bio.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/blktrace_api.h>
  29. #include <trace/block.h>
  30. #include <scsi/sg.h> /* for struct sg_iovec */
  31. DEFINE_TRACE(block_split);
  32. /*
  33. * Test patch to inline a certain number of bi_io_vec's inside the bio
  34. * itself, to shrink a bio data allocation from two mempool calls to one
  35. */
  36. #define BIO_INLINE_VECS 4
  37. static mempool_t *bio_split_pool __read_mostly;
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. /*
  54. * Our slab pool management
  55. */
  56. struct bio_slab {
  57. struct kmem_cache *slab;
  58. unsigned int slab_ref;
  59. unsigned int slab_size;
  60. char name[8];
  61. };
  62. static DEFINE_MUTEX(bio_slab_lock);
  63. static struct bio_slab *bio_slabs;
  64. static unsigned int bio_slab_nr, bio_slab_max;
  65. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  66. {
  67. unsigned int sz = sizeof(struct bio) + extra_size;
  68. struct kmem_cache *slab = NULL;
  69. struct bio_slab *bslab;
  70. unsigned int i, entry = -1;
  71. mutex_lock(&bio_slab_lock);
  72. i = 0;
  73. while (i < bio_slab_nr) {
  74. struct bio_slab *bslab = &bio_slabs[i];
  75. if (!bslab->slab && entry == -1)
  76. entry = i;
  77. else if (bslab->slab_size == sz) {
  78. slab = bslab->slab;
  79. bslab->slab_ref++;
  80. break;
  81. }
  82. i++;
  83. }
  84. if (slab)
  85. goto out_unlock;
  86. if (bio_slab_nr == bio_slab_max && entry == -1) {
  87. bio_slab_max <<= 1;
  88. bio_slabs = krealloc(bio_slabs,
  89. bio_slab_max * sizeof(struct bio_slab),
  90. GFP_KERNEL);
  91. if (!bio_slabs)
  92. goto out_unlock;
  93. }
  94. if (entry == -1)
  95. entry = bio_slab_nr++;
  96. bslab = &bio_slabs[entry];
  97. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  98. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  99. if (!slab)
  100. goto out_unlock;
  101. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  102. bslab->slab = slab;
  103. bslab->slab_ref = 1;
  104. bslab->slab_size = sz;
  105. out_unlock:
  106. mutex_unlock(&bio_slab_lock);
  107. return slab;
  108. }
  109. static void bio_put_slab(struct bio_set *bs)
  110. {
  111. struct bio_slab *bslab = NULL;
  112. unsigned int i;
  113. mutex_lock(&bio_slab_lock);
  114. for (i = 0; i < bio_slab_nr; i++) {
  115. if (bs->bio_slab == bio_slabs[i].slab) {
  116. bslab = &bio_slabs[i];
  117. break;
  118. }
  119. }
  120. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  121. goto out;
  122. WARN_ON(!bslab->slab_ref);
  123. if (--bslab->slab_ref)
  124. goto out;
  125. kmem_cache_destroy(bslab->slab);
  126. bslab->slab = NULL;
  127. out:
  128. mutex_unlock(&bio_slab_lock);
  129. }
  130. unsigned int bvec_nr_vecs(unsigned short idx)
  131. {
  132. return bvec_slabs[idx].nr_vecs;
  133. }
  134. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  135. {
  136. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  137. if (idx == BIOVEC_MAX_IDX)
  138. mempool_free(bv, bs->bvec_pool);
  139. else {
  140. struct biovec_slab *bvs = bvec_slabs + idx;
  141. kmem_cache_free(bvs->slab, bv);
  142. }
  143. }
  144. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  145. struct bio_set *bs)
  146. {
  147. struct bio_vec *bvl;
  148. /*
  149. * If 'bs' is given, lookup the pool and do the mempool alloc.
  150. * If not, this is a bio_kmalloc() allocation and just do a
  151. * kzalloc() for the exact number of vecs right away.
  152. */
  153. if (!bs)
  154. bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask);
  155. /*
  156. * see comment near bvec_array define!
  157. */
  158. switch (nr) {
  159. case 1:
  160. *idx = 0;
  161. break;
  162. case 2 ... 4:
  163. *idx = 1;
  164. break;
  165. case 5 ... 16:
  166. *idx = 2;
  167. break;
  168. case 17 ... 64:
  169. *idx = 3;
  170. break;
  171. case 65 ... 128:
  172. *idx = 4;
  173. break;
  174. case 129 ... BIO_MAX_PAGES:
  175. *idx = 5;
  176. break;
  177. default:
  178. return NULL;
  179. }
  180. /*
  181. * idx now points to the pool we want to allocate from. only the
  182. * 1-vec entry pool is mempool backed.
  183. */
  184. if (*idx == BIOVEC_MAX_IDX) {
  185. fallback:
  186. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  187. } else {
  188. struct biovec_slab *bvs = bvec_slabs + *idx;
  189. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  190. /*
  191. * Make this allocation restricted and don't dump info on
  192. * allocation failures, since we'll fallback to the mempool
  193. * in case of failure.
