ctree.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. *
  229. * prealloc_dest -- if you have already reserved a destination for the cow,
  230. * this uses that block instead of allocating a new one.
  231. * btrfs_alloc_reserved_extent is used to finish the allocation.
  232. */
  233. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  234. struct btrfs_root *root,
  235. struct extent_buffer *buf,
  236. struct extent_buffer *parent, int parent_slot,
  237. struct extent_buffer **cow_ret,
  238. u64 search_start, u64 empty_size,
  239. u64 prealloc_dest)
  240. {
  241. u64 parent_start;
  242. struct extent_buffer *cow;
  243. u32 nritems;
  244. int ret = 0;
  245. int level;
  246. int unlock_orig = 0;
  247. if (*cow_ret == buf)
  248. unlock_orig = 1;
  249. btrfs_assert_tree_locked(buf);
  250. if (parent)
  251. parent_start = parent->start;
  252. else
  253. parent_start = 0;
  254. WARN_ON(root->ref_cows && trans->transid !=
  255. root->fs_info->running_transaction->transid);
  256. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  257. level = btrfs_header_level(buf);
  258. nritems = btrfs_header_nritems(buf);
  259. if (prealloc_dest) {
  260. struct btrfs_key ins;
  261. ins.objectid = prealloc_dest;
  262. ins.offset = buf->len;
  263. ins.type = BTRFS_EXTENT_ITEM_KEY;
  264. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  265. root->root_key.objectid,
  266. trans->transid, level, &ins);
  267. BUG_ON(ret);
  268. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  269. buf->len, level);
  270. } else {
  271. cow = btrfs_alloc_free_block(trans, root, buf->len,
  272. parent_start,
  273. root->root_key.objectid,
  274. trans->transid, level,
  275. search_start, empty_size);
  276. }
  277. if (IS_ERR(cow))
  278. return PTR_ERR(cow);
  279. /* cow is set to blocking by btrfs_init_new_buffer */
  280. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  281. btrfs_set_header_bytenr(cow, cow->start);
  282. btrfs_set_header_generation(cow, trans->transid);
  283. btrfs_set_header_owner(cow, root->root_key.objectid);
  284. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  285. write_extent_buffer(cow, root->fs_info->fsid,
  286. (unsigned long)btrfs_header_fsid(cow),
  287. BTRFS_FSID_SIZE);
  288. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  289. if (btrfs_header_generation(buf) != trans->transid) {
  290. u32 nr_extents;
  291. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  292. if (ret)
  293. return ret;
  294. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  295. WARN_ON(ret);
  296. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  297. /*
  298. * There are only two places that can drop reference to
  299. * tree blocks owned by living reloc trees, one is here,
  300. * the other place is btrfs_drop_subtree. In both places,
  301. * we check reference count while tree block is locked.
  302. * Furthermore, if reference count is one, it won't get
  303. * increased by someone else.
  304. */
  305. u32 refs;
  306. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  307. buf->len, &refs);
  308. BUG_ON(ret);
  309. if (refs == 1) {
  310. ret = btrfs_update_ref(trans, root, buf, cow,
  311. 0, nritems);
  312. clean_tree_block(trans, root, buf);
  313. } else {
  314. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  315. }
  316. BUG_ON(ret);
  317. } else {
  318. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  319. if (ret)
  320. return ret;
  321. clean_tree_block(trans, root, buf);
  322. }
  323. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  324. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  325. WARN_ON(ret);
  326. }
  327. if (buf == root->node) {
  328. WARN_ON(parent && parent != buf);
  329. spin_lock(&root->node_lock);
  330. root->node = cow;
  331. extent_buffer_get(cow);
  332. spin_unlock(&root->node_lock);
  333. if (buf != root->commit_root) {
  334. btrfs_free_extent(trans, root, buf->start,
  335. buf->len, buf->start,
  336. root->root_key.objectid,
  337. btrfs_header_generation(buf),
  338. level, 1);
  339. }
  340. free_extent_buffer(buf);
  341. add_root_to_dirty_list(root);
  342. } else {
  343. btrfs_set_node_blockptr(parent, parent_slot,
  344. cow->start);
  345. WARN_ON(trans->transid == 0);
  346. btrfs_set_node_ptr_generation(parent, parent_slot,
  347. trans->transid);
  348. btrfs_mark_buffer_dirty(parent);
  349. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  350. btrfs_free_extent(trans, root, buf->start, buf->len,
  351. parent_start, btrfs_header_owner(parent),
  352. btrfs_header_generation(parent), level, 1);
  353. }
  354. if (unlock_orig)
  355. btrfs_tree_unlock(buf);
  356. free_extent_buffer(buf);
  357. btrfs_mark_buffer_dirty(cow);
  358. *cow_ret = cow;
  359. return 0;
  360. }
  361. /*
  362. * cows a single block, see __btrfs_cow_block for the real work.
  363. * This version of it has extra checks so that a block isn't cow'd more than
  364. * once per transaction, as long as it hasn't been written yet
  365. */
  366. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  367. struct btrfs_root *root, struct extent_buffer *buf,
  368. struct extent_buffer *parent, int parent_slot,
  369. struct extent_buffer **cow_ret, u64 prealloc_dest)
  370. {
  371. u64 search_start;
  372. int ret;
  373. if (trans->transaction != root->fs_info->running_transaction) {
  374. printk(KERN_CRIT "trans %llu running %llu\n",
  375. (unsigned long long)trans->transid,
  376. (unsigned long long)
  377. root->fs_info->running_transaction->transid);
  378. WARN_ON(1);
  379. }
  380. if (trans->transid != root->fs_info->generation) {
  381. printk(KERN_CRIT "trans %llu running %llu\n",
  382. (unsigned long long)trans->transid,
  383. (unsigned long long)root->fs_info->generation);
  384. WARN_ON(1);
  385. }
  386. if (btrfs_header_generation(buf) == trans->transid &&
  387. btrfs_header_owner(buf) == root->root_key.objectid &&
  388. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  389. *cow_ret = buf;
  390. WARN_ON(prealloc_dest);
  391. return 0;
  392. }
  393. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  394. if (parent)
  395. btrfs_set_lock_blocking(parent);
  396. btrfs_set_lock_blocking(buf);
  397. ret = __btrfs_cow_block(trans, root, buf, parent,
  398. parent_slot, cow_ret, search_start, 0,
  399. prealloc_dest);
  400. return ret;
  401. }
  402. /*
  403. * helper function for defrag to decide if two blocks pointed to by a
  404. * node are actually close by
  405. */
  406. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  407. {
  408. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  409. return 1;
  410. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  411. return 1;
  412. return 0;
  413. }
  414. /*
  415. * compare two keys in a memcmp fashion
  416. */
  417. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  418. {
  419. struct btrfs_key k1;
  420. btrfs_disk_key_to_cpu(&k1, disk);
  421. if (k1.objectid > k2->objectid)
  422. return 1;
  423. if (k1.objectid < k2->objectid)
  424. return -1;
  425. if (k1.type > k2->type)
  426. return 1;
  427. if (k1.type < k2->type)
  428. return -1;
  429. if (k1.offset > k2->offset)
  430. return 1;
  431. if (k1.offset < k2->offset)
  432. return -1;
  433. return 0;
  434. }
  435. /*
  436. * same as comp_keys only with two btrfs_key's
  437. */
  438. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  439. {
  440. if (k1->objectid > k2->objectid)
  441. return 1;
  442. if (k1->objectid < k2->objectid)
  443. return -1;
  444. if (k1->type > k2->type)
  445. return 1;
  446. if (k1->type < k2->type)
  447. return -1;
  448. if (k1->offset > k2->offset)
  449. return 1;
  450. if (k1->offset < k2->offset)
  451. return -1;
  452. return 0;
  453. }
  454. /*
  455. * this is used by the defrag code to go through all the
  456. * leaves pointed to by a node and reallocate them so that
  457. * disk order is close to key order
  458. */
  459. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  460. struct btrfs_root *root, struct extent_buffer *parent,
  461. int start_slot, int cache_only, u64 *last_ret,
  462. struct btrfs_key *progress)
  463. {
  464. struct extent_buffer *cur;
  465. u64 blocknr;
  466. u64 gen;
  467. u64 search_start = *last_ret;
  468. u64 last_block = 0;
  469. u64 other;
  470. u32 parent_nritems;
  471. int end_slot;
  472. int i;
  473. int err = 0;
  474. int parent_level;
  475. int uptodate;
  476. u32 blocksize;
  477. int progress_passed = 0;
  478. struct btrfs_disk_key disk_key;
  479. parent_level = btrfs_header_level(parent);
  480. if (cache_only && parent_level != 1)
  481. return 0;
  482. if (trans->transaction != root->fs_info->running_transaction)
  483. WARN_ON(1);
  484. if (trans->transid != root->fs_info->generation)
  485. WARN_ON(1);
  486. parent_nritems = btrfs_header_nritems(parent);
  487. blocksize = btrfs_level_size(root, parent_level - 1);
  488. end_slot = parent_nritems;
  489. if (parent_nritems == 1)
  490. return 0;
  491. btrfs_set_lock_blocking(parent);
  492. for (i = start_slot; i < end_slot; i++) {
  493. int close = 1;
  494. if (!parent->map_token) {
  495. map_extent_buffer(parent,
  496. btrfs_node_key_ptr_offset(i),
  497. sizeof(struct btrfs_key_ptr),
  498. &parent->map_token, &parent->kaddr,
  499. &parent->map_start, &parent->map_len,
  500. KM_USER1);
  501. }
  502. btrfs_node_key(parent, &disk_key, i);
  503. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  504. continue;
  505. progress_passed = 1;
  506. blocknr = btrfs_node_blockptr(parent, i);
  507. gen = btrfs_node_ptr_generation(parent, i);
  508. if (last_block == 0)
  509. last_block = blocknr;
  510. if (i > 0) {
  511. other = btrfs_node_blockptr(parent, i - 1);
  512. close = close_blocks(blocknr, other, blocksize);
  513. }
  514. if (!close && i < end_slot - 2) {
  515. other = btrfs_node_blockptr(parent, i + 1);
  516. close = close_blocks(blocknr, other, blocksize);
  517. }
  518. if (close) {
  519. last_block = blocknr;
  520. continue;
  521. }
  522. if (parent->map_token) {
  523. unmap_extent_buffer(parent, parent->map_token,
  524. KM_USER1);
  525. parent->map_token = NULL;
  526. }
  527. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  528. if (cur)
  529. uptodate = btrfs_buffer_uptodate(cur, gen);
  530. else
  531. uptodate = 0;
  532. if (!cur || !uptodate) {
  533. if (cache_only) {
  534. free_extent_buffer(cur);
  535. continue;
  536. }
  537. if (!cur) {
  538. cur = read_tree_block(root, blocknr,
  539. blocksize, gen);
  540. } else if (!uptodate) {
  541. btrfs_read_buffer(cur, gen);
  542. }
  543. }
  544. if (search_start == 0)
  545. search_start = last_block;
  546. btrfs_tree_lock(cur);
  547. btrfs_set_lock_blocking(cur);
  548. err = __btrfs_cow_block(trans, root, cur, parent, i,
  549. &cur, search_start,
  550. min(16 * blocksize,
  551. (end_slot - i) * blocksize), 0);
  552. if (err) {
  553. btrfs_tree_unlock(cur);
  554. free_extent_buffer(cur);
  555. break;
  556. }
  557. search_start = cur->start;
  558. last_block = cur->start;
  559. *last_ret = search_start;
  560. btrfs_tree_unlock(cur);
  561. free_extent_buffer(cur);
  562. }
  563. if (parent->map_token) {
  564. unmap_extent_buffer(parent, parent->map_token,
  565. KM_USER1);
  566. parent->map_token = NULL;
  567. }
  568. return err;
  569. }
  570. /*
  571. * The leaf data grows from end-to-front in the node.
  572. * this returns the address of the start of the last item,
  573. * which is the stop of the leaf data stack
  574. */
  575. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  576. struct extent_buffer *leaf)
  577. {
  578. u32 nr = btrfs_header_nritems(leaf);
  579. if (nr == 0)
  580. return BTRFS_LEAF_DATA_SIZE(root);
  581. return btrfs_item_offset_nr(leaf, nr - 1);
  582. }
  583. /*
  584. * extra debugging checks to make sure all the items in a key are
  585. * well formed and in the proper order
  586. */
  587. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  588. int level)
  589. {
  590. struct extent_buffer *parent = NULL;
  591. struct extent_buffer *node = path->nodes[level];
  592. struct btrfs_disk_key parent_key;
  593. struct btrfs_disk_key node_key;
  594. int parent_slot;
  595. int slot;
  596. struct btrfs_key cpukey;
  597. u32 nritems = btrfs_header_nritems(node);
  598. if (path->nodes[level + 1])
  599. parent = path->nodes[level + 1];
  600. slot = path->slots[level];
  601. BUG_ON(nritems == 0);
  602. if (parent) {
  603. parent_slot = path->slots[level + 1];
  604. btrfs_node_key(parent, &parent_key, parent_slot);
  605. btrfs_node_key(node, &node_key, 0);
  606. BUG_ON(memcmp(&parent_key, &node_key,
  607. sizeof(struct btrfs_disk_key)));
  608. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  609. btrfs_header_bytenr(node));
  610. }
  611. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  612. if (slot != 0) {
  613. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  614. btrfs_node_key(node, &node_key, slot);
  615. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  616. }
  617. if (slot < nritems - 1) {
  618. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  619. btrfs_node_key(node, &node_key, slot);
  620. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  621. }
  622. return 0;
  623. }
  624. /*
  625. * extra checking to make sure all the items in a leaf are
  626. * well formed and in the proper order
  627. */
  628. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  629. int level)
  630. {
  631. struct extent_buffer *leaf = path->nodes[level];
  632. struct extent_buffer *parent = NULL;
  633. int parent_slot;
  634. struct btrfs_key cpukey;
  635. struct btrfs_disk_key parent_key;
  636. struct btrfs_disk_key leaf_key;
  637. int slot = path->slots[0];
  638. u32 nritems = btrfs_header_nritems(leaf);
  639. if (path->nodes[level + 1])
  640. parent = path->nodes[level + 1];
  641. if (nritems == 0)
  642. return 0;
  643. if (parent) {
  644. parent_slot = path->slots[level + 1];
  645. btrfs_node_key(parent, &parent_key, parent_slot);
  646. btrfs_item_key(leaf, &leaf_key, 0);
  647. BUG_ON(memcmp(&parent_key, &leaf_key,
  648. sizeof(struct btrfs_disk_key)));
  649. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  650. btrfs_header_bytenr(leaf));
  651. }
  652. if (slot != 0 && slot < nritems - 1) {
  653. btrfs_item_key(leaf, &leaf_key, slot);
  654. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  655. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  656. btrfs_print_leaf(root, leaf);
  657. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  658. BUG_ON(1);
  659. }
  660. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  661. btrfs_item_end_nr(leaf, slot)) {
  662. btrfs_print_leaf(root, leaf);
  663. printk(KERN_CRIT "slot %d offset bad\n", slot);
  664. BUG_ON(1);
  665. }
  666. }
  667. if (slot < nritems - 1) {
  668. btrfs_item_key(leaf, &leaf_key, slot);
  669. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  670. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  671. if (btrfs_item_offset_nr(leaf, slot) !=
  672. btrfs_item_end_nr(leaf, slot + 1)) {
  673. btrfs_print_leaf(root, leaf);
  674. printk(KERN_CRIT "slot %d offset bad\n", slot);
  675. BUG_ON(1);
  676. }
  677. }
  678. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  679. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  680. return 0;
  681. }
  682. static noinline int check_block(struct btrfs_root *root,
  683. struct btrfs_path *path, int level)
  684. {
  685. return 0;
  686. if (level == 0)
  687. return check_leaf(root, path, level);
  688. return check_node(root, path, level);
  689. }
  690. /*
  691. * search for key in the extent_buffer. The items start at offset p,
  692. * and they are item_size apart. There are 'max' items in p.
