ordered-data.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/gfp.h>
  19. #include <linux/slab.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagevec.h>
  23. #include "ctree.h"
  24. #include "transaction.h"
  25. #include "btrfs_inode.h"
  26. #include "extent_io.h"
  27. static u64 entry_end(struct btrfs_ordered_extent *entry)
  28. {
  29. if (entry->file_offset + entry->len < entry->file_offset)
  30. return (u64)-1;
  31. return entry->file_offset + entry->len;
  32. }
  33. /* returns NULL if the insertion worked, or it returns the node it did find
  34. * in the tree
  35. */
  36. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37. struct rb_node *node)
  38. {
  39. struct rb_node **p = &root->rb_node;
  40. struct rb_node *parent = NULL;
  41. struct btrfs_ordered_extent *entry;
  42. while (*p) {
  43. parent = *p;
  44. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  45. if (file_offset < entry->file_offset)
  46. p = &(*p)->rb_left;
  47. else if (file_offset >= entry_end(entry))
  48. p = &(*p)->rb_right;
  49. else
  50. return parent;
  51. }
  52. rb_link_node(node, parent, p);
  53. rb_insert_color(node, root);
  54. return NULL;
  55. }
  56. /*
  57. * look for a given offset in the tree, and if it can't be found return the
  58. * first lesser offset
  59. */
  60. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  61. struct rb_node **prev_ret)
  62. {
  63. struct rb_node *n = root->rb_node;
  64. struct rb_node *prev = NULL;
  65. struct rb_node *test;
  66. struct btrfs_ordered_extent *entry;
  67. struct btrfs_ordered_extent *prev_entry = NULL;
  68. while (n) {
  69. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  70. prev = n;
  71. prev_entry = entry;
  72. if (file_offset < entry->file_offset)
  73. n = n->rb_left;
  74. else if (file_offset >= entry_end(entry))
  75. n = n->rb_right;
  76. else
  77. return n;
  78. }
  79. if (!prev_ret)
  80. return NULL;
  81. while (prev && file_offset >= entry_end(prev_entry)) {
  82. test = rb_next(prev);
  83. if (!test)
  84. break;
  85. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  86. rb_node);
  87. if (file_offset < entry_end(prev_entry))
  88. break;
  89. prev = test;
  90. }
  91. if (prev)
  92. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  93. rb_node);
  94. while (prev && file_offset < entry_end(prev_entry)) {
  95. test = rb_prev(prev);
  96. if (!test)
  97. break;
  98. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  99. rb_node);
  100. prev = test;
  101. }
  102. *prev_ret = prev;
  103. return NULL;
  104. }
  105. /*
  106. * helper to check if a given offset is inside a given entry
  107. */
  108. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  109. {
  110. if (file_offset < entry->file_offset ||
  111. entry->file_offset + entry->len <= file_offset)
  112. return 0;
  113. return 1;
  114. }
  115. /*
  116. * look find the first ordered struct that has this offset, otherwise
  117. * the first one less than this offset
  118. */
  119. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  120. u64 file_offset)
  121. {
  122. struct rb_root *root = &tree->tree;
  123. struct rb_node *prev;
  124. struct rb_node *ret;
  125. struct btrfs_ordered_extent *entry;
  126. if (tree->last) {
  127. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  128. rb_node);
  129. if (offset_in_entry(entry, file_offset))
  130. return tree->last;
  131. }
  132. ret = __tree_search(root, file_offset, &prev);
  133. if (!ret)
  134. ret = prev;
  135. if (ret)
  136. tree->last = ret;
  137. return ret;
  138. }
  139. /* allocate and add a new ordered_extent into the per-inode tree.
  140. * file_offset is the logical offset in the file
  141. *
  142. * start is the disk block number of an extent already reserved in the
  143. * extent allocation tree
  144. *
  145. * len is the length of the extent
  146. *
  147. * This also sets the EXTENT_ORDERED bit on the range in the inode.
  148. *
  149. * The tree is given a single reference on the ordered extent that was
  150. * inserted.