  194. */
  195. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  196. /*
  197. * Try a slab allocation. If this fails and __GFP_WAIT
  198. * is set, retry with the 1-entry mempool
  199. */
  200. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  201. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  202. *idx = BIOVEC_MAX_IDX;
  203. goto fallback;
  204. }
  205. }
  206. return bvl;
  207. }
  208. void bio_free(struct bio *bio, struct bio_set *bs)
  209. {
  210. void *p;
  211. if (bio_has_allocated_vec(bio))
  212. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  213. if (bio_integrity(bio))
  214. bio_integrity_free(bio, bs);
  215. /*
  216. * If we have front padding, adjust the bio pointer before freeing
  217. */
  218. p = bio;
  219. if (bs->front_pad)
  220. p -= bs->front_pad;
  221. mempool_free(p, bs->bio_pool);
  222. }
  223. /*
  224. * default destructor for a bio allocated with bio_alloc_bioset()
  225. */
  226. static void bio_fs_destructor(struct bio *bio)
  227. {
  228. bio_free(bio, fs_bio_set);
  229. }
  230. static void bio_kmalloc_destructor(struct bio *bio)
  231. {
  232. if (bio_has_allocated_vec(bio))
  233. kfree(bio->bi_io_vec);
  234. kfree(bio);
  235. }
  236. void bio_init(struct bio *bio)
  237. {
  238. memset(bio, 0, sizeof(*bio));
  239. bio->bi_flags = 1 << BIO_UPTODATE;
  240. bio->bi_comp_cpu = -1;
  241. atomic_set(&bio->bi_cnt, 1);
  242. }
  243. /**
  244. * bio_alloc_bioset - allocate a bio for I/O
  245. * @gfp_mask: the GFP_ mask given to the slab allocator
  246. * @nr_iovecs: number of iovecs to pre-allocate
  247. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  248. *
  249. * Description:
  250. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  251. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  252. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  253. * fall back to just using @kmalloc to allocate the required memory.
  254. *
  255. * Note that the caller must set ->bi_destructor on succesful return
  256. * of a bio, to do the appropriate freeing of the bio once the reference
  257. * count drops to zero.
  258. **/
  259. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  260. {
  261. struct bio *bio = NULL;
  262. void *uninitialized_var(p);
  263. if (bs) {
  264. p = mempool_alloc(bs->bio_pool, gfp_mask);
  265. if (p)
  266. bio = p + bs->front_pad;
  267. } else
  268. bio = kmalloc(sizeof(*bio), gfp_mask);
  269. if (likely(bio)) {
  270. struct bio_vec *bvl = NULL;
  271. bio_init(bio);
  272. if (likely(nr_iovecs)) {
  273. unsigned long uninitialized_var(idx);
  274. if (nr_iovecs <= BIO_INLINE_VECS) {
  275. idx = 0;
  276. bvl = bio->bi_inline_vecs;
  277. nr_iovecs = BIO_INLINE_VECS;
  278. } else {
  279. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx,
  280. bs);
  281. nr_iovecs = bvec_nr_vecs(idx);
  282. }
  283. if (unlikely(!bvl)) {
  284. if (bs)
  285. mempool_free(p, bs->bio_pool);
  286. else
  287. kfree(bio);
  288. bio = NULL;
  289. goto out;
  290. }
  291. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  292. bio->bi_max_vecs = nr_iovecs;
  293. }
  294. bio->bi_io_vec = bvl;
  295. }
  296. out:
  297. return bio;
  298. }
  299. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  300. {
  301. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  302. if (bio)
  303. bio->bi_destructor = bio_fs_destructor;
  304. return bio;
  305. }
  306. /*
  307. * Like bio_alloc(), but doesn't use a mempool backing. This means that
  308. * it CAN fail, but while bio_alloc() can only be used for allocations
  309. * that have a short (finite) life span, bio_kmalloc() should be used
  310. * for more permanent bio allocations (like allocating some bio's for
  311. * initalization or setup purposes).
  312. */
  313. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  314. {
  315. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
  316. if (bio)
  317. bio->bi_destructor = bio_kmalloc_destructor;
  318. return bio;
  319. }
  320. void zero_fill_bio(struct bio *bio)
  321. {
  322. unsigned long flags;
  323. struct bio_vec *bv;
  324. int i;
  325. bio_for_each_segment(bv, bio, i) {
  326. char *data = bvec_kmap_irq(bv, &flags);
  327. memset(data, 0, bv->bv_len);
  328. flush_dcache_page(bv->bv_page);
  329. bvec_kunmap_irq(data, &flags);
  330. }
  331. }
  332. EXPORT_SYMBOL(zero_fill_bio);
  333. /**
  334. * bio_put - release a reference to a bio
  335. * @bio: bio to release reference to
  336. *
  337. * Description:
  338. * Put a reference to a &struct bio, either one you have gotten with
  339. * bio_alloc or bio_get. The last put of a bio will free it.
  340. **/
  341. void bio_put(struct bio *bio)
  342. {
  343. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  344. /*
  345. * last put frees it
  346. */
  347. if (atomic_dec_and_test(&bio->bi_cnt)) {
  348. bio->bi_next = NULL;
  349. bio->bi_destructor(bio);
  350. }
  351. }
  352. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  353. {
  354. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  355. blk_recount_segments(q, bio);
  356. return bio->bi_phys_segments;
  357. }
  358. /**
  359. * __bio_clone - clone a bio
  360. * @bio: destination bio
  361. * @bio_src: bio to clone
  362. *
  363. * Clone a &bio. Caller will own the returned bio, but not
  364. * the actual data it points to. Reference count of returned
  365. * bio will be one.
  366. */
  367. void __bio_clone(struct bio *bio, struct bio *bio_src)
  368. {
  369. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  370. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  371. /*
  372. * most users will be overriding ->bi_bdev with a new target,
  373. * so we don't set nor calculate new physical/hw segment counts here
  374. */
  375. bio->bi_sector = bio_src->bi_sector;
  376. bio->bi_bdev = bio_src->bi_bdev;
  377. bio->bi_flags |= 1 << BIO_CLONED;
  378. bio->bi_rw = bio_src->bi_rw;
  379. bio->bi_vcnt = bio_src->bi_vcnt;
  380. bio->bi_size = bio_src->bi_size;
  381. bio->bi_idx = bio_src->bi_idx;
  382. }
  383. /**
  384. * bio_clone - clone a bio
  385. * @bio: bio to clone
  386. * @gfp_mask: allocation priority
  387. *
  388. * Like __bio_clone, only also allocates the returned bio
  389. */
  390. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  391. {
  392. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  393. if (!b)
  394. return NULL;
  395. b->bi_destructor = bio_fs_destructor;
  396. __bio_clone(b, bio);
  397. if (bio_integrity(bio)) {
  398. int ret;
  399. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  400. if (ret < 0) {
  401. bio_put(b);
  402. return NULL;
  403. }
  404. }
  405. return b;
  406. }
  407. /**
  408. * bio_get_nr_vecs - return approx number of vecs
  409. * @bdev: I/O target
  410. *
  411. * Return the approximate number of pages we can send to this target.