  693. *
  694. * the slot in the array is returned via slot, and it points to
  695. * the place where you would insert key if it is not found in
  696. * the array.
  697. *
  698. * slot may point to max if the key is bigger than all of the keys
  699. */
  700. static noinline int generic_bin_search(struct extent_buffer *eb,
  701. unsigned long p,
  702. int item_size, struct btrfs_key *key,
  703. int max, int *slot)
  704. {
  705. int low = 0;
  706. int high = max;
  707. int mid;
  708. int ret;
  709. struct btrfs_disk_key *tmp = NULL;
  710. struct btrfs_disk_key unaligned;
  711. unsigned long offset;
  712. char *map_token = NULL;
  713. char *kaddr = NULL;
  714. unsigned long map_start = 0;
  715. unsigned long map_len = 0;
  716. int err;
  717. while (low < high) {
  718. mid = (low + high) / 2;
  719. offset = p + mid * item_size;
  720. if (!map_token || offset < map_start ||
  721. (offset + sizeof(struct btrfs_disk_key)) >
  722. map_start + map_len) {
  723. if (map_token) {
  724. unmap_extent_buffer(eb, map_token, KM_USER0);
  725. map_token = NULL;
  726. }
  727. err = map_private_extent_buffer(eb, offset,
  728. sizeof(struct btrfs_disk_key),
  729. &map_token, &kaddr,
  730. &map_start, &map_len, KM_USER0);
  731. if (!err) {
  732. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  733. map_start);
  734. } else {
  735. read_extent_buffer(eb, &unaligned,
  736. offset, sizeof(unaligned));
  737. tmp = &unaligned;
  738. }
  739. } else {
  740. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  741. map_start);
  742. }
  743. ret = comp_keys(tmp, key);
  744. if (ret < 0)
  745. low = mid + 1;
  746. else if (ret > 0)
  747. high = mid;
  748. else {
  749. *slot = mid;
  750. if (map_token)
  751. unmap_extent_buffer(eb, map_token, KM_USER0);
  752. return 0;
  753. }
  754. }
  755. *slot = low;
  756. if (map_token)
  757. unmap_extent_buffer(eb, map_token, KM_USER0);
  758. return 1;
  759. }
  760. /*
  761. * simple bin_search frontend that does the right thing for
  762. * leaves vs nodes
  763. */
  764. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  765. int level, int *slot)
  766. {
  767. if (level == 0) {
  768. return generic_bin_search(eb,
  769. offsetof(struct btrfs_leaf, items),
  770. sizeof(struct btrfs_item),
  771. key, btrfs_header_nritems(eb),
  772. slot);
  773. } else {
  774. return generic_bin_search(eb,
  775. offsetof(struct btrfs_node, ptrs),
  776. sizeof(struct btrfs_key_ptr),
  777. key, btrfs_header_nritems(eb),
  778. slot);
  779. }
  780. return -1;
  781. }
  782. /* given a node and slot number, this reads the blocks it points to. The
  783. * extent buffer is returned with a reference taken (but unlocked).
  784. * NULL is returned on error.
  785. */
  786. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  787. struct extent_buffer *parent, int slot)
  788. {
  789. int level = btrfs_header_level(parent);
  790. if (slot < 0)
  791. return NULL;
  792. if (slot >= btrfs_header_nritems(parent))
  793. return NULL;
  794. BUG_ON(level == 0);
  795. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  796. btrfs_level_size(root, level - 1),
  797. btrfs_node_ptr_generation(parent, slot));
  798. }
  799. /*
  800. * node level balancing, used to make sure nodes are in proper order for
  801. * item deletion. We balance from the top down, so we have to make sure
  802. * that a deletion won't leave an node completely empty later on.
  803. */
  804. static noinline int balance_level(struct btrfs_trans_handle *trans,
  805. struct btrfs_root *root,
  806. struct btrfs_path *path, int level)
  807. {
  808. struct extent_buffer *right = NULL;
  809. struct extent_buffer *mid;
  810. struct extent_buffer *left = NULL;
  811. struct extent_buffer *parent = NULL;
  812. int ret = 0;
  813. int wret;
  814. int pslot;
  815. int orig_slot = path->slots[level];
  816. int err_on_enospc = 0;
  817. u64 orig_ptr;
  818. if (level == 0)
  819. return 0;
  820. mid = path->nodes[level];
  821. WARN_ON(!path->locks[level]);
  822. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  823. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  824. if (level < BTRFS_MAX_LEVEL - 1)
  825. parent = path->nodes[level + 1];
  826. pslot = path->slots[level + 1];
  827. /*
  828. * deal with the case where there is only one pointer in the root
  829. * by promoting the node below to a root
  830. */
  831. if (!parent) {
  832. struct extent_buffer *child;
  833. if (btrfs_header_nritems(mid) != 1)
  834. return 0;
  835. /* promote the child to a root */
  836. child = read_node_slot(root, mid, 0);
  837. BUG_ON(!child);
  838. btrfs_tree_lock(child);
  839. btrfs_set_lock_blocking(child);
  840. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  841. BUG_ON(ret);
  842. spin_lock(&root->node_lock);
  843. root->node = child;
  844. spin_unlock(&root->node_lock);
  845. ret = btrfs_update_extent_ref(trans, root, child->start,
  846. mid->start, child->start,
  847. root->root_key.objectid,
  848. trans->transid, level - 1);
  849. BUG_ON(ret);
  850. add_root_to_dirty_list(root);
  851. btrfs_tree_unlock(child);
  852. path->locks[level] = 0;
  853. path->nodes[level] = NULL;
  854. clean_tree_block(trans, root, mid);
  855. btrfs_tree_unlock(mid);
  856. /* once for the path */
  857. free_extent_buffer(mid);
  858. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  859. mid->start, root->root_key.objectid,
  860. btrfs_header_generation(mid),
  861. level, 1);
  862. /* once for the root ptr */
  863. free_extent_buffer(mid);
  864. return ret;
  865. }
  866. if (btrfs_header_nritems(mid) >
  867. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  868. return 0;
  869. if (btrfs_header_nritems(mid) < 2)
  870. err_on_enospc = 1;
  871. left = read_node_slot(root, parent, pslot - 1);
  872. if (left) {
  873. btrfs_tree_lock(left);
  874. btrfs_set_lock_blocking(left);
  875. wret = btrfs_cow_block(trans, root, left,
  876. parent, pslot - 1, &left, 0);
  877. if (wret) {
  878. ret = wret;
  879. goto enospc;
  880. }
  881. }
  882. right = read_node_slot(root, parent, pslot + 1);
  883. if (right) {
  884. btrfs_tree_lock(right);
  885. btrfs_set_lock_blocking(right);
  886. wret = btrfs_cow_block(trans, root, right,
  887. parent, pslot + 1, &right, 0);
  888. if (wret) {
  889. ret = wret;
  890. goto enospc;
  891. }
  892. }
  893. /* first, try to make some room in the middle buffer */
  894. if (left) {
  895. orig_slot += btrfs_header_nritems(left);
  896. wret = push_node_left(trans, root, left, mid, 1);
  897. if (wret < 0)
  898. ret = wret;
  899. if (btrfs_header_nritems(mid) < 2)
  900. err_on_enospc = 1;
  901. }
  902. /*
  903. * then try to empty the right most buffer into the middle
  904. */
  905. if (right) {
  906. wret = push_node_left(trans, root, mid, right, 1);
  907. if (wret < 0 && wret != -ENOSPC)
  908. ret = wret;
  909. if (btrfs_header_nritems(right) == 0) {
  910. u64 bytenr = right->start;
  911. u64 generation = btrfs_header_generation(parent);
  912. u32 blocksize = right->len;
  913. clean_tree_block(trans, root, right);
  914. btrfs_tree_unlock(right);
  915. free_extent_buffer(right);
  916. right = NULL;
  917. wret = del_ptr(trans, root, path, level + 1, pslot +
  918. 1);
  919. if (wret)
  920. ret = wret;
  921. wret = btrfs_free_extent(trans, root, bytenr,
  922. blocksize, parent->start,
  923. btrfs_header_owner(parent),
  924. generation, level, 1);
  925. if (wret)
  926. ret = wret;
  927. } else {
  928. struct btrfs_disk_key right_key;
  929. btrfs_node_key(right, &right_key, 0);
  930. btrfs_set_node_key(parent, &right_key, pslot + 1);
  931. btrfs_mark_buffer_dirty(parent);
  932. }
  933. }
  934. if (btrfs_header_nritems(mid) == 1) {
  935. /*
  936. * we're not allowed to leave a node with one item in the
  937. * tree during a delete. A deletion from lower in the tree
  938. * could try to delete the only pointer in this node.
  939. * So, pull some keys from the left.
  940. * There has to be a left pointer at this point because
  941. * otherwise we would have pulled some pointers from the
  942. * right
  943. */
  944. BUG_ON(!left);
  945. wret = balance_node_right(trans, root, mid, left);
  946. if (wret < 0) {
  947. ret = wret;
  948. goto enospc;
  949. }
  950. if (wret == 1) {
  951. wret = push_node_left(trans, root, left, mid, 1);
  952. if (wret < 0)
  953. ret = wret;
  954. }
  955. BUG_ON(wret == 1);
  956. }
  957. if (btrfs_header_nritems(mid) == 0) {
  958. /* we've managed to empty the middle node, drop it */
  959. u64 root_gen = btrfs_header_generation(parent);
  960. u64 bytenr = mid->start;
  961. u32 blocksize = mid->len;
  962. clean_tree_block(trans, root, mid);
  963. btrfs_tree_unlock(mid);
  964. free_extent_buffer(mid);
  965. mid = NULL;
  966. wret = del_ptr(trans, root, path, level + 1, pslot);
  967. if (wret)
  968. ret = wret;
  969. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  970. parent->start,
  971. btrfs_header_owner(parent),
  972. root_gen, level, 1);
  973. if (wret)
  974. ret = wret;
  975. } else {
  976. /* update the parent key to reflect our changes */
  977. struct btrfs_disk_key mid_key;
  978. btrfs_node_key(mid, &mid_key, 0);
  979. btrfs_set_node_key(parent, &mid_key, pslot);
  980. btrfs_mark_buffer_dirty(parent);
  981. }
  982. /* update the path */
  983. if (left) {
  984. if (btrfs_header_nritems(left) > orig_slot) {
  985. extent_buffer_get(left);
  986. /* left was locked after cow */
  987. path->nodes[level] = left;
  988. path->slots[level + 1] -= 1;
  989. path->slots[level] = orig_slot;
  990. if (mid) {
  991. btrfs_tree_unlock(mid);
  992. free_extent_buffer(mid);
  993. }
  994. } else {
  995. orig_slot -= btrfs_header_nritems(left);
  996. path->slots[level] = orig_slot;
  997. }
  998. }
  999. /* double check we haven't messed things up */
  1000. check_block(root, path, level);
  1001. if (orig_ptr !=
  1002. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1003. BUG();
  1004. enospc:
  1005. if (right) {
  1006. btrfs_tree_unlock(right);
  1007. free_extent_buffer(right);
  1008. }
  1009. if (left) {
  1010. if (path->nodes[level] != left)
  1011. btrfs_tree_unlock(left);
  1012. free_extent_buffer(left);
  1013. }
  1014. return ret;
  1015. }
  1016. /* Node balancing for insertion. Here we only split or push nodes around
  1017. * when they are completely full. This is also done top down, so we
  1018. * have to be pessimistic.
  1019. */
  1020. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1021. struct btrfs_root *root,
  1022. struct btrfs_path *path, int level)
  1023. {
  1024. struct extent_buffer *right = NULL;
  1025. struct extent_buffer *mid;
  1026. struct extent_buffer *left = NULL;
  1027. struct extent_buffer *parent = NULL;
  1028. int ret = 0;
  1029. int wret;
  1030. int pslot;
  1031. int orig_slot = path->slots[level];
  1032. u64 orig_ptr;
  1033. if (level == 0)
  1034. return 1;
  1035. mid = path->nodes[level];
  1036. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1037. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1038. if (level < BTRFS_MAX_LEVEL - 1)
  1039. parent = path->nodes[level + 1];
  1040. pslot = path->slots[level + 1];
  1041. if (!parent)
  1042. return 1;
  1043. left = read_node_slot(root, parent, pslot - 1);
  1044. /* first, try to make some room in the middle buffer */
  1045. if (left) {
  1046. u32 left_nr;
  1047. btrfs_tree_lock(left);
  1048. btrfs_set_lock_blocking(left);
  1049. left_nr = btrfs_header_nritems(left);
  1050. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1051. wret = 1;
  1052. } else {
  1053. ret = btrfs_cow_block(trans, root, left, parent,
  1054. pslot - 1, &left, 0);
  1055. if (ret)
  1056. wret = 1;
  1057. else {
  1058. wret = push_node_left(trans, root,
  1059. left, mid, 0);
  1060. }
  1061. }
  1062. if (wret < 0)
  1063. ret = wret;
  1064. if (wret == 0) {
  1065. struct btrfs_disk_key disk_key;
  1066. orig_slot += left_nr;
  1067. btrfs_node_key(mid, &disk_key, 0);
  1068. btrfs_set_node_key(parent, &disk_key, pslot);
  1069. btrfs_mark_buffer_dirty(parent);
  1070. if (btrfs_header_nritems(left) > orig_slot) {
  1071. path->nodes[level] = left;
  1072. path->slots[level + 1] -= 1;
  1073. path->slots[level] = orig_slot;
  1074. btrfs_tree_unlock(mid);
  1075. free_extent_buffer(mid);
  1076. } else {
  1077. orig_slot -=
  1078. btrfs_header_nritems(left);
  1079. path->slots[level] = orig_slot;
  1080. btrfs_tree_unlock(left);
  1081. free_extent_buffer(left);
  1082. }
  1083. return 0;
  1084. }
  1085. btrfs_tree_unlock(left);
  1086. free_extent_buffer(left);
  1087. }
  1088. right = read_node_slot(root, parent, pslot + 1);
  1089. /*
  1090. * then try to empty the right most buffer into the middle
  1091. */
  1092. if (right) {
  1093. u32 right_nr;
  1094. btrfs_tree_lock(right);
  1095. btrfs_set_lock_blocking(right);
  1096. right_nr = btrfs_header_nritems(right);
  1097. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1098. wret = 1;
  1099. } else {
  1100. ret = btrfs_cow_block(trans, root, right,
  1101. parent, pslot + 1,
  1102. &right, 0);
  1103. if (ret)
  1104. wret = 1;
  1105. else {
  1106. wret = balance_node_right(trans, root,
  1107. right, mid);
  1108. }
  1109. }
  1110. if (wret < 0)
  1111. ret = wret;
  1112. if (wret == 0) {
  1113. struct btrfs_disk_key disk_key;
  1114. btrfs_node_key(right, &disk_key, 0);
  1115. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1116. btrfs_mark_buffer_dirty(parent);
  1117. if (btrfs_header_nritems(mid) <= orig_slot) {
  1118. path->nodes[level] = right;
  1119. path->slots[level + 1] += 1;
  1120. path->slots[level] = orig_slot -
  1121. btrfs_header_nritems(mid);
  1122. btrfs_tree_unlock(mid);
  1123. free_extent_buffer(mid);
  1124. } else {
  1125. btrfs_tree_unlock(right);
  1126. free_extent_buffer(right);
  1127. }
  1128. return 0;
  1129. }
  1130. btrfs_tree_unlock(right);
  1131. free_extent_buffer(right);
  1132. }
  1133. return 1;
  1134. }
  1135. /*
  1136. * readahead one full node of leaves, finding things that are close
  1137. * to the block in 'slot', and triggering ra on them.
