mmu.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk {
  112. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  113. u64 addr, u64 *spte, int level);
  114. };
  115. struct kvm_unsync_walk {
  116. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  117. };
  118. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  119. static struct kmem_cache *pte_chain_cache;
  120. static struct kmem_cache *rmap_desc_cache;
  121. static struct kmem_cache *mmu_page_header_cache;
  122. static u64 __read_mostly shadow_trap_nonpresent_pte;
  123. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  124. static u64 __read_mostly shadow_base_present_pte;
  125. static u64 __read_mostly shadow_nx_mask;
  126. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  127. static u64 __read_mostly shadow_user_mask;
  128. static u64 __read_mostly shadow_accessed_mask;
  129. static u64 __read_mostly shadow_dirty_mask;
  130. static u64 __read_mostly shadow_mt_mask;
  131. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  132. {
  133. shadow_trap_nonpresent_pte = trap_pte;
  134. shadow_notrap_nonpresent_pte = notrap_pte;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  137. void kvm_mmu_set_base_ptes(u64 base_pte)
  138. {
  139. shadow_base_present_pte = base_pte;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  142. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  143. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  144. {
  145. shadow_user_mask = user_mask;
  146. shadow_accessed_mask = accessed_mask;
  147. shadow_dirty_mask = dirty_mask;
  148. shadow_nx_mask = nx_mask;
  149. shadow_x_mask = x_mask;
  150. shadow_mt_mask = mt_mask;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  153. static int is_write_protection(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.cr0 & X86_CR0_WP;
  156. }
  157. static int is_cpuid_PSE36(void)
  158. {
  159. return 1;
  160. }
  161. static int is_nx(struct kvm_vcpu *vcpu)
  162. {
  163. return vcpu->arch.shadow_efer & EFER_NX;
  164. }
  165. static int is_present_pte(unsigned long pte)
  166. {
  167. return pte & PT_PRESENT_MASK;
  168. }
  169. static int is_shadow_present_pte(u64 pte)
  170. {
  171. return pte != shadow_trap_nonpresent_pte
  172. && pte != shadow_notrap_nonpresent_pte;
  173. }
  174. static int is_large_pte(u64 pte)
  175. {
  176. return pte & PT_PAGE_SIZE_MASK;
  177. }
  178. static int is_writeble_pte(unsigned long pte)
  179. {
  180. return pte & PT_WRITABLE_MASK;
  181. }
  182. static int is_dirty_pte(unsigned long pte)
  183. {
  184. return pte & shadow_dirty_mask;
  185. }
  186. static int is_rmap_pte(u64 pte)
  187. {
  188. return is_shadow_present_pte(pte);
  189. }
  190. static pfn_t spte_to_pfn(u64 pte)
  191. {
  192. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  193. }
  194. static gfn_t pse36_gfn_delta(u32 gpte)
  195. {
  196. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  197. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  198. }
  199. static void set_shadow_pte(u64 *sptep, u64 spte)
  200. {
  201. #ifdef CONFIG_X86_64
  202. set_64bit((unsigned long *)sptep, spte);
  203. #else
  204. set_64bit((unsigned long long *)sptep, spte);
  205. #endif
  206. }
  207. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  208. struct kmem_cache *base_cache, int min)
  209. {
  210. void *obj;
  211. if (cache->nobjs >= min)
  212. return 0;
  213. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  214. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  215. if (!obj)
  216. return -ENOMEM;
  217. cache->objects[cache->nobjs++] = obj;
  218. }
  219. return 0;
  220. }
  221. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  222. {
  223. while (mc->nobjs)
  224. kfree(mc->objects[--mc->nobjs]);
  225. }
  226. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  227. int min)
  228. {
  229. struct page *page;
  230. if (cache->nobjs >= min)
  231. return 0;
  232. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  233. page = alloc_page(GFP_KERNEL);
  234. if (!page)
  235. return -ENOMEM;
  236. set_page_private(page, 0);
  237. cache->objects[cache->nobjs++] = page_address(page);
  238. }
  239. return 0;
  240. }
  241. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  242. {
  243. while (mc->nobjs)
  244. free_page((unsigned long)mc->objects[--mc->nobjs]);
  245. }
  246. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  250. pte_chain_cache, 4);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  254. rmap_desc_cache, 4);
  255. if (r)
  256. goto out;
  257. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  261. mmu_page_header_cache, 4);
  262. out:
  263. return r;
  264. }
  265. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  266. {
  267. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  269. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  270. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  271. }
  272. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  273. size_t size)
  274. {
  275. void *p;
  276. BUG_ON(!mc->nobjs);
  277. p = mc->objects[--mc->nobjs];
  278. memset(p, 0, size);
  279. return p;
  280. }
  281. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  282. {
  283. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  284. sizeof(struct kvm_pte_chain));
  285. }
  286. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  287. {
  288. kfree(pc);
  289. }
  290. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  291. {
  292. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  293. sizeof(struct kvm_rmap_desc));
  294. }
  295. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  296. {
  297. kfree(rd);
  298. }
  299. /*
  300. * Return the pointer to the largepage write count for a given
  301. * gfn, handling slots that are not large page aligned.
  302. */
  303. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  304. {
  305. unsigned long idx;
  306. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  307. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  308. return &slot->lpage_info[idx].write_count;
  309. }
  310. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  311. {
  312. int *write_count;
  313. gfn = unalias_gfn(kvm, gfn);
  314. write_count = slot_largepage_idx(gfn,
  315. gfn_to_memslot_unaliased(kvm, gfn));
  316. *write_count += 1;
  317. }
  318. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  319. {
  320. int *write_count;
  321. gfn = unalias_gfn(kvm, gfn);
  322. write_count = slot_largepage_idx(gfn,
  323. gfn_to_memslot_unaliased(kvm, gfn));
  324. *write_count -= 1;
  325. WARN_ON(*write_count < 0);
  326. }
  327. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  328. {
  329. struct kvm_memory_slot *slot;
  330. int *largepage_idx;
  331. gfn = unalias_gfn(kvm, gfn);
  332. slot = gfn_to_memslot_unaliased(kvm, gfn);
  333. if (slot) {
  334. largepage_idx = slot_largepage_idx(gfn, slot);
  335. return *largepage_idx;
  336. }
  337. return 1;
  338. }
  339. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  340. {
  341. struct vm_area_struct *vma;
  342. unsigned long addr;
  343. int ret = 0;
  344. addr = gfn_to_hva(kvm, gfn);
  345. if (kvm_is_error_hva(addr))
  346. return ret;
  347. down_read(&current->mm->mmap_sem);
  348. vma = find_vma(current->mm, addr);
  349. if (vma && is_vm_hugetlb_page(vma))
  350. ret = 1;
  351. up_read(&current->mm->mmap_sem);
  352. return ret;
  353. }
  354. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  358. return 0;
  359. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  360. return 0;
  361. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  362. if (slot && slot->dirty_bitmap)
  363. return 0;
  364. return 1;
  365. }
  366. /*
  367. * Take gfn and return the reverse mapping to it.
  368. * Note: gfn must be unaliased before this function get called
  369. */
  370. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  371. {
  372. struct kvm_memory_slot *slot;
  373. unsigned long idx;
  374. slot = gfn_to_memslot(kvm, gfn);
  375. if (!lpage)
  376. return &slot->rmap[gfn - slot->base_gfn];
  377. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  378. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  379. return &slot->lpage_info[idx].rmap_pde;
  380. }
  381. /*
  382. * Reverse mapping data structures:
  383. *
  384. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  385. * that points to page_address(page).
  386. *
  387. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  388. * containing more mappings.