  412. * There's no guarantee that you will be able to fit this number of pages
  413. * into a bio, it does not account for dynamic restrictions that vary
  414. * on offset.
  415. */
  416. int bio_get_nr_vecs(struct block_device *bdev)
  417. {
  418. struct request_queue *q = bdev_get_queue(bdev);
  419. int nr_pages;
  420. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  421. if (nr_pages > q->max_phys_segments)
  422. nr_pages = q->max_phys_segments;
  423. if (nr_pages > q->max_hw_segments)
  424. nr_pages = q->max_hw_segments;
  425. return nr_pages;
  426. }
  427. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  428. *page, unsigned int len, unsigned int offset,
  429. unsigned short max_sectors)
  430. {
  431. int retried_segments = 0;
  432. struct bio_vec *bvec;
  433. /*
  434. * cloned bio must not modify vec list
  435. */
  436. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  437. return 0;
  438. if (((bio->bi_size + len) >> 9) > max_sectors)
  439. return 0;
  440. /*
  441. * For filesystems with a blocksize smaller than the pagesize
  442. * we will often be called with the same page as last time and
  443. * a consecutive offset. Optimize this special case.
  444. */
  445. if (bio->bi_vcnt > 0) {
  446. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  447. if (page == prev->bv_page &&
  448. offset == prev->bv_offset + prev->bv_len) {
  449. prev->bv_len += len;
  450. if (q->merge_bvec_fn) {
  451. struct bvec_merge_data bvm = {
  452. .bi_bdev = bio->bi_bdev,
  453. .bi_sector = bio->bi_sector,
  454. .bi_size = bio->bi_size,
  455. .bi_rw = bio->bi_rw,
  456. };
  457. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  458. prev->bv_len -= len;
  459. return 0;
  460. }
  461. }
  462. goto done;
  463. }
  464. }
  465. if (bio->bi_vcnt >= bio->bi_max_vecs)
  466. return 0;
  467. /*
  468. * we might lose a segment or two here, but rather that than
  469. * make this too complex.
  470. */
  471. while (bio->bi_phys_segments >= q->max_phys_segments
  472. || bio->bi_phys_segments >= q->max_hw_segments) {
  473. if (retried_segments)
  474. return 0;
  475. retried_segments = 1;
  476. blk_recount_segments(q, bio);
  477. }
  478. /*
  479. * setup the new entry, we might clear it again later if we
  480. * cannot add the page
  481. */
  482. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  483. bvec->bv_page = page;
  484. bvec->bv_len = len;
  485. bvec->bv_offset = offset;
  486. /*
  487. * if queue has other restrictions (eg varying max sector size
  488. * depending on offset), it can specify a merge_bvec_fn in the
  489. * queue to get further control
  490. */
  491. if (q->merge_bvec_fn) {
  492. struct bvec_merge_data bvm = {
  493. .bi_bdev = bio->bi_bdev,
  494. .bi_sector = bio->bi_sector,
  495. .bi_size = bio->bi_size,
  496. .bi_rw = bio->bi_rw,
  497. };
  498. /*
  499. * merge_bvec_fn() returns number of bytes it can accept
  500. * at this offset
  501. */
  502. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  503. bvec->bv_page = NULL;
  504. bvec->bv_len = 0;
  505. bvec->bv_offset = 0;
  506. return 0;
  507. }
  508. }
  509. /* If we may be able to merge these biovecs, force a recount */
  510. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  511. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  512. bio->bi_vcnt++;
  513. bio->bi_phys_segments++;
  514. done:
  515. bio->bi_size += len;
  516. return len;
  517. }
  518. /**
  519. * bio_add_pc_page - attempt to add page to bio
  520. * @q: the target queue
  521. * @bio: destination bio
  522. * @page: page to add
  523. * @len: vec entry length
  524. * @offset: vec entry offset
  525. *
  526. * Attempt to add a page to the bio_vec maplist. This can fail for a
  527. * number of reasons, such as the bio being full or target block
  528. * device limitations. The target block device must allow bio's
  529. * smaller than PAGE_SIZE, so it is always possible to add a single
  530. * page to an empty bio. This should only be used by REQ_PC bios.
  531. */
  532. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  533. unsigned int len, unsigned int offset)
  534. {
  535. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  536. }
  537. /**
  538. * bio_add_page - attempt to add page to bio
  539. * @bio: destination bio
  540. * @page: page to add
  541. * @len: vec entry length
  542. * @offset: vec entry offset
  543. *
  544. * Attempt to add a page to the bio_vec maplist. This can fail for a
  545. * number of reasons, such as the bio being full or target block
  546. * device limitations. The target block device must allow bio's
  547. * smaller than PAGE_SIZE, so it is always possible to add a single
  548. * page to an empty bio.
