tlb_uv.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * SGI UltraViolet TLB flush routines.
  3. *
  4. * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
  5. *
  6. * This code is released under the GNU General Public License version 2 or
  7. * later.
  8. */
  9. #include <linux/seq_file.h>
  10. #include <linux/proc_fs.h>
  11. #include <linux/kernel.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/uv/uv_mmrs.h>
  14. #include <asm/uv/uv_hub.h>
  15. #include <asm/uv/uv_bau.h>
  16. #include <asm/genapic.h>
  17. #include <asm/idle.h>
  18. #include <asm/tsc.h>
  19. #include <asm/irq_vectors.h>
  20. #include <mach_apic.h>
  21. static struct bau_control **uv_bau_table_bases __read_mostly;
  22. static int uv_bau_retry_limit __read_mostly;
  23. /* position of pnode (which is nasid>>1): */
  24. static int uv_nshift __read_mostly;
  25. static unsigned long uv_mmask __read_mostly;
  26. static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
  27. static DEFINE_PER_CPU(struct bau_control, bau_control);
  28. /*
  29. * Free a software acknowledge hardware resource by clearing its Pending
  30. * bit. This will return a reply to the sender.
  31. * If the message has timed out, a reply has already been sent by the
  32. * hardware but the resource has not been released. In that case our
  33. * clear of the Timeout bit (as well) will free the resource. No reply will
  34. * be sent (the hardware will only do one reply per message).
  35. */
  36. static void uv_reply_to_message(int resource,
  37. struct bau_payload_queue_entry *msg,
  38. struct bau_msg_status *msp)
  39. {
  40. unsigned long dw;
  41. dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
  42. msg->replied_to = 1;
  43. msg->sw_ack_vector = 0;
  44. if (msp)
  45. msp->seen_by.bits = 0;
  46. uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
  47. }
  48. /*
  49. * Do all the things a cpu should do for a TLB shootdown message.
  50. * Other cpu's may come here at the same time for this message.
  51. */
  52. static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
  53. int msg_slot, int sw_ack_slot)
  54. {
  55. unsigned long this_cpu_mask;
  56. struct bau_msg_status *msp;
  57. int cpu;
  58. msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
  59. cpu = uv_blade_processor_id();
  60. msg->number_of_cpus =
  61. uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
  62. this_cpu_mask = 1UL << cpu;
  63. if (msp->seen_by.bits & this_cpu_mask)
  64. return;
  65. atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
  66. if (msg->replied_to == 1)
  67. return;
  68. if (msg->address == TLB_FLUSH_ALL) {
  69. local_flush_tlb();
  70. __get_cpu_var(ptcstats).alltlb++;
  71. } else {
  72. __flush_tlb_one(msg->address);
  73. __get_cpu_var(ptcstats).onetlb++;
  74. }
  75. __get_cpu_var(ptcstats).requestee++;
  76. atomic_inc_short(&msg->acknowledge_count);
  77. if (msg->number_of_cpus == msg->acknowledge_count)
  78. uv_reply_to_message(sw_ack_slot, msg, msp);
  79. }
  80. /*
  81. * Examine the payload queue on one distribution node to see
  82. * which messages have not been seen, and which cpu(s) have not seen them.
  83. *
  84. * Returns the number of cpu's that have not responded.
  85. */
  86. static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
  87. {
  88. struct bau_payload_queue_entry *msg;
  89. struct bau_msg_status *msp;
  90. int count = 0;
  91. int i;
  92. int j;
  93. for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
  94. msg++, i++) {
  95. if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
  96. msp = bau_tablesp->msg_statuses + i;
  97. printk(KERN_DEBUG
  98. "blade %d: address:%#lx %d of %d, not cpu(s): ",
  99. i, msg->address, msg->acknowledge_count,
  100. msg->number_of_cpus);
  101. for (j = 0; j < msg->number_of_cpus; j++) {
  102. if (!((1L << j) & msp->seen_by.bits)) {
  103. count++;
  104. printk("%d ", j);
  105. }
  106. }
  107. printk("\n");
  108. }
  109. }
  110. return count;
  111. }
  112. /*
  113. * Examine the payload queue on all the distribution nodes to see
  114. * which messages have not been seen, and which cpu(s) have not seen them.