  389. */
  390. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  391. {
  392. struct kvm_mmu_page *sp;
  393. struct kvm_rmap_desc *desc;
  394. unsigned long *rmapp;
  395. int i;
  396. if (!is_rmap_pte(*spte))
  397. return;
  398. gfn = unalias_gfn(vcpu->kvm, gfn);
  399. sp = page_header(__pa(spte));
  400. sp->gfns[spte - sp->spt] = gfn;
  401. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  402. if (!*rmapp) {
  403. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  404. *rmapp = (unsigned long)spte;
  405. } else if (!(*rmapp & 1)) {
  406. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  407. desc = mmu_alloc_rmap_desc(vcpu);
  408. desc->shadow_ptes[0] = (u64 *)*rmapp;
  409. desc->shadow_ptes[1] = spte;
  410. *rmapp = (unsigned long)desc | 1;
  411. } else {
  412. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  413. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  414. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  415. desc = desc->more;
  416. if (desc->shadow_ptes[RMAP_EXT-1]) {
  417. desc->more = mmu_alloc_rmap_desc(vcpu);
  418. desc = desc->more;
  419. }
  420. for (i = 0; desc->shadow_ptes[i]; ++i)
  421. ;
  422. desc->shadow_ptes[i] = spte;
  423. }
  424. }
  425. static void rmap_desc_remove_entry(unsigned long *rmapp,
  426. struct kvm_rmap_desc *desc,
  427. int i,
  428. struct kvm_rmap_desc *prev_desc)
  429. {
  430. int j;
  431. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  432. ;
  433. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  434. desc->shadow_ptes[j] = NULL;
  435. if (j != 0)
  436. return;
  437. if (!prev_desc && !desc->more)
  438. *rmapp = (unsigned long)desc->shadow_ptes[0];
  439. else
  440. if (prev_desc)
  441. prev_desc->more = desc->more;
  442. else
  443. *rmapp = (unsigned long)desc->more | 1;
  444. mmu_free_rmap_desc(desc);
  445. }
  446. static void rmap_remove(struct kvm *kvm, u64 *spte)
  447. {
  448. struct kvm_rmap_desc *desc;
  449. struct kvm_rmap_desc *prev_desc;
  450. struct kvm_mmu_page *sp;
  451. pfn_t pfn;
  452. unsigned long *rmapp;
  453. int i;
  454. if (!is_rmap_pte(*spte))
  455. return;
  456. sp = page_header(__pa(spte));
  457. pfn = spte_to_pfn(*spte);
  458. if (*spte & shadow_accessed_mask)
  459. kvm_set_pfn_accessed(pfn);
  460. if (is_writeble_pte(*spte))
  461. kvm_release_pfn_dirty(pfn);
  462. else
  463. kvm_release_pfn_clean(pfn);
  464. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  465. if (!*rmapp) {
  466. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  467. BUG();
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  470. if ((u64 *)*rmapp != spte) {
  471. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  472. spte, *spte);
  473. BUG();
  474. }
  475. *rmapp = 0;
  476. } else {
  477. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  478. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  479. prev_desc = NULL;
  480. while (desc) {
  481. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  482. if (desc->shadow_ptes[i] == spte) {
  483. rmap_desc_remove_entry(rmapp,
  484. desc, i,
  485. prev_desc);
  486. return;
  487. }
  488. prev_desc = desc;
  489. desc = desc->more;
  490. }
  491. BUG();
  492. }
  493. }
  494. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  495. {
  496. struct kvm_rmap_desc *desc;
  497. struct kvm_rmap_desc *prev_desc;
  498. u64 *prev_spte;
  499. int i;
  500. if (!*rmapp)
  501. return NULL;
  502. else if (!(*rmapp & 1)) {
  503. if (!spte)
  504. return (u64 *)*rmapp;
  505. return NULL;
  506. }
  507. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  508. prev_desc = NULL;
  509. prev_spte = NULL;
  510. while (desc) {
  511. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  512. if (prev_spte == spte)
  513. return desc->shadow_ptes[i];
  514. prev_spte = desc->shadow_ptes[i];
  515. }
  516. desc = desc->more;
  517. }
  518. return NULL;
  519. }
  520. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  521. {
  522. unsigned long *rmapp;
  523. u64 *spte;
  524. int write_protected = 0;
  525. gfn = unalias_gfn(kvm, gfn);
  526. rmapp = gfn_to_rmap(kvm, gfn, 0);
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. while (spte) {
  529. BUG_ON(!spte);
  530. BUG_ON(!(*spte & PT_PRESENT_MASK));
  531. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  532. if (is_writeble_pte(*spte)) {
  533. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  534. write_protected = 1;
  535. }
  536. spte = rmap_next(kvm, rmapp, spte);
  537. }
  538. if (write_protected) {
  539. pfn_t pfn;
  540. spte = rmap_next(kvm, rmapp, NULL);
  541. pfn = spte_to_pfn(*spte);
  542. kvm_set_pfn_dirty(pfn);
  543. }
  544. /* check for huge page mappings */
  545. rmapp = gfn_to_rmap(kvm, gfn, 1);
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. while (spte) {
  548. BUG_ON(!spte);
  549. BUG_ON(!(*spte & PT_PRESENT_MASK));
  550. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  551. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  552. if (is_writeble_pte(*spte)) {
  553. rmap_remove(kvm, spte);
  554. --kvm->stat.lpages;
  555. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  556. spte = NULL;
  557. write_protected = 1;
  558. }
  559. spte = rmap_next(kvm, rmapp, spte);
  560. }
  561. return write_protected;
  562. }
  563. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  564. {
  565. u64 *spte;
  566. int need_tlb_flush = 0;
  567. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  568. BUG_ON(!(*spte & PT_PRESENT_MASK));
  569. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  570. rmap_remove(kvm, spte);
  571. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  572. need_tlb_flush = 1;
  573. }
  574. return need_tlb_flush;
  575. }
  576. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  577. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  578. {
  579. int i;
  580. int retval = 0;
  581. /*
  582. * If mmap_sem isn't taken, we can look the memslots with only
  583. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  584. */
  585. for (i = 0; i < kvm->nmemslots; i++) {
  586. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  587. unsigned long start = memslot->userspace_addr;
  588. unsigned long end;
  589. /* mmu_lock protects userspace_addr */
  590. if (!start)
  591. continue;
  592. end = start + (memslot->npages << PAGE_SHIFT);
  593. if (hva >= start && hva < end) {
  594. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  595. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  596. retval |= handler(kvm,
  597. &memslot->lpage_info[
  598. gfn_offset /
  599. KVM_PAGES_PER_HPAGE].rmap_pde);
  600. }
  601. }
  602. return retval;
  603. }
  604. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  605. {
  606. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  607. }
  608. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  609. {
  610. u64 *spte;
  611. int young = 0;
  612. /* always return old for EPT */
  613. if (!shadow_accessed_mask)
  614. return 0;
  615. spte = rmap_next(kvm, rmapp, NULL);
  616. while (spte) {
  617. int _young;
  618. u64 _spte = *spte;
  619. BUG_ON(!(_spte & PT_PRESENT_MASK));
  620. _young = _spte & PT_ACCESSED_MASK;
  621. if (_young) {
  622. young = 1;
  623. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. return young;
  628. }
  629. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  630. {
  631. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  632. }
  633. #ifdef MMU_DEBUG
  634. static int is_empty_shadow_page(u64 *spt)
  635. {
  636. u64 *pos;
  637. u64 *end;
  638. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  639. if (is_shadow_present_pte(*pos)) {
  640. printk(KERN_ERR "%s: %p %llx\n", __func__,
  641. pos, *pos);
  642. return 0;
  643. }
  644. return 1;
  645. }
  646. #endif
  647. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  648. {
  649. ASSERT(is_empty_shadow_page(sp->spt));
  650. list_del(&sp->link);
  651. __free_page(virt_to_page(sp->spt));
  652. __free_page(virt_to_page(sp->gfns));
  653. kfree(sp);
  654. ++kvm->arch.n_free_mmu_pages;
  655. }
  656. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  657. {
  658. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  659. }
  660. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  661. u64 *parent_pte)
  662. {
  663. struct kvm_mmu_page *sp;
  664. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  665. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  666. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  667. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  668. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  669. INIT_LIST_HEAD(&sp->oos_link);
  670. ASSERT(is_empty_shadow_page(sp->spt));
  671. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  672. sp->multimapped = 0;
  673. sp->global = 1;
  674. sp->parent_pte = parent_pte;
  675. --vcpu->kvm->arch.n_free_mmu_pages;
  676. return sp;
  677. }
  678. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  679. struct kvm_mmu_page *sp, u64 *parent_pte)
  680. {
  681. struct kvm_pte_chain *pte_chain;
  682. struct hlist_node *node;
  683. int i;
  684. if (!parent_pte)
  685. return;
  686. if (!sp->multimapped) {
  687. u64 *old = sp->parent_pte;
  688. if (!old) {
  689. sp->parent_pte = parent_pte;
  690. return;
  691. }
  692. sp->multimapped = 1;
  693. pte_chain = mmu_alloc_pte_chain(vcpu);
  694. INIT_HLIST_HEAD(&sp->parent_ptes);
  695. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  696. pte_chain->parent_ptes[0] = old;
  697. }
  698. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  699. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  700. continue;
  701. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  702. if (!pte_chain->parent_ptes[i]) {
  703. pte_chain->parent_ptes[i] = parent_pte;
  704. return;
  705. }
  706. }
  707. pte_chain = mmu_alloc_pte_chain(vcpu);
  708. BUG_ON(!pte_chain);
  709. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  710. pte_chain->parent_ptes[0] = parent_pte;
  711. }
  712. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  713. u64 *parent_pte)
  714. {
  715. struct kvm_pte_chain *pte_chain;
  716. struct hlist_node *node;
  717. int i;
  718. if (!sp->multimapped) {
  719. BUG_ON(sp->parent_pte != parent_pte);
  720. sp->parent_pte = NULL;
  721. return;
  722. }
  723. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  724. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  725. if (!pte_chain->parent_ptes[i])
  726. break;
  727. if (pte_chain->parent_ptes[i] != parent_pte)
  728. continue;
  729. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  730. && pte_chain->parent_ptes[i + 1]) {
  731. pte_chain->parent_ptes[i]
  732. = pte_chain->parent_ptes[i + 1];
  733. ++i;
  734. }
  735. pte_chain->parent_ptes[i] = NULL;
  736. if (i == 0) {
  737. hlist_del(&pte_chain->link);
  738. mmu_free_pte_chain(pte_chain);
  739. if (hlist_empty(&sp->parent_ptes)) {
  740. sp->multimapped = 0;
  741. sp->parent_pte = NULL;
  742. }
  743. }
  744. return;
  745. }
  746. BUG();
  747. }
  748. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  749. mmu_parent_walk_fn fn)
  750. {
  751. struct kvm_pte_chain *pte_chain;
  752. struct hlist_node *node;
  753. struct kvm_mmu_page *parent_sp;
  754. int i;
  755. if (!sp->multimapped && sp->parent_pte) {
  756. parent_sp = page_header(__pa(sp->parent_pte));
  757. fn(vcpu, parent_sp);
  758. mmu_parent_walk(vcpu, parent_sp, fn);
  759. return;
  760. }
  761. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  762. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  763. if (!pte_chain->parent_ptes[i])