  549. */
  550. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  551. unsigned int offset)
  552. {
  553. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  554. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  555. }
  556. struct bio_map_data {
  557. struct bio_vec *iovecs;
  558. struct sg_iovec *sgvecs;
  559. int nr_sgvecs;
  560. int is_our_pages;
  561. };
  562. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  563. struct sg_iovec *iov, int iov_count,
  564. int is_our_pages)
  565. {
  566. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  567. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  568. bmd->nr_sgvecs = iov_count;
  569. bmd->is_our_pages = is_our_pages;
  570. bio->bi_private = bmd;
  571. }
  572. static void bio_free_map_data(struct bio_map_data *bmd)
  573. {
  574. kfree(bmd->iovecs);
  575. kfree(bmd->sgvecs);
  576. kfree(bmd);
  577. }
  578. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  579. gfp_t gfp_mask)
  580. {
  581. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  582. if (!bmd)
  583. return NULL;
  584. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  585. if (!bmd->iovecs) {
  586. kfree(bmd);
  587. return NULL;
  588. }
  589. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  590. if (bmd->sgvecs)
  591. return bmd;
  592. kfree(bmd->iovecs);
  593. kfree(bmd);
  594. return NULL;
  595. }
  596. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  597. struct sg_iovec *iov, int iov_count, int uncopy,
  598. int do_free_page)
  599. {
  600. int ret = 0, i;
  601. struct bio_vec *bvec;
  602. int iov_idx = 0;
  603. unsigned int iov_off = 0;
  604. int read = bio_data_dir(bio) == READ;
  605. __bio_for_each_segment(bvec, bio, i, 0) {
  606. char *bv_addr = page_address(bvec->bv_page);
  607. unsigned int bv_len = iovecs[i].bv_len;
  608. while (bv_len && iov_idx < iov_count) {
  609. unsigned int bytes;
  610. char *iov_addr;
  611. bytes = min_t(unsigned int,
  612. iov[iov_idx].iov_len - iov_off, bv_len);
  613. iov_addr = iov[iov_idx].iov_base + iov_off;
  614. if (!ret) {
  615. if (!read && !uncopy)
  616. ret = copy_from_user(bv_addr, iov_addr,
  617. bytes);
  618. if (read && uncopy)
  619. ret = copy_to_user(iov_addr, bv_addr,
  620. bytes);
  621. if (ret)
  622. ret = -EFAULT;
  623. }
  624. bv_len -= bytes;
  625. bv_addr += bytes;
  626. iov_addr += bytes;
  627. iov_off += bytes;
  628. if (iov[iov_idx].iov_len == iov_off) {
  629. iov_idx++;
  630. iov_off = 0;
  631. }
  632. }
  633. if (do_free_page)
  634. __free_page(bvec->bv_page);
  635. }
  636. return ret;
  637. }
  638. /**
  639. * bio_uncopy_user - finish previously mapped bio
  640. * @bio: bio being terminated
  641. *
  642. * Free pages allocated from bio_copy_user() and write back data
  643. * to user space in case of a read.
  644. */
  645. int bio_uncopy_user(struct bio *bio)
  646. {
  647. struct bio_map_data *bmd = bio->bi_private;
  648. int ret = 0;
  649. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  650. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  651. bmd->nr_sgvecs, 1, bmd->is_our_pages);
  652. bio_free_map_data(bmd);
  653. bio_put(bio);
  654. return ret;
  655. }
  656. /**
  657. * bio_copy_user_iov - copy user data to bio
  658. * @q: destination block queue
  659. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  660. * @iov: the iovec.
  661. * @iov_count: number of elements in the iovec
  662. * @write_to_vm: bool indicating writing to pages or not
  663. * @gfp_mask: memory allocation flags
  664. *
  665. * Prepares and returns a bio for indirect user io, bouncing data
  666. * to/from kernel pages as necessary. Must be paired with
  667. * call bio_uncopy_user() on io completion.
  668. */
  669. struct bio *bio_copy_user_iov(struct request_queue *q,
  670. struct rq_map_data *map_data,
  671. struct sg_iovec *iov, int iov_count,
  672. int write_to_vm, gfp_t gfp_mask)
  673. {
  674. struct bio_map_data *bmd;
  675. struct bio_vec *bvec;
  676. struct page *page;
  677. struct bio *bio;
  678. int i, ret;
  679. int nr_pages = 0;
  680. unsigned int len = 0;
  681. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  682. for (i = 0; i < iov_count; i++) {
  683. unsigned long uaddr;
  684. unsigned long end;
  685. unsigned long start;
  686. uaddr = (unsigned long)iov[i].iov_base;
  687. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  688. start = uaddr >> PAGE_SHIFT;
  689. nr_pages += end - start;
  690. len += iov[i].iov_len;
  691. }
  692. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  693. if (!bmd)
  694. return ERR_PTR(-ENOMEM);
  695. ret = -ENOMEM;
  696. bio = bio_alloc(gfp_mask, nr_pages);
  697. if (!bio)
  698. goto out_bmd;
  699. bio->bi_rw |= (!write_to_vm << BIO_RW);
  700. ret = 0;
  701. if (map_data) {
  702. nr_pages = 1 << map_data->page_order;
  703. i = map_data->offset / PAGE_SIZE;
  704. }
  705. while (len) {
  706. unsigned int bytes = PAGE_SIZE;
  707. bytes -= offset;
  708. if (bytes > len)
  709. bytes = len;
  710. if (map_data) {
  711. if (i == map_data->nr_entries * nr_pages) {
  712. ret = -ENOMEM;
  713. break;
  714. }
  715. page = map_data->pages[i / nr_pages];
  716. page += (i % nr_pages);
  717. i++;
  718. } else {
  719. page = alloc_page(q->bounce_gfp | gfp_mask);
  720. if (!page) {
  721. ret = -ENOMEM;
  722. break;
  723. }
  724. }
  725. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  726. break;
  727. len -= bytes;
  728. offset = 0;
  729. }
  730. if (ret)
  731. goto cleanup;
  732. /*
  733. * success
  734. */
  735. if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
  736. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
  737. if (ret)
  738. goto cleanup;
  739. }
  740. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  741. return bio;
  742. cleanup:
  743. if (!map_data)
  744. bio_for_each_segment(bvec, bio, i)
  745. __free_page(bvec->bv_page);
  746. bio_put(bio);
  747. out_bmd:
  748. bio_free_map_data(bmd);
  749. return ERR_PTR(ret);
  750. }
  751. /**
  752. * bio_copy_user - copy user data to bio
  753. * @q: destination block queue
  754. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  755. * @uaddr: start of user address
  756. * @len: length in bytes
  757. * @write_to_vm: bool indicating writing to pages or not
  758. * @gfp_mask: memory allocation flags
  759. *
  760. * Prepares and returns a bio for indirect user io, bouncing data
  761. * to/from kernel pages as necessary. Must be paired with
  762. * call bio_uncopy_user() on io completion.