  115. *
  116. * Returns the number of cpu's that have not responded.
  117. */
  118. static int uv_examine_destinations(struct bau_target_nodemask *distribution)
  119. {
  120. int sender;
  121. int i;
  122. int count = 0;
  123. sender = smp_processor_id();
  124. for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
  125. if (!bau_node_isset(i, distribution))
  126. continue;
  127. count += uv_examine_destination(uv_bau_table_bases[i], sender);
  128. }
  129. return count;
  130. }
  131. /*
  132. * wait for completion of a broadcast message
  133. *
  134. * return COMPLETE, RETRY or GIVEUP
  135. */
  136. static int uv_wait_completion(struct bau_desc *bau_desc,
  137. unsigned long mmr_offset, int right_shift)
  138. {
  139. int exams = 0;
  140. long destination_timeouts = 0;
  141. long source_timeouts = 0;
  142. unsigned long descriptor_status;
  143. while ((descriptor_status = (((unsigned long)
  144. uv_read_local_mmr(mmr_offset) >>
  145. right_shift) & UV_ACT_STATUS_MASK)) !=
  146. DESC_STATUS_IDLE) {
  147. if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
  148. source_timeouts++;
  149. if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
  150. source_timeouts = 0;
  151. __get_cpu_var(ptcstats).s_retry++;
  152. return FLUSH_RETRY;
  153. }
  154. /*
  155. * spin here looking for progress at the destinations
  156. */
  157. if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
  158. destination_timeouts++;
  159. if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
  160. /*
  161. * returns number of cpus not responding
  162. */
  163. if (uv_examine_destinations
  164. (&bau_desc->distribution) == 0) {
  165. __get_cpu_var(ptcstats).d_retry++;
  166. return FLUSH_RETRY;
  167. }
  168. exams++;
  169. if (exams >= uv_bau_retry_limit) {
  170. printk(KERN_DEBUG
  171. "uv_flush_tlb_others");
  172. printk("giving up on cpu %d\n",
  173. smp_processor_id());
  174. return FLUSH_GIVEUP;
  175. }
  176. /*
  177. * delays can hang the simulator
  178. udelay(1000);
  179. */
  180. destination_timeouts = 0;
  181. }
  182. }
  183. cpu_relax();
  184. }
  185. return FLUSH_COMPLETE;
  186. }
  187. /**
  188. * uv_flush_send_and_wait
  189. *
  190. * Send a broadcast and wait for a broadcast message to complete.
  191. *
  192. * The cpumaskp mask contains the cpus the broadcast was sent to.
  193. *
  194. * Returns 1 if all remote flushing was done. The mask is zeroed.
  195. * Returns 0 if some remote flushing remains to be done. The mask is left
  196. * unchanged.
  197. */
  198. int uv_flush_send_and_wait(int cpu, int this_blade, struct bau_desc *bau_desc,
  199. cpumask_t *cpumaskp)
  200. {
  201. int completion_status = 0;
  202. int right_shift;
  203. int tries = 0;
  204. int blade;
  205. int bit;
  206. unsigned long mmr_offset;
  207. unsigned long index;
  208. cycles_t time1;
  209. cycles_t time2;
  210. if (cpu < UV_CPUS_PER_ACT_STATUS) {
  211. mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
  212. right_shift = cpu * UV_ACT_STATUS_SIZE;
  213. } else {
  214. mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
  215. right_shift =
  216. ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
  217. }
  218. time1 = get_cycles();
  219. do {
  220. tries++;
  221. index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
  222. cpu;
  223. uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
  224. completion_status = uv_wait_completion(bau_desc, mmr_offset,
  225. right_shift);
  226. } while (completion_status == FLUSH_RETRY);
  227. time2 = get_cycles();
  228. __get_cpu_var(ptcstats).sflush += (time2 - time1);
  229. if (tries > 1)
  230. __get_cpu_var(ptcstats).retriesok++;
  231. if (completion_status == FLUSH_GIVEUP) {
  232. /*
  233. * Cause the caller to do an IPI-style TLB shootdown on
  234. * the cpu's, all of which are still in the mask.
  235. */
  236. __get_cpu_var(ptcstats).ptc_i++;
  237. return 0;
  238. }
  239. /*
  240. * Success, so clear the remote cpu's from the mask so we don't
  241. * use the IPI method of shootdown on them.