  151. */
  152. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  153. u64 start, u64 len, u64 disk_len, int type)
  154. {
  155. struct btrfs_ordered_inode_tree *tree;
  156. struct rb_node *node;
  157. struct btrfs_ordered_extent *entry;
  158. tree = &BTRFS_I(inode)->ordered_tree;
  159. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  160. if (!entry)
  161. return -ENOMEM;
  162. mutex_lock(&tree->mutex);
  163. entry->file_offset = file_offset;
  164. entry->start = start;
  165. entry->len = len;
  166. entry->disk_len = disk_len;
  167. entry->inode = inode;
  168. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  169. set_bit(type, &entry->flags);
  170. /* one ref for the tree */
  171. atomic_set(&entry->refs, 1);
  172. init_waitqueue_head(&entry->wait);
  173. INIT_LIST_HEAD(&entry->list);
  174. INIT_LIST_HEAD(&entry->root_extent_list);
  175. node = tree_insert(&tree->tree, file_offset,
  176. &entry->rb_node);
  177. BUG_ON(node);
  178. set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
  179. entry_end(entry) - 1, GFP_NOFS);
  180. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  181. list_add_tail(&entry->root_extent_list,
  182. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  183. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  184. mutex_unlock(&tree->mutex);
  185. BUG_ON(node);
  186. return 0;
  187. }
  188. /*
  189. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  190. * when an ordered extent is finished. If the list covers more than one
  191. * ordered extent, it is split across multiples.
  192. */
  193. int btrfs_add_ordered_sum(struct inode *inode,
  194. struct btrfs_ordered_extent *entry,
  195. struct btrfs_ordered_sum *sum)
  196. {
  197. struct btrfs_ordered_inode_tree *tree;
  198. tree = &BTRFS_I(inode)->ordered_tree;
  199. mutex_lock(&tree->mutex);
  200. list_add_tail(&sum->list, &entry->list);
  201. mutex_unlock(&tree->mutex);
  202. return 0;
  203. }
  204. /*
  205. * this is used to account for finished IO across a given range
  206. * of the file. The IO should not span ordered extents. If
  207. * a given ordered_extent is completely done, 1 is returned, otherwise
  208. * 0.
  209. *
  210. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  211. * to make sure this function only returns 1 once for a given ordered extent.
  212. */
  213. int btrfs_dec_test_ordered_pending(struct inode *inode,
  214. u64 file_offset, u64 io_size)
  215. {
  216. struct btrfs_ordered_inode_tree *tree;
  217. struct rb_node *node;
  218. struct btrfs_ordered_extent *entry;
  219. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  220. int ret;
  221. tree = &BTRFS_I(inode)->ordered_tree;
  222. mutex_lock(&tree->mutex);
  223. clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
  224. GFP_NOFS);
  225. node = tree_search(tree, file_offset);
  226. if (!node) {
  227. ret = 1;
  228. goto out;
  229. }
  230. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  231. if (!offset_in_entry(entry, file_offset)) {
  232. ret = 1;
  233. goto out;
  234. }
  235. ret = test_range_bit(io_tree, entry->file_offset,
  236. entry->file_offset + entry->len - 1,
  237. EXTENT_ORDERED, 0);
  238. if (ret == 0)
  239. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  240. out:
  241. mutex_unlock(&tree->mutex);
  242. return ret == 0;
  243. }
  244. /*
  245. * used to drop a reference on an ordered extent. This will free
  246. * the extent if the last reference is dropped
  247. */
  248. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  249. {
  250. struct list_head *cur;
  251. struct btrfs_ordered_sum *sum;
  252. if (atomic_dec_and_test(&entry->refs)) {
  253. while (!list_empty(&entry->list)) {
  254. cur = entry->list.next;
  255. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  256. list_del(&sum->list);
  257. kfree(sum);
  258. }
  259. kfree(entry);
  260. }
  261. return 0;
  262. }
  263. /*
  264. * remove an ordered extent from the tree. No references are dropped
  265. * but, anyone waiting on this extent is woken up.
  266. */
  267. int btrfs_remove_ordered_extent(struct inode *inode,
  268. struct btrfs_ordered_extent *entry)
  269. {
  270. struct btrfs_ordered_inode_tree *tree;
  271. struct rb_node *node;
  272. tree = &BTRFS_I(inode)->ordered_tree;
  273. mutex_lock(&tree->mutex);
  274. node = &entry->rb_node;
  275. rb_erase(node, &tree->tree);
  276. tree->last = NULL;
  277. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  278. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  279. list_del_init(&entry->root_extent_list);
  280. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  281. mutex_unlock(&tree->mutex);
  282. wake_up(&entry->wait);
  283. return 0;
  284. }
  285. /*
  286. * wait for all the ordered extents in a root. This is done when balancing
  287. * space between drives.