  763. */
  764. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  765. unsigned long uaddr, unsigned int len,
  766. int write_to_vm, gfp_t gfp_mask)
  767. {
  768. struct sg_iovec iov;
  769. iov.iov_base = (void __user *)uaddr;
  770. iov.iov_len = len;
  771. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  772. }
  773. static struct bio *__bio_map_user_iov(struct request_queue *q,
  774. struct block_device *bdev,
  775. struct sg_iovec *iov, int iov_count,
  776. int write_to_vm, gfp_t gfp_mask)
  777. {
  778. int i, j;
  779. int nr_pages = 0;
  780. struct page **pages;
  781. struct bio *bio;
  782. int cur_page = 0;
  783. int ret, offset;
  784. for (i = 0; i < iov_count; i++) {
  785. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  786. unsigned long len = iov[i].iov_len;
  787. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  788. unsigned long start = uaddr >> PAGE_SHIFT;
  789. nr_pages += end - start;
  790. /*
  791. * buffer must be aligned to at least hardsector size for now
  792. */
  793. if (uaddr & queue_dma_alignment(q))
  794. return ERR_PTR(-EINVAL);
  795. }
  796. if (!nr_pages)
  797. return ERR_PTR(-EINVAL);
  798. bio = bio_alloc(gfp_mask, nr_pages);
  799. if (!bio)
  800. return ERR_PTR(-ENOMEM);
  801. ret = -ENOMEM;
  802. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  803. if (!pages)
  804. goto out;
  805. for (i = 0; i < iov_count; i++) {
  806. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  807. unsigned long len = iov[i].iov_len;
  808. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  809. unsigned long start = uaddr >> PAGE_SHIFT;
  810. const int local_nr_pages = end - start;
  811. const int page_limit = cur_page + local_nr_pages;
  812. ret = get_user_pages_fast(uaddr, local_nr_pages,
  813. write_to_vm, &pages[cur_page]);
  814. if (ret < local_nr_pages) {
  815. ret = -EFAULT;
  816. goto out_unmap;
  817. }
  818. offset = uaddr & ~PAGE_MASK;
  819. for (j = cur_page; j < page_limit; j++) {
  820. unsigned int bytes = PAGE_SIZE - offset;
  821. if (len <= 0)
  822. break;
  823. if (bytes > len)
  824. bytes = len;
  825. /*
  826. * sorry...
  827. */
  828. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  829. bytes)
  830. break;
  831. len -= bytes;
  832. offset = 0;
  833. }
  834. cur_page = j;
  835. /*
  836. * release the pages we didn't map into the bio, if any
  837. */
  838. while (j < page_limit)
  839. page_cache_release(pages[j++]);
  840. }
  841. kfree(pages);
  842. /*
  843. * set data direction, and check if mapped pages need bouncing
  844. */
  845. if (!write_to_vm)
  846. bio->bi_rw |= (1 << BIO_RW);
  847. bio->bi_bdev = bdev;
  848. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  849. return bio;
  850. out_unmap:
  851. for (i = 0; i < nr_pages; i++) {
  852. if(!pages[i])
  853. break;
  854. page_cache_release(pages[i]);
  855. }
  856. out:
  857. kfree(pages);
  858. bio_put(bio);
  859. return ERR_PTR(ret);
  860. }
  861. /**
  862. * bio_map_user - map user address into bio
  863. * @q: the struct request_queue for the bio
  864. * @bdev: destination block device
  865. * @uaddr: start of user address
  866. * @len: length in bytes
  867. * @write_to_vm: bool indicating writing to pages or not
  868. * @gfp_mask: memory allocation flags
  869. *
  870. * Map the user space address into a bio suitable for io to a block
  871. * device. Returns an error pointer in case of error.
  872. */
  873. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  874. unsigned long uaddr, unsigned int len, int write_to_vm,
  875. gfp_t gfp_mask)
  876. {
  877. struct sg_iovec iov;
  878. iov.iov_base = (void __user *)uaddr;
  879. iov.iov_len = len;
  880. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  881. }
  882. /**
  883. * bio_map_user_iov - map user sg_iovec table into bio
  884. * @q: the struct request_queue for the bio
  885. * @bdev: destination block device
  886. * @iov: the iovec.
  887. * @iov_count: number of elements in the iovec
  888. * @write_to_vm: bool indicating writing to pages or not
  889. * @gfp_mask: memory allocation flags
  890. *
  891. * Map the user space address into a bio suitable for io to a block
  892. * device. Returns an error pointer in case of error.
  893. */
  894. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  895. struct sg_iovec *iov, int iov_count,
  896. int write_to_vm, gfp_t gfp_mask)
  897. {
  898. struct bio *bio;
  899. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  900. gfp_mask);
  901. if (IS_ERR(bio))
  902. return bio;
  903. /*
  904. * subtle -- if __bio_map_user() ended up bouncing a bio,
  905. * it would normally disappear when its bi_end_io is run.
