acpi-cpufreq.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/dmi.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/acpi.h>
  37. #include <acpi/processor.h>
  38. #include <asm/io.h>
  39. #include <asm/msr.h>
  40. #include <asm/processor.h>
  41. #include <asm/cpufeature.h>
  42. #include <asm/delay.h>
  43. #include <asm/uaccess.h>
  44. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  45. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  46. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  47. MODULE_LICENSE("GPL");
  48. enum {
  49. UNDEFINED_CAPABLE = 0,
  50. SYSTEM_INTEL_MSR_CAPABLE,
  51. SYSTEM_IO_CAPABLE,
  52. };
  53. #define INTEL_MSR_RANGE (0xffff)
  54. #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
  55. struct acpi_cpufreq_data {
  56. struct acpi_processor_performance *acpi_data;
  57. struct cpufreq_frequency_table *freq_table;
  58. unsigned int max_freq;
  59. unsigned int resume;
  60. unsigned int cpu_feature;
  61. };
  62. static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
  63. /* acpi_perf_data is a pointer to percpu data. */
  64. static struct acpi_processor_performance *acpi_perf_data;
  65. static struct cpufreq_driver acpi_cpufreq_driver;
  66. static unsigned int acpi_pstate_strict;
  67. static int check_est_cpu(unsigned int cpuid)
  68. {
  69. struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
  70. if (cpu->x86_vendor != X86_VENDOR_INTEL ||
  71. !cpu_has(cpu, X86_FEATURE_EST))
  72. return 0;
  73. return 1;
  74. }
  75. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  76. {
  77. struct acpi_processor_performance *perf;
  78. int i;
  79. perf = data->acpi_data;
  80. for (i=0; i<perf->state_count; i++) {
  81. if (value == perf->states[i].status)
  82. return data->freq_table[i].frequency;
  83. }
  84. return 0;
  85. }
  86. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  87. {
  88. int i;
  89. struct acpi_processor_performance *perf;
  90. msr &= INTEL_MSR_RANGE;
  91. perf = data->acpi_data;
  92. for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  93. if (msr == perf->states[data->freq_table[i].index].status)
  94. return data->freq_table[i].frequency;
  95. }
  96. return data->freq_table[0].frequency;
  97. }
  98. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  99. {
  100. switch (data->cpu_feature) {
  101. case SYSTEM_INTEL_MSR_CAPABLE:
  102. return extract_msr(val, data);
  103. case SYSTEM_IO_CAPABLE:
  104. return extract_io(val, data);
  105. default:
  106. return 0;
  107. }
  108. }
  109. struct msr_addr {
  110. u32 reg;
  111. };
  112. struct io_addr {
  113. u16 port;
  114. u8 bit_width;
  115. };
  116. typedef union {
  117. struct msr_addr msr;
  118. struct io_addr io;
  119. } drv_addr_union;
  120. struct drv_cmd {
  121. unsigned int type;
  122. const struct cpumask *mask;
  123. drv_addr_union addr;
  124. u32 val;
  125. };
  126. static long do_drv_read(void *_cmd)
  127. {
  128. struct drv_cmd *cmd = _cmd;
  129. u32 h;
  130. switch (cmd->type) {
  131. case SYSTEM_INTEL_MSR_CAPABLE:
  132. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  133. break;
  134. case SYSTEM_IO_CAPABLE:
  135. acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
  136. &cmd->val,
  137. (u32)cmd->addr.io.bit_width);
  138. break;
  139. default:
  140. break;
  141. }
  142. return 0;
  143. }
  144. static long do_drv_write(void *_cmd)
  145. {
  146. struct drv_cmd *cmd = _cmd;
  147. u32 lo, hi;
  148. switch (cmd->type) {
  149. case SYSTEM_INTEL_MSR_CAPABLE:
  150. rdmsr(cmd->addr.msr.reg, lo, hi);
  151. lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
  152. wrmsr(cmd->addr.msr.reg, lo, hi);
  153. break;
  154. case SYSTEM_IO_CAPABLE:
  155. acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
  156. cmd->val,
  157. (u32)cmd->addr.io.bit_width);
  158. break;
  159. default:
  160. break;
  161. }
  162. return 0;
  163. }
  164. static void drv_read(struct drv_cmd *cmd)
  165. {
  166. cmd->val = 0;
  167. work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
  168. }
  169. static void drv_write(struct drv_cmd *cmd)
  170. {
  171. unsigned int i;
  172. for_each_cpu(i, cmd->mask) {
  173. work_on_cpu(i, do_drv_write, cmd);