  764. break;
  765. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  766. fn(vcpu, parent_sp);
  767. mmu_parent_walk(vcpu, parent_sp, fn);
  768. }
  769. }
  770. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  771. {
  772. unsigned int index;
  773. struct kvm_mmu_page *sp = page_header(__pa(spte));
  774. index = spte - sp->spt;
  775. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  776. sp->unsync_children++;
  777. WARN_ON(!sp->unsync_children);
  778. }
  779. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  780. {
  781. struct kvm_pte_chain *pte_chain;
  782. struct hlist_node *node;
  783. int i;
  784. if (!sp->parent_pte)
  785. return;
  786. if (!sp->multimapped) {
  787. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  788. return;
  789. }
  790. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  791. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  792. if (!pte_chain->parent_ptes[i])
  793. break;
  794. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  795. }
  796. }
  797. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  798. {
  799. kvm_mmu_update_parents_unsync(sp);
  800. return 1;
  801. }
  802. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  803. struct kvm_mmu_page *sp)
  804. {
  805. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  806. kvm_mmu_update_parents_unsync(sp);
  807. }
  808. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  809. struct kvm_mmu_page *sp)
  810. {
  811. int i;
  812. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  813. sp->spt[i] = shadow_trap_nonpresent_pte;
  814. }
  815. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  816. struct kvm_mmu_page *sp)
  817. {
  818. return 1;
  819. }
  820. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  821. {
  822. }
  823. #define KVM_PAGE_ARRAY_NR 16
  824. struct kvm_mmu_pages {
  825. struct mmu_page_and_offset {
  826. struct kvm_mmu_page *sp;
  827. unsigned int idx;
  828. } page[KVM_PAGE_ARRAY_NR];
  829. unsigned int nr;
  830. };
  831. #define for_each_unsync_children(bitmap, idx) \
  832. for (idx = find_first_bit(bitmap, 512); \
  833. idx < 512; \
  834. idx = find_next_bit(bitmap, 512, idx+1))
  835. int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  836. int idx)
  837. {
  838. int i;
  839. if (sp->unsync)
  840. for (i=0; i < pvec->nr; i++)
  841. if (pvec->page[i].sp == sp)
  842. return 0;
  843. pvec->page[pvec->nr].sp = sp;
  844. pvec->page[pvec->nr].idx = idx;
  845. pvec->nr++;
  846. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  847. }
  848. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  849. struct kvm_mmu_pages *pvec)
  850. {
  851. int i, ret, nr_unsync_leaf = 0;
  852. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  853. u64 ent = sp->spt[i];
  854. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  855. struct kvm_mmu_page *child;
  856. child = page_header(ent & PT64_BASE_ADDR_MASK);
  857. if (child->unsync_children) {
  858. if (mmu_pages_add(pvec, child, i))
  859. return -ENOSPC;
  860. ret = __mmu_unsync_walk(child, pvec);
  861. if (!ret)
  862. __clear_bit(i, sp->unsync_child_bitmap);
  863. else if (ret > 0)
  864. nr_unsync_leaf += ret;
  865. else
  866. return ret;
  867. }
  868. if (child->unsync) {
  869. nr_unsync_leaf++;
  870. if (mmu_pages_add(pvec, child, i))
  871. return -ENOSPC;
  872. }
  873. }
  874. }
  875. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  876. sp->unsync_children = 0;
  877. return nr_unsync_leaf;
  878. }
  879. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  880. struct kvm_mmu_pages *pvec)
  881. {
  882. if (!sp->unsync_children)
  883. return 0;
  884. mmu_pages_add(pvec, sp, 0);
  885. return __mmu_unsync_walk(sp, pvec);
  886. }
  887. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  888. {
  889. unsigned index;
  890. struct hlist_head *bucket;
  891. struct kvm_mmu_page *sp;
  892. struct hlist_node *node;
  893. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  894. index = kvm_page_table_hashfn(gfn);
  895. bucket = &kvm->arch.mmu_page_hash[index];
  896. hlist_for_each_entry(sp, node, bucket, hash_link)
  897. if (sp->gfn == gfn && !sp->role.metaphysical
  898. && !sp->role.invalid) {
  899. pgprintk("%s: found role %x\n",
  900. __func__, sp->role.word);
  901. return sp;
  902. }
  903. return NULL;
  904. }
  905. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  906. {
  907. list_del(&sp->oos_link);
  908. --kvm->stat.mmu_unsync_global;
  909. }
  910. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  911. {
  912. WARN_ON(!sp->unsync);
  913. sp->unsync = 0;
  914. if (sp->global)
  915. kvm_unlink_unsync_global(kvm, sp);
  916. --kvm->stat.mmu_unsync;
  917. }
  918. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  919. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  920. {
  921. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  922. kvm_mmu_zap_page(vcpu->kvm, sp);
  923. return 1;
  924. }
  925. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  926. kvm_flush_remote_tlbs(vcpu->kvm);
  927. kvm_unlink_unsync_page(vcpu->kvm, sp);
  928. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  929. kvm_mmu_zap_page(vcpu->kvm, sp);
  930. return 1;
  931. }
  932. kvm_mmu_flush_tlb(vcpu);
  933. return 0;
  934. }
  935. struct mmu_page_path {
  936. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  937. unsigned int idx[PT64_ROOT_LEVEL-1];
  938. };
  939. #define for_each_sp(pvec, sp, parents, i) \
  940. for (i = mmu_pages_next(&pvec, &parents, -1), \
  941. sp = pvec.page[i].sp; \
  942. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  943. i = mmu_pages_next(&pvec, &parents, i))
  944. int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
  945. int i)
  946. {
  947. int n;
  948. for (n = i+1; n < pvec->nr; n++) {
  949. struct kvm_mmu_page *sp = pvec->page[n].sp;
  950. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  951. parents->idx[0] = pvec->page[n].idx;
  952. return n;
  953. }
  954. parents->parent[sp->role.level-2] = sp;
  955. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  956. }
  957. return n;
  958. }
  959. void mmu_pages_clear_parents(struct mmu_page_path *parents)
  960. {
  961. struct kvm_mmu_page *sp;
  962. unsigned int level = 0;
  963. do {
  964. unsigned int idx = parents->idx[level];
  965. sp = parents->parent[level];
  966. if (!sp)
  967. return;
  968. --sp->unsync_children;
  969. WARN_ON((int)sp->unsync_children < 0);
  970. __clear_bit(idx, sp->unsync_child_bitmap);
  971. level++;
  972. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  973. }
  974. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  975. struct mmu_page_path *parents,
  976. struct kvm_mmu_pages *pvec)
  977. {
  978. parents->parent[parent->role.level-1] = NULL;
  979. pvec->nr = 0;
  980. }
  981. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  982. struct kvm_mmu_page *parent)
  983. {
  984. int i;
  985. struct kvm_mmu_page *sp;
  986. struct mmu_page_path parents;
  987. struct kvm_mmu_pages pages;
  988. kvm_mmu_pages_init(parent, &parents, &pages);
  989. while (mmu_unsync_walk(parent, &pages)) {
  990. int protected = 0;
  991. for_each_sp(pages, sp, parents, i)
  992. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  993. if (protected)
  994. kvm_flush_remote_tlbs(vcpu->kvm);
  995. for_each_sp(pages, sp, parents, i) {
  996. kvm_sync_page(vcpu, sp);
  997. mmu_pages_clear_parents(&parents);
  998. }
  999. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1000. kvm_mmu_pages_init(parent, &parents, &pages);
  1001. }
  1002. }
  1003. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1004. gfn_t gfn,
  1005. gva_t gaddr,
  1006. unsigned level,
  1007. int metaphysical,
  1008. unsigned access,
  1009. u64 *parent_pte)
  1010. {
  1011. union kvm_mmu_page_role role;
  1012. unsigned index;
  1013. unsigned quadrant;
  1014. struct hlist_head *bucket;
  1015. struct kvm_mmu_page *sp;
  1016. struct hlist_node *node, *tmp;
  1017. role.word = 0;
  1018. role.glevels = vcpu->arch.mmu.root_level;
  1019. role.level = level;
  1020. role.metaphysical = metaphysical;
  1021. role.access = access;
  1022. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1023. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1024. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1025. role.quadrant = quadrant;
  1026. }
  1027. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1028. gfn, role.word);
  1029. index = kvm_page_table_hashfn(gfn);
  1030. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1031. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1032. if (sp->gfn == gfn) {
  1033. if (sp->unsync)
  1034. if (kvm_sync_page(vcpu, sp))
  1035. continue;
  1036. if (sp->role.word != role.word)
  1037. continue;
  1038. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1039. if (sp->unsync_children) {
  1040. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1041. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1042. }
  1043. pgprintk("%s: found\n", __func__);
  1044. return sp;
  1045. }
  1046. ++vcpu->kvm->stat.mmu_cache_miss;
  1047. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1048. if (!sp)
  1049. return sp;
  1050. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1051. sp->gfn = gfn;
  1052. sp->role = role;
  1053. hlist_add_head(&sp->hash_link, bucket);
  1054. if (!metaphysical) {
  1055. if (rmap_write_protect(vcpu->kvm, gfn))
  1056. kvm_flush_remote_tlbs(vcpu->kvm);
  1057. account_shadowed(vcpu->kvm, gfn);
  1058. }
  1059. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1060. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1061. else
  1062. nonpaging_prefetch_page(vcpu, sp);
  1063. return sp;
  1064. }
  1065. static int walk_shadow(struct kvm_shadow_walk *walker,
  1066. struct kvm_vcpu *vcpu, u64 addr)
  1067. {
  1068. hpa_t shadow_addr;
  1069. int level;
  1070. int r;
  1071. u64 *sptep;
  1072. unsigned index;
  1073. shadow_addr = vcpu->arch.mmu.root_hpa;
  1074. level = vcpu->arch.mmu.shadow_root_level;
  1075. if (level == PT32E_ROOT_LEVEL) {
  1076. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1077. shadow_addr &= PT64_BASE_ADDR_MASK;
  1078. if (!shadow_addr)
  1079. return 1;
  1080. --level;
  1081. }
  1082. while (level >= PT_PAGE_TABLE_LEVEL) {
  1083. index = SHADOW_PT_INDEX(addr, level);
  1084. sptep = ((u64 *)__va(shadow_addr)) + index;
  1085. r = walker->entry(walker, vcpu, addr, sptep, level);
  1086. if (r)
  1087. return r;
  1088. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  1089. --level;
  1090. }
  1091. return 0;
  1092. }
  1093. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1094. struct kvm_mmu_page *sp)
  1095. {
  1096. unsigned i;
  1097. u64 *pt;
  1098. u64 ent;
  1099. pt = sp->spt;
  1100. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1101. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1102. if (is_shadow_present_pte(pt[i]))
  1103. rmap_remove(kvm, &pt[i]);
  1104. pt[i] = shadow_trap_nonpresent_pte;
  1105. }
  1106. return;
  1107. }
  1108. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1109. ent = pt[i];
  1110. if (is_shadow_present_pte(ent)) {
  1111. if (!is_large_pte(ent)) {
  1112. ent &= PT64_BASE_ADDR_MASK;
  1113. mmu_page_remove_parent_pte(page_header(ent),
  1114. &pt[i]);
  1115. } else {
  1116. --kvm->stat.lpages;
  1117. rmap_remove(kvm, &pt[i]);
  1118. }
  1119. }
  1120. pt[i] = shadow_trap_nonpresent_pte;
  1121. }
  1122. }
  1123. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1124. {
  1125. mmu_page_remove_parent_pte(sp, parent_pte);
  1126. }