  906. * however, we need it for the unmap, so grab an extra
  907. * reference to it
  908. */
  909. bio_get(bio);
  910. return bio;
  911. }
  912. static void __bio_unmap_user(struct bio *bio)
  913. {
  914. struct bio_vec *bvec;
  915. int i;
  916. /*
  917. * make sure we dirty pages we wrote to
  918. */
  919. __bio_for_each_segment(bvec, bio, i, 0) {
  920. if (bio_data_dir(bio) == READ)
  921. set_page_dirty_lock(bvec->bv_page);
  922. page_cache_release(bvec->bv_page);
  923. }
  924. bio_put(bio);
  925. }
  926. /**
  927. * bio_unmap_user - unmap a bio
  928. * @bio: the bio being unmapped
  929. *
  930. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  931. * a process context.
  932. *
  933. * bio_unmap_user() may sleep.
  934. */
  935. void bio_unmap_user(struct bio *bio)
  936. {
  937. __bio_unmap_user(bio);
  938. bio_put(bio);
  939. }
  940. static void bio_map_kern_endio(struct bio *bio, int err)
  941. {
  942. bio_put(bio);
  943. }
  944. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  945. unsigned int len, gfp_t gfp_mask)
  946. {
  947. unsigned long kaddr = (unsigned long)data;
  948. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  949. unsigned long start = kaddr >> PAGE_SHIFT;
  950. const int nr_pages = end - start;
  951. int offset, i;
  952. struct bio *bio;
  953. bio = bio_alloc(gfp_mask, nr_pages);
  954. if (!bio)
  955. return ERR_PTR(-ENOMEM);
  956. offset = offset_in_page(kaddr);
  957. for (i = 0; i < nr_pages; i++) {
  958. unsigned int bytes = PAGE_SIZE - offset;
  959. if (len <= 0)
  960. break;
  961. if (bytes > len)
  962. bytes = len;
  963. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  964. offset) < bytes)
  965. break;
  966. data += bytes;
  967. len -= bytes;
  968. offset = 0;
  969. }
  970. bio->bi_end_io = bio_map_kern_endio;
  971. return bio;
  972. }
  973. /**
  974. * bio_map_kern - map kernel address into bio
  975. * @q: the struct request_queue for the bio
  976. * @data: pointer to buffer to map
  977. * @len: length in bytes
  978. * @gfp_mask: allocation flags for bio allocation
  979. *
  980. * Map the kernel address into a bio suitable for io to a block
  981. * device. Returns an error pointer in case of error.
  982. */
  983. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  984. gfp_t gfp_mask)
  985. {
  986. struct bio *bio;
  987. bio = __bio_map_kern(q, data, len, gfp_mask);
  988. if (IS_ERR(bio))
  989. return bio;
  990. if (bio->bi_size == len)
  991. return bio;
  992. /*
  993. * Don't support partial mappings.
  994. */
  995. bio_put(bio);
  996. return ERR_PTR(-EINVAL);
  997. }
  998. static void bio_copy_kern_endio(struct bio *bio, int err)
  999. {
  1000. struct bio_vec *bvec;
  1001. const int read = bio_data_dir(bio) == READ;
  1002. struct bio_map_data *bmd = bio->bi_private;
  1003. int i;
  1004. char *p = bmd->sgvecs[0].iov_base;
  1005. __bio_for_each_segment(bvec, bio, i, 0) {
  1006. char *addr = page_address(bvec->bv_page);
  1007. int len = bmd->iovecs[i].bv_len;
  1008. if (read && !err)
  1009. memcpy(p, addr, len);
  1010. __free_page(bvec->bv_page);
  1011. p += len;
  1012. }
  1013. bio_free_map_data(bmd);
  1014. bio_put(bio);
  1015. }
  1016. /**
  1017. * bio_copy_kern - copy kernel address into bio
  1018. * @q: the struct request_queue for the bio
  1019. * @data: pointer to buffer to copy
  1020. * @len: length in bytes
  1021. * @gfp_mask: allocation flags for bio and page allocation
  1022. * @reading: data direction is READ
  1023. *
  1024. * copy the kernel address into a bio suitable for io to a block
  1025. * device. Returns an error pointer in case of error.
  1026. */
  1027. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1028. gfp_t gfp_mask, int reading)
  1029. {
  1030. struct bio *bio;
  1031. struct bio_vec *bvec;
  1032. int i;
  1033. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1034. if (IS_ERR(bio))
  1035. return bio;
  1036. if (!reading) {
  1037. void *p = data;
  1038. bio_for_each_segment(bvec, bio, i) {
  1039. char *addr = page_address(bvec->bv_page);
  1040. memcpy(addr, p, bvec->bv_len);
  1041. p += bvec->bv_len;
  1042. }
  1043. }
  1044. bio->bi_end_io = bio_copy_kern_endio;
  1045. return bio;
  1046. }
  1047. /*
  1048. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1049. * for performing direct-IO in BIOs.
  1050. *
  1051. * The problem is that we cannot run set_page_dirty() from interrupt context
  1052. * because the required locks are not interrupt-safe. So what we can do is to
  1053. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1054. * check that the pages are still dirty. If so, fine. If not, redirty them
  1055. * in process context.
  1056. *
  1057. * We special-case compound pages here: normally this means reads into hugetlb
  1058. * pages. The logic in here doesn't really work right for compound pages
  1059. * because the VM does not uniformly chase down the head page in all cases.
  1060. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1061. * handle them at all. So we skip compound pages here at an early stage.
  1062. *
  1063. * Note that this code is very hard to test under normal circumstances because
  1064. * direct-io pins the pages with get_user_pages(). This makes
  1065. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1066. * But other code (eg, pdflush) could clean the pages if they are mapped
  1067. * pagecache.
  1068. *
  1069. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1070. * deferred bio dirtying paths.
