
  2638. if (!vma)
  2639. return -ENOMEM;
  2640. write = (vma->vm_flags & VM_WRITE) != 0;
  2641. BUG_ON(addr >= end);
  2642. BUG_ON(end > vma->vm_end);
  2643. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2644. ret = get_user_pages(current, current->mm, addr,
  2645. len, write, 0, NULL, NULL);
  2646. if (ret < 0)
  2647. return ret;
  2648. return ret == len ? 0 : -EFAULT;
  2649. }
  2650. #if !defined(__HAVE_ARCH_GATE_AREA)
  2651. #if defined(AT_SYSINFO_EHDR)
  2652. static struct vm_area_struct gate_vma;
  2653. static int __init gate_vma_init(void)
  2654. {
  2655. gate_vma.vm_mm = NULL;
  2656. gate_vma.vm_start = FIXADDR_USER_START;
  2657. gate_vma.vm_end = FIXADDR_USER_END;
  2658. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2659. gate_vma.vm_page_prot = __P101;
  2660. /*
  2661. * Make sure the vDSO gets into every core dump.
  2662. * Dumping its contents makes post-mortem fully interpretable later
  2663. * without matching up the same kernel and hardware config to see
  2664. * what PC values meant.
  2665. */
  2666. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2667. return 0;
  2668. }
  2669. __initcall(gate_vma_init);
  2670. #endif
  2671. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2672. {
  2673. #ifdef AT_SYSINFO_EHDR
  2674. return &gate_vma;
  2675. #else
  2676. return NULL;
  2677. #endif
  2678. }
  2679. int in_gate_area_no_task(unsigned long addr)
  2680. {
  2681. #ifdef AT_SYSINFO_EHDR
  2682. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2683. return 1;
  2684. #endif
  2685. return 0;
  2686. }
  2687. #endif /* __HAVE_ARCH_GATE_AREA */
  2688. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2689. int follow_phys(struct vm_area_struct *vma,
  2690. unsigned long address, unsigned int flags,
  2691. unsigned long *prot, resource_size_t *phys)
  2692. {
  2693. pgd_t *pgd;
  2694. pud_t *pud;
  2695. pmd_t *pmd;
  2696. pte_t *ptep, pte;
  2697. spinlock_t *ptl;
  2698. resource_size_t phys_addr = 0;
  2699. struct mm_struct *mm = vma->vm_mm;
  2700. int ret = -EINVAL;
  2701. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2702. goto out;
  2703. pgd = pgd_offset(mm, address);
  2704. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2705. goto out;
  2706. pud = pud_offset(pgd, address);
  2707. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2708. goto out;
  2709. pmd = pmd_offset(pud, address);
  2710. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2711. goto out;
  2712. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2713. if (pmd_huge(*pmd))
  2714. goto out;
  2715. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  2716. if (!ptep)
  2717. goto out;
  2718. pte = *ptep;
  2719. if (!pte_present(pte))
  2720. goto unlock;
  2721. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2722. goto unlock;
  2723. phys_addr = pte_pfn(pte);
  2724. phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
  2725. *prot = pgprot_val(pte_pgprot(pte));
  2726. *phys = phys_addr;
  2727. ret = 0;
  2728. unlock:
  2729. pte_unmap_unlock(ptep, ptl);
  2730. out:
  2731. return ret;
  2732. }
  2733. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2734. void *buf, int len, int write)
  2735. {
  2736. resource_size_t phys_addr;
  2737. unsigned long prot = 0;
  2738. void __iomem *maddr;
  2739. int offset = addr & (PAGE_SIZE-1);
  2740. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2741. return -EINVAL;
  2742. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2743. if (write)
  2744. memcpy_toio(maddr + offset, buf, len);
  2745. else
  2746. memcpy_fromio(buf, maddr + offset, len);
  2747. iounmap(maddr);
  2748. return len;
  2749. }
  2750. #endif
  2751. /*
  2752. * Access another process' address space.