  1127. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1128. {
  1129. int i;
  1130. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1131. if (kvm->vcpus[i])
  1132. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1133. }
  1134. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1135. {
  1136. u64 *parent_pte;
  1137. while (sp->multimapped || sp->parent_pte) {
  1138. if (!sp->multimapped)
  1139. parent_pte = sp->parent_pte;
  1140. else {
  1141. struct kvm_pte_chain *chain;
  1142. chain = container_of(sp->parent_ptes.first,
  1143. struct kvm_pte_chain, link);
  1144. parent_pte = chain->parent_ptes[0];
  1145. }
  1146. BUG_ON(!parent_pte);
  1147. kvm_mmu_put_page(sp, parent_pte);
  1148. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1149. }
  1150. }
  1151. static int mmu_zap_unsync_children(struct kvm *kvm,
  1152. struct kvm_mmu_page *parent)
  1153. {
  1154. int i, zapped = 0;
  1155. struct mmu_page_path parents;
  1156. struct kvm_mmu_pages pages;
  1157. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1158. return 0;
  1159. kvm_mmu_pages_init(parent, &parents, &pages);
  1160. while (mmu_unsync_walk(parent, &pages)) {
  1161. struct kvm_mmu_page *sp;
  1162. for_each_sp(pages, sp, parents, i) {
  1163. kvm_mmu_zap_page(kvm, sp);
  1164. mmu_pages_clear_parents(&parents);
  1165. }
  1166. zapped += pages.nr;
  1167. kvm_mmu_pages_init(parent, &parents, &pages);
  1168. }
  1169. return zapped;
  1170. }
  1171. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1172. {
  1173. int ret;
  1174. ++kvm->stat.mmu_shadow_zapped;
  1175. ret = mmu_zap_unsync_children(kvm, sp);
  1176. kvm_mmu_page_unlink_children(kvm, sp);
  1177. kvm_mmu_unlink_parents(kvm, sp);
  1178. kvm_flush_remote_tlbs(kvm);
  1179. if (!sp->role.invalid && !sp->role.metaphysical)
  1180. unaccount_shadowed(kvm, sp->gfn);
  1181. if (sp->unsync)
  1182. kvm_unlink_unsync_page(kvm, sp);
  1183. if (!sp->root_count) {
  1184. hlist_del(&sp->hash_link);
  1185. kvm_mmu_free_page(kvm, sp);
  1186. } else {
  1187. sp->role.invalid = 1;
  1188. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1189. kvm_reload_remote_mmus(kvm);
  1190. }
  1191. kvm_mmu_reset_last_pte_updated(kvm);
  1192. return ret;
  1193. }
  1194. /*
  1195. * Changing the number of mmu pages allocated to the vm
  1196. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1197. */
  1198. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1199. {
  1200. /*
  1201. * If we set the number of mmu pages to be smaller be than the
  1202. * number of actived pages , we must to free some mmu pages before we
  1203. * change the value
  1204. */
  1205. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1206. kvm_nr_mmu_pages) {
  1207. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1208. - kvm->arch.n_free_mmu_pages;
  1209. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1210. struct kvm_mmu_page *page;
  1211. page = container_of(kvm->arch.active_mmu_pages.prev,
  1212. struct kvm_mmu_page, link);
  1213. kvm_mmu_zap_page(kvm, page);
  1214. n_used_mmu_pages--;
  1215. }
  1216. kvm->arch.n_free_mmu_pages = 0;
  1217. }
  1218. else
  1219. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1220. - kvm->arch.n_alloc_mmu_pages;
  1221. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1222. }
  1223. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1224. {
  1225. unsigned index;
  1226. struct hlist_head *bucket;
  1227. struct kvm_mmu_page *sp;
  1228. struct hlist_node *node, *n;
  1229. int r;
  1230. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1231. r = 0;
  1232. index = kvm_page_table_hashfn(gfn);
  1233. bucket = &kvm->arch.mmu_page_hash[index];
  1234. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1235. if (sp->gfn == gfn && !sp->role.metaphysical) {
  1236. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1237. sp->role.word);
  1238. r = 1;
  1239. if (kvm_mmu_zap_page(kvm, sp))
  1240. n = bucket->first;
  1241. }
  1242. return r;
  1243. }
  1244. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1245. {
  1246. struct kvm_mmu_page *sp;
  1247. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  1248. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  1249. kvm_mmu_zap_page(kvm, sp);
  1250. }
  1251. }
  1252. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1253. {
  1254. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1255. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1256. __set_bit(slot, sp->slot_bitmap);
  1257. }
  1258. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1259. {
  1260. int i;
  1261. u64 *pt = sp->spt;
  1262. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1263. return;
  1264. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1265. if (pt[i] == shadow_notrap_nonpresent_pte)
  1266. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1267. }
  1268. }
  1269. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1270. {
  1271. struct page *page;
  1272. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1273. if (gpa == UNMAPPED_GVA)
  1274. return NULL;
  1275. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1276. return page;
  1277. }
  1278. /*
  1279. * The function is based on mtrr_type_lookup() in
  1280. * arch/x86/kernel/cpu/mtrr/generic.c
  1281. */
  1282. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1283. u64 start, u64 end)
  1284. {
  1285. int i;
  1286. u64 base, mask;
  1287. u8 prev_match, curr_match;
  1288. int num_var_ranges = KVM_NR_VAR_MTRR;
  1289. if (!mtrr_state->enabled)
  1290. return 0xFF;
  1291. /* Make end inclusive end, instead of exclusive */
  1292. end--;
  1293. /* Look in fixed ranges. Just return the type as per start */
  1294. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1295. int idx;
  1296. if (start < 0x80000) {
  1297. idx = 0;
  1298. idx += (start >> 16);
  1299. return mtrr_state->fixed_ranges[idx];
  1300. } else if (start < 0xC0000) {
  1301. idx = 1 * 8;
  1302. idx += ((start - 0x80000) >> 14);
  1303. return mtrr_state->fixed_ranges[idx];
  1304. } else if (start < 0x1000000) {
  1305. idx = 3 * 8;
  1306. idx += ((start - 0xC0000) >> 12);
  1307. return mtrr_state->fixed_ranges[idx];
  1308. }
  1309. }
  1310. /*
  1311. * Look in variable ranges
  1312. * Look of multiple ranges matching this address and pick type
  1313. * as per MTRR precedence
  1314. */
  1315. if (!(mtrr_state->enabled & 2))
  1316. return mtrr_state->def_type;
  1317. prev_match = 0xFF;
  1318. for (i = 0; i < num_var_ranges; ++i) {
  1319. unsigned short start_state, end_state;
  1320. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1321. continue;
  1322. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1323. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1324. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1325. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1326. start_state = ((start & mask) == (base & mask));
  1327. end_state = ((end & mask) == (base & mask));
  1328. if (start_state != end_state)
  1329. return 0xFE;
  1330. if ((start & mask) != (base & mask))
  1331. continue;
  1332. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1333. if (prev_match == 0xFF) {
  1334. prev_match = curr_match;
  1335. continue;
  1336. }
  1337. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1338. curr_match == MTRR_TYPE_UNCACHABLE)
  1339. return MTRR_TYPE_UNCACHABLE;
  1340. if ((prev_match == MTRR_TYPE_WRBACK &&
  1341. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1342. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1343. curr_match == MTRR_TYPE_WRBACK)) {
  1344. prev_match = MTRR_TYPE_WRTHROUGH;
  1345. curr_match = MTRR_TYPE_WRTHROUGH;
  1346. }
  1347. if (prev_match != curr_match)
  1348. return MTRR_TYPE_UNCACHABLE;
  1349. }
  1350. if (prev_match != 0xFF)
  1351. return prev_match;
  1352. return mtrr_state->def_type;
  1353. }
  1354. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1355. {
  1356. u8 mtrr;
  1357. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1358. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1359. if (mtrr == 0xfe || mtrr == 0xff)
  1360. mtrr = MTRR_TYPE_WRBACK;
  1361. return mtrr;
  1362. }
  1363. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1364. {
  1365. unsigned index;
  1366. struct hlist_head *bucket;
  1367. struct kvm_mmu_page *s;
  1368. struct hlist_node *node, *n;
  1369. index = kvm_page_table_hashfn(sp->gfn);
  1370. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1371. /* don't unsync if pagetable is shadowed with multiple roles */
  1372. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1373. if (s->gfn != sp->gfn || s->role.metaphysical)
  1374. continue;
  1375. if (s->role.word != sp->role.word)
  1376. return 1;
  1377. }
  1378. ++vcpu->kvm->stat.mmu_unsync;
  1379. sp->unsync = 1;
  1380. if (sp->global) {
  1381. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1382. ++vcpu->kvm->stat.mmu_unsync_global;
  1383. } else
  1384. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1385. mmu_convert_notrap(sp);
  1386. return 0;
  1387. }
  1388. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1389. bool can_unsync)
  1390. {
  1391. struct kvm_mmu_page *shadow;
  1392. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1393. if (shadow) {
  1394. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1395. return 1;
  1396. if (shadow->unsync)
  1397. return 0;
  1398. if (can_unsync && oos_shadow)
  1399. return kvm_unsync_page(vcpu, shadow);
  1400. return 1;
  1401. }
  1402. return 0;
  1403. }
  1404. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1405. unsigned pte_access, int user_fault,
  1406. int write_fault, int dirty, int largepage,
  1407. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1408. bool can_unsync)
  1409. {
  1410. u64 spte;
  1411. int ret = 0;
  1412. u64 mt_mask = shadow_mt_mask;
  1413. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1414. if (!(vcpu->arch.cr4 & X86_CR4_PGE))
  1415. global = 0;
  1416. if (!global && sp->global) {
  1417. sp->global = 0;
  1418. if (sp->unsync) {
  1419. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1420. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1421. }
  1422. }
  1423. /*
  1424. * We don't set the accessed bit, since we sometimes want to see
  1425. * whether the guest actually used the pte (in order to detect
  1426. * demand paging).
  1427. */
  1428. spte = shadow_base_present_pte | shadow_dirty_mask;
  1429. if (!speculative)
  1430. spte |= shadow_accessed_mask;
  1431. if (!dirty)
  1432. pte_access &= ~ACC_WRITE_MASK;
  1433. if (pte_access & ACC_EXEC_MASK)
  1434. spte |= shadow_x_mask;
  1435. else
  1436. spte |= shadow_nx_mask;
  1437. if (pte_access & ACC_USER_MASK)
  1438. spte |= shadow_user_mask;
  1439. if (largepage)
  1440. spte |= PT_PAGE_SIZE_MASK;
  1441. if (mt_mask) {
  1442. if (!kvm_is_mmio_pfn(pfn)) {
  1443. mt_mask = get_memory_type(vcpu, gfn) <<
  1444. kvm_x86_ops->get_mt_mask_shift();
  1445. mt_mask |= VMX_EPT_IGMT_BIT;
  1446. } else
  1447. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1448. kvm_x86_ops->get_mt_mask_shift();
  1449. spte |= mt_mask;
  1450. }
  1451. spte |= (u64)pfn << PAGE_SHIFT;
  1452. if ((pte_access & ACC_WRITE_MASK)
  1453. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1454. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1455. ret = 1;
  1456. spte = shadow_trap_nonpresent_pte;
  1457. goto set_pte;
  1458. }
  1459. spte |= PT_WRITABLE_MASK;
  1460. /*
  1461. * Optimization: for pte sync, if spte was writable the hash
  1462. * lookup is unnecessary (and expensive). Write protection
  1463. * is responsibility of mmu_get_page / kvm_sync_page.