  1071. */
  1072. /*
  1073. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1074. */
  1075. void bio_set_pages_dirty(struct bio *bio)
  1076. {
  1077. struct bio_vec *bvec = bio->bi_io_vec;
  1078. int i;
  1079. for (i = 0; i < bio->bi_vcnt; i++) {
  1080. struct page *page = bvec[i].bv_page;
  1081. if (page && !PageCompound(page))
  1082. set_page_dirty_lock(page);
  1083. }
  1084. }
  1085. static void bio_release_pages(struct bio *bio)
  1086. {
  1087. struct bio_vec *bvec = bio->bi_io_vec;
  1088. int i;
  1089. for (i = 0; i < bio->bi_vcnt; i++) {
  1090. struct page *page = bvec[i].bv_page;
  1091. if (page)
  1092. put_page(page);
  1093. }
  1094. }
  1095. /*
  1096. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1097. * If they are, then fine. If, however, some pages are clean then they must
  1098. * have been written out during the direct-IO read. So we take another ref on
  1099. * the BIO and the offending pages and re-dirty the pages in process context.
  1100. *
  1101. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1102. * here on. It will run one page_cache_release() against each page and will
  1103. * run one bio_put() against the BIO.
  1104. */
  1105. static void bio_dirty_fn(struct work_struct *work);
  1106. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1107. static DEFINE_SPINLOCK(bio_dirty_lock);
  1108. static struct bio *bio_dirty_list;
  1109. /*
  1110. * This runs in process context
  1111. */
  1112. static void bio_dirty_fn(struct work_struct *work)
  1113. {
  1114. unsigned long flags;
  1115. struct bio *bio;
  1116. spin_lock_irqsave(&bio_dirty_lock, flags);
  1117. bio = bio_dirty_list;
  1118. bio_dirty_list = NULL;
  1119. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1120. while (bio) {
  1121. struct bio *next = bio->bi_private;
  1122. bio_set_pages_dirty(bio);
  1123. bio_release_pages(bio);
  1124. bio_put(bio);
  1125. bio = next;
  1126. }
  1127. }
  1128. void bio_check_pages_dirty(struct bio *bio)
  1129. {
  1130. struct bio_vec *bvec = bio->bi_io_vec;
  1131. int nr_clean_pages = 0;
  1132. int i;
  1133. for (i = 0; i < bio->bi_vcnt; i++) {
  1134. struct page *page = bvec[i].bv_page;
  1135. if (PageDirty(page) || PageCompound(page)) {
  1136. page_cache_release(page);
  1137. bvec[i].bv_page = NULL;
  1138. } else {
  1139. nr_clean_pages++;
  1140. }
  1141. }
  1142. if (nr_clean_pages) {
  1143. unsigned long flags;
  1144. spin_lock_irqsave(&bio_dirty_lock, flags);
  1145. bio->bi_private = bio_dirty_list;
  1146. bio_dirty_list = bio;
  1147. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1148. schedule_work(&bio_dirty_work);
  1149. } else {
  1150. bio_put(bio);
  1151. }
  1152. }
  1153. /**
  1154. * bio_endio - end I/O on a bio
  1155. * @bio: bio
  1156. * @error: error, if any
  1157. *
  1158. * Description:
  1159. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1160. * preferred way to end I/O on a bio, it takes care of clearing
  1161. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1162. * established -Exxxx (-EIO, for instance) error values in case
  1163. * something went wrong. Noone should call bi_end_io() directly on a
  1164. * bio unless they own it and thus know that it has an end_io
  1165. * function.
  1166. **/
  1167. void bio_endio(struct bio *bio, int error)
  1168. {
  1169. if (error)
  1170. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1171. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1172. error = -EIO;
  1173. if (bio->bi_end_io)
  1174. bio->bi_end_io(bio, error);
  1175. }
  1176. void bio_pair_release(struct bio_pair *bp)
  1177. {
  1178. if (atomic_dec_and_test(&bp->cnt)) {
  1179. struct bio *master = bp->bio1.bi_private;
  1180. bio_endio(master, bp->error);
  1181. mempool_free(bp, bp->bio2.bi_private);
  1182. }
  1183. }
  1184. static void bio_pair_end_1(struct bio *bi, int err)
  1185. {
  1186. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1187. if (err)
  1188. bp->error = err;
  1189. bio_pair_release(bp);
  1190. }
  1191. static void bio_pair_end_2(struct bio *bi, int err)
  1192. {
  1193. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1194. if (err)
  1195. bp->error = err;
  1196. bio_pair_release(bp);
  1197. }
  1198. /*
  1199. * split a bio - only worry about a bio with a single page
  1200. * in it's iovec
  1201. */
  1202. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1203. {
  1204. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1205. if (!bp)
  1206. return bp;
  1207. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1208. bi->bi_sector + first_sectors);
  1209. BUG_ON(bi->bi_vcnt != 1);
  1210. BUG_ON(bi->bi_idx != 0);
  1211. atomic_set(&bp->cnt, 3);
  1212. bp->error = 0;
  1213. bp->bio1 = *bi;
  1214. bp->bio2 = *bi;
  1215. bp->bio2.bi_sector += first_sectors;
  1216. bp->bio2.bi_size -= first_sectors << 9;
  1217. bp->bio1.bi_size = first_sectors << 9;
  1218. bp->bv1 = bi->bi_io_vec[0];
  1219. bp->bv2 = bi->bi_io_vec[0];
  1220. bp->bv2.bv_offset += first_sectors << 9;
  1221. bp->bv2.bv_len -= first_sectors << 9;
  1222. bp->bv1.bv_len = first_sectors << 9;
  1223. bp->bio1.bi_io_vec = &bp->bv1;
  1224. bp->bio2.bi_io_vec = &bp->bv2;
  1225. bp->bio1.bi_max_vecs = 1;
  1226. bp->bio2.bi_max_vecs = 1;
  1227. bp->bio1.bi_end_io = bio_pair_end_1;
  1228. bp->bio2.bi_end_io = bio_pair_end_2;
  1229. bp->bio1.bi_private = bi;
  1230. bp->bio2.bi_private = bio_split_pool;
  1231. if (bio_integrity(bi))
  1232. bio_integrity_split(bi, bp, first_sectors);
  1233. return bp;
  1234. }
  1235. /**
  1236. * bio_sector_offset - Find hardware sector offset in bio
  1237. * @bio: bio to inspect
  1238. * @index: bio_vec index
  1239. * @offset: offset in bv_page
  1240. *
  1241. * Return the number of hardware sectors between beginning of bio
  1242. * and an end point indicated by a bio_vec index and an offset
  1243. * within that vector's page.