  242. */
  243. for_each_cpu_mask(bit, *cpumaskp) {
  244. blade = uv_cpu_to_blade_id(bit);
  245. if (blade == this_blade)
  246. continue;
  247. cpu_clear(bit, *cpumaskp);
  248. }
  249. if (!cpus_empty(*cpumaskp))
  250. return 0;
  251. return 1;
  252. }
  253. /**
  254. * uv_flush_tlb_others - globally purge translation cache of a virtual
  255. * address or all TLB's
  256. * @cpumaskp: mask of all cpu's in which the address is to be removed
  257. * @mm: mm_struct containing virtual address range
  258. * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
  259. *
  260. * This is the entry point for initiating any UV global TLB shootdown.
  261. *
  262. * Purges the translation caches of all specified processors of the given
  263. * virtual address, or purges all TLB's on specified processors.
  264. *
  265. * The caller has derived the cpumaskp from the mm_struct and has subtracted
  266. * the local cpu from the mask. This function is called only if there
  267. * are bits set in the mask. (e.g. flush_tlb_page())
  268. *
  269. * The cpumaskp is converted into a nodemask of the nodes containing
  270. * the cpus.
  271. *
  272. * Returns 1 if all remote flushing was done.
  273. * Returns 0 if some remote flushing remains to be done.
  274. */
  275. int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
  276. unsigned long va)
  277. {
  278. int i;
  279. int bit;
  280. int blade;
  281. int cpu;
  282. int this_blade;
  283. int locals = 0;
  284. struct bau_desc *bau_desc;
  285. cpu = uv_blade_processor_id();
  286. this_blade = uv_numa_blade_id();
  287. bau_desc = __get_cpu_var(bau_control).descriptor_base;
  288. bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
  289. bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
  290. i = 0;
  291. for_each_cpu_mask(bit, *cpumaskp) {
  292. blade = uv_cpu_to_blade_id(bit);
  293. BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
  294. if (blade == this_blade) {
  295. locals++;
  296. continue;
  297. }
  298. bau_node_set(blade, &bau_desc->distribution);
  299. i++;
  300. }
  301. if (i == 0) {
  302. /*
  303. * no off_node flushing; return status for local node
  304. */
  305. if (locals)
  306. return 0;
  307. else
  308. return 1;
  309. }
  310. __get_cpu_var(ptcstats).requestor++;
  311. __get_cpu_var(ptcstats).ntargeted += i;
  312. bau_desc->payload.address = va;
  313. bau_desc->payload.sending_cpu = smp_processor_id();
  314. return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
  315. }
  316. /*
  317. * The BAU message interrupt comes here. (registered by set_intr_gate)
  318. * See entry_64.S
  319. *
  320. * We received a broadcast assist message.
  321. *
  322. * Interrupts may have been disabled; this interrupt could represent
  323. * the receipt of several messages.
  324. *
  325. * All cores/threads on this node get this interrupt.
  326. * The last one to see it does the s/w ack.
  327. * (the resource will not be freed until noninterruptable cpus see this
  328. * interrupt; hardware will timeout the s/w ack and reply ERROR)
  329. */
  330. void uv_bau_message_interrupt(struct pt_regs *regs)
  331. {
  332. struct bau_payload_queue_entry *va_queue_first;
  333. struct bau_payload_queue_entry *va_queue_last;
  334. struct bau_payload_queue_entry *msg;
  335. struct pt_regs *old_regs = set_irq_regs(regs);
  336. cycles_t time1;
  337. cycles_t time2;
  338. int msg_slot;
  339. int sw_ack_slot;
  340. int fw;
  341. int count = 0;
  342. unsigned long local_pnode;
  343. ack_APIC_irq();
  344. exit_idle();
  345. irq_enter();
  346. time1 = get_cycles();
  347. local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
  348. va_queue_first = __get_cpu_var(bau_control).va_queue_first;
  349. va_queue_last = __get_cpu_var(bau_control).va_queue_last;
  350. msg = __get_cpu_var(bau_control).bau_msg_head;
  351. while (msg->sw_ack_vector) {