  1464. * Same reasoning can be applied to dirty page accounting.
  1465. */
  1466. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1467. goto set_pte;
  1468. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1469. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1470. __func__, gfn);
  1471. ret = 1;
  1472. pte_access &= ~ACC_WRITE_MASK;
  1473. if (is_writeble_pte(spte))
  1474. spte &= ~PT_WRITABLE_MASK;
  1475. }
  1476. }
  1477. if (pte_access & ACC_WRITE_MASK)
  1478. mark_page_dirty(vcpu->kvm, gfn);
  1479. set_pte:
  1480. set_shadow_pte(shadow_pte, spte);
  1481. return ret;
  1482. }
  1483. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1484. unsigned pt_access, unsigned pte_access,
  1485. int user_fault, int write_fault, int dirty,
  1486. int *ptwrite, int largepage, int global,
  1487. gfn_t gfn, pfn_t pfn, bool speculative)
  1488. {
  1489. int was_rmapped = 0;
  1490. int was_writeble = is_writeble_pte(*shadow_pte);
  1491. pgprintk("%s: spte %llx access %x write_fault %d"
  1492. " user_fault %d gfn %lx\n",
  1493. __func__, *shadow_pte, pt_access,
  1494. write_fault, user_fault, gfn);
  1495. if (is_rmap_pte(*shadow_pte)) {
  1496. /*
  1497. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1498. * the parent of the now unreachable PTE.
  1499. */
  1500. if (largepage && !is_large_pte(*shadow_pte)) {
  1501. struct kvm_mmu_page *child;
  1502. u64 pte = *shadow_pte;
  1503. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1504. mmu_page_remove_parent_pte(child, shadow_pte);
  1505. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1506. pgprintk("hfn old %lx new %lx\n",
  1507. spte_to_pfn(*shadow_pte), pfn);
  1508. rmap_remove(vcpu->kvm, shadow_pte);
  1509. } else {
  1510. if (largepage)
  1511. was_rmapped = is_large_pte(*shadow_pte);
  1512. else
  1513. was_rmapped = 1;
  1514. }
  1515. }
  1516. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1517. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1518. if (write_fault)
  1519. *ptwrite = 1;
  1520. kvm_x86_ops->tlb_flush(vcpu);
  1521. }
  1522. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1523. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1524. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1525. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1526. *shadow_pte, shadow_pte);
  1527. if (!was_rmapped && is_large_pte(*shadow_pte))
  1528. ++vcpu->kvm->stat.lpages;
  1529. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1530. if (!was_rmapped) {
  1531. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1532. if (!is_rmap_pte(*shadow_pte))
  1533. kvm_release_pfn_clean(pfn);
  1534. } else {
  1535. if (was_writeble)
  1536. kvm_release_pfn_dirty(pfn);
  1537. else
  1538. kvm_release_pfn_clean(pfn);
  1539. }
  1540. if (speculative) {
  1541. vcpu->arch.last_pte_updated = shadow_pte;
  1542. vcpu->arch.last_pte_gfn = gfn;
  1543. }
  1544. }
  1545. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1546. {
  1547. }
  1548. struct direct_shadow_walk {
  1549. struct kvm_shadow_walk walker;
  1550. pfn_t pfn;
  1551. int write;
  1552. int largepage;
  1553. int pt_write;
  1554. };
  1555. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1556. struct kvm_vcpu *vcpu,
  1557. u64 addr, u64 *sptep, int level)
  1558. {
  1559. struct direct_shadow_walk *walk =
  1560. container_of(_walk, struct direct_shadow_walk, walker);
  1561. struct kvm_mmu_page *sp;
  1562. gfn_t pseudo_gfn;
  1563. gfn_t gfn = addr >> PAGE_SHIFT;
  1564. if (level == PT_PAGE_TABLE_LEVEL
  1565. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1566. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1567. 0, walk->write, 1, &walk->pt_write,
  1568. walk->largepage, 0, gfn, walk->pfn, false);
  1569. ++vcpu->stat.pf_fixed;
  1570. return 1;
  1571. }
  1572. if (*sptep == shadow_trap_nonpresent_pte) {
  1573. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1574. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1575. 1, ACC_ALL, sptep);
  1576. if (!sp) {
  1577. pgprintk("nonpaging_map: ENOMEM\n");
  1578. kvm_release_pfn_clean(walk->pfn);
  1579. return -ENOMEM;
  1580. }
  1581. set_shadow_pte(sptep,
  1582. __pa(sp->spt)
  1583. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1584. | shadow_user_mask | shadow_x_mask);
  1585. }
  1586. return 0;
  1587. }
  1588. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1589. int largepage, gfn_t gfn, pfn_t pfn)
  1590. {
  1591. int r;
  1592. struct direct_shadow_walk walker = {
  1593. .walker = { .entry = direct_map_entry, },
  1594. .pfn = pfn,
  1595. .largepage = largepage,
  1596. .write = write,
  1597. .pt_write = 0,
  1598. };
  1599. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1600. if (r < 0)
  1601. return r;
  1602. return walker.pt_write;
  1603. }
  1604. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1605. {
  1606. int r;
  1607. int largepage = 0;
  1608. pfn_t pfn;
  1609. unsigned long mmu_seq;
  1610. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1611. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1612. largepage = 1;
  1613. }
  1614. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1615. smp_rmb();
  1616. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1617. /* mmio */
  1618. if (is_error_pfn(pfn)) {
  1619. kvm_release_pfn_clean(pfn);
  1620. return 1;
  1621. }
  1622. spin_lock(&vcpu->kvm->mmu_lock);
  1623. if (mmu_notifier_retry(vcpu, mmu_seq))
  1624. goto out_unlock;
  1625. kvm_mmu_free_some_pages(vcpu);
  1626. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1627. spin_unlock(&vcpu->kvm->mmu_lock);
  1628. return r;
  1629. out_unlock:
  1630. spin_unlock(&vcpu->kvm->mmu_lock);
  1631. kvm_release_pfn_clean(pfn);
  1632. return 0;
  1633. }
  1634. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1635. {
  1636. int i;
  1637. struct kvm_mmu_page *sp;
  1638. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1639. return;
  1640. spin_lock(&vcpu->kvm->mmu_lock);
  1641. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1642. hpa_t root = vcpu->arch.mmu.root_hpa;
  1643. sp = page_header(root);
  1644. --sp->root_count;
  1645. if (!sp->root_count && sp->role.invalid)
  1646. kvm_mmu_zap_page(vcpu->kvm, sp);
  1647. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1648. spin_unlock(&vcpu->kvm->mmu_lock);
  1649. return;
  1650. }
  1651. for (i = 0; i < 4; ++i) {
  1652. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1653. if (root) {
  1654. root &= PT64_BASE_ADDR_MASK;
  1655. sp = page_header(root);
  1656. --sp->root_count;
  1657. if (!sp->root_count && sp->role.invalid)
  1658. kvm_mmu_zap_page(vcpu->kvm, sp);
  1659. }
  1660. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1661. }
  1662. spin_unlock(&vcpu->kvm->mmu_lock);
  1663. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1664. }
  1665. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1666. {
  1667. int i;
  1668. gfn_t root_gfn;
  1669. struct kvm_mmu_page *sp;
  1670. int metaphysical = 0;
  1671. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1672. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1673. hpa_t root = vcpu->arch.mmu.root_hpa;
  1674. ASSERT(!VALID_PAGE(root));
  1675. if (tdp_enabled)
  1676. metaphysical = 1;
  1677. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1678. PT64_ROOT_LEVEL, metaphysical,
  1679. ACC_ALL, NULL);
  1680. root = __pa(sp->spt);
  1681. ++sp->root_count;
  1682. vcpu->arch.mmu.root_hpa = root;
  1683. return;
  1684. }
  1685. metaphysical = !is_paging(vcpu);
  1686. if (tdp_enabled)
  1687. metaphysical = 1;
  1688. for (i = 0; i < 4; ++i) {
  1689. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1690. ASSERT(!VALID_PAGE(root));
  1691. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1692. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1693. vcpu->arch.mmu.pae_root[i] = 0;
  1694. continue;
  1695. }
  1696. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1697. } else if (vcpu->arch.mmu.root_level == 0)
  1698. root_gfn = 0;
  1699. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1700. PT32_ROOT_LEVEL, metaphysical,
  1701. ACC_ALL, NULL);
  1702. root = __pa(sp->spt);
  1703. ++sp->root_count;
  1704. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1705. }
  1706. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1707. }
  1708. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1709. {
  1710. int i;
  1711. struct kvm_mmu_page *sp;
  1712. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1713. return;
  1714. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1715. hpa_t root = vcpu->arch.mmu.root_hpa;
  1716. sp = page_header(root);
  1717. mmu_sync_children(vcpu, sp);
  1718. return;
  1719. }
  1720. for (i = 0; i < 4; ++i) {
  1721. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1722. if (root) {
  1723. root &= PT64_BASE_ADDR_MASK;
  1724. sp = page_header(root);
  1725. mmu_sync_children(vcpu, sp);
  1726. }
  1727. }
  1728. }
  1729. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1730. {
  1731. struct kvm *kvm = vcpu->kvm;
  1732. struct kvm_mmu_page *sp, *n;
  1733. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1734. kvm_sync_page(vcpu, sp);
  1735. }
  1736. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1737. {
  1738. spin_lock(&vcpu->kvm->mmu_lock);
  1739. mmu_sync_roots(vcpu);
  1740. spin_unlock(&vcpu->kvm->mmu_lock);
  1741. }
  1742. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1743. {
  1744. spin_lock(&vcpu->kvm->mmu_lock);
  1745. mmu_sync_global(vcpu);
  1746. spin_unlock(&vcpu->kvm->mmu_lock);
  1747. }
  1748. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1749. {
  1750. return vaddr;
  1751. }
  1752. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1753. u32 error_code)
  1754. {
  1755. gfn_t gfn;
  1756. int r;