  288. */
  289. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
  290. {
  291. struct list_head splice;
  292. struct list_head *cur;
  293. struct btrfs_ordered_extent *ordered;
  294. struct inode *inode;
  295. INIT_LIST_HEAD(&splice);
  296. spin_lock(&root->fs_info->ordered_extent_lock);
  297. list_splice_init(&root->fs_info->ordered_extents, &splice);
  298. while (!list_empty(&splice)) {
  299. cur = splice.next;
  300. ordered = list_entry(cur, struct btrfs_ordered_extent,
  301. root_extent_list);
  302. if (nocow_only &&
  303. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
  304. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
  305. list_move(&ordered->root_extent_list,
  306. &root->fs_info->ordered_extents);
  307. cond_resched_lock(&root->fs_info->ordered_extent_lock);
  308. continue;
  309. }
  310. list_del_init(&ordered->root_extent_list);
  311. atomic_inc(&ordered->refs);
  312. /*
  313. * the inode may be getting freed (in sys_unlink path).
  314. */
  315. inode = igrab(ordered->inode);
  316. spin_unlock(&root->fs_info->ordered_extent_lock);
  317. if (inode) {
  318. btrfs_start_ordered_extent(inode, ordered, 1);
  319. btrfs_put_ordered_extent(ordered);
  320. iput(inode);
  321. } else {
  322. btrfs_put_ordered_extent(ordered);
  323. }
  324. spin_lock(&root->fs_info->ordered_extent_lock);
  325. }
  326. spin_unlock(&root->fs_info->ordered_extent_lock);
  327. return 0;
  328. }
  329. /*
  330. * Used to start IO or wait for a given ordered extent to finish.
  331. *
  332. * If wait is one, this effectively waits on page writeback for all the pages
  333. * in the extent, and it waits on the io completion code to insert
  334. * metadata into the btree corresponding to the extent
  335. */
  336. void btrfs_start_ordered_extent(struct inode *inode,
  337. struct btrfs_ordered_extent *entry,
  338. int wait)
  339. {
  340. u64 start = entry->file_offset;
  341. u64 end = start + entry->len - 1;
  342. /*
  343. * pages in the range can be dirty, clean or writeback. We
  344. * start IO on any dirty ones so the wait doesn't stall waiting
  345. * for pdflush to find them
  346. */
  347. btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
  348. if (wait) {
  349. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  350. &entry->flags));
  351. }
  352. }
  353. /*
  354. * Used to wait on ordered extents across a large range of bytes.
  355. */
  356. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  357. {
  358. u64 end;
  359. u64 orig_end;
  360. u64 wait_end;
  361. struct btrfs_ordered_extent *ordered;
  362. if (start + len < start) {
  363. orig_end = INT_LIMIT(loff_t);
  364. } else {
  365. orig_end = start + len - 1;
  366. if (orig_end > INT_LIMIT(loff_t))
  367. orig_end = INT_LIMIT(loff_t);
  368. }
  369. wait_end = orig_end;
  370. again:
  371. /* start IO across the range first to instantiate any delalloc
  372. * extents
  373. */
  374. btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
  375. /* The compression code will leave pages locked but return from
  376. * writepage without setting the page writeback. Starting again
  377. * with WB_SYNC_ALL will end up waiting for the IO to actually start.