  2753. * Source/target buffer must be kernel space,
  2754. * Do not walk the page table directly, use get_user_pages
  2755. */
  2756. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2757. {
  2758. struct mm_struct *mm;
  2759. struct vm_area_struct *vma;
  2760. void *old_buf = buf;
  2761. mm = get_task_mm(tsk);
  2762. if (!mm)
  2763. return 0;
  2764. down_read(&mm->mmap_sem);
  2765. /* ignore errors, just check how much was successfully transferred */
  2766. while (len) {
  2767. int bytes, ret, offset;
  2768. void *maddr;
  2769. struct page *page = NULL;
  2770. ret = get_user_pages(tsk, mm, addr, 1,
  2771. write, 1, &page, &vma);
  2772. if (ret <= 0) {
  2773. /*
  2774. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2775. * we can access using slightly different code.
  2776. */
  2777. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2778. vma = find_vma(mm, addr);
  2779. if (!vma)
  2780. break;
  2781. if (vma->vm_ops && vma->vm_ops->access)
  2782. ret = vma->vm_ops->access(vma, addr, buf,
  2783. len, write);
  2784. if (ret <= 0)
  2785. #endif
  2786. break;
  2787. bytes = ret;
  2788. } else {
  2789. bytes = len;
  2790. offset = addr & (PAGE_SIZE-1);
  2791. if (bytes > PAGE_SIZE-offset)
  2792. bytes = PAGE_SIZE-offset;
  2793. maddr = kmap(page);
  2794. if (write) {
  2795. copy_to_user_page(vma, page, addr,
  2796. maddr + offset, buf, bytes);
  2797. set_page_dirty_lock(page);
  2798. } else {
  2799. copy_from_user_page(vma, page, addr,
  2800. buf, maddr + offset, bytes);
  2801. }
  2802. kunmap(page);
  2803. page_cache_release(page);
  2804. }
  2805. len -= bytes;
  2806. buf += bytes;
  2807. addr += bytes;
  2808. }
  2809. up_read(&mm->mmap_sem);
  2810. mmput(mm);
  2811. return buf - old_buf;
  2812. }
  2813. /*
  2814. * Print the name of a VMA.
  2815. */
  2816. void print_vma_addr(char *prefix, unsigned long ip)
  2817. {
  2818. struct mm_struct *mm = current->mm;
  2819. struct vm_area_struct *vma;
  2820. /*
  2821. * Do not print if we are in atomic
  2822. * contexts (in exception stacks, etc.):
  2823. */
  2824. if (preempt_count())
  2825. return;
  2826. down_read(&mm->mmap_sem);
  2827. vma = find_vma(mm, ip);
  2828. if (vma && vma->vm_file) {
  2829. struct file *f = vma->vm_file;
  2830. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2831. if (buf) {
  2832. char *p, *s;
  2833. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2834. if (IS_ERR(p))
  2835. p = "?";
  2836. s = strrchr(p, '/');
  2837. if (s)
  2838. p = s+1;
  2839. printk("%s%s[%lx+%lx]", prefix, p,
  2840. vma->vm_start,
  2841. vma->vm_end - vma->vm_start);
  2842. free_page((unsigned long)buf);
  2843. }
  2844. }
  2845. up_read(&current->mm->mmap_sem);
  2846. }
  2847. #ifdef CONFIG_PROVE_LOCKING
  2848. void might_fault(void)
  2849. {
  2850. /*
  2851. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  2852. * holding the mmap_sem, this is safe because kernel memory doesn't
  2853. * get paged out, therefore we'll never actually fault, and the
  2854. * below annotations will generate false positives.
  2855. */
  2856. if (segment_eq(get_fs(), KERNEL_DS))
  2857. return;
  2858. might_sleep();
  2859. /*
  2860. * it would be nicer only to annotate paths which are not under
  2861. * pagefault_disable, however that requires a larger audit and
  2862. * providing helpers like get_user_atomic.
  2863. */
  2864. if (!in_atomic() && current->mm)
  2865. might_lock_read(&current->mm->mmap_sem);
  2866. }
  2867. EXPORT_SYMBOL(might_fault);
  2868. #endif