  1757. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1758. r = mmu_topup_memory_caches(vcpu);
  1759. if (r)
  1760. return r;
  1761. ASSERT(vcpu);
  1762. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1763. gfn = gva >> PAGE_SHIFT;
  1764. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1765. error_code & PFERR_WRITE_MASK, gfn);
  1766. }
  1767. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1768. u32 error_code)
  1769. {
  1770. pfn_t pfn;
  1771. int r;
  1772. int largepage = 0;
  1773. gfn_t gfn = gpa >> PAGE_SHIFT;
  1774. unsigned long mmu_seq;
  1775. ASSERT(vcpu);
  1776. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1777. r = mmu_topup_memory_caches(vcpu);
  1778. if (r)
  1779. return r;
  1780. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1781. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1782. largepage = 1;
  1783. }
  1784. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1785. smp_rmb();
  1786. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1787. if (is_error_pfn(pfn)) {
  1788. kvm_release_pfn_clean(pfn);
  1789. return 1;
  1790. }
  1791. spin_lock(&vcpu->kvm->mmu_lock);
  1792. if (mmu_notifier_retry(vcpu, mmu_seq))
  1793. goto out_unlock;
  1794. kvm_mmu_free_some_pages(vcpu);
  1795. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1796. largepage, gfn, pfn);
  1797. spin_unlock(&vcpu->kvm->mmu_lock);
  1798. return r;
  1799. out_unlock:
  1800. spin_unlock(&vcpu->kvm->mmu_lock);
  1801. kvm_release_pfn_clean(pfn);
  1802. return 0;
  1803. }
  1804. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1805. {
  1806. mmu_free_roots(vcpu);
  1807. }
  1808. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1809. {
  1810. struct kvm_mmu *context = &vcpu->arch.mmu;
  1811. context->new_cr3 = nonpaging_new_cr3;
  1812. context->page_fault = nonpaging_page_fault;
  1813. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1814. context->free = nonpaging_free;
  1815. context->prefetch_page = nonpaging_prefetch_page;
  1816. context->sync_page = nonpaging_sync_page;
  1817. context->invlpg = nonpaging_invlpg;
  1818. context->root_level = 0;
  1819. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1820. context->root_hpa = INVALID_PAGE;
  1821. return 0;
  1822. }
  1823. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1824. {
  1825. ++vcpu->stat.tlb_flush;
  1826. kvm_x86_ops->tlb_flush(vcpu);
  1827. }
  1828. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1829. {
  1830. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1831. mmu_free_roots(vcpu);
  1832. }
  1833. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1834. u64 addr,
  1835. u32 err_code)
  1836. {
  1837. kvm_inject_page_fault(vcpu, addr, err_code);
  1838. }
  1839. static void paging_free(struct kvm_vcpu *vcpu)
  1840. {
  1841. nonpaging_free(vcpu);
  1842. }
  1843. #define PTTYPE 64
  1844. #include "paging_tmpl.h"
  1845. #undef PTTYPE
  1846. #define PTTYPE 32
  1847. #include "paging_tmpl.h"
  1848. #undef PTTYPE
  1849. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1850. {
  1851. struct kvm_mmu *context = &vcpu->arch.mmu;
  1852. ASSERT(is_pae(vcpu));
  1853. context->new_cr3 = paging_new_cr3;
  1854. context->page_fault = paging64_page_fault;
  1855. context->gva_to_gpa = paging64_gva_to_gpa;
  1856. context->prefetch_page = paging64_prefetch_page;
  1857. context->sync_page = paging64_sync_page;
  1858. context->invlpg = paging64_invlpg;
  1859. context->free = paging_free;
  1860. context->root_level = level;
  1861. context->shadow_root_level = level;
  1862. context->root_hpa = INVALID_PAGE;
  1863. return 0;
  1864. }
  1865. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1866. {
  1867. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1868. }
  1869. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1870. {
  1871. struct kvm_mmu *context = &vcpu->arch.mmu;
  1872. context->new_cr3 = paging_new_cr3;
  1873. context->page_fault = paging32_page_fault;
  1874. context->gva_to_gpa = paging32_gva_to_gpa;
  1875. context->free = paging_free;
  1876. context->prefetch_page = paging32_prefetch_page;
  1877. context->sync_page = paging32_sync_page;
  1878. context->invlpg = paging32_invlpg;
  1879. context->root_level = PT32_ROOT_LEVEL;
  1880. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1881. context->root_hpa = INVALID_PAGE;
  1882. return 0;
  1883. }
  1884. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1885. {
  1886. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1887. }
  1888. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1889. {
  1890. struct kvm_mmu *context = &vcpu->arch.mmu;
  1891. context->new_cr3 = nonpaging_new_cr3;
  1892. context->page_fault = tdp_page_fault;
  1893. context->free = nonpaging_free;
  1894. context->prefetch_page = nonpaging_prefetch_page;
  1895. context->sync_page = nonpaging_sync_page;
  1896. context->invlpg = nonpaging_invlpg;
  1897. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1898. context->root_hpa = INVALID_PAGE;
  1899. if (!is_paging(vcpu)) {
  1900. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1901. context->root_level = 0;
  1902. } else if (is_long_mode(vcpu)) {
  1903. context->gva_to_gpa = paging64_gva_to_gpa;
  1904. context->root_level = PT64_ROOT_LEVEL;
  1905. } else if (is_pae(vcpu)) {
  1906. context->gva_to_gpa = paging64_gva_to_gpa;
  1907. context->root_level = PT32E_ROOT_LEVEL;
  1908. } else {
  1909. context->gva_to_gpa = paging32_gva_to_gpa;
  1910. context->root_level = PT32_ROOT_LEVEL;
  1911. }
  1912. return 0;
  1913. }
  1914. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1915. {
  1916. ASSERT(vcpu);
  1917. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1918. if (!is_paging(vcpu))
  1919. return nonpaging_init_context(vcpu);
  1920. else if (is_long_mode(vcpu))
  1921. return paging64_init_context(vcpu);
  1922. else if (is_pae(vcpu))
  1923. return paging32E_init_context(vcpu);
  1924. else
  1925. return paging32_init_context(vcpu);
  1926. }
  1927. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1928. {
  1929. vcpu->arch.update_pte.pfn = bad_pfn;
  1930. if (tdp_enabled)
  1931. return init_kvm_tdp_mmu(vcpu);
  1932. else
  1933. return init_kvm_softmmu(vcpu);
  1934. }
  1935. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1936. {
  1937. ASSERT(vcpu);
  1938. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1939. vcpu->arch.mmu.free(vcpu);
  1940. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1941. }
  1942. }
  1943. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1944. {
  1945. destroy_kvm_mmu(vcpu);
  1946. return init_kvm_mmu(vcpu);
  1947. }
  1948. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1949. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1950. {
  1951. int r;
  1952. r = mmu_topup_memory_caches(vcpu);
  1953. if (r)
  1954. goto out;
  1955. spin_lock(&vcpu->kvm->mmu_lock);
  1956. kvm_mmu_free_some_pages(vcpu);
  1957. mmu_alloc_roots(vcpu);
  1958. mmu_sync_roots(vcpu);
  1959. spin_unlock(&vcpu->kvm->mmu_lock);
  1960. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1961. kvm_mmu_flush_tlb(vcpu);
  1962. out:
  1963. return r;
  1964. }
  1965. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1966. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1967. {
  1968. mmu_free_roots(vcpu);
  1969. }
  1970. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1971. struct kvm_mmu_page *sp,
  1972. u64 *spte)
  1973. {
  1974. u64 pte;
  1975. struct kvm_mmu_page *child;
  1976. pte = *spte;
  1977. if (is_shadow_present_pte(pte)) {
  1978. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1979. is_large_pte(pte))
  1980. rmap_remove(vcpu->kvm, spte);
  1981. else {
  1982. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1983. mmu_page_remove_parent_pte(child, spte);
  1984. }
  1985. }
  1986. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1987. if (is_large_pte(pte))
  1988. --vcpu->kvm->stat.lpages;
  1989. }
  1990. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1991. struct kvm_mmu_page *sp,
  1992. u64 *spte,
  1993. const void *new)
  1994. {
  1995. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1996. if (!vcpu->arch.update_pte.largepage ||
  1997. sp->role.glevels == PT32_ROOT_LEVEL) {
  1998. ++vcpu->kvm->stat.mmu_pde_zapped;
  1999. return;
  2000. }
  2001. }
  2002. ++vcpu->kvm->stat.mmu_pte_updated;
  2003. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2004. paging32_update_pte(vcpu, sp, spte, new);
  2005. else
  2006. paging64_update_pte(vcpu, sp, spte, new);
  2007. }
  2008. static bool need_remote_flush(u64 old, u64 new)
  2009. {
  2010. if (!is_shadow_present_pte(old))
  2011. return false;
  2012. if (!is_shadow_present_pte(new))
  2013. return true;
  2014. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2015. return true;
  2016. old ^= PT64_NX_MASK;
  2017. new ^= PT64_NX_MASK;
  2018. return (old & ~new & PT64_PERM_MASK) != 0;
  2019. }
  2020. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2021. {
  2022. if (need_remote_flush(old, new))
  2023. kvm_flush_remote_tlbs(vcpu->kvm);
  2024. else
  2025. kvm_mmu_flush_tlb(vcpu);
  2026. }
  2027. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2028. {
  2029. u64 *spte = vcpu->arch.last_pte_updated;
  2030. return !!(spte && (*spte & shadow_accessed_mask));
  2031. }
  2032. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2033. const u8 *new, int bytes)
  2034. {
  2035. gfn_t gfn;
  2036. int r;
  2037. u64 gpte = 0;
  2038. pfn_t pfn;
  2039. vcpu->arch.update_pte.largepage = 0;
  2040. if (bytes != 4 && bytes != 8)
  2041. return;
  2042. /*
  2043. * Assume that the pte write on a page table of the same type
  2044. * as the current vcpu paging mode. This is nearly always true
  2045. * (might be false while changing modes). Note it is verified later
  2046. * by update_pte().