  1138. */
  1139. static noinline void reada_for_search(struct btrfs_root *root,
  1140. struct btrfs_path *path,
  1141. int level, int slot, u64 objectid)
  1142. {
  1143. struct extent_buffer *node;
  1144. struct btrfs_disk_key disk_key;
  1145. u32 nritems;
  1146. u64 search;
  1147. u64 target;
  1148. u64 nread = 0;
  1149. int direction = path->reada;
  1150. struct extent_buffer *eb;
  1151. u32 nr;
  1152. u32 blocksize;
  1153. u32 nscan = 0;
  1154. if (level != 1)
  1155. return;
  1156. if (!path->nodes[level])
  1157. return;
  1158. node = path->nodes[level];
  1159. search = btrfs_node_blockptr(node, slot);
  1160. blocksize = btrfs_level_size(root, level - 1);
  1161. eb = btrfs_find_tree_block(root, search, blocksize);
  1162. if (eb) {
  1163. free_extent_buffer(eb);
  1164. return;
  1165. }
  1166. target = search;
  1167. nritems = btrfs_header_nritems(node);
  1168. nr = slot;
  1169. while (1) {
  1170. if (direction < 0) {
  1171. if (nr == 0)
  1172. break;
  1173. nr--;
  1174. } else if (direction > 0) {
  1175. nr++;
  1176. if (nr >= nritems)
  1177. break;
  1178. }
  1179. if (path->reada < 0 && objectid) {
  1180. btrfs_node_key(node, &disk_key, nr);
  1181. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1182. break;
  1183. }
  1184. search = btrfs_node_blockptr(node, nr);
  1185. if ((search <= target && target - search <= 65536) ||
  1186. (search > target && search - target <= 65536)) {
  1187. readahead_tree_block(root, search, blocksize,
  1188. btrfs_node_ptr_generation(node, nr));
  1189. nread += blocksize;
  1190. }
  1191. nscan++;
  1192. if ((nread > 65536 || nscan > 32))
  1193. break;
  1194. }
  1195. }
  1196. /*
  1197. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1198. * cache
  1199. */
  1200. static noinline int reada_for_balance(struct btrfs_root *root,
  1201. struct btrfs_path *path, int level)
  1202. {
  1203. int slot;
  1204. int nritems;
  1205. struct extent_buffer *parent;
  1206. struct extent_buffer *eb;
  1207. u64 gen;
  1208. u64 block1 = 0;
  1209. u64 block2 = 0;
  1210. int ret = 0;
  1211. int blocksize;
  1212. parent = path->nodes[level - 1];
  1213. if (!parent)
  1214. return 0;
  1215. nritems = btrfs_header_nritems(parent);
  1216. slot = path->slots[level];
  1217. blocksize = btrfs_level_size(root, level);
  1218. if (slot > 0) {
  1219. block1 = btrfs_node_blockptr(parent, slot - 1);
  1220. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1221. eb = btrfs_find_tree_block(root, block1, blocksize);
  1222. if (eb && btrfs_buffer_uptodate(eb, gen))
  1223. block1 = 0;
  1224. free_extent_buffer(eb);
  1225. }
  1226. if (slot < nritems) {
  1227. block2 = btrfs_node_blockptr(parent, slot + 1);
  1228. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1229. eb = btrfs_find_tree_block(root, block2, blocksize);
  1230. if (eb && btrfs_buffer_uptodate(eb, gen))
  1231. block2 = 0;
  1232. free_extent_buffer(eb);
  1233. }
  1234. if (block1 || block2) {
  1235. ret = -EAGAIN;
  1236. btrfs_release_path(root, path);
  1237. if (block1)
  1238. readahead_tree_block(root, block1, blocksize, 0);
  1239. if (block2)
  1240. readahead_tree_block(root, block2, blocksize, 0);
  1241. if (block1) {
  1242. eb = read_tree_block(root, block1, blocksize, 0);
  1243. free_extent_buffer(eb);
  1244. }
  1245. if (block1) {
  1246. eb = read_tree_block(root, block2, blocksize, 0);
  1247. free_extent_buffer(eb);
  1248. }
  1249. }
  1250. return ret;
  1251. }
  1252. /*
  1253. * when we walk down the tree, it is usually safe to unlock the higher layers
  1254. * in the tree. The exceptions are when our path goes through slot 0, because
  1255. * operations on the tree might require changing key pointers higher up in the
  1256. * tree.
  1257. *
  1258. * callers might also have set path->keep_locks, which tells this code to keep
  1259. * the lock if the path points to the last slot in the block. This is part of
  1260. * walking through the tree, and selecting the next slot in the higher block.
  1261. *
  1262. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1263. * if lowest_unlock is 1, level 0 won't be unlocked
  1264. */
  1265. static noinline void unlock_up(struct btrfs_path *path, int level,
  1266. int lowest_unlock)
  1267. {
  1268. int i;
  1269. int skip_level = level;
  1270. int no_skips = 0;
  1271. struct extent_buffer *t;
  1272. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1273. if (!path->nodes[i])
  1274. break;
  1275. if (!path->locks[i])
  1276. break;
  1277. if (!no_skips && path->slots[i] == 0) {
  1278. skip_level = i + 1;
  1279. continue;
  1280. }
  1281. if (!no_skips && path->keep_locks) {
  1282. u32 nritems;
  1283. t = path->nodes[i];
  1284. nritems = btrfs_header_nritems(t);
  1285. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1286. skip_level = i + 1;
  1287. continue;
  1288. }
  1289. }
  1290. if (skip_level < i && i >= lowest_unlock)
  1291. no_skips = 1;
  1292. t = path->nodes[i];
  1293. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1294. btrfs_tree_unlock(t);
  1295. path->locks[i] = 0;
  1296. }
  1297. }
  1298. }
  1299. /*
  1300. * This releases any locks held in the path starting at level and
  1301. * going all the way up to the root.
  1302. *
  1303. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1304. * corner cases, such as COW of the block at slot zero in the node. This
  1305. * ignores those rules, and it should only be called when there are no
  1306. * more updates to be done higher up in the tree.
  1307. */
  1308. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1309. {
  1310. int i;
  1311. if (path->keep_locks || path->lowest_level)
  1312. return;
  1313. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1314. if (!path->nodes[i])
  1315. continue;
  1316. if (!path->locks[i])
  1317. continue;
  1318. btrfs_tree_unlock(path->nodes[i]);
  1319. path->locks[i] = 0;
  1320. }
  1321. }
  1322. /*
  1323. * look for key in the tree. path is filled in with nodes along the way
  1324. * if key is found, we return zero and you can find the item in the leaf
  1325. * level of the path (level 0)
  1326. *
  1327. * If the key isn't found, the path points to the slot where it should
  1328. * be inserted, and 1 is returned. If there are other errors during the
  1329. * search a negative error number is returned.
  1330. *
  1331. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1332. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1333. * possible)
  1334. */
  1335. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1336. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1337. ins_len, int cow)
  1338. {
  1339. struct extent_buffer *b;
  1340. struct extent_buffer *tmp;
  1341. int slot;
  1342. int ret;
  1343. int level;
  1344. int should_reada = p->reada;
  1345. int lowest_unlock = 1;
  1346. int blocksize;
  1347. u8 lowest_level = 0;
  1348. u64 blocknr;
  1349. u64 gen;
  1350. struct btrfs_key prealloc_block;
  1351. lowest_level = p->lowest_level;
  1352. WARN_ON(lowest_level && ins_len > 0);
  1353. WARN_ON(p->nodes[0] != NULL);
  1354. if (ins_len < 0)
  1355. lowest_unlock = 2;
  1356. prealloc_block.objectid = 0;
  1357. again:
  1358. if (p->skip_locking)
  1359. b = btrfs_root_node(root);
  1360. else
  1361. b = btrfs_lock_root_node(root);
  1362. while (b) {
  1363. level = btrfs_header_level(b);
  1364. /*
  1365. * setup the path here so we can release it under lock
  1366. * contention with the cow code
  1367. */
  1368. p->nodes[level] = b;
  1369. if (!p->skip_locking)
  1370. p->locks[level] = 1;
  1371. if (cow) {
  1372. int wret;
  1373. /* is a cow on this block not required */
  1374. if (btrfs_header_generation(b) == trans->transid &&
  1375. btrfs_header_owner(b) == root->root_key.objectid &&
  1376. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1377. goto cow_done;
  1378. }
  1379. /* ok, we have to cow, is our old prealloc the right
  1380. * size?
  1381. */
  1382. if (prealloc_block.objectid &&
  1383. prealloc_block.offset != b->len) {
  1384. btrfs_release_path(root, p);
  1385. btrfs_free_reserved_extent(root,
  1386. prealloc_block.objectid,
  1387. prealloc_block.offset);
  1388. prealloc_block.objectid = 0;
  1389. goto again;
  1390. }
  1391. /*
  1392. * for higher level blocks, try not to allocate blocks
  1393. * with the block and the parent locks held.
  1394. */
  1395. if (level > 0 && !prealloc_block.objectid) {
  1396. u32 size = b->len;
  1397. u64 hint = b->start;
  1398. btrfs_release_path(root, p);
  1399. ret = btrfs_reserve_extent(trans, root,
  1400. size, size, 0,
  1401. hint, (u64)-1,
  1402. &prealloc_block, 0);
  1403. BUG_ON(ret);
  1404. goto again;
  1405. }
  1406. btrfs_set_path_blocking(p);
  1407. wret = btrfs_cow_block(trans, root, b,
  1408. p->nodes[level + 1],
  1409. p->slots[level + 1],
  1410. &b, prealloc_block.objectid);
  1411. prealloc_block.objectid = 0;
  1412. if (wret) {
  1413. free_extent_buffer(b);
  1414. ret = wret;
  1415. goto done;
  1416. }
  1417. }
  1418. cow_done:
  1419. BUG_ON(!cow && ins_len);
  1420. if (level != btrfs_header_level(b))
  1421. WARN_ON(1);
  1422. level = btrfs_header_level(b);
  1423. p->nodes[level] = b;
  1424. if (!p->skip_locking)
  1425. p->locks[level] = 1;
  1426. btrfs_clear_path_blocking(p, NULL);
  1427. /*
  1428. * we have a lock on b and as long as we aren't changing
  1429. * the tree, there is no way to for the items in b to change.
  1430. * It is safe to drop the lock on our parent before we
  1431. * go through the expensive btree search on b.
  1432. *
  1433. * If cow is true, then we might be changing slot zero,
  1434. * which may require changing the parent. So, we can't
  1435. * drop the lock until after we know which slot we're
  1436. * operating on.
  1437. */
  1438. if (!cow)
  1439. btrfs_unlock_up_safe(p, level + 1);
  1440. ret = check_block(root, p, level);
  1441. if (ret) {
  1442. ret = -1;
  1443. goto done;
  1444. }
  1445. ret = bin_search(b, key, level, &slot);
  1446. if (level != 0) {
  1447. if (ret && slot > 0)
  1448. slot -= 1;
  1449. p->slots[level] = slot;
  1450. if ((p->search_for_split || ins_len > 0) &&
  1451. btrfs_header_nritems(b) >=
  1452. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1453. int sret;
  1454. sret = reada_for_balance(root, p, level);
  1455. if (sret)
  1456. goto again;
  1457. btrfs_set_path_blocking(p);
  1458. sret = split_node(trans, root, p, level);
  1459. btrfs_clear_path_blocking(p, NULL);
  1460. BUG_ON(sret > 0);
  1461. if (sret) {
  1462. ret = sret;
  1463. goto done;
  1464. }
  1465. b = p->nodes[level];
  1466. slot = p->slots[level];
  1467. } else if (ins_len < 0 &&
  1468. btrfs_header_nritems(b) <
  1469. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1470. int sret;
  1471. sret = reada_for_balance(root, p, level);
  1472. if (sret)
  1473. goto again;
  1474. btrfs_set_path_blocking(p);
  1475. sret = balance_level(trans, root, p, level);
  1476. btrfs_clear_path_blocking(p, NULL);
  1477. if (sret) {
  1478. ret = sret;
  1479. goto done;
  1480. }
  1481. b = p->nodes[level];
  1482. if (!b) {
  1483. btrfs_release_path(NULL, p);
  1484. goto again;
  1485. }
  1486. slot = p->slots[level];
  1487. BUG_ON(btrfs_header_nritems(b) == 1);
  1488. }
  1489. unlock_up(p, level, lowest_unlock);
  1490. /* this is only true while dropping a snapshot */
  1491. if (level == lowest_level) {
  1492. ret = 0;
  1493. goto done;
  1494. }
  1495. blocknr = btrfs_node_blockptr(b, slot);
  1496. gen = btrfs_node_ptr_generation(b, slot);
  1497. blocksize = btrfs_level_size(root, level - 1);
  1498. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1499. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1500. b = tmp;
  1501. } else {
  1502. /*
  1503. * reduce lock contention at high levels
  1504. * of the btree by dropping locks before
  1505. * we read.