  378. */
  379. btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
  380. btrfs_wait_on_page_writeback_range(inode->i_mapping,
  381. start >> PAGE_CACHE_SHIFT,
  382. orig_end >> PAGE_CACHE_SHIFT);
  383. end = orig_end;
  384. while (1) {
  385. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  386. if (!ordered)
  387. break;
  388. if (ordered->file_offset > orig_end) {
  389. btrfs_put_ordered_extent(ordered);
  390. break;
  391. }
  392. if (ordered->file_offset + ordered->len < start) {
  393. btrfs_put_ordered_extent(ordered);
  394. break;
  395. }
  396. btrfs_start_ordered_extent(inode, ordered, 1);
  397. end = ordered->file_offset;
  398. btrfs_put_ordered_extent(ordered);
  399. if (end == 0 || end == start)
  400. break;
  401. end--;
  402. }
  403. if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  404. EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
  405. schedule_timeout(1);
  406. goto again;
  407. }
  408. return 0;
  409. }
  410. /*
  411. * find an ordered extent corresponding to file_offset. return NULL if
  412. * nothing is found, otherwise take a reference on the extent and return it
  413. */
  414. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  415. u64 file_offset)
  416. {
  417. struct btrfs_ordered_inode_tree *tree;
  418. struct rb_node *node;
  419. struct btrfs_ordered_extent *entry = NULL;
  420. tree = &BTRFS_I(inode)->ordered_tree;
  421. mutex_lock(&tree->mutex);
  422. node = tree_search(tree, file_offset);
  423. if (!node)
  424. goto out;
  425. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  426. if (!offset_in_entry(entry, file_offset))
  427. entry = NULL;
  428. if (entry)
  429. atomic_inc(&entry->refs);
  430. out:
  431. mutex_unlock(&tree->mutex);
  432. return entry;
  433. }
  434. /*
  435. * lookup and return any extent before 'file_offset'. NULL is returned
  436. * if none is found
  437. */
  438. struct btrfs_ordered_extent *
  439. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  440. {
  441. struct btrfs_ordered_inode_tree *tree;
  442. struct rb_node *node;
  443. struct btrfs_ordered_extent *entry = NULL;
  444. tree = &BTRFS_I(inode)->ordered_tree;
  445. mutex_lock(&tree->mutex);
  446. node = tree_search(tree, file_offset);
  447. if (!node)
  448. goto out;
  449. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  450. atomic_inc(&entry->refs);
  451. out:
  452. mutex_unlock(&tree->mutex);
  453. return entry;
  454. }
  455. /*
  456. * After an extent is done, call this to conditionally update the on disk
  457. * i_size. i_size is updated to cover any fully written part of the file.
  458. */
  459. int btrfs_ordered_update_i_size(struct inode *inode,
  460. struct btrfs_ordered_extent *ordered)
  461. {
  462. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  463. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  464. u64 disk_i_size;
  465. u64 new_i_size;
  466. u64 i_size_test;
  467. struct rb_node *node;
  468. struct btrfs_ordered_extent *test;
  469. mutex_lock(&tree->mutex);
  470. disk_i_size = BTRFS_I(inode)->disk_i_size;
  471. /*
  472. * if the disk i_size is already at the inode->i_size, or
  473. * this ordered extent is inside the disk i_size, we're done
  474. */
  475. if (disk_i_size >= inode->i_size ||
  476. ordered->file_offset + ordered->len <= disk_i_size) {
  477. goto out;
  478. }
  479. /*
  480. * we can't update the disk_isize if there are delalloc bytes
  481. * between disk_i_size and this ordered extent
  482. */
  483. if (test_range_bit(io_tree, disk_i_size,
  484. ordered->file_offset + ordered->len - 1,
  485. EXTENT_DELALLOC, 0)) {
  486. goto out;
  487. }
  488. /*
  489. * walk backward from this ordered extent to disk_i_size.
  490. * if we find an ordered extent then we can't update disk i_size
  491. * yet
  492. */
  493. node = &ordered->rb_node;
  494. while (1) {
  495. node = rb_prev(node);
  496. if (!node)
  497. break;
  498. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  499. if (test->file_offset + test->len <= disk_i_size)
  500. break;
  501. if (test->file_offset >= inode->i_size)
  502. break;
  503. if (test->file_offset >= disk_i_size)
  504. goto out;
  505. }
  506. new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
  507. /*
  508. * at this point, we know we can safely update i_size to at least
  509. * the offset from this ordered extent. But, we need to
  510. * walk forward and see if ios from higher up in the file have
  511. * finished.
  512. */
  513. node = rb_next(&ordered->rb_node);
  514. i_size_test = 0;
  515. if (node) {
  516. /*
  517. * do we have an area where IO might have finished
  518. * between our ordered extent and the next one.
  519. */
  520. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  521. if (test->file_offset > entry_end(ordered))
  522. i_size_test = test->file_offset;
  523. } else {
  524. i_size_test = i_size_read(inode);
  525. }
  526. /*
  527. * i_size_test is the end of a region after this ordered
  528. * extent where there are no ordered extents. As long as there
  529. * are no delalloc bytes in this area, it is safe to update
  530. * disk_i_size to the end of the region.