  2047. */
  2048. if (is_pae(vcpu)) {
  2049. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2050. if ((bytes == 4) && (gpa % 4 == 0)) {
  2051. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2052. if (r)
  2053. return;
  2054. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2055. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2056. memcpy((void *)&gpte, new, 8);
  2057. }
  2058. } else {
  2059. if ((bytes == 4) && (gpa % 4 == 0))
  2060. memcpy((void *)&gpte, new, 4);
  2061. }
  2062. if (!is_present_pte(gpte))
  2063. return;
  2064. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2065. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2066. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2067. vcpu->arch.update_pte.largepage = 1;
  2068. }
  2069. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2070. smp_rmb();
  2071. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2072. if (is_error_pfn(pfn)) {
  2073. kvm_release_pfn_clean(pfn);
  2074. return;
  2075. }
  2076. vcpu->arch.update_pte.gfn = gfn;
  2077. vcpu->arch.update_pte.pfn = pfn;
  2078. }
  2079. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2080. {
  2081. u64 *spte = vcpu->arch.last_pte_updated;
  2082. if (spte
  2083. && vcpu->arch.last_pte_gfn == gfn
  2084. && shadow_accessed_mask
  2085. && !(*spte & shadow_accessed_mask)
  2086. && is_shadow_present_pte(*spte))
  2087. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2088. }
  2089. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2090. const u8 *new, int bytes,
  2091. bool guest_initiated)
  2092. {
  2093. gfn_t gfn = gpa >> PAGE_SHIFT;
  2094. struct kvm_mmu_page *sp;
  2095. struct hlist_node *node, *n;
  2096. struct hlist_head *bucket;
  2097. unsigned index;
  2098. u64 entry, gentry;
  2099. u64 *spte;
  2100. unsigned offset = offset_in_page(gpa);
  2101. unsigned pte_size;
  2102. unsigned page_offset;
  2103. unsigned misaligned;
  2104. unsigned quadrant;
  2105. int level;
  2106. int flooded = 0;
  2107. int npte;
  2108. int r;
  2109. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2110. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2111. spin_lock(&vcpu->kvm->mmu_lock);
  2112. kvm_mmu_access_page(vcpu, gfn);
  2113. kvm_mmu_free_some_pages(vcpu);
  2114. ++vcpu->kvm->stat.mmu_pte_write;
  2115. kvm_mmu_audit(vcpu, "pre pte write");
  2116. if (guest_initiated) {
  2117. if (gfn == vcpu->arch.last_pt_write_gfn
  2118. && !last_updated_pte_accessed(vcpu)) {
  2119. ++vcpu->arch.last_pt_write_count;
  2120. if (vcpu->arch.last_pt_write_count >= 3)
  2121. flooded = 1;
  2122. } else {
  2123. vcpu->arch.last_pt_write_gfn = gfn;
  2124. vcpu->arch.last_pt_write_count = 1;
  2125. vcpu->arch.last_pte_updated = NULL;
  2126. }
  2127. }
  2128. index = kvm_page_table_hashfn(gfn);
  2129. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2130. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2131. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  2132. continue;
  2133. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2134. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2135. misaligned |= bytes < 4;
  2136. if (misaligned || flooded) {
  2137. /*
  2138. * Misaligned accesses are too much trouble to fix
  2139. * up; also, they usually indicate a page is not used
  2140. * as a page table.
  2141. *
  2142. * If we're seeing too many writes to a page,
  2143. * it may no longer be a page table, or we may be
  2144. * forking, in which case it is better to unmap the
  2145. * page.
  2146. */
  2147. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2148. gpa, bytes, sp->role.word);
  2149. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2150. n = bucket->first;
  2151. ++vcpu->kvm->stat.mmu_flooded;
  2152. continue;
  2153. }
  2154. page_offset = offset;
  2155. level = sp->role.level;
  2156. npte = 1;
  2157. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2158. page_offset <<= 1; /* 32->64 */
  2159. /*
  2160. * A 32-bit pde maps 4MB while the shadow pdes map
  2161. * only 2MB. So we need to double the offset again
  2162. * and zap two pdes instead of one.
  2163. */
  2164. if (level == PT32_ROOT_LEVEL) {
  2165. page_offset &= ~7; /* kill rounding error */
  2166. page_offset <<= 1;
  2167. npte = 2;
  2168. }
  2169. quadrant = page_offset >> PAGE_SHIFT;
  2170. page_offset &= ~PAGE_MASK;
  2171. if (quadrant != sp->role.quadrant)
  2172. continue;
  2173. }
  2174. spte = &sp->spt[page_offset / sizeof(*spte)];
  2175. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2176. gentry = 0;
  2177. r = kvm_read_guest_atomic(vcpu->kvm,
  2178. gpa & ~(u64)(pte_size - 1),
  2179. &gentry, pte_size);
  2180. new = (const void *)&gentry;
  2181. if (r < 0)
  2182. new = NULL;
  2183. }
  2184. while (npte--) {
  2185. entry = *spte;
  2186. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2187. if (new)
  2188. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2189. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2190. ++spte;
  2191. }
  2192. }
  2193. kvm_mmu_audit(vcpu, "post pte write");
  2194. spin_unlock(&vcpu->kvm->mmu_lock);
  2195. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2196. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2197. vcpu->arch.update_pte.pfn = bad_pfn;
  2198. }
  2199. }
  2200. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2201. {
  2202. gpa_t gpa;
  2203. int r;
  2204. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2205. spin_lock(&vcpu->kvm->mmu_lock);
  2206. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2207. spin_unlock(&vcpu->kvm->mmu_lock);
  2208. return r;
  2209. }
  2210. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2211. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2212. {
  2213. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2214. struct kvm_mmu_page *sp;
  2215. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2216. struct kvm_mmu_page, link);
  2217. kvm_mmu_zap_page(vcpu->kvm, sp);
  2218. ++vcpu->kvm->stat.mmu_recycled;
  2219. }
  2220. }
  2221. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2222. {
  2223. int r;
  2224. enum emulation_result er;
  2225. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2226. if (r < 0)
  2227. goto out;
  2228. if (!r) {
  2229. r = 1;
  2230. goto out;
  2231. }
  2232. r = mmu_topup_memory_caches(vcpu);
  2233. if (r)
  2234. goto out;
  2235. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2236. switch (er) {
  2237. case EMULATE_DONE:
  2238. return 1;
  2239. case EMULATE_DO_MMIO:
  2240. ++vcpu->stat.mmio_exits;
  2241. return 0;
  2242. case EMULATE_FAIL:
  2243. kvm_report_emulation_failure(vcpu, "pagetable");
  2244. return 1;
  2245. default:
  2246. BUG();
  2247. }
  2248. out:
  2249. return r;
  2250. }
  2251. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2252. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2253. {
  2254. vcpu->arch.mmu.invlpg(vcpu, gva);
  2255. kvm_mmu_flush_tlb(vcpu);
  2256. ++vcpu->stat.invlpg;
  2257. }
  2258. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2259. void kvm_enable_tdp(void)
  2260. {
  2261. tdp_enabled = true;
  2262. }
  2263. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2264. void kvm_disable_tdp(void)
  2265. {
  2266. tdp_enabled = false;
  2267. }
  2268. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2269. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2270. {
  2271. struct kvm_mmu_page *sp;
  2272. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2273. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2274. struct kvm_mmu_page, link);
  2275. kvm_mmu_zap_page(vcpu->kvm, sp);
  2276. cond_resched();
  2277. }
  2278. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2279. }
  2280. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2281. {
  2282. struct page *page;
  2283. int i;
  2284. ASSERT(vcpu);
  2285. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2286. vcpu->kvm->arch.n_free_mmu_pages =
  2287. vcpu->kvm->arch.n_requested_mmu_pages;
  2288. else
  2289. vcpu->kvm->arch.n_free_mmu_pages =
  2290. vcpu->kvm->arch.n_alloc_mmu_pages;
  2291. /*
  2292. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2293. * Therefore we need to allocate shadow page tables in the first
  2294. * 4GB of memory, which happens to fit the DMA32 zone.