  1506. */
  1507. if (level > 0) {
  1508. btrfs_release_path(NULL, p);
  1509. if (tmp)
  1510. free_extent_buffer(tmp);
  1511. if (should_reada)
  1512. reada_for_search(root, p,
  1513. level, slot,
  1514. key->objectid);
  1515. tmp = read_tree_block(root, blocknr,
  1516. blocksize, gen);
  1517. if (tmp)
  1518. free_extent_buffer(tmp);
  1519. goto again;
  1520. } else {
  1521. btrfs_set_path_blocking(p);
  1522. if (tmp)
  1523. free_extent_buffer(tmp);
  1524. if (should_reada)
  1525. reada_for_search(root, p,
  1526. level, slot,
  1527. key->objectid);
  1528. b = read_node_slot(root, b, slot);
  1529. }
  1530. }
  1531. if (!p->skip_locking) {
  1532. int lret;
  1533. btrfs_clear_path_blocking(p, NULL);
  1534. lret = btrfs_try_spin_lock(b);
  1535. if (!lret) {
  1536. btrfs_set_path_blocking(p);
  1537. btrfs_tree_lock(b);
  1538. btrfs_clear_path_blocking(p, b);
  1539. }
  1540. }
  1541. } else {
  1542. p->slots[level] = slot;
  1543. if (ins_len > 0 &&
  1544. btrfs_leaf_free_space(root, b) < ins_len) {
  1545. int sret;
  1546. btrfs_set_path_blocking(p);
  1547. sret = split_leaf(trans, root, key,
  1548. p, ins_len, ret == 0);
  1549. btrfs_clear_path_blocking(p, NULL);
  1550. BUG_ON(sret > 0);
  1551. if (sret) {
  1552. ret = sret;
  1553. goto done;
  1554. }
  1555. }
  1556. if (!p->search_for_split)
  1557. unlock_up(p, level, lowest_unlock);
  1558. goto done;
  1559. }
  1560. }
  1561. ret = 1;
  1562. done:
  1563. /*
  1564. * we don't really know what they plan on doing with the path
  1565. * from here on, so for now just mark it as blocking
  1566. */
  1567. btrfs_set_path_blocking(p);
  1568. if (prealloc_block.objectid) {
  1569. btrfs_free_reserved_extent(root,
  1570. prealloc_block.objectid,
  1571. prealloc_block.offset);
  1572. }
  1573. return ret;
  1574. }
  1575. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1576. struct btrfs_root *root,
  1577. struct btrfs_key *node_keys,
  1578. u64 *nodes, int lowest_level)
  1579. {
  1580. struct extent_buffer *eb;
  1581. struct extent_buffer *parent;
  1582. struct btrfs_key key;
  1583. u64 bytenr;
  1584. u64 generation;
  1585. u32 blocksize;
  1586. int level;
  1587. int slot;
  1588. int key_match;
  1589. int ret;
  1590. eb = btrfs_lock_root_node(root);
  1591. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1592. BUG_ON(ret);
  1593. btrfs_set_lock_blocking(eb);
  1594. parent = eb;
  1595. while (1) {
  1596. level = btrfs_header_level(parent);
  1597. if (level == 0 || level <= lowest_level)
  1598. break;
  1599. ret = bin_search(parent, &node_keys[lowest_level], level,
  1600. &slot);
  1601. if (ret && slot > 0)
  1602. slot--;
  1603. bytenr = btrfs_node_blockptr(parent, slot);
  1604. if (nodes[level - 1] == bytenr)
  1605. break;
  1606. blocksize = btrfs_level_size(root, level - 1);
  1607. generation = btrfs_node_ptr_generation(parent, slot);
  1608. btrfs_node_key_to_cpu(eb, &key, slot);
  1609. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1610. if (generation == trans->transid) {
  1611. eb = read_tree_block(root, bytenr, blocksize,
  1612. generation);
  1613. btrfs_tree_lock(eb);
  1614. btrfs_set_lock_blocking(eb);
  1615. }
  1616. /*
  1617. * if node keys match and node pointer hasn't been modified
  1618. * in the running transaction, we can merge the path. for
  1619. * blocks owened by reloc trees, the node pointer check is
  1620. * skipped, this is because these blocks are fully controlled
  1621. * by the space balance code, no one else can modify them.
  1622. */
  1623. if (!nodes[level - 1] || !key_match ||
  1624. (generation == trans->transid &&
  1625. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1626. if (level == 1 || level == lowest_level + 1) {
  1627. if (generation == trans->transid) {
  1628. btrfs_tree_unlock(eb);
  1629. free_extent_buffer(eb);
  1630. }
  1631. break;
  1632. }
  1633. if (generation != trans->transid) {
  1634. eb = read_tree_block(root, bytenr, blocksize,
  1635. generation);
  1636. btrfs_tree_lock(eb);
  1637. btrfs_set_lock_blocking(eb);
  1638. }
  1639. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1640. &eb, 0);
  1641. BUG_ON(ret);
  1642. if (root->root_key.objectid ==
  1643. BTRFS_TREE_RELOC_OBJECTID) {
  1644. if (!nodes[level - 1]) {
  1645. nodes[level - 1] = eb->start;
  1646. memcpy(&node_keys[level - 1], &key,
  1647. sizeof(node_keys[0]));
  1648. } else {
  1649. WARN_ON(1);
  1650. }
  1651. }
  1652. btrfs_tree_unlock(parent);
  1653. free_extent_buffer(parent);
  1654. parent = eb;
  1655. continue;
  1656. }
  1657. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1658. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1659. btrfs_mark_buffer_dirty(parent);
  1660. ret = btrfs_inc_extent_ref(trans, root,
  1661. nodes[level - 1],
  1662. blocksize, parent->start,
  1663. btrfs_header_owner(parent),
  1664. btrfs_header_generation(parent),
  1665. level - 1);
  1666. BUG_ON(ret);
  1667. /*
  1668. * If the block was created in the running transaction,
  1669. * it's possible this is the last reference to it, so we
  1670. * should drop the subtree.
  1671. */
  1672. if (generation == trans->transid) {
  1673. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1674. BUG_ON(ret);
  1675. btrfs_tree_unlock(eb);
  1676. free_extent_buffer(eb);
  1677. } else {
  1678. ret = btrfs_free_extent(trans, root, bytenr,
  1679. blocksize, parent->start,
  1680. btrfs_header_owner(parent),
  1681. btrfs_header_generation(parent),
  1682. level - 1, 1);
  1683. BUG_ON(ret);
  1684. }
  1685. break;
  1686. }
  1687. btrfs_tree_unlock(parent);
  1688. free_extent_buffer(parent);
  1689. return 0;
  1690. }
  1691. /*
  1692. * adjust the pointers going up the tree, starting at level
  1693. * making sure the right key of each node is points to 'key'.
  1694. * This is used after shifting pointers to the left, so it stops
  1695. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1696. * higher levels
  1697. *
  1698. * If this fails to write a tree block, it returns -1, but continues
  1699. * fixing up the blocks in ram so the tree is consistent.
  1700. */
  1701. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1702. struct btrfs_root *root, struct btrfs_path *path,
  1703. struct btrfs_disk_key *key, int level)
  1704. {
  1705. int i;
  1706. int ret = 0;
  1707. struct extent_buffer *t;
  1708. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1709. int tslot = path->slots[i];
  1710. if (!path->nodes[i])
  1711. break;
  1712. t = path->nodes[i];
  1713. btrfs_set_node_key(t, key, tslot);
  1714. btrfs_mark_buffer_dirty(path->nodes[i]);
  1715. if (tslot != 0)
  1716. break;
  1717. }
  1718. return ret;
  1719. }
  1720. /*
  1721. * update item key.
  1722. *
  1723. * This function isn't completely safe. It's the caller's responsibility
  1724. * that the new key won't break the order
  1725. */
  1726. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1727. struct btrfs_root *root, struct btrfs_path *path,
  1728. struct btrfs_key *new_key)
  1729. {
  1730. struct btrfs_disk_key disk_key;
  1731. struct extent_buffer *eb;
  1732. int slot;
  1733. eb = path->nodes[0];
  1734. slot = path->slots[0];
  1735. if (slot > 0) {
  1736. btrfs_item_key(eb, &disk_key, slot - 1);
  1737. if (comp_keys(&disk_key, new_key) >= 0)
  1738. return -1;
  1739. }
  1740. if (slot < btrfs_header_nritems(eb) - 1) {
  1741. btrfs_item_key(eb, &disk_key, slot + 1);
  1742. if (comp_keys(&disk_key, new_key) <= 0)
  1743. return -1;
  1744. }
  1745. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1746. btrfs_set_item_key(eb, &disk_key, slot);
  1747. btrfs_mark_buffer_dirty(eb);
  1748. if (slot == 0)
  1749. fixup_low_keys(trans, root, path, &disk_key, 1);
  1750. return 0;
  1751. }
  1752. /*
  1753. * try to push data from one node into the next node left in the
  1754. * tree.
  1755. *
  1756. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1757. * error, and > 0 if there was no room in the left hand block.
  1758. */
  1759. static int push_node_left(struct btrfs_trans_handle *trans,
  1760. struct btrfs_root *root, struct extent_buffer *dst,
  1761. struct extent_buffer *src, int empty)
  1762. {
  1763. int push_items = 0;
  1764. int src_nritems;
  1765. int dst_nritems;
  1766. int ret = 0;
  1767. src_nritems = btrfs_header_nritems(src);
  1768. dst_nritems = btrfs_header_nritems(dst);
  1769. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1770. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1771. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1772. if (!empty && src_nritems <= 8)
  1773. return 1;
  1774. if (push_items <= 0)
  1775. return 1;
  1776. if (empty) {
  1777. push_items = min(src_nritems, push_items);
  1778. if (push_items < src_nritems) {
  1779. /* leave at least 8 pointers in the node if
  1780. * we aren't going to empty it
  1781. */
  1782. if (src_nritems - push_items < 8) {
  1783. if (push_items <= 8)
  1784. return 1;
  1785. push_items -= 8;
  1786. }
  1787. }
  1788. } else
  1789. push_items = min(src_nritems - 8, push_items);
  1790. copy_extent_buffer(dst, src,
  1791. btrfs_node_key_ptr_offset(dst_nritems),
  1792. btrfs_node_key_ptr_offset(0),
  1793. push_items * sizeof(struct btrfs_key_ptr));
  1794. if (push_items < src_nritems) {
  1795. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1796. btrfs_node_key_ptr_offset(push_items),
  1797. (src_nritems - push_items) *
  1798. sizeof(struct btrfs_key_ptr));
  1799. }
  1800. btrfs_set_header_nritems(src, src_nritems - push_items);
  1801. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1802. btrfs_mark_buffer_dirty(src);
  1803. btrfs_mark_buffer_dirty(dst);
  1804. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1805. BUG_ON(ret);
  1806. return ret;
  1807. }
  1808. /*
  1809. * try to push data from one node into the next node right in the
  1810. * tree.
  1811. *
  1812. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1813. * error, and > 0 if there was no room in the right hand block.
  1814. *
  1815. * this will only push up to 1/2 the contents of the left node over
  1816. */
  1817. static int balance_node_right(struct btrfs_trans_handle *trans,
  1818. struct btrfs_root *root,
  1819. struct extent_buffer *dst,
  1820. struct extent_buffer *src)
  1821. {
  1822. int push_items = 0;
  1823. int max_push;
  1824. int src_nritems;
  1825. int dst_nritems;
  1826. int ret = 0;
  1827. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1828. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1829. src_nritems = btrfs_header_nritems(src);
  1830. dst_nritems = btrfs_header_nritems(dst);
  1831. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1832. if (push_items <= 0)
  1833. return 1;
  1834. if (src_nritems < 4)
  1835. return 1;
  1836. max_push = src_nritems / 2 + 1;
  1837. /* don't try to empty the node */
  1838. if (max_push >= src_nritems)
  1839. return 1;
  1840. if (max_push < push_items)
  1841. push_items = max_push;
  1842. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1843. btrfs_node_key_ptr_offset(0),
  1844. (dst_nritems) *
  1845. sizeof(struct btrfs_key_ptr));
  1846. copy_extent_buffer(dst, src,
  1847. btrfs_node_key_ptr_offset(0),
  1848. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1849. push_items * sizeof(struct btrfs_key_ptr));
  1850. btrfs_set_header_nritems(src, src_nritems - push_items);
  1851. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1852. btrfs_mark_buffer_dirty(src);
  1853. btrfs_mark_buffer_dirty(dst);
  1854. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1855. BUG_ON(ret);
  1856. return ret;
  1857. }
  1858. /*
  1859. * helper function to insert a new root level in the tree.
  1860. * A new node is allocated, and a single item is inserted to
  1861. * point to the existing root
  1862. *
  1863. * returns zero on success or < 0 on failure.
  1864. */
  1865. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1866. struct btrfs_root *root,
  1867. struct btrfs_path *path, int level)
  1868. {
  1869. u64 lower_gen;
  1870. struct extent_buffer *lower;
  1871. struct extent_buffer *c;
  1872. struct extent_buffer *old;
  1873. struct btrfs_disk_key lower_key;
  1874. int ret;
  1875. BUG_ON(path->nodes[level]);
  1876. BUG_ON(path->nodes[level-1] != root->node);
  1877. lower = path->nodes[level-1];
  1878. if (level == 1)
  1879. btrfs_item_key(lower, &lower_key, 0);
  1880. else
  1881. btrfs_node_key(lower, &lower_key, 0);
  1882. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1883. root->root_key.objectid, trans->transid,
  1884. level, root->node->start, 0);
  1885. if (IS_ERR(c))
  1886. return PTR_ERR(c);
  1887. memset_extent_buffer(c, 0, 0, root->nodesize);
  1888. btrfs_set_header_nritems(c, 1);
  1889. btrfs_set_header_level(c, level);
  1890. btrfs_set_header_bytenr(c, c->start);
  1891. btrfs_set_header_generation(c, trans->transid);
  1892. btrfs_set_header_owner(c, root->root_key.objectid);
  1893. write_extent_buffer(c, root->fs_info->fsid,
  1894. (unsigned long)btrfs_header_fsid(c),
  1895. BTRFS_FSID_SIZE);
  1896. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1897. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1898. BTRFS_UUID_SIZE);
  1899. btrfs_set_node_key(c, &lower_key, 0);
  1900. btrfs_set_node_blockptr(c, 0, lower->start);
  1901. lower_gen = btrfs_header_generation(lower);
  1902. WARN_ON(lower_gen != trans->transid);
  1903. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1904. btrfs_mark_buffer_dirty(c);
  1905. spin_lock(&root->node_lock);
  1906. old = root->node;
  1907. root->node = c;
  1908. spin_unlock(&root->node_lock);
  1909. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1910. lower->start, c->start,
  1911. root->root_key.objectid,
  1912. trans->transid, level - 1);
  1913. BUG_ON(ret);
  1914. /* the super has an extra ref to root->node */
  1915. free_extent_buffer(old);
  1916. add_root_to_dirty_list(root);
  1917. extent_buffer_get(c);
  1918. path->nodes[level] = c;
  1919. path->locks[level] = 1;
  1920. path->slots[level] = 0;
  1921. return 0;
  1922. }
  1923. /*
  1924. * worker function to insert a single pointer in a node.
  1925. * the node should have enough room for the pointer already
  1926. *
  1927. * slot and level indicate where you want the key to go, and
  1928. * blocknr is the block the key points to.
  1929. *
  1930. * returns zero on success and < 0 on any error
  1931. */
  1932. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1933. *root, struct btrfs_path *path, struct btrfs_disk_key
  1934. *key, u64 bytenr, int slot, int level)
  1935. {
  1936. struct extent_buffer *lower;
  1937. int nritems;
  1938. BUG_ON(!path->nodes[level]);
  1939. lower = path->nodes[level];
  1940. nritems = btrfs_header_nritems(lower);
  1941. if (slot > nritems)
  1942. BUG();
  1943. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1944. BUG();
  1945. if (slot != nritems) {
  1946. memmove_extent_buffer(lower,
  1947. btrfs_node_key_ptr_offset(slot + 1),
  1948. btrfs_node_key_ptr_offset(slot),
  1949. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1950. }
  1951. btrfs_set_node_key(lower, key, slot);
  1952. btrfs_set_node_blockptr(lower, slot, bytenr);
  1953. WARN_ON(trans->transid == 0);
  1954. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1955. btrfs_set_header_nritems(lower, nritems + 1);
  1956. btrfs_mark_buffer_dirty(lower);
  1957. return 0;
  1958. }
  1959. /*
  1960. * split the node at the specified level in path in two.
  1961. * The path is corrected to point to the appropriate node after the split
  1962. *
  1963. * Before splitting this tries to make some room in the node by pushing
  1964. * left and right, if either one works, it returns right away.