  174. }
  175. }
  176. static u32 get_cur_val(const struct cpumask *mask)
  177. {
  178. struct acpi_processor_performance *perf;
  179. struct drv_cmd cmd;
  180. if (unlikely(cpumask_empty(mask)))
  181. return 0;
  182. switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
  183. case SYSTEM_INTEL_MSR_CAPABLE:
  184. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  185. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  186. break;
  187. case SYSTEM_IO_CAPABLE:
  188. cmd.type = SYSTEM_IO_CAPABLE;
  189. perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
  190. cmd.addr.io.port = perf->control_register.address;
  191. cmd.addr.io.bit_width = perf->control_register.bit_width;
  192. break;
  193. default:
  194. return 0;
  195. }
  196. cmd.mask = mask;
  197. drv_read(&cmd);
  198. dprintk("get_cur_val = %u\n", cmd.val);
  199. return cmd.val;
  200. }
  201. struct perf_cur {
  202. union {
  203. struct {
  204. u32 lo;
  205. u32 hi;
  206. } split;
  207. u64 whole;
  208. } aperf_cur, mperf_cur;
  209. };
  210. static long read_measured_perf_ctrs(void *_cur)
  211. {
  212. struct perf_cur *cur = _cur;
  213. rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
  214. rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
  215. wrmsr(MSR_IA32_APERF, 0, 0);
  216. wrmsr(MSR_IA32_MPERF, 0, 0);
  217. return 0;
  218. }
  219. /*
  220. * Return the measured active (C0) frequency on this CPU since last call
  221. * to this function.
  222. * Input: cpu number
  223. * Return: Average CPU frequency in terms of max frequency (zero on error)
  224. *
  225. * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
  226. * over a period of time, while CPU is in C0 state.
  227. * IA32_MPERF counts at the rate of max advertised frequency
  228. * IA32_APERF counts at the rate of actual CPU frequency
  229. * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
  230. * no meaning should be associated with absolute values of these MSRs.
  231. */
  232. static unsigned int get_measured_perf(struct cpufreq_policy *policy,
  233. unsigned int cpu)
  234. {
  235. struct perf_cur cur;
  236. unsigned int perf_percent;
  237. unsigned int retval;
  238. if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
  239. return 0;
  240. #ifdef __i386__
  241. /*
  242. * We dont want to do 64 bit divide with 32 bit kernel
  243. * Get an approximate value. Return failure in case we cannot get
  244. * an approximate value.
  245. */
  246. if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
  247. int shift_count;
  248. u32 h;
  249. h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
  250. shift_count = fls(h);
  251. cur.aperf_cur.whole >>= shift_count;
  252. cur.mperf_cur.whole >>= shift_count;
  253. }
  254. if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
  255. int shift_count = 7;
  256. cur.aperf_cur.split.lo >>= shift_count;
  257. cur.mperf_cur.split.lo >>= shift_count;
  258. }
  259. if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
  260. perf_percent = (cur.aperf_cur.split.lo * 100) /
  261. cur.mperf_cur.split.lo;
  262. else
  263. perf_percent = 0;
  264. #else
  265. if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
  266. int shift_count = 7;
  267. cur.aperf_cur.whole >>= shift_count;
  268. cur.mperf_cur.whole >>= shift_count;
  269. }
  270. if (cur.aperf_cur.whole && cur.mperf_cur.whole)
  271. perf_percent = (cur.aperf_cur.whole * 100) /
  272. cur.mperf_cur.whole;
  273. else
  274. perf_percent = 0;
  275. #endif
  276. retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
  277. return retval;
  278. }
  279. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  280. {
  281. struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
  282. unsigned int freq;
  283. unsigned int cached_freq;
  284. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  285. if (unlikely(data == NULL ||
  286. data->acpi_data == NULL || data->freq_table == NULL)) {
  287. return 0;
  288. }
  289. cached_freq = data->freq_table[data->acpi_data->state].frequency;
  290. freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
  291. if (freq != cached_freq) {
  292. /*
  293. * The dreaded BIOS frequency change behind our back.