  352. count++;
  353. fw = msg->sw_ack_vector;
  354. msg_slot = msg - va_queue_first;
  355. sw_ack_slot = ffs(fw) - 1;
  356. uv_bau_process_message(msg, msg_slot, sw_ack_slot);
  357. msg++;
  358. if (msg > va_queue_last)
  359. msg = va_queue_first;
  360. __get_cpu_var(bau_control).bau_msg_head = msg;
  361. }
  362. if (!count)
  363. __get_cpu_var(ptcstats).nomsg++;
  364. else if (count > 1)
  365. __get_cpu_var(ptcstats).multmsg++;
  366. time2 = get_cycles();
  367. __get_cpu_var(ptcstats).dflush += (time2 - time1);
  368. irq_exit();
  369. set_irq_regs(old_regs);
  370. }
  371. static void uv_enable_timeouts(void)
  372. {
  373. int i;
  374. int blade;
  375. int last_blade;
  376. int pnode;
  377. int cur_cpu = 0;
  378. unsigned long apicid;
  379. last_blade = -1;
  380. for_each_online_node(i) {
  381. blade = uv_node_to_blade_id(i);
  382. if (blade == last_blade)
  383. continue;
  384. last_blade = blade;
  385. apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
  386. pnode = uv_blade_to_pnode(blade);
  387. cur_cpu += uv_blade_nr_possible_cpus(i);
  388. }
  389. }
  390. static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
  391. {
  392. if (*offset < num_possible_cpus())
  393. return offset;
  394. return NULL;
  395. }
  396. static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
  397. {
  398. (*offset)++;
  399. if (*offset < num_possible_cpus())
  400. return offset;
  401. return NULL;
  402. }
  403. static void uv_ptc_seq_stop(struct seq_file *file, void *data)
  404. {
  405. }
  406. /*
  407. * Display the statistics thru /proc
  408. * data points to the cpu number
  409. */
  410. static int uv_ptc_seq_show(struct seq_file *file, void *data)
  411. {
  412. struct ptc_stats *stat;
  413. int cpu;
  414. cpu = *(loff_t *)data;
  415. if (!cpu) {
  416. seq_printf(file,
  417. "# cpu requestor requestee one all sretry dretry ptc_i ");
  418. seq_printf(file,
  419. "sw_ack sflush dflush sok dnomsg dmult starget\n");
  420. }
  421. if (cpu < num_possible_cpus() && cpu_online(cpu)) {
  422. stat = &per_cpu(ptcstats, cpu);
  423. seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
  424. cpu, stat->requestor,
  425. stat->requestee, stat->onetlb, stat->alltlb,
  426. stat->s_retry, stat->d_retry, stat->ptc_i);
  427. seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
  428. uv_read_global_mmr64(uv_blade_to_pnode
  429. (uv_cpu_to_blade_id(cpu)),
  430. UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
  431. stat->sflush, stat->dflush,
  432. stat->retriesok, stat->nomsg,
  433. stat->multmsg, stat->ntargeted);
  434. }
  435. return 0;
  436. }
  437. /*
  438. * 0: display meaning of the statistics
  439. * >0: retry limit
  440. */
  441. static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
  442. size_t count, loff_t *data)
  443. {
  444. long newmode;
  445. char optstr[64];
  446. if (count == 0 || count > sizeof(optstr))
  447. return -EINVAL;
  448. if (copy_from_user(optstr, user, count))
  449. return -EFAULT;
  450. optstr[count - 1] = '\0';
  451. if (strict_strtoul(optstr, 10, &newmode) < 0) {
  452. printk(KERN_DEBUG "%s is invalid\n", optstr);
  453. return -EINVAL;
  454. }
  455. if (newmode == 0) {
  456. printk(KERN_DEBUG "# cpu: cpu number\n");
  457. printk(KERN_DEBUG
  458. "requestor: times this cpu was the flush requestor\n");
  459. printk(KERN_DEBUG
  460. "requestee: times this cpu was requested to flush its TLBs\n");
  461. printk(KERN_DEBUG
  462. "one: times requested to flush a single address\n");
  463. printk(KERN_DEBUG
  464. "all: times requested to flush all TLB's\n");
  465. printk(KERN_DEBUG
  466. "sretry: number of retries of source-side timeouts\n");
  467. printk(KERN_DEBUG
  468. "dretry: number of retries of destination-side timeouts\n");
  469. printk(KERN_DEBUG
  470. "ptc_i: times UV fell through to IPI-style flushes\n");