  1244. */
  1245. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1246. unsigned int offset)
  1247. {
  1248. unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
  1249. struct bio_vec *bv;
  1250. sector_t sectors;
  1251. int i;
  1252. sectors = 0;
  1253. if (index >= bio->bi_idx)
  1254. index = bio->bi_vcnt - 1;
  1255. __bio_for_each_segment(bv, bio, i, 0) {
  1256. if (i == index) {
  1257. if (offset > bv->bv_offset)
  1258. sectors += (offset - bv->bv_offset) / sector_sz;
  1259. break;
  1260. }
  1261. sectors += bv->bv_len / sector_sz;
  1262. }
  1263. return sectors;
  1264. }
  1265. EXPORT_SYMBOL(bio_sector_offset);
  1266. /*
  1267. * create memory pools for biovec's in a bio_set.
  1268. * use the global biovec slabs created for general use.
  1269. */
  1270. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1271. {
  1272. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1273. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1274. if (!bs->bvec_pool)
  1275. return -ENOMEM;
  1276. return 0;
  1277. }
  1278. static void biovec_free_pools(struct bio_set *bs)
  1279. {
  1280. mempool_destroy(bs->bvec_pool);
  1281. }
  1282. void bioset_free(struct bio_set *bs)
  1283. {
  1284. if (bs->bio_pool)
  1285. mempool_destroy(bs->bio_pool);
  1286. bioset_integrity_free(bs);
  1287. biovec_free_pools(bs);
  1288. bio_put_slab(bs);
  1289. kfree(bs);
  1290. }
  1291. /**
  1292. * bioset_create - Create a bio_set
  1293. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1294. * @front_pad: Number of bytes to allocate in front of the returned bio
  1295. *
  1296. * Description:
  1297. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1298. * to ask for a number of bytes to be allocated in front of the bio.
  1299. * Front pad allocation is useful for embedding the bio inside
  1300. * another structure, to avoid allocating extra data to go with the bio.
  1301. * Note that the bio must be embedded at the END of that structure always,
  1302. * or things will break badly.
  1303. */
  1304. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1305. {
  1306. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1307. struct bio_set *bs;
  1308. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1309. if (!bs)
  1310. return NULL;
  1311. bs->front_pad = front_pad;
  1312. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1313. if (!bs->bio_slab) {
  1314. kfree(bs);
  1315. return NULL;
  1316. }
  1317. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1318. if (!bs->bio_pool)
  1319. goto bad;
  1320. if (bioset_integrity_create(bs, pool_size))
  1321. goto bad;
  1322. if (!biovec_create_pools(bs, pool_size))
  1323. return bs;
  1324. bad:
  1325. bioset_free(bs);
  1326. return NULL;
  1327. }
  1328. static void __init biovec_init_slabs(void)
  1329. {
  1330. int i;
  1331. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1332. int size;
  1333. struct biovec_slab *bvs = bvec_slabs + i;
  1334. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1335. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1336. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1337. }
  1338. }
  1339. static int __init init_bio(void)
  1340. {
  1341. bio_slab_max = 2;
  1342. bio_slab_nr = 0;
  1343. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1344. if (!bio_slabs)
  1345. panic("bio: can't allocate bios\n");
  1346. bio_integrity_init_slab();
  1347. biovec_init_slabs();
  1348. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1349. if (!fs_bio_set)
  1350. panic("bio: can't allocate bios\n");
  1351. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1352. sizeof(struct bio_pair));
  1353. if (!bio_split_pool)
  1354. panic("bio: can't create split pool\n");
  1355. return 0;
  1356. }
  1357. subsys_initcall(init_bio);
  1358. EXPORT_SYMBOL(bio_alloc);
  1359. EXPORT_SYMBOL(bio_kmalloc);
  1360. EXPORT_SYMBOL(bio_put);
  1361. EXPORT_SYMBOL(bio_free);
  1362. EXPORT_SYMBOL(bio_endio);
  1363. EXPORT_SYMBOL(bio_init);
  1364. EXPORT_SYMBOL(__bio_clone);
  1365. EXPORT_SYMBOL(bio_clone);
  1366. EXPORT_SYMBOL(bio_phys_segments);
  1367. EXPORT_SYMBOL(bio_add_page);
  1368. EXPORT_SYMBOL(bio_add_pc_page);
  1369. EXPORT_SYMBOL(bio_get_nr_vecs);
  1370. EXPORT_SYMBOL(bio_map_user);
  1371. EXPORT_SYMBOL(bio_unmap_user);
  1372. EXPORT_SYMBOL(bio_map_kern);
  1373. EXPORT_SYMBOL(bio_copy_kern);
  1374. EXPORT_SYMBOL(bio_pair_release);
  1375. EXPORT_SYMBOL(bio_split);
  1376. EXPORT_SYMBOL(bio_copy_user);
  1377. EXPORT_SYMBOL(bio_uncopy_user);
  1378. EXPORT_SYMBOL(bioset_create);
  1379. EXPORT_SYMBOL(bioset_free);
  1380. EXPORT_SYMBOL(bio_alloc_bioset);