  294. * Force set the frequency on next target call.
  295. */
  296. data->resume = 1;
  297. }
  298. dprintk("cur freq = %u\n", freq);
  299. return freq;
  300. }
  301. static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
  302. struct acpi_cpufreq_data *data)
  303. {
  304. unsigned int cur_freq;
  305. unsigned int i;
  306. for (i=0; i<100; i++) {
  307. cur_freq = extract_freq(get_cur_val(mask), data);
  308. if (cur_freq == freq)
  309. return 1;
  310. udelay(10);
  311. }
  312. return 0;
  313. }
  314. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  315. unsigned int target_freq, unsigned int relation)
  316. {
  317. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  318. struct acpi_processor_performance *perf;
  319. struct cpufreq_freqs freqs;
  320. struct drv_cmd cmd;
  321. unsigned int next_state = 0; /* Index into freq_table */
  322. unsigned int next_perf_state = 0; /* Index into perf table */
  323. unsigned int i;
  324. int result = 0;
  325. struct power_trace it;
  326. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  327. if (unlikely(data == NULL ||
  328. data->acpi_data == NULL || data->freq_table == NULL)) {
  329. return -ENODEV;
  330. }
  331. perf = data->acpi_data;
  332. result = cpufreq_frequency_table_target(policy,
  333. data->freq_table,
  334. target_freq,
  335. relation, &next_state);
  336. if (unlikely(result)) {
  337. result = -ENODEV;
  338. goto out;
  339. }
  340. next_perf_state = data->freq_table[next_state].index;
  341. if (perf->state == next_perf_state) {
  342. if (unlikely(data->resume)) {
  343. dprintk("Called after resume, resetting to P%d\n",
  344. next_perf_state);
  345. data->resume = 0;
  346. } else {
  347. dprintk("Already at target state (P%d)\n",
  348. next_perf_state);
  349. goto out;
  350. }
  351. }
  352. trace_power_mark(&it, POWER_PSTATE, next_perf_state);
  353. switch (data->cpu_feature) {
  354. case SYSTEM_INTEL_MSR_CAPABLE:
  355. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  356. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  357. cmd.val = (u32) perf->states[next_perf_state].control;
  358. break;
  359. case SYSTEM_IO_CAPABLE:
  360. cmd.type = SYSTEM_IO_CAPABLE;
  361. cmd.addr.io.port = perf->control_register.address;
  362. cmd.addr.io.bit_width = perf->control_register.bit_width;
  363. cmd.val = (u32) perf->states[next_perf_state].control;
  364. break;
  365. default:
  366. result = -ENODEV;
  367. goto out;
  368. }
  369. /* cpufreq holds the hotplug lock, so we are safe from here on */
  370. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  371. cmd.mask = policy->cpus;
  372. else
  373. cmd.mask = cpumask_of(policy->cpu);
  374. freqs.old = perf->states[perf->state].core_frequency * 1000;
  375. freqs.new = data->freq_table[next_state].frequency;
  376. for_each_cpu(i, cmd.mask) {
  377. freqs.cpu = i;
  378. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  379. }
  380. drv_write(&cmd);
  381. if (acpi_pstate_strict) {
  382. if (!check_freqs(cmd.mask, freqs.new, data)) {
  383. dprintk("acpi_cpufreq_target failed (%d)\n",
  384. policy->cpu);
  385. result = -EAGAIN;
  386. goto out;
  387. }
  388. }
  389. for_each_cpu(i, cmd.mask) {
  390. freqs.cpu = i;
  391. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  392. }
  393. perf->state = next_perf_state;
  394. out:
  395. return result;
  396. }
  397. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  398. {
  399. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  400. dprintk("acpi_cpufreq_verify\n");
  401. return cpufreq_frequency_table_verify(policy, data->freq_table);
  402. }
  403. static unsigned long
  404. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  405. {
  406. struct acpi_processor_performance *perf = data->acpi_data;
  407. if (cpu_khz) {
  408. /* search the closest match to cpu_khz */
  409. unsigned int i;
  410. unsigned long freq;
  411. unsigned long freqn = perf->states[0].core_frequency * 1000;
  412. for (i=0; i<(perf->state_count-1); i++) {
  413. freq = freqn;
  414. freqn = perf->states[i+1].core_frequency * 1000;
  415. if ((2 * cpu_khz) > (freqn + freq)) {