  471. printk(KERN_DEBUG
  472. "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
  473. printk(KERN_DEBUG
  474. "sflush_us: cycles spent in uv_flush_tlb_others()\n");
  475. printk(KERN_DEBUG
  476. "dflush_us: cycles spent in handling flush requests\n");
  477. printk(KERN_DEBUG "sok: successes on retry\n");
  478. printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
  479. printk(KERN_DEBUG
  480. "dmult: interrupts with multiple messages\n");
  481. printk(KERN_DEBUG "starget: nodes targeted\n");
  482. } else {
  483. uv_bau_retry_limit = newmode;
  484. printk(KERN_DEBUG "timeout retry limit:%d\n",
  485. uv_bau_retry_limit);
  486. }
  487. return count;
  488. }
  489. static const struct seq_operations uv_ptc_seq_ops = {
  490. .start = uv_ptc_seq_start,
  491. .next = uv_ptc_seq_next,
  492. .stop = uv_ptc_seq_stop,
  493. .show = uv_ptc_seq_show
  494. };
  495. static int uv_ptc_proc_open(struct inode *inode, struct file *file)
  496. {
  497. return seq_open(file, &uv_ptc_seq_ops);
  498. }
  499. static const struct file_operations proc_uv_ptc_operations = {
  500. .open = uv_ptc_proc_open,
  501. .read = seq_read,
  502. .write = uv_ptc_proc_write,
  503. .llseek = seq_lseek,
  504. .release = seq_release,
  505. };
  506. static int __init uv_ptc_init(void)
  507. {
  508. struct proc_dir_entry *proc_uv_ptc;
  509. if (!is_uv_system())
  510. return 0;
  511. proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
  512. if (!proc_uv_ptc) {
  513. printk(KERN_ERR "unable to create %s proc entry\n",
  514. UV_PTC_BASENAME);
  515. return -EINVAL;
  516. }
  517. proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
  518. return 0;
  519. }
  520. /*
  521. * begin the initialization of the per-blade control structures
  522. */
  523. static struct bau_control * __init uv_table_bases_init(int blade, int node)
  524. {
  525. int i;
  526. struct bau_msg_status *msp;
  527. struct bau_control *bau_tabp;
  528. bau_tabp =
  529. kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
  530. BUG_ON(!bau_tabp);
  531. bau_tabp->msg_statuses =
  532. kmalloc_node(sizeof(struct bau_msg_status) *
  533. DEST_Q_SIZE, GFP_KERNEL, node);
  534. BUG_ON(!bau_tabp->msg_statuses);
  535. for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
  536. bau_cpubits_clear(&msp->seen_by, (int)
  537. uv_blade_nr_possible_cpus(blade));
  538. uv_bau_table_bases[blade] = bau_tabp;
  539. return bau_tabp;
  540. }
  541. /*
  542. * finish the initialization of the per-blade control structures
  543. */
  544. static void __init
  545. uv_table_bases_finish(int blade, int node, int cur_cpu,
  546. struct bau_control *bau_tablesp,
  547. struct bau_desc *adp)
  548. {
  549. struct bau_control *bcp;
  550. int i;
  551. for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
  552. bcp = (struct bau_control *)&per_cpu(bau_control, i);
  553. bcp->bau_msg_head = bau_tablesp->va_queue_first;
  554. bcp->va_queue_first = bau_tablesp->va_queue_first;
  555. bcp->va_queue_last = bau_tablesp->va_queue_last;
  556. bcp->msg_statuses = bau_tablesp->msg_statuses;
  557. bcp->descriptor_base = adp;
  558. }
  559. }
  560. /*
  561. * initialize the sending side's sending buffers
  562. */
  563. static struct bau_desc * __init
  564. uv_activation_descriptor_init(int node, int pnode)
  565. {
  566. int i;
  567. unsigned long pa;
  568. unsigned long m;
  569. unsigned long n;
  570. unsigned long mmr_image;
  571. struct bau_desc *adp;
  572. struct bau_desc *ad2;
  573. adp = (struct bau_desc *)
  574. kmalloc_node(16384, GFP_KERNEL, node);
  575. BUG_ON(!adp);
  576. pa = __pa((unsigned long)adp);
  577. n = pa >> uv_nshift;
  578. m = pa & uv_mmask;
  579. mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
  580. if (mmr_image) {
  581. uv_write_global_mmr64(pnode, (unsigned long)
  582. UVH_LB_BAU_SB_DESCRIPTOR_BASE,
  583. (n << UV_DESC_BASE_PNODE_SHIFT | m));