  2295. */
  2296. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2297. if (!page)
  2298. goto error_1;
  2299. vcpu->arch.mmu.pae_root = page_address(page);
  2300. for (i = 0; i < 4; ++i)
  2301. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2302. return 0;
  2303. error_1:
  2304. free_mmu_pages(vcpu);
  2305. return -ENOMEM;
  2306. }
  2307. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2308. {
  2309. ASSERT(vcpu);
  2310. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2311. return alloc_mmu_pages(vcpu);
  2312. }
  2313. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2314. {
  2315. ASSERT(vcpu);
  2316. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2317. return init_kvm_mmu(vcpu);
  2318. }
  2319. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2320. {
  2321. ASSERT(vcpu);
  2322. destroy_kvm_mmu(vcpu);
  2323. free_mmu_pages(vcpu);
  2324. mmu_free_memory_caches(vcpu);
  2325. }
  2326. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2327. {
  2328. struct kvm_mmu_page *sp;
  2329. spin_lock(&kvm->mmu_lock);
  2330. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2331. int i;
  2332. u64 *pt;
  2333. if (!test_bit(slot, sp->slot_bitmap))
  2334. continue;
  2335. pt = sp->spt;
  2336. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2337. /* avoid RMW */
  2338. if (pt[i] & PT_WRITABLE_MASK)
  2339. pt[i] &= ~PT_WRITABLE_MASK;
  2340. }
  2341. kvm_flush_remote_tlbs(kvm);
  2342. spin_unlock(&kvm->mmu_lock);
  2343. }
  2344. void kvm_mmu_zap_all(struct kvm *kvm)
  2345. {
  2346. struct kvm_mmu_page *sp, *node;
  2347. spin_lock(&kvm->mmu_lock);
  2348. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2349. if (kvm_mmu_zap_page(kvm, sp))
  2350. node = container_of(kvm->arch.active_mmu_pages.next,
  2351. struct kvm_mmu_page, link);
  2352. spin_unlock(&kvm->mmu_lock);
  2353. kvm_flush_remote_tlbs(kvm);
  2354. }
  2355. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2356. {
  2357. struct kvm_mmu_page *page;
  2358. page = container_of(kvm->arch.active_mmu_pages.prev,
  2359. struct kvm_mmu_page, link);
  2360. kvm_mmu_zap_page(kvm, page);
  2361. }
  2362. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2363. {
  2364. struct kvm *kvm;
  2365. struct kvm *kvm_freed = NULL;
  2366. int cache_count = 0;
  2367. spin_lock(&kvm_lock);
  2368. list_for_each_entry(kvm, &vm_list, vm_list) {
  2369. int npages;
  2370. if (!down_read_trylock(&kvm->slots_lock))
  2371. continue;
  2372. spin_lock(&kvm->mmu_lock);
  2373. npages = kvm->arch.n_alloc_mmu_pages -
  2374. kvm->arch.n_free_mmu_pages;
  2375. cache_count += npages;
  2376. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2377. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2378. cache_count--;
  2379. kvm_freed = kvm;
  2380. }
  2381. nr_to_scan--;
  2382. spin_unlock(&kvm->mmu_lock);
  2383. up_read(&kvm->slots_lock);
  2384. }
  2385. if (kvm_freed)
  2386. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2387. spin_unlock(&kvm_lock);
  2388. return cache_count;
  2389. }
  2390. static struct shrinker mmu_shrinker = {
  2391. .shrink = mmu_shrink,
  2392. .seeks = DEFAULT_SEEKS * 10,
  2393. };
  2394. static void mmu_destroy_caches(void)
  2395. {
  2396. if (pte_chain_cache)
  2397. kmem_cache_destroy(pte_chain_cache);
  2398. if (rmap_desc_cache)
  2399. kmem_cache_destroy(rmap_desc_cache);
  2400. if (mmu_page_header_cache)
  2401. kmem_cache_destroy(mmu_page_header_cache);
  2402. }
  2403. void kvm_mmu_module_exit(void)
  2404. {
  2405. mmu_destroy_caches();
  2406. unregister_shrinker(&mmu_shrinker);
  2407. }
  2408. int kvm_mmu_module_init(void)
  2409. {
  2410. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2411. sizeof(struct kvm_pte_chain),
  2412. 0, 0, NULL);
  2413. if (!pte_chain_cache)
  2414. goto nomem;
  2415. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2416. sizeof(struct kvm_rmap_desc),
  2417. 0, 0, NULL);
  2418. if (!rmap_desc_cache)
  2419. goto nomem;
  2420. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2421. sizeof(struct kvm_mmu_page),
  2422. 0, 0, NULL);
  2423. if (!mmu_page_header_cache)
  2424. goto nomem;
  2425. register_shrinker(&mmu_shrinker);
  2426. return 0;
  2427. nomem:
  2428. mmu_destroy_caches();
  2429. return -ENOMEM;
  2430. }
  2431. /*
  2432. * Caculate mmu pages needed for kvm.
  2433. */
  2434. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2435. {
  2436. int i;
  2437. unsigned int nr_mmu_pages;
  2438. unsigned int nr_pages = 0;
  2439. for (i = 0; i < kvm->nmemslots; i++)
  2440. nr_pages += kvm->memslots[i].npages;
  2441. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2442. nr_mmu_pages = max(nr_mmu_pages,
  2443. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2444. return nr_mmu_pages;
  2445. }
  2446. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2447. unsigned len)
  2448. {
  2449. if (len > buffer->len)
  2450. return NULL;
  2451. return buffer->ptr;
  2452. }
  2453. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2454. unsigned len)
  2455. {
  2456. void *ret;
  2457. ret = pv_mmu_peek_buffer(buffer, len);
  2458. if (!ret)
  2459. return ret;
  2460. buffer->ptr += len;
  2461. buffer->len -= len;
  2462. buffer->processed += len;
  2463. return ret;
  2464. }
  2465. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2466. gpa_t addr, gpa_t value)
  2467. {
  2468. int bytes = 8;
  2469. int r;
  2470. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2471. bytes = 4;
  2472. r = mmu_topup_memory_caches(vcpu);
  2473. if (r)
  2474. return r;
  2475. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2476. return -EFAULT;
  2477. return 1;
  2478. }
  2479. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2480. {
  2481. kvm_x86_ops->tlb_flush(vcpu);
  2482. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2483. return 1;
  2484. }
  2485. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2486. {
  2487. spin_lock(&vcpu->kvm->mmu_lock);
  2488. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2489. spin_unlock(&vcpu->kvm->mmu_lock);
  2490. return 1;
  2491. }
  2492. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2493. struct kvm_pv_mmu_op_buffer *buffer)
  2494. {
  2495. struct kvm_mmu_op_header *header;
  2496. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2497. if (!header)
  2498. return 0;
  2499. switch (header->op) {
  2500. case KVM_MMU_OP_WRITE_PTE: {
  2501. struct kvm_mmu_op_write_pte *wpte;
  2502. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2503. if (!wpte)
  2504. return 0;
  2505. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2506. wpte->pte_val);
  2507. }
  2508. case KVM_MMU_OP_FLUSH_TLB: {
  2509. struct kvm_mmu_op_flush_tlb *ftlb;
  2510. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2511. if (!ftlb)
  2512. return 0;
  2513. return kvm_pv_mmu_flush_tlb(vcpu);
  2514. }
  2515. case KVM_MMU_OP_RELEASE_PT: {
  2516. struct kvm_mmu_op_release_pt *rpt;
  2517. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2518. if (!rpt)
  2519. return 0;
  2520. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2521. }
  2522. default: return 0;
  2523. }
  2524. }
  2525. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2526. gpa_t addr, unsigned long *ret)
  2527. {
  2528. int r;
  2529. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2530. buffer->ptr = buffer->buf;
  2531. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2532. buffer->processed = 0;
  2533. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2534. if (r)
  2535. goto out;
  2536. while (buffer->len) {
  2537. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2538. if (r < 0)
  2539. goto out;
  2540. if (r == 0)
  2541. break;
  2542. }
  2543. r = 1;
  2544. out:
  2545. *ret = buffer->processed;
  2546. return r;
  2547. }
  2548. #ifdef AUDIT
  2549. static const char *audit_msg;
  2550. static gva_t canonicalize(gva_t gva)
  2551. {
  2552. #ifdef CONFIG_X86_64
  2553. gva = (long long)(gva << 16) >> 16;
  2554. #endif
  2555. return gva;
  2556. }
  2557. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2558. gva_t va, int level)
  2559. {
  2560. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2561. int i;
  2562. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2563. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2564. u64 ent = pt[i];
  2565. if (ent == shadow_trap_nonpresent_pte)
  2566. continue;
  2567. va = canonicalize(va);
  2568. if (level > 1) {
  2569. if (ent == shadow_notrap_nonpresent_pte)
  2570. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2571. " in nonleaf level: levels %d gva %lx"
  2572. " level %d pte %llx\n", audit_msg,
  2573. vcpu->arch.mmu.root_level, va, level, ent);
  2574. audit_mappings_page(vcpu, ent, va, level - 1);
  2575. } else {
  2576. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2577. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2578. if (is_shadow_present_pte(ent)
  2579. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2580. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2581. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2582. audit_msg, vcpu->arch.mmu.root_level,
  2583. va, gpa, hpa, ent,
  2584. is_shadow_present_pte(ent));
  2585. else if (ent == shadow_notrap_nonpresent_pte
  2586. && !is_error_hpa(hpa))
  2587. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2588. " valid guest gva %lx\n", audit_msg, va);
  2589. kvm_release_pfn_clean(pfn);
  2590. }
  2591. }
  2592. }
  2593. static void audit_mappings(struct kvm_vcpu *vcpu)
  2594. {
  2595. unsigned i;
  2596. if (vcpu->arch.mmu.root_level == 4)
  2597. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2598. else
  2599. for (i = 0; i < 4; ++i)
  2600. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2601. audit_mappings_page(vcpu,
  2602. vcpu->arch.mmu.pae_root[i],
  2603. i << 30,
  2604. 2);
  2605. }
  2606. static int count_rmaps(struct kvm_vcpu *vcpu)
  2607. {
  2608. int nmaps = 0;
  2609. int i, j, k;
  2610. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2611. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2612. struct kvm_rmap_desc *d;
  2613. for (j = 0; j < m->npages; ++j) {
  2614. unsigned long *rmapp = &m->rmap[j];
  2615. if (!*rmapp)
  2616. continue;
  2617. if (!(*rmapp & 1)) {
  2618. ++nmaps;
  2619. continue;
  2620. }
  2621. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2622. while (d) {
  2623. for (k = 0; k < RMAP_EXT; ++k)
  2624. if (d->shadow_ptes[k])
  2625. ++nmaps;
  2626. else
  2627. break;
  2628. d = d->more;
  2629. }
  2630. }
  2631. }
  2632. return nmaps;
  2633. }
  2634. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2635. {
  2636. int nmaps = 0;
  2637. struct kvm_mmu_page *sp;
  2638. int i;
  2639. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2640. u64 *pt = sp->spt;
  2641. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2642. continue;
  2643. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2644. u64 ent = pt[i];
  2645. if (!(ent & PT_PRESENT_MASK))
  2646. continue;
  2647. if (!(ent & PT_WRITABLE_MASK))
  2648. continue;
  2649. ++nmaps;
  2650. }
  2651. }
  2652. return nmaps;
  2653. }
  2654. static void audit_rmap(struct kvm_vcpu *vcpu)
  2655. {
  2656. int n_rmap = count_rmaps(vcpu);
  2657. int n_actual = count_writable_mappings(vcpu);
  2658. if (n_rmap != n_actual)
  2659. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2660. __func__, audit_msg, n_rmap, n_actual);
  2661. }
  2662. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2663. {
  2664. struct kvm_mmu_page *sp;
  2665. struct kvm_memory_slot *slot;
  2666. unsigned long *rmapp;
  2667. gfn_t gfn;
  2668. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2669. if (sp->role.metaphysical)
  2670. continue;
  2671. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2672. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2673. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2674. if (*rmapp)
  2675. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2676. " mappings: gfn %lx role %x\n",
  2677. __func__, audit_msg, sp->gfn,
  2678. sp->role.word);
  2679. }
  2680. }
  2681. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2682. {
  2683. int olddbg = dbg;
  2684. dbg = 0;
  2685. audit_msg = msg;
  2686. audit_rmap(vcpu);
  2687. audit_write_protection(vcpu);
  2688. audit_mappings(vcpu);
  2689. dbg = olddbg;
  2690. }
  2691. #endif