  1965. *
  1966. * returns 0 on success and < 0 on failure
  1967. */
  1968. static noinline int split_node(struct btrfs_trans_handle *trans,
  1969. struct btrfs_root *root,
  1970. struct btrfs_path *path, int level)
  1971. {
  1972. struct extent_buffer *c;
  1973. struct extent_buffer *split;
  1974. struct btrfs_disk_key disk_key;
  1975. int mid;
  1976. int ret;
  1977. int wret;
  1978. u32 c_nritems;
  1979. c = path->nodes[level];
  1980. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1981. if (c == root->node) {
  1982. /* trying to split the root, lets make a new one */
  1983. ret = insert_new_root(trans, root, path, level + 1);
  1984. if (ret)
  1985. return ret;
  1986. } else {
  1987. ret = push_nodes_for_insert(trans, root, path, level);
  1988. c = path->nodes[level];
  1989. if (!ret && btrfs_header_nritems(c) <
  1990. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1991. return 0;
  1992. if (ret < 0)
  1993. return ret;
  1994. }
  1995. c_nritems = btrfs_header_nritems(c);
  1996. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1997. path->nodes[level + 1]->start,
  1998. root->root_key.objectid,
  1999. trans->transid, level, c->start, 0);
  2000. if (IS_ERR(split))
  2001. return PTR_ERR(split);
  2002. btrfs_set_header_flags(split, btrfs_header_flags(c));
  2003. btrfs_set_header_level(split, btrfs_header_level(c));
  2004. btrfs_set_header_bytenr(split, split->start);
  2005. btrfs_set_header_generation(split, trans->transid);
  2006. btrfs_set_header_owner(split, root->root_key.objectid);
  2007. btrfs_set_header_flags(split, 0);
  2008. write_extent_buffer(split, root->fs_info->fsid,
  2009. (unsigned long)btrfs_header_fsid(split),
  2010. BTRFS_FSID_SIZE);
  2011. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2012. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2013. BTRFS_UUID_SIZE);
  2014. mid = (c_nritems + 1) / 2;
  2015. copy_extent_buffer(split, c,
  2016. btrfs_node_key_ptr_offset(0),
  2017. btrfs_node_key_ptr_offset(mid),
  2018. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2019. btrfs_set_header_nritems(split, c_nritems - mid);
  2020. btrfs_set_header_nritems(c, mid);
  2021. ret = 0;
  2022. btrfs_mark_buffer_dirty(c);
  2023. btrfs_mark_buffer_dirty(split);
  2024. btrfs_node_key(split, &disk_key, 0);
  2025. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2026. path->slots[level + 1] + 1,
  2027. level + 1);
  2028. if (wret)
  2029. ret = wret;
  2030. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  2031. BUG_ON(ret);
  2032. if (path->slots[level] >= mid) {
  2033. path->slots[level] -= mid;
  2034. btrfs_tree_unlock(c);
  2035. free_extent_buffer(c);
  2036. path->nodes[level] = split;
  2037. path->slots[level + 1] += 1;
  2038. } else {
  2039. btrfs_tree_unlock(split);
  2040. free_extent_buffer(split);
  2041. }
  2042. return ret;
  2043. }
  2044. /*
  2045. * how many bytes are required to store the items in a leaf. start
  2046. * and nr indicate which items in the leaf to check. This totals up the
  2047. * space used both by the item structs and the item data
  2048. */
  2049. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2050. {
  2051. int data_len;
  2052. int nritems = btrfs_header_nritems(l);
  2053. int end = min(nritems, start + nr) - 1;
  2054. if (!nr)
  2055. return 0;
  2056. data_len = btrfs_item_end_nr(l, start);
  2057. data_len = data_len - btrfs_item_offset_nr(l, end);
  2058. data_len += sizeof(struct btrfs_item) * nr;
  2059. WARN_ON(data_len < 0);
  2060. return data_len;
  2061. }
  2062. /*
  2063. * The space between the end of the leaf items and
  2064. * the start of the leaf data. IOW, how much room
  2065. * the leaf has left for both items and data
  2066. */
  2067. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2068. struct extent_buffer *leaf)
  2069. {
  2070. int nritems = btrfs_header_nritems(leaf);
  2071. int ret;
  2072. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2073. if (ret < 0) {
  2074. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2075. "used %d nritems %d\n",
  2076. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2077. leaf_space_used(leaf, 0, nritems), nritems);
  2078. }
  2079. return ret;
  2080. }
  2081. /*
  2082. * push some data in the path leaf to the right, trying to free up at
  2083. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2084. *
  2085. * returns 1 if the push failed because the other node didn't have enough
  2086. * room, 0 if everything worked out and < 0 if there were major errors.
  2087. */
  2088. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2089. *root, struct btrfs_path *path, int data_size,
  2090. int empty)
  2091. {
  2092. struct extent_buffer *left = path->nodes[0];
  2093. struct extent_buffer *right;
  2094. struct extent_buffer *upper;
  2095. struct btrfs_disk_key disk_key;
  2096. int slot;
  2097. u32 i;
  2098. int free_space;
  2099. int push_space = 0;
  2100. int push_items = 0;
  2101. struct btrfs_item *item;
  2102. u32 left_nritems;
  2103. u32 nr;
  2104. u32 right_nritems;
  2105. u32 data_end;
  2106. u32 this_item_size;
  2107. int ret;
  2108. slot = path->slots[1];
  2109. if (!path->nodes[1])
  2110. return 1;
  2111. upper = path->nodes[1];
  2112. if (slot >= btrfs_header_nritems(upper) - 1)
  2113. return 1;
  2114. btrfs_assert_tree_locked(path->nodes[1]);
  2115. right = read_node_slot(root, upper, slot + 1);
  2116. btrfs_tree_lock(right);
  2117. btrfs_set_lock_blocking(right);
  2118. free_space = btrfs_leaf_free_space(root, right);
  2119. if (free_space < data_size)
  2120. goto out_unlock;
  2121. /* cow and double check */
  2122. ret = btrfs_cow_block(trans, root, right, upper,
  2123. slot + 1, &right, 0);
  2124. if (ret)
  2125. goto out_unlock;
  2126. free_space = btrfs_leaf_free_space(root, right);
  2127. if (free_space < data_size)
  2128. goto out_unlock;
  2129. left_nritems = btrfs_header_nritems(left);
  2130. if (left_nritems == 0)
  2131. goto out_unlock;
  2132. if (empty)
  2133. nr = 0;
  2134. else
  2135. nr = 1;
  2136. if (path->slots[0] >= left_nritems)
  2137. push_space += data_size;
  2138. i = left_nritems - 1;
  2139. while (i >= nr) {
  2140. item = btrfs_item_nr(left, i);
  2141. if (!empty && push_items > 0) {
  2142. if (path->slots[0] > i)
  2143. break;
  2144. if (path->slots[0] == i) {
  2145. int space = btrfs_leaf_free_space(root, left);
  2146. if (space + push_space * 2 > free_space)
  2147. break;
  2148. }
  2149. }
  2150. if (path->slots[0] == i)
  2151. push_space += data_size;
  2152. if (!left->map_token) {
  2153. map_extent_buffer(left, (unsigned long)item,
  2154. sizeof(struct btrfs_item),
  2155. &left->map_token, &left->kaddr,
  2156. &left->map_start, &left->map_len,
  2157. KM_USER1);
  2158. }
  2159. this_item_size = btrfs_item_size(left, item);
  2160. if (this_item_size + sizeof(*item) + push_space > free_space)
  2161. break;
  2162. push_items++;
  2163. push_space += this_item_size + sizeof(*item);
  2164. if (i == 0)
  2165. break;
  2166. i--;
  2167. }
  2168. if (left->map_token) {
  2169. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2170. left->map_token = NULL;
  2171. }
  2172. if (push_items == 0)
  2173. goto out_unlock;
  2174. if (!empty && push_items == left_nritems)
  2175. WARN_ON(1);
  2176. /* push left to right */
  2177. right_nritems = btrfs_header_nritems(right);
  2178. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2179. push_space -= leaf_data_end(root, left);
  2180. /* make room in the right data area */
  2181. data_end = leaf_data_end(root, right);
  2182. memmove_extent_buffer(right,
  2183. btrfs_leaf_data(right) + data_end - push_space,
  2184. btrfs_leaf_data(right) + data_end,
  2185. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2186. /* copy from the left data area */
  2187. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2188. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2189. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2190. push_space);
  2191. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2192. btrfs_item_nr_offset(0),
  2193. right_nritems * sizeof(struct btrfs_item));
  2194. /* copy the items from left to right */
  2195. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2196. btrfs_item_nr_offset(left_nritems - push_items),
  2197. push_items * sizeof(struct btrfs_item));
  2198. /* update the item pointers */
  2199. right_nritems += push_items;
  2200. btrfs_set_header_nritems(right, right_nritems);
  2201. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2202. for (i = 0; i < right_nritems; i++) {
  2203. item = btrfs_item_nr(right, i);
  2204. if (!right->map_token) {
  2205. map_extent_buffer(right, (unsigned long)item,
  2206. sizeof(struct btrfs_item),
  2207. &right->map_token, &right->kaddr,
  2208. &right->map_start, &right->map_len,
  2209. KM_USER1);
  2210. }
  2211. push_space -= btrfs_item_size(right, item);
  2212. btrfs_set_item_offset(right, item, push_space);
  2213. }
  2214. if (right->map_token) {
  2215. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2216. right->map_token = NULL;
  2217. }
  2218. left_nritems -= push_items;
  2219. btrfs_set_header_nritems(left, left_nritems);
  2220. if (left_nritems)
  2221. btrfs_mark_buffer_dirty(left);
  2222. btrfs_mark_buffer_dirty(right);
  2223. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2224. BUG_ON(ret);
  2225. btrfs_item_key(right, &disk_key, 0);
  2226. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2227. btrfs_mark_buffer_dirty(upper);
  2228. /* then fixup the leaf pointer in the path */
  2229. if (path->slots[0] >= left_nritems) {
  2230. path->slots[0] -= left_nritems;
  2231. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2232. clean_tree_block(trans, root, path->nodes[0]);
  2233. btrfs_tree_unlock(path->nodes[0]);
  2234. free_extent_buffer(path->nodes[0]);
  2235. path->nodes[0] = right;
  2236. path->slots[1] += 1;
  2237. } else {
  2238. btrfs_tree_unlock(right);
  2239. free_extent_buffer(right);
  2240. }
  2241. return 0;
  2242. out_unlock:
  2243. btrfs_tree_unlock(right);
  2244. free_extent_buffer(right);
  2245. return 1;
  2246. }
  2247. /*
  2248. * push some data in the path leaf to the left, trying to free up at
  2249. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2250. */
  2251. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2252. *root, struct btrfs_path *path, int data_size,
  2253. int empty)
  2254. {
  2255. struct btrfs_disk_key disk_key;
  2256. struct extent_buffer *right = path->nodes[0];
  2257. struct extent_buffer *left;
  2258. int slot;
  2259. int i;
  2260. int free_space;
  2261. int push_space = 0;
  2262. int push_items = 0;
  2263. struct btrfs_item *item;
  2264. u32 old_left_nritems;
  2265. u32 right_nritems;
  2266. u32 nr;
  2267. int ret = 0;
  2268. int wret;
  2269. u32 this_item_size;
  2270. u32 old_left_item_size;
  2271. slot = path->slots[1];
  2272. if (slot == 0)
  2273. return 1;
  2274. if (!path->nodes[1])
  2275. return 1;
  2276. right_nritems = btrfs_header_nritems(right);
  2277. if (right_nritems == 0)
  2278. return 1;
  2279. btrfs_assert_tree_locked(path->nodes[1]);
  2280. left = read_node_slot(root, path->nodes[1], slot - 1);
  2281. btrfs_tree_lock(left);
  2282. btrfs_set_lock_blocking(left);
  2283. free_space = btrfs_leaf_free_space(root, left);
  2284. if (free_space < data_size) {
  2285. ret = 1;
  2286. goto out;
  2287. }
  2288. /* cow and double check */
  2289. ret = btrfs_cow_block(trans, root, left,
  2290. path->nodes[1], slot - 1, &left, 0);
  2291. if (ret) {
  2292. /* we hit -ENOSPC, but it isn't fatal here */
  2293. ret = 1;
  2294. goto out;
  2295. }
  2296. free_space = btrfs_leaf_free_space(root, left);
  2297. if (free_space < data_size) {
  2298. ret = 1;
  2299. goto out;
  2300. }
  2301. if (empty)
  2302. nr = right_nritems;
  2303. else
  2304. nr = right_nritems - 1;
  2305. for (i = 0; i < nr; i++) {
  2306. item = btrfs_item_nr(right, i);
  2307. if (!right->map_token) {
  2308. map_extent_buffer(right, (unsigned long)item,
  2309. sizeof(struct btrfs_item),
  2310. &right->map_token, &right->kaddr,
  2311. &right->map_start, &right->map_len,
  2312. KM_USER1);
  2313. }
  2314. if (!empty && push_items > 0) {
  2315. if (path->slots[0] < i)
  2316. break;
  2317. if (path->slots[0] == i) {
  2318. int space = btrfs_leaf_free_space(root, right);
  2319. if (space + push_space * 2 > free_space)
  2320. break;
  2321. }
  2322. }
  2323. if (path->slots[0] == i)
  2324. push_space += data_size;
  2325. this_item_size = btrfs_item_size(right, item);
  2326. if (this_item_size + sizeof(*item) + push_space > free_space)
  2327. break;
  2328. push_items++;
  2329. push_space += this_item_size + sizeof(*item);
  2330. }
  2331. if (right->map_token) {
  2332. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2333. right->map_token = NULL;
  2334. }
  2335. if (push_items == 0) {
  2336. ret = 1;
  2337. goto out;
  2338. }
  2339. if (!empty && push_items == btrfs_header_nritems(right))
  2340. WARN_ON(1);
  2341. /* push data from right to left */
  2342. copy_extent_buffer(left, right,
  2343. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2344. btrfs_item_nr_offset(0),
  2345. push_items * sizeof(struct btrfs_item));
  2346. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2347. btrfs_item_offset_nr(right, push_items - 1);
  2348. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2349. leaf_data_end(root, left) - push_space,
  2350. btrfs_leaf_data(right) +
  2351. btrfs_item_offset_nr(right, push_items - 1),
  2352. push_space);
  2353. old_left_nritems = btrfs_header_nritems(left);
  2354. BUG_ON(old_left_nritems <= 0);
  2355. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2356. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2357. u32 ioff;
  2358. item = btrfs_item_nr(left, i);
  2359. if (!left->map_token) {
  2360. map_extent_buffer(left, (unsigned long)item,
  2361. sizeof(struct btrfs_item),
  2362. &left->map_token, &left->kaddr,
  2363. &left->map_start, &left->map_len,
  2364. KM_USER1);
  2365. }
  2366. ioff = btrfs_item_offset(left, item);
  2367. btrfs_set_item_offset(left, item,
  2368. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2369. }
  2370. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2371. if (left->map_token) {
  2372. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2373. left->map_token = NULL;
  2374. }
  2375. /* fixup right node */
  2376. if (push_items > right_nritems) {
  2377. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2378. right_nritems);
  2379. WARN_ON(1);
  2380. }
  2381. if (push_items < right_nritems) {
  2382. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2383. leaf_data_end(root, right);
  2384. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2385. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2386. btrfs_leaf_data(right) +
  2387. leaf_data_end(root, right), push_space);
  2388. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2389. btrfs_item_nr_offset(push_items),
  2390. (btrfs_header_nritems(right) - push_items) *
  2391. sizeof(struct btrfs_item));
  2392. }
  2393. right_nritems -= push_items;
  2394. btrfs_set_header_nritems(right, right_nritems);
  2395. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2396. for (i = 0; i < right_nritems; i++) {
  2397. item = btrfs_item_nr(right, i);
  2398. if (!right->map_token) {
  2399. map_extent_buffer(right, (unsigned long)item,
  2400. sizeof(struct btrfs_item),
  2401. &right->map_token, &right->kaddr,
  2402. &right->map_start, &right->map_len,
  2403. KM_USER1);
  2404. }
  2405. push_space = push_space - btrfs_item_size(right, item);
  2406. btrfs_set_item_offset(right, item, push_space);
  2407. }
  2408. if (right->map_token) {
  2409. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2410. right->map_token = NULL;
  2411. }
  2412. btrfs_mark_buffer_dirty(left);
  2413. if (right_nritems)
  2414. btrfs_mark_buffer_dirty(right);
  2415. ret = btrfs_update_ref(trans, root, right, left,
  2416. old_left_nritems, push_items);
  2417. BUG_ON(ret);
  2418. btrfs_item_key(right, &disk_key, 0);
  2419. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2420. if (wret)
  2421. ret = wret;
  2422. /* then fixup the leaf pointer in the path */
  2423. if (path->slots[0] < push_items) {
  2424. path->slots[0] += old_left_nritems;
  2425. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2426. clean_tree_block(trans, root, path->nodes[0]);
  2427. btrfs_tree_unlock(path->nodes[0]);
  2428. free_extent_buffer(path->nodes[0]);
  2429. path->nodes[0] = left;
  2430. path->slots[1] -= 1;
  2431. } else {
  2432. btrfs_tree_unlock(left);
  2433. free_extent_buffer(left);
  2434. path->slots[0] -= push_items;
  2435. }
  2436. BUG_ON(path->slots[0] < 0);
  2437. return ret;
  2438. out:
  2439. btrfs_tree_unlock(left);
  2440. free_extent_buffer(left);
  2441. return ret;
  2442. }
  2443. /*
  2444. * split the path's leaf in two, making sure there is at least data_size
  2445. * available for the resulting leaf level of the path.