  584. }
  585. for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
  586. memset(ad2, 0, sizeof(struct bau_desc));
  587. ad2->header.sw_ack_flag = 1;
  588. ad2->header.base_dest_nodeid =
  589. uv_blade_to_pnode(uv_cpu_to_blade_id(0));
  590. ad2->header.command = UV_NET_ENDPOINT_INTD;
  591. ad2->header.int_both = 1;
  592. /*
  593. * all others need to be set to zero:
  594. * fairness chaining multilevel count replied_to
  595. */
  596. }
  597. return adp;
  598. }
  599. /*
  600. * initialize the destination side's receiving buffers
  601. */
  602. static struct bau_payload_queue_entry * __init
  603. uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
  604. {
  605. struct bau_payload_queue_entry *pqp;
  606. char *cp;
  607. pqp = (struct bau_payload_queue_entry *) kmalloc_node(
  608. (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
  609. GFP_KERNEL, node);
  610. BUG_ON(!pqp);
  611. cp = (char *)pqp + 31;
  612. pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
  613. bau_tablesp->va_queue_first = pqp;
  614. uv_write_global_mmr64(pnode,
  615. UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
  616. ((unsigned long)pnode <<
  617. UV_PAYLOADQ_PNODE_SHIFT) |
  618. uv_physnodeaddr(pqp));
  619. uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
  620. uv_physnodeaddr(pqp));
  621. bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
  622. uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
  623. (unsigned long)
  624. uv_physnodeaddr(bau_tablesp->va_queue_last));
  625. memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
  626. return pqp;
  627. }
  628. /*
  629. * Initialization of each UV blade's structures
  630. */
  631. static int __init uv_init_blade(int blade, int node, int cur_cpu)
  632. {
  633. int pnode;
  634. unsigned long pa;
  635. unsigned long apicid;
  636. struct bau_desc *adp;
  637. struct bau_payload_queue_entry *pqp;
  638. struct bau_control *bau_tablesp;
  639. bau_tablesp = uv_table_bases_init(blade, node);
  640. pnode = uv_blade_to_pnode(blade);
  641. adp = uv_activation_descriptor_init(node, pnode);
  642. pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
  643. uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
  644. /*
  645. * the below initialization can't be in firmware because the
  646. * messaging IRQ will be determined by the OS
  647. */
  648. apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
  649. pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
  650. if ((pa & 0xff) != UV_BAU_MESSAGE) {
  651. uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
  652. ((apicid << 32) | UV_BAU_MESSAGE));
  653. }
  654. return 0;
  655. }
  656. /*
  657. * Initialization of BAU-related structures
  658. */
  659. static int __init uv_bau_init(void)
  660. {
  661. int blade;
  662. int node;
  663. int nblades;
  664. int last_blade;
  665. int cur_cpu = 0;
  666. if (!is_uv_system())
  667. return 0;
  668. uv_bau_retry_limit = 1;
  669. uv_nshift = uv_hub_info->n_val;
  670. uv_mmask = (1UL << uv_hub_info->n_val) - 1;
  671. nblades = 0;
  672. last_blade = -1;
  673. for_each_online_node(node) {
  674. blade = uv_node_to_blade_id(node);
  675. if (blade == last_blade)
  676. continue;
  677. last_blade = blade;
  678. nblades++;
  679. }
  680. uv_bau_table_bases = (struct bau_control **)
  681. kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
  682. BUG_ON(!uv_bau_table_bases);
  683. last_blade = -1;
  684. for_each_online_node(node) {
  685. blade = uv_node_to_blade_id(node);
  686. if (blade == last_blade)
  687. continue;
  688. last_blade = blade;
  689. uv_init_blade(blade, node, cur_cpu);
  690. cur_cpu += uv_blade_nr_possible_cpus(blade);
  691. }
  692. alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
  693. uv_enable_timeouts();
  694. return 0;
  695. }
  696. __initcall(uv_bau_init);
  697. __initcall(uv_ptc_init);