  531. */
  532. if (i_size_test > entry_end(ordered) &&
  533. !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
  534. EXTENT_DELALLOC, 0)) {
  535. new_i_size = min_t(u64, i_size_test, i_size_read(inode));
  536. }
  537. BTRFS_I(inode)->disk_i_size = new_i_size;
  538. out:
  539. mutex_unlock(&tree->mutex);
  540. return 0;
  541. }
  542. /*
  543. * search the ordered extents for one corresponding to 'offset' and
  544. * try to find a checksum. This is used because we allow pages to
  545. * be reclaimed before their checksum is actually put into the btree
  546. */
  547. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  548. u32 *sum)
  549. {
  550. struct btrfs_ordered_sum *ordered_sum;
  551. struct btrfs_sector_sum *sector_sums;
  552. struct btrfs_ordered_extent *ordered;
  553. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  554. unsigned long num_sectors;
  555. unsigned long i;
  556. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  557. int ret = 1;
  558. ordered = btrfs_lookup_ordered_extent(inode, offset);
  559. if (!ordered)
  560. return 1;
  561. mutex_lock(&tree->mutex);
  562. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  563. if (disk_bytenr >= ordered_sum->bytenr) {
  564. num_sectors = ordered_sum->len / sectorsize;
  565. sector_sums = ordered_sum->sums;
  566. for (i = 0; i < num_sectors; i++) {
  567. if (sector_sums[i].bytenr == disk_bytenr) {
  568. *sum = sector_sums[i].sum;
  569. ret = 0;
  570. goto out;
  571. }
  572. }
  573. }
  574. }
  575. out:
  576. mutex_unlock(&tree->mutex);
  577. btrfs_put_ordered_extent(ordered);
  578. return ret;
  579. }
  580. /**
  581. * taken from mm/filemap.c because it isn't exported
  582. *
  583. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  584. * @mapping: address space structure to write
  585. * @start: offset in bytes where the range starts
  586. * @end: offset in bytes where the range ends (inclusive)
  587. * @sync_mode: enable synchronous operation
  588. *
  589. * Start writeback against all of a mapping's dirty pages that lie
  590. * within the byte offsets <start, end> inclusive.
  591. *
  592. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  593. * opposed to a regular memory cleansing writeback. The difference between
  594. * these two operations is that if a dirty page/buffer is encountered, it must
  595. * be waited upon, and not just skipped over.
  596. */
  597. int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
  598. loff_t end, int sync_mode)
  599. {
  600. struct writeback_control wbc = {
  601. .sync_mode = sync_mode,
  602. .nr_to_write = mapping->nrpages * 2,
  603. .range_start = start,
  604. .range_end = end,
  605. .for_writepages = 1,
  606. };
  607. return btrfs_writepages(mapping, &wbc);
  608. }
  609. /**
  610. * taken from mm/filemap.c because it isn't exported
  611. *
  612. * wait_on_page_writeback_range - wait for writeback to complete
  613. * @mapping: target address_space
  614. * @start: beginning page index
  615. * @end: ending page index
  616. *
  617. * Wait for writeback to complete against pages indexed by start->end
  618. * inclusive
  619. */
  620. int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
  621. pgoff_t start, pgoff_t end)
  622. {
  623. struct pagevec pvec;
  624. int nr_pages;
  625. int ret = 0;
  626. pgoff_t index;
  627. if (end < start)
  628. return 0;
  629. pagevec_init(&pvec, 0);
  630. index = start;
  631. while ((index <= end) &&
  632. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  633. PAGECACHE_TAG_WRITEBACK,
  634. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  635. unsigned i;
  636. for (i = 0; i < nr_pages; i++) {
  637. struct page *page = pvec.pages[i];
  638. /* until radix tree lookup accepts end_index */
  639. if (page->index > end)
  640. continue;
  641. wait_on_page_writeback(page);
  642. if (PageError(page))
  643. ret = -EIO;
  644. }
  645. pagevec_release(&pvec);
  646. cond_resched();
  647. }
  648. /* Check for outstanding write errors */
  649. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  650. ret = -ENOSPC;
  651. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  652. ret = -EIO;
  653. return ret;
  654. }