  2446. *
  2447. * returns 0 if all went well and < 0 on failure.
  2448. */
  2449. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2450. struct btrfs_root *root,
  2451. struct btrfs_key *ins_key,
  2452. struct btrfs_path *path, int data_size,
  2453. int extend)
  2454. {
  2455. struct extent_buffer *l;
  2456. u32 nritems;
  2457. int mid;
  2458. int slot;
  2459. struct extent_buffer *right;
  2460. int data_copy_size;
  2461. int rt_data_off;
  2462. int i;
  2463. int ret = 0;
  2464. int wret;
  2465. int double_split;
  2466. int num_doubles = 0;
  2467. struct btrfs_disk_key disk_key;
  2468. /* first try to make some room by pushing left and right */
  2469. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2470. wret = push_leaf_right(trans, root, path, data_size, 0);
  2471. if (wret < 0)
  2472. return wret;
  2473. if (wret) {
  2474. wret = push_leaf_left(trans, root, path, data_size, 0);
  2475. if (wret < 0)
  2476. return wret;
  2477. }
  2478. l = path->nodes[0];
  2479. /* did the pushes work? */
  2480. if (btrfs_leaf_free_space(root, l) >= data_size)
  2481. return 0;
  2482. }
  2483. if (!path->nodes[1]) {
  2484. ret = insert_new_root(trans, root, path, 1);
  2485. if (ret)
  2486. return ret;
  2487. }
  2488. again:
  2489. double_split = 0;
  2490. l = path->nodes[0];
  2491. slot = path->slots[0];
  2492. nritems = btrfs_header_nritems(l);
  2493. mid = (nritems + 1) / 2;
  2494. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2495. path->nodes[1]->start,
  2496. root->root_key.objectid,
  2497. trans->transid, 0, l->start, 0);
  2498. if (IS_ERR(right)) {
  2499. BUG_ON(1);
  2500. return PTR_ERR(right);
  2501. }
  2502. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2503. btrfs_set_header_bytenr(right, right->start);
  2504. btrfs_set_header_generation(right, trans->transid);
  2505. btrfs_set_header_owner(right, root->root_key.objectid);
  2506. btrfs_set_header_level(right, 0);
  2507. write_extent_buffer(right, root->fs_info->fsid,
  2508. (unsigned long)btrfs_header_fsid(right),
  2509. BTRFS_FSID_SIZE);
  2510. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2511. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2512. BTRFS_UUID_SIZE);
  2513. if (mid <= slot) {
  2514. if (nritems == 1 ||
  2515. leaf_space_used(l, mid, nritems - mid) + data_size >
  2516. BTRFS_LEAF_DATA_SIZE(root)) {
  2517. if (slot >= nritems) {
  2518. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2519. btrfs_set_header_nritems(right, 0);
  2520. wret = insert_ptr(trans, root, path,
  2521. &disk_key, right->start,
  2522. path->slots[1] + 1, 1);
  2523. if (wret)
  2524. ret = wret;
  2525. btrfs_tree_unlock(path->nodes[0]);
  2526. free_extent_buffer(path->nodes[0]);
  2527. path->nodes[0] = right;
  2528. path->slots[0] = 0;
  2529. path->slots[1] += 1;
  2530. btrfs_mark_buffer_dirty(right);
  2531. return ret;
  2532. }
  2533. mid = slot;
  2534. if (mid != nritems &&
  2535. leaf_space_used(l, mid, nritems - mid) +
  2536. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2537. double_split = 1;
  2538. }
  2539. }
  2540. } else {
  2541. if (leaf_space_used(l, 0, mid) + data_size >
  2542. BTRFS_LEAF_DATA_SIZE(root)) {
  2543. if (!extend && data_size && slot == 0) {
  2544. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2545. btrfs_set_header_nritems(right, 0);
  2546. wret = insert_ptr(trans, root, path,
  2547. &disk_key,
  2548. right->start,
  2549. path->slots[1], 1);
  2550. if (wret)
  2551. ret = wret;
  2552. btrfs_tree_unlock(path->nodes[0]);
  2553. free_extent_buffer(path->nodes[0]);
  2554. path->nodes[0] = right;
  2555. path->slots[0] = 0;
  2556. if (path->slots[1] == 0) {
  2557. wret = fixup_low_keys(trans, root,
  2558. path, &disk_key, 1);
  2559. if (wret)
  2560. ret = wret;
  2561. }
  2562. btrfs_mark_buffer_dirty(right);
  2563. return ret;
  2564. } else if ((extend || !data_size) && slot == 0) {
  2565. mid = 1;
  2566. } else {
  2567. mid = slot;
  2568. if (mid != nritems &&
  2569. leaf_space_used(l, mid, nritems - mid) +
  2570. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2571. double_split = 1;
  2572. }
  2573. }
  2574. }
  2575. }
  2576. nritems = nritems - mid;
  2577. btrfs_set_header_nritems(right, nritems);
  2578. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2579. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2580. btrfs_item_nr_offset(mid),
  2581. nritems * sizeof(struct btrfs_item));
  2582. copy_extent_buffer(right, l,
  2583. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2584. data_copy_size, btrfs_leaf_data(l) +
  2585. leaf_data_end(root, l), data_copy_size);
  2586. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2587. btrfs_item_end_nr(l, mid);
  2588. for (i = 0; i < nritems; i++) {
  2589. struct btrfs_item *item = btrfs_item_nr(right, i);
  2590. u32 ioff;
  2591. if (!right->map_token) {
  2592. map_extent_buffer(right, (unsigned long)item,
  2593. sizeof(struct btrfs_item),
  2594. &right->map_token, &right->kaddr,
  2595. &right->map_start, &right->map_len,
  2596. KM_USER1);
  2597. }
  2598. ioff = btrfs_item_offset(right, item);
  2599. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2600. }
  2601. if (right->map_token) {
  2602. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2603. right->map_token = NULL;
  2604. }
  2605. btrfs_set_header_nritems(l, mid);
  2606. ret = 0;
  2607. btrfs_item_key(right, &disk_key, 0);
  2608. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2609. path->slots[1] + 1, 1);
  2610. if (wret)
  2611. ret = wret;
  2612. btrfs_mark_buffer_dirty(right);
  2613. btrfs_mark_buffer_dirty(l);
  2614. BUG_ON(path->slots[0] != slot);
  2615. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2616. BUG_ON(ret);
  2617. if (mid <= slot) {
  2618. btrfs_tree_unlock(path->nodes[0]);
  2619. free_extent_buffer(path->nodes[0]);
  2620. path->nodes[0] = right;
  2621. path->slots[0] -= mid;
  2622. path->slots[1] += 1;
  2623. } else {
  2624. btrfs_tree_unlock(right);
  2625. free_extent_buffer(right);
  2626. }
  2627. BUG_ON(path->slots[0] < 0);
  2628. if (double_split) {
  2629. BUG_ON(num_doubles != 0);
  2630. num_doubles++;
  2631. goto again;
  2632. }
  2633. return ret;
  2634. }
  2635. /*
  2636. * This function splits a single item into two items,
  2637. * giving 'new_key' to the new item and splitting the
  2638. * old one at split_offset (from the start of the item).
  2639. *
  2640. * The path may be released by this operation. After
  2641. * the split, the path is pointing to the old item. The
  2642. * new item is going to be in the same node as the old one.
  2643. *
  2644. * Note, the item being split must be smaller enough to live alone on
  2645. * a tree block with room for one extra struct btrfs_item
  2646. *
  2647. * This allows us to split the item in place, keeping a lock on the
  2648. * leaf the entire time.
  2649. */
  2650. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2651. struct btrfs_root *root,
  2652. struct btrfs_path *path,
  2653. struct btrfs_key *new_key,
  2654. unsigned long split_offset)
  2655. {
  2656. u32 item_size;
  2657. struct extent_buffer *leaf;
  2658. struct btrfs_key orig_key;
  2659. struct btrfs_item *item;
  2660. struct btrfs_item *new_item;
  2661. int ret = 0;
  2662. int slot;
  2663. u32 nritems;
  2664. u32 orig_offset;
  2665. struct btrfs_disk_key disk_key;
  2666. char *buf;
  2667. leaf = path->nodes[0];
  2668. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2669. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2670. goto split;
  2671. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2672. btrfs_release_path(root, path);
  2673. path->search_for_split = 1;
  2674. path->keep_locks = 1;
  2675. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2676. path->search_for_split = 0;
  2677. /* if our item isn't there or got smaller, return now */
  2678. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2679. path->slots[0])) {
  2680. path->keep_locks = 0;
  2681. return -EAGAIN;
  2682. }
  2683. ret = split_leaf(trans, root, &orig_key, path,
  2684. sizeof(struct btrfs_item), 1);
  2685. path->keep_locks = 0;
  2686. BUG_ON(ret);
  2687. /*
  2688. * make sure any changes to the path from split_leaf leave it
  2689. * in a blocking state
  2690. */
  2691. btrfs_set_path_blocking(path);
  2692. leaf = path->nodes[0];
  2693. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2694. split:
  2695. item = btrfs_item_nr(leaf, path->slots[0]);
  2696. orig_offset = btrfs_item_offset(leaf, item);
  2697. item_size = btrfs_item_size(leaf, item);
  2698. buf = kmalloc(item_size, GFP_NOFS);
  2699. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2700. path->slots[0]), item_size);
  2701. slot = path->slots[0] + 1;
  2702. leaf = path->nodes[0];
  2703. nritems = btrfs_header_nritems(leaf);
  2704. if (slot != nritems) {
  2705. /* shift the items */
  2706. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2707. btrfs_item_nr_offset(slot),
  2708. (nritems - slot) * sizeof(struct btrfs_item));
  2709. }
  2710. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2711. btrfs_set_item_key(leaf, &disk_key, slot);
  2712. new_item = btrfs_item_nr(leaf, slot);
  2713. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2714. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2715. btrfs_set_item_offset(leaf, item,
  2716. orig_offset + item_size - split_offset);
  2717. btrfs_set_item_size(leaf, item, split_offset);
  2718. btrfs_set_header_nritems(leaf, nritems + 1);
  2719. /* write the data for the start of the original item */
  2720. write_extent_buffer(leaf, buf,
  2721. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2722. split_offset);
  2723. /* write the data for the new item */
  2724. write_extent_buffer(leaf, buf + split_offset,
  2725. btrfs_item_ptr_offset(leaf, slot),
  2726. item_size - split_offset);
  2727. btrfs_mark_buffer_dirty(leaf);
  2728. ret = 0;
  2729. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2730. btrfs_print_leaf(root, leaf);
  2731. BUG();
  2732. }
  2733. kfree(buf);
  2734. return ret;
  2735. }
  2736. /*
  2737. * make the item pointed to by the path smaller. new_size indicates
  2738. * how small to make it, and from_end tells us if we just chop bytes
  2739. * off the end of the item or if we shift the item to chop bytes off
  2740. * the front.
  2741. */
  2742. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2743. struct btrfs_root *root,
  2744. struct btrfs_path *path,
  2745. u32 new_size, int from_end)
  2746. {
  2747. int ret = 0;
  2748. int slot;
  2749. int slot_orig;
  2750. struct extent_buffer *leaf;
  2751. struct btrfs_item *item;
  2752. u32 nritems;
  2753. unsigned int data_end;
  2754. unsigned int old_data_start;
  2755. unsigned int old_size;
  2756. unsigned int size_diff;
  2757. int i;
  2758. slot_orig = path->slots[0];
  2759. leaf = path->nodes[0];
  2760. slot = path->slots[0];
  2761. old_size = btrfs_item_size_nr(leaf, slot);
  2762. if (old_size == new_size)
  2763. return 0;
  2764. nritems = btrfs_header_nritems(leaf);
  2765. data_end = leaf_data_end(root, leaf);
  2766. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2767. size_diff = old_size - new_size;
  2768. BUG_ON(slot < 0);
  2769. BUG_ON(slot >= nritems);
  2770. /*
  2771. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2772. */
  2773. /* first correct the data pointers */
  2774. for (i = slot; i < nritems; i++) {
  2775. u32 ioff;
  2776. item = btrfs_item_nr(leaf, i);
  2777. if (!leaf->map_token) {
  2778. map_extent_buffer(leaf, (unsigned long)item,
  2779. sizeof(struct btrfs_item),
  2780. &leaf->map_token, &leaf->kaddr,
  2781. &leaf->map_start, &leaf->map_len,
  2782. KM_USER1);
  2783. }
  2784. ioff = btrfs_item_offset(leaf, item);
  2785. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2786. }
  2787. if (leaf->map_token) {
  2788. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2789. leaf->map_token = NULL;
  2790. }
  2791. /* shift the data */
  2792. if (from_end) {
  2793. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2794. data_end + size_diff, btrfs_leaf_data(leaf) +
  2795. data_end, old_data_start + new_size - data_end);
  2796. } else {
  2797. struct btrfs_disk_key disk_key;
  2798. u64 offset;
  2799. btrfs_item_key(leaf, &disk_key, slot);
  2800. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2801. unsigned long ptr;
  2802. struct btrfs_file_extent_item *fi;
  2803. fi = btrfs_item_ptr(leaf, slot,
  2804. struct btrfs_file_extent_item);
  2805. fi = (struct btrfs_file_extent_item *)(
  2806. (unsigned long)fi - size_diff);
  2807. if (btrfs_file_extent_type(leaf, fi) ==
  2808. BTRFS_FILE_EXTENT_INLINE) {
  2809. ptr = btrfs_item_ptr_offset(leaf, slot);
  2810. memmove_extent_buffer(leaf, ptr,
  2811. (unsigned long)fi,
  2812. offsetof(struct btrfs_file_extent_item,
  2813. disk_bytenr));
  2814. }
  2815. }
  2816. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2817. data_end + size_diff, btrfs_leaf_data(leaf) +
  2818. data_end, old_data_start - data_end);
  2819. offset = btrfs_disk_key_offset(&disk_key);
  2820. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2821. btrfs_set_item_key(leaf, &disk_key, slot);
  2822. if (slot == 0)
  2823. fixup_low_keys(trans, root, path, &disk_key, 1);
  2824. }
  2825. item = btrfs_item_nr(leaf, slot);
  2826. btrfs_set_item_size(leaf, item, new_size);
  2827. btrfs_mark_buffer_dirty(leaf);
  2828. ret = 0;
  2829. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2830. btrfs_print_leaf(root, leaf);
  2831. BUG();
  2832. }
  2833. return ret;
  2834. }
  2835. /*
  2836. * make the item pointed to by the path bigger, data_size is the new size.
  2837. */
  2838. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2839. struct btrfs_root *root, struct btrfs_path *path,
  2840. u32 data_size)
  2841. {
  2842. int ret = 0;
  2843. int slot;
  2844. int slot_orig;
  2845. struct extent_buffer *leaf;
  2846. struct btrfs_item *item;
  2847. u32 nritems;
  2848. unsigned int data_end;
  2849. unsigned int old_data;
  2850. unsigned int old_size;
  2851. int i;
  2852. slot_orig = path->slots[0];
  2853. leaf = path->nodes[0];
  2854. nritems = btrfs_header_nritems(leaf);
  2855. data_end = leaf_data_end(root, leaf);
  2856. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2857. btrfs_print_leaf(root, leaf);
  2858. BUG();
  2859. }
  2860. slot = path->slots[0];
  2861. old_data = btrfs_item_end_nr(leaf, slot);
  2862. BUG_ON(slot < 0);
  2863. if (slot >= nritems) {
  2864. btrfs_print_leaf(root, leaf);
  2865. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2866. slot, nritems);
  2867. BUG_ON(1);
  2868. }
  2869. /*
  2870. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2871. */
  2872. /* first correct the data pointers */
  2873. for (i = slot; i < nritems; i++) {
  2874. u32 ioff;
  2875. item = btrfs_item_nr(leaf, i);
  2876. if (!leaf->map_token) {
  2877. map_extent_buffer(leaf, (unsigned long)item,
  2878. sizeof(struct btrfs_item),
  2879. &leaf->map_token, &leaf->kaddr,
  2880. &leaf->map_start, &leaf->map_len,
  2881. KM_USER1);
  2882. }
  2883. ioff = btrfs_item_offset(leaf, item);
  2884. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2885. }
  2886. if (leaf->map_token) {
  2887. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2888. leaf->map_token = NULL;
  2889. }
  2890. /* shift the data */
  2891. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2892. data_end - data_size, btrfs_leaf_data(leaf) +
  2893. data_end, old_data - data_end);
  2894. data_end = old_data;
  2895. old_size = btrfs_item_size_nr(leaf, slot);
  2896. item = btrfs_item_nr(leaf, slot);
  2897. btrfs_set_item_size(leaf, item, old_size + data_size);
  2898. btrfs_mark_buffer_dirty(leaf);
  2899. ret = 0;
  2900. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2901. btrfs_print_leaf(root, leaf);
  2902. BUG();
  2903. }
  2904. return ret;
  2905. }
  2906. /*
  2907. * Given a key and some data, insert items into the tree.
  2908. * This does all the path init required, making room in the tree if needed.
  2909. * Returns the number of keys that were inserted.
  2910. */
  2911. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2912. struct btrfs_root *root,
  2913. struct btrfs_path *path,
  2914. struct btrfs_key *cpu_key, u32 *data_size,
  2915. int nr)
  2916. {
  2917. struct extent_buffer *leaf;
  2918. struct btrfs_item *item;
  2919. int ret = 0;
  2920. int slot;
  2921. int i;
  2922. u32 nritems;
  2923. u32 total_data = 0;
  2924. u32 total_size = 0;
  2925. unsigned int data_end;
  2926. struct btrfs_disk_key disk_key;
  2927. struct btrfs_key found_key;
  2928. for (i = 0; i < nr; i++) {
  2929. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2930. BTRFS_LEAF_DATA_SIZE(root)) {
  2931. break;
  2932. nr = i;
  2933. }
  2934. total_data += data_size[i];
  2935. total_size += data_size[i] + sizeof(struct btrfs_item);
  2936. }
  2937. BUG_ON(nr == 0);
  2938. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2939. if (ret == 0)
  2940. return -EEXIST;
  2941. if (ret < 0)
  2942. goto out;
  2943. leaf = path->nodes[0];
  2944. nritems = btrfs_header_nritems(leaf);
  2945. data_end = leaf_data_end(root, leaf);
  2946. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2947. for (i = nr; i >= 0; i--) {
  2948. total_data -= data_size[i];
  2949. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2950. if (total_size < btrfs_leaf_free_space(root, leaf))
  2951. break;
  2952. }
  2953. nr = i;
  2954. }
  2955. slot = path->slots[0];
  2956. BUG_ON(slot < 0);
  2957. if (slot != nritems) {
  2958. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2959. item = btrfs_item_nr(leaf, slot);
  2960. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2961. /* figure out how many keys we can insert in here */
  2962. total_data = data_size[0];
  2963. for (i = 1; i < nr; i++) {
  2964. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2965. break;
  2966. total_data += data_size[i];
  2967. }
  2968. nr = i;
  2969. if (old_data < data_end) {
  2970. btrfs_print_leaf(root, leaf);
  2971. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2972. slot, old_data, data_end);
  2973. BUG_ON(1);
  2974. }
  2975. /*
  2976. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2977. */
  2978. /* first correct the data pointers */
  2979. WARN_ON(leaf->map_token);
  2980. for (i = slot; i < nritems; i++) {
  2981. u32 ioff;
  2982. item = btrfs_item_nr(leaf, i);
  2983. if (!leaf->map_token) {
  2984. map_extent_buffer(leaf, (unsigned long)item,
  2985. sizeof(struct btrfs_item),
  2986. &leaf->map_token, &leaf->kaddr,
  2987. &leaf->map_start, &leaf->map_len,
  2988. KM_USER1);
  2989. }
  2990. ioff = btrfs_item_offset(leaf, item);
  2991. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2992. }
  2993. if (leaf->map_token) {
  2994. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2995. leaf->map_token = NULL;
  2996. }
  2997. /* shift the items */
  2998. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2999. btrfs_item_nr_offset(slot),
  3000. (nritems - slot) * sizeof(struct btrfs_item));
  3001. /* shift the data */
  3002. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3003. data_end - total_data, btrfs_leaf_data(leaf) +
  3004. data_end, old_data - data_end);
  3005. data_end = old_data;
  3006. } else {
  3007. /*
  3008. * this sucks but it has to be done, if we are inserting at
  3009. * the end of the leaf only insert 1 of the items, since we
  3010. * have no way of knowing whats on the next leaf and we'd have
  3011. * to drop our current locks to figure it out
  3012. */
  3013. nr = 1;
  3014. }
  3015. /* setup the item for the new data */
  3016. for (i = 0; i < nr; i++) {
  3017. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3018. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3019. item = btrfs_item_nr(leaf, slot + i);
  3020. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3021. data_end -= data_size[i];
  3022. btrfs_set_item_size(leaf, item, data_size[i]);
  3023. }
  3024. btrfs_set_header_nritems(leaf, nritems + nr);
  3025. btrfs_mark_buffer_dirty(leaf);
  3026. ret = 0;
  3027. if (slot == 0) {
  3028. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3029. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3030. }
  3031. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3032. btrfs_print_leaf(root, leaf);
  3033. BUG();
  3034. }
  3035. out:
  3036. if (!ret)
  3037. ret = nr;
  3038. return ret;
  3039. }
  3040. /*
  3041. * Given a key and some data, insert items into the tree.
  3042. * This does all the path init required, making room in the tree if needed.
  3043. */
  3044. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3045. struct btrfs_root *root,
  3046. struct btrfs_path *path,
  3047. struct btrfs_key *cpu_key, u32 *data_size,
  3048. int nr)
  3049. {
  3050. struct extent_buffer *leaf;
  3051. struct btrfs_item *item;
  3052. int ret = 0;
  3053. int slot;
  3054. int slot_orig;
  3055. int i;
  3056. u32 nritems;
  3057. u32 total_size = 0;
  3058. u32 total_data = 0;
  3059. unsigned int data_end;
  3060. struct btrfs_disk_key disk_key;
  3061. for (i = 0; i < nr; i++)
  3062. total_data += data_size[i];
  3063. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3064. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3065. if (ret == 0)
  3066. return -EEXIST;
  3067. if (ret < 0)
  3068. goto out;
  3069. slot_orig = path->slots[0];
  3070. leaf = path->nodes[0];
  3071. nritems = btrfs_header_nritems(leaf);
  3072. data_end = leaf_data_end(root, leaf);
  3073. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3074. btrfs_print_leaf(root, leaf);
  3075. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3076. total_size, btrfs_leaf_free_space(root, leaf));
  3077. BUG();
  3078. }
  3079. slot = path->slots[0];
  3080. BUG_ON(slot < 0);
  3081. if (slot != nritems) {
  3082. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3083. if (old_data < data_end) {
  3084. btrfs_print_leaf(root, leaf);
  3085. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3086. slot, old_data, data_end);
  3087. BUG_ON(1);
  3088. }
  3089. /*
  3090. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3091. */
  3092. /* first correct the data pointers */
  3093. WARN_ON(leaf->map_token);
  3094. for (i = slot; i < nritems; i++) {
  3095. u32 ioff;
  3096. item = btrfs_item_nr(leaf, i);
  3097. if (!leaf->map_token) {
  3098. map_extent_buffer(leaf, (unsigned long)item,
  3099. sizeof(struct btrfs_item),
  3100. &leaf->map_token, &leaf->kaddr,
  3101. &leaf->map_start, &leaf->map_len,
  3102. KM_USER1);
  3103. }
  3104. ioff = btrfs_item_offset(leaf, item);
  3105. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3106. }
  3107. if (leaf->map_token) {
  3108. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3109. leaf->map_token = NULL;
  3110. }
  3111. /* shift the items */
  3112. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3113. btrfs_item_nr_offset(slot),
  3114. (nritems - slot) * sizeof(struct btrfs_item));
  3115. /* shift the data */
  3116. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3117. data_end - total_data, btrfs_leaf_data(leaf) +
  3118. data_end, old_data - data_end);
  3119. data_end = old_data;
  3120. }
  3121. /* setup the item for the new data */
  3122. for (i = 0; i < nr; i++) {
  3123. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3124. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3125. item = btrfs_item_nr(leaf, slot + i);
  3126. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3127. data_end -= data_size[i];
  3128. btrfs_set_item_size(leaf, item, data_size[i]);
  3129. }
  3130. btrfs_set_header_nritems(leaf, nritems + nr);
  3131. btrfs_mark_buffer_dirty(leaf);
  3132. ret = 0;
  3133. if (slot == 0) {
  3134. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3135. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3136. }
  3137. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3138. btrfs_print_leaf(root, leaf);
  3139. BUG();
  3140. }
  3141. out:
  3142. btrfs_unlock_up_safe(path, 1);
  3143. return ret;
  3144. }
  3145. /*
  3146. * Given a key and some data, insert an item into the tree.
  3147. * This does all the path init required, making room in the tree if needed.
  3148. */
  3149. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3150. *root, struct btrfs_key *cpu_key, void *data, u32
  3151. data_size)
  3152. {
  3153. int ret = 0;
  3154. struct btrfs_path *path;
  3155. struct extent_buffer *leaf;
  3156. unsigned long ptr;
  3157. path = btrfs_alloc_path();
  3158. BUG_ON(!path);
  3159. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3160. if (!ret) {
  3161. leaf = path->nodes[0];
  3162. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3163. write_extent_buffer(leaf, data, ptr, data_size);
  3164. btrfs_mark_buffer_dirty(leaf);
  3165. }
  3166. btrfs_free_path(path);
  3167. return ret;
  3168. }
  3169. /*
  3170. * delete the pointer from a given node.
  3171. *
  3172. * the tree should have been previously balanced so the deletion does not
  3173. * empty a node.
  3174. */
  3175. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3176. struct btrfs_path *path, int level, int slot)
  3177. {
  3178. struct extent_buffer *parent = path->nodes[level];
  3179. u32 nritems;
  3180. int ret = 0;
  3181. int wret;
  3182. nritems = btrfs_header_nritems(parent);
  3183. if (slot != nritems - 1) {
  3184. memmove_extent_buffer(parent,
  3185. btrfs_node_key_ptr_offset(slot),
  3186. btrfs_node_key_ptr_offset(slot + 1),
  3187. sizeof(struct btrfs_key_ptr) *
  3188. (nritems - slot - 1));
  3189. }
  3190. nritems--;
  3191. btrfs_set_header_nritems(parent, nritems);
  3192. if (nritems == 0 && parent == root->node) {
  3193. BUG_ON(btrfs_header_level(root->node) != 1);
  3194. /* just turn the root into a leaf and break */
  3195. btrfs_set_header_level(root->node, 0);
  3196. } else if (slot == 0) {
  3197. struct btrfs_disk_key disk_key;
  3198. btrfs_node_key(parent, &disk_key, 0);
  3199. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3200. if (wret)
  3201. ret = wret;
  3202. }
  3203. btrfs_mark_buffer_dirty(parent);
  3204. return ret;
  3205. }
  3206. /*
  3207. * a helper function to delete the leaf pointed to by path->slots[1] and
  3208. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3209. * already know it, it is faster to have them pass it down than to
  3210. * read it out of the node again.
  3211. *
  3212. * This deletes the pointer in path->nodes[1] and frees the leaf
  3213. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3214. *
  3215. * The path must have already been setup for deleting the leaf, including
  3216. * all the proper balancing. path->nodes[1] must be locked.
  3217. */
  3218. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3219. struct btrfs_root *root,
  3220. struct btrfs_path *path, u64 bytenr)
  3221. {
  3222. int ret;
  3223. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3224. u64 parent_start = path->nodes[1]->start;
  3225. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3226. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3227. if (ret)
  3228. return ret;
  3229. /*
  3230. * btrfs_free_extent is expensive, we want to make sure we
  3231. * aren't holding any locks when we call it
  3232. */
  3233. btrfs_unlock_up_safe(path, 0);
  3234. ret = btrfs_free_extent(trans, root, bytenr,
  3235. btrfs_level_size(root, 0),
  3236. parent_start, parent_owner,
  3237. root_gen, 0, 1);
  3238. return ret;
  3239. }
  3240. /*
  3241. * delete the item at the leaf level in path. If that empties
  3242. * the leaf, remove it from the tree
  3243. */
  3244. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3245. struct btrfs_path *path, int slot, int nr)
  3246. {
  3247. struct extent_buffer *leaf;
  3248. struct btrfs_item *item;
  3249. int last_off;
  3250. int dsize = 0;
  3251. int ret = 0;
  3252. int wret;
  3253. int i;
  3254. u32 nritems;
  3255. leaf = path->nodes[0];
  3256. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3257. for (i = 0; i < nr; i++)
  3258. dsize += btrfs_item_size_nr(leaf, slot + i);
  3259. nritems = btrfs_header_nritems(leaf);
  3260. if (slot + nr != nritems) {
  3261. int data_end = leaf_data_end(root, leaf);
  3262. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3263. data_end + dsize,
  3264. btrfs_leaf_data(leaf) + data_end,
  3265. last_off - data_end);
  3266. for (i = slot + nr; i < nritems; i++) {
  3267. u32 ioff;
  3268. item = btrfs_item_nr(leaf, i);
  3269. if (!leaf->map_token) {
  3270. map_extent_buffer(leaf, (unsigned long)item,
  3271. sizeof(struct btrfs_item),
  3272. &leaf->map_token, &leaf->kaddr,
  3273. &leaf->map_start, &leaf->map_len,
  3274. KM_USER1);
  3275. }
  3276. ioff = btrfs_item_offset(leaf, item);
  3277. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3278. }
  3279. if (leaf->map_token) {
  3280. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3281. leaf->map_token = NULL;
  3282. }
  3283. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3284. btrfs_item_nr_offset(slot + nr),
  3285. sizeof(struct btrfs_item) *
  3286. (nritems - slot - nr));
  3287. }
  3288. btrfs_set_header_nritems(leaf, nritems - nr);
  3289. nritems -= nr;
  3290. /* delete the leaf if we've emptied it */
  3291. if (nritems == 0) {
  3292. if (leaf == root->node) {
  3293. btrfs_set_header_level(leaf, 0);
  3294. } else {
  3295. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3296. BUG_ON(ret);
  3297. }
  3298. } else {
  3299. int used = leaf_space_used(leaf, 0, nritems);
  3300. if (slot == 0) {
  3301. struct btrfs_disk_key disk_key;
  3302. btrfs_item_key(leaf, &disk_key, 0);
  3303. wret = fixup_low_keys(trans, root, path,
  3304. &disk_key, 1);
  3305. if (wret)
  3306. ret = wret;
  3307. }
  3308. /* delete the leaf if it is mostly empty */
  3309. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3310. /* push_leaf_left fixes the path.
  3311. * make sure the path still points to our leaf
  3312. * for possible call to del_ptr below
  3313. */
  3314. slot = path->slots[1];
  3315. extent_buffer_get(leaf);
  3316. wret = push_leaf_left(trans, root, path, 1, 1);
  3317. if (wret < 0 && wret != -ENOSPC)
  3318. ret = wret;
  3319. if (path->nodes[0] == leaf &&
  3320. btrfs_header_nritems(leaf)) {
  3321. wret = push_leaf_right(trans, root, path, 1, 1);
  3322. if (wret < 0 && wret != -ENOSPC)
  3323. ret = wret;
  3324. }
  3325. if (btrfs_header_nritems(leaf) == 0) {
  3326. path->slots[1] = slot;
  3327. ret = btrfs_del_leaf(trans, root, path,
  3328. leaf->start);
  3329. BUG_ON(ret);
  3330. free_extent_buffer(leaf);
  3331. } else {
  3332. /* if we're still in the path, make sure
  3333. * we're dirty. Otherwise, one of the
  3334. * push_leaf functions must have already
  3335. * dirtied this buffer
  3336. */
  3337. if (path->nodes[0] == leaf)
  3338. btrfs_mark_buffer_dirty(leaf);
  3339. free_extent_buffer(leaf);
  3340. }
  3341. } else {
  3342. btrfs_mark_buffer_dirty(leaf);
  3343. }
  3344. }
  3345. return ret;
  3346. }
  3347. /*
  3348. * search the tree again to find a leaf with lesser keys
  3349. * returns 0 if it found something or 1 if there are no lesser leaves.
  3350. * returns < 0 on io errors.
  3351. *
  3352. * This may release the path, and so you may lose any locks held at the
  3353. * time you call it.
  3354. */
  3355. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3356. {
  3357. struct btrfs_key key;
  3358. struct btrfs_disk_key found_key;
  3359. int ret;
  3360. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3361. if (key.offset > 0)
  3362. key.offset--;
  3363. else if (key.type > 0)
  3364. key.type--;
  3365. else if (key.objectid > 0)
  3366. key.objectid--;
  3367. else
  3368. return 1;
  3369. btrfs_release_path(root, path);
  3370. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3371. if (ret < 0)
  3372. return ret;
  3373. btrfs_item_key(path->nodes[0], &found_key, 0);
  3374. ret = comp_keys(&found_key, &key);
  3375. if (ret < 0)
  3376. return 0;
  3377. return 1;
  3378. }
  3379. /*
  3380. * A helper function to walk down the tree starting at min_key, and looking
  3381. * for nodes or leaves that are either in cache or have a minimum
  3382. * transaction id. This is used by the btree defrag code, and tree logging
  3383. *
  3384. * This does not cow, but it does stuff the starting key it finds back
  3385. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3386. * key and get a writable path.
  3387. *
  3388. * This does lock as it descends, and path->keep_locks should be set
  3389. * to 1 by the caller.
  3390. *
  3391. * This honors path->lowest_level to prevent descent past a given level
  3392. * of the tree.
  3393. *
  3394. * min_trans indicates the oldest transaction that you are interested
  3395. * in walking through. Any nodes or leaves older than min_trans are
  3396. * skipped over (without reading them).
  3397. *
  3398. * returns zero if something useful was found, < 0 on error and 1 if there
  3399. * was nothing in the tree that matched the search criteria.
  3400. */
  3401. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3402. struct btrfs_key *max_key,
  3403. struct btrfs_path *path, int cache_only,
  3404. u64 min_trans)
  3405. {
  3406. struct extent_buffer *cur;
  3407. struct btrfs_key found_key;
  3408. int slot;
  3409. int sret;
  3410. u32 nritems;
  3411. int level;
  3412. int ret = 1;
  3413. WARN_ON(!path->keep_locks);
  3414. again:
  3415. cur = btrfs_lock_root_node(root);
  3416. level = btrfs_header_level(cur);
  3417. WARN_ON(path->nodes[level]);
  3418. path->nodes[level] = cur;
  3419. path->locks[level] = 1;
  3420. if (btrfs_header_generation(cur) < min_trans) {
  3421. ret = 1;
  3422. goto out;
  3423. }
  3424. while (1) {
  3425. nritems = btrfs_header_nritems(cur);
  3426. level = btrfs_header_level(cur);
  3427. sret = bin_search(cur, min_key, level, &slot);
  3428. /* at the lowest level, we're done, setup the path and exit */
  3429. if (level == path->lowest_level) {
  3430. if (slot >= nritems)
  3431. goto find_next_key;
  3432. ret = 0;
  3433. path->slots[level] = slot;
  3434. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3435. goto out;
  3436. }
  3437. if (sret && slot > 0)
  3438. slot--;
  3439. /*
  3440. * check this node pointer against the cache_only and
  3441. * min_trans parameters. If it isn't in cache or is too
  3442. * old, skip to the next one.
  3443. */
  3444. while (slot < nritems) {
  3445. u64 blockptr;
  3446. u64 gen;
  3447. struct extent_buffer *tmp;
  3448. struct btrfs_disk_key disk_key;
  3449. blockptr = btrfs_node_blockptr(cur, slot);
  3450. gen = btrfs_node_ptr_generation(cur, slot);
  3451. if (gen < min_trans) {
  3452. slot++;
  3453. continue;
  3454. }
  3455. if (!cache_only)
  3456. break;
  3457. if (max_key) {
  3458. btrfs_node_key(cur, &disk_key, slot);
  3459. if (comp_keys(&disk_key, max_key) >= 0) {
  3460. ret = 1;
  3461. goto out;
  3462. }
  3463. }
  3464. tmp = btrfs_find_tree_block(root, blockptr,
  3465. btrfs_level_size(root, level - 1));
  3466. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3467. free_extent_buffer(tmp);
  3468. break;
  3469. }
  3470. if (tmp)
  3471. free_extent_buffer(tmp);
  3472. slot++;
  3473. }
  3474. find_next_key:
  3475. /*
  3476. * we didn't find a candidate key in this node, walk forward
  3477. * and find another one
  3478. */
  3479. if (slot >= nritems) {
  3480. path->slots[level] = slot;
  3481. btrfs_set_path_blocking(path);
  3482. sret = btrfs_find_next_key(root, path, min_key, level,
  3483. cache_only, min_trans);
  3484. if (sret == 0) {
  3485. btrfs_release_path(root, path);
  3486. goto again;
  3487. } else {
  3488. goto out;
  3489. }
  3490. }
  3491. /* save our key for returning back */
  3492. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3493. path->slots[level] = slot;
  3494. if (level == path->lowest_level) {
  3495. ret = 0;
  3496. unlock_up(path, level, 1);
  3497. goto out;
  3498. }
  3499. btrfs_set_path_blocking(path);
  3500. cur = read_node_slot(root, cur, slot);
  3501. btrfs_tree_lock(cur);
  3502. path->locks[level - 1] = 1;
  3503. path->nodes[level - 1] = cur;
  3504. unlock_up(path, level, 1);
  3505. btrfs_clear_path_blocking(path, NULL);
  3506. }
  3507. out:
  3508. if (ret == 0)
  3509. memcpy(min_key, &found_key, sizeof(found_key));
  3510. btrfs_set_path_blocking(path);
  3511. return ret;
  3512. }
  3513. /*
  3514. * this is similar to btrfs_next_leaf, but does not try to preserve
  3515. * and fixup the path. It looks for and returns the next key in the
  3516. * tree based on the current path and the cache_only and min_trans
  3517. * parameters.
  3518. *
  3519. * 0 is returned if another key is found, < 0 if there are any errors
  3520. * and 1 is returned if there are no higher keys in the tree
  3521. *
  3522. * path->keep_locks should be set to 1 on the search made before
  3523. * calling this function.
  3524. */
  3525. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3526. struct btrfs_key *key, int lowest_level,
  3527. int cache_only, u64 min_trans)
  3528. {
  3529. int level = lowest_level;
  3530. int slot;
  3531. struct extent_buffer *c;
  3532. WARN_ON(!path->keep_locks);
  3533. while (level < BTRFS_MAX_LEVEL) {
  3534. if (!path->nodes[level])
  3535. return 1;
  3536. slot = path->slots[level] + 1;
  3537. c = path->nodes[level];
  3538. next:
  3539. if (slot >= btrfs_header_nritems(c)) {
  3540. level++;
  3541. if (level == BTRFS_MAX_LEVEL)
  3542. return 1;
  3543. continue;
  3544. }
  3545. if (level == 0)
  3546. btrfs_item_key_to_cpu(c, key, slot);
  3547. else {
  3548. u64 blockptr = btrfs_node_blockptr(c, slot);
  3549. u64 gen = btrfs_node_ptr_generation(c, slot);
  3550. if (cache_only) {
  3551. struct extent_buffer *cur;
  3552. cur = btrfs_find_tree_block(root, blockptr,
  3553. btrfs_level_size(root, level - 1));
  3554. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3555. slot++;
  3556. if (cur)
  3557. free_extent_buffer(cur);
  3558. goto next;
  3559. }
  3560. free_extent_buffer(cur);
  3561. }
  3562. if (gen < min_trans) {
  3563. slot++;
  3564. goto next;
  3565. }
  3566. btrfs_node_key_to_cpu(c, key, slot);
  3567. }
  3568. return 0;
  3569. }
  3570. return 1;
  3571. }
  3572. /*
  3573. * search the tree again to find a leaf with greater keys
  3574. * returns 0 if it found something or 1 if there are no greater leaves.
  3575. * returns < 0 on io errors.
  3576. */
  3577. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3578. {
  3579. int slot;
  3580. int level = 1;
  3581. struct extent_buffer *c;
  3582. struct extent_buffer *next = NULL;
  3583. struct btrfs_key key;
  3584. u32 nritems;
  3585. int ret;
  3586. nritems = btrfs_header_nritems(path->nodes[0]);
  3587. if (nritems == 0)
  3588. return 1;
  3589. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3590. btrfs_release_path(root, path);
  3591. path->keep_locks = 1;
  3592. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3593. path->keep_locks = 0;
  3594. if (ret < 0)
  3595. return ret;
  3596. btrfs_set_path_blocking(path);
  3597. nritems = btrfs_header_nritems(path->nodes[0]);
  3598. /*
  3599. * by releasing the path above we dropped all our locks. A balance
  3600. * could have added more items next to the key that used to be
  3601. * at the very end of the block. So, check again here and
  3602. * advance the path if there are now more items available.
  3603. */
  3604. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3605. path->slots[0]++;
  3606. goto done;
  3607. }
  3608. while (level < BTRFS_MAX_LEVEL) {
  3609. if (!path->nodes[level])
  3610. return 1;
  3611. slot = path->slots[level] + 1;
  3612. c = path->nodes[level];
  3613. if (slot >= btrfs_header_nritems(c)) {
  3614. level++;
  3615. if (level == BTRFS_MAX_LEVEL)
  3616. return 1;
  3617. continue;
  3618. }
  3619. if (next) {
  3620. btrfs_tree_unlock(next);
  3621. free_extent_buffer(next);
  3622. }
  3623. /* the path was set to blocking above */
  3624. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3625. path->reada)
  3626. reada_for_search(root, path, level, slot, 0);
  3627. next = read_node_slot(root, c, slot);
  3628. if (!path->skip_locking) {
  3629. btrfs_assert_tree_locked(c);
  3630. btrfs_tree_lock(next);
  3631. btrfs_set_lock_blocking(next);
  3632. }
  3633. break;
  3634. }
  3635. path->slots[level] = slot;
  3636. while (1) {
  3637. level--;
  3638. c = path->nodes[level];
  3639. if (path->locks[level])
  3640. btrfs_tree_unlock(c);
  3641. free_extent_buffer(c);
  3642. path->nodes[level] = next;
  3643. path->slots[level] = 0;
  3644. if (!path->skip_locking)
  3645. path->locks[level] = 1;
  3646. if (!level)
  3647. break;
  3648. btrfs_set_path_blocking(path);
  3649. if (level == 1 && path->locks[1] && path->reada)
  3650. reada_for_search(root, path, level, slot, 0);
  3651. next = read_node_slot(root, next, 0);
  3652. if (!path->skip_locking) {
  3653. btrfs_assert_tree_locked(path->nodes[level]);
  3654. btrfs_tree_lock(next);
  3655. btrfs_set_lock_blocking(next);
  3656. }
  3657. }
  3658. done:
  3659. unlock_up(path, 0, 1);
  3660. return 0;
  3661. }
  3662. /*
  3663. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3664. * searching until it gets past min_objectid or finds an item of 'type'
  3665. *
  3666. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3667. */
  3668. int btrfs_previous_item(struct btrfs_root *root,
  3669. struct btrfs_path *path, u64 min_objectid,
  3670. int type)
  3671. {
  3672. struct btrfs_key found_key;
  3673. struct extent_buffer *leaf;
  3674. u32 nritems;
  3675. int ret;
  3676. while (1) {
  3677. if (path->slots[0] == 0) {
  3678. btrfs_set_path_blocking(path);
  3679. ret = btrfs_prev_leaf(root, path);
  3680. if (ret != 0)
  3681. return ret;
  3682. } else {
  3683. path->slots[0]--;
  3684. }
  3685. leaf = path->nodes[0];
  3686. nritems = btrfs_header_nritems(leaf);
  3687. if (nritems == 0)
  3688. return 1;
  3689. if (path->slots[0] == nritems)
  3690. path->slots[0]--;
  3691. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3692. if (found_key.type == type)
  3693. return 0;
  3694. if (found_key.objectid < min_objectid)
  3695. break;
  3696. if (found_key.objectid == min_objectid &&
  3697. found_key.type < type)
  3698. break;
  3699. }
  3700. return 1;
  3701. }