  416. perf->state = i;
  417. return freq;
  418. }
  419. }
  420. perf->state = perf->state_count-1;
  421. return freqn;
  422. } else {
  423. /* assume CPU is at P0... */
  424. perf->state = 0;
  425. return perf->states[0].core_frequency * 1000;
  426. }
  427. }
  428. static void free_acpi_perf_data(void)
  429. {
  430. unsigned int i;
  431. /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
  432. for_each_possible_cpu(i)
  433. free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
  434. ->shared_cpu_map);
  435. free_percpu(acpi_perf_data);
  436. }
  437. /*
  438. * acpi_cpufreq_early_init - initialize ACPI P-States library
  439. *
  440. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  441. * in order to determine correct frequency and voltage pairings. We can
  442. * do _PDC and _PSD and find out the processor dependency for the
  443. * actual init that will happen later...
  444. */
  445. static int __init acpi_cpufreq_early_init(void)
  446. {
  447. unsigned int i;
  448. dprintk("acpi_cpufreq_early_init\n");
  449. acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
  450. if (!acpi_perf_data) {
  451. dprintk("Memory allocation error for acpi_perf_data.\n");
  452. return -ENOMEM;
  453. }
  454. for_each_possible_cpu(i) {
  455. if (!alloc_cpumask_var_node(
  456. &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
  457. GFP_KERNEL, cpu_to_node(i))) {
  458. /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
  459. free_acpi_perf_data();
  460. return -ENOMEM;
  461. }
  462. }
  463. /* Do initialization in ACPI core */
  464. acpi_processor_preregister_performance(acpi_perf_data);
  465. return 0;
  466. }
  467. #ifdef CONFIG_SMP
  468. /*
  469. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  470. * or do it in BIOS firmware and won't inform about it to OS. If not
  471. * detected, this has a side effect of making CPU run at a different speed
  472. * than OS intended it to run at. Detect it and handle it cleanly.
  473. */
  474. static int bios_with_sw_any_bug;
  475. static int sw_any_bug_found(const struct dmi_system_id *d)
  476. {
  477. bios_with_sw_any_bug = 1;
  478. return 0;
  479. }
  480. static const struct dmi_system_id sw_any_bug_dmi_table[] = {
  481. {
  482. .callback = sw_any_bug_found,
  483. .ident = "Supermicro Server X6DLP",
  484. .matches = {
  485. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  486. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  487. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  488. },
  489. },
  490. { }
  491. };
  492. #endif
  493. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  494. {
  495. unsigned int i;
  496. unsigned int valid_states = 0;
  497. unsigned int cpu = policy->cpu;
  498. struct acpi_cpufreq_data *data;
  499. unsigned int result = 0;
  500. struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
  501. struct acpi_processor_performance *perf;
  502. dprintk("acpi_cpufreq_cpu_init\n");
  503. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  504. if (!data)
  505. return -ENOMEM;
  506. data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
  507. per_cpu(drv_data, cpu) = data;
  508. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
  509. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  510. result = acpi_processor_register_performance(data->acpi_data, cpu);
  511. if (result)
  512. goto err_free;
  513. perf = data->acpi_data;
  514. policy->shared_type = perf->shared_type;
  515. /*
  516. * Will let policy->cpus know about dependency only when software
  517. * coordination is required.
  518. */
  519. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  520. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  521. cpumask_copy(policy->cpus, perf->shared_cpu_map);
  522. }
  523. cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
  524. #ifdef CONFIG_SMP
  525. dmi_check_system(sw_any_bug_dmi_table);
  526. if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
  527. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  528. cpumask_copy(policy->cpus, cpu_core_mask(cpu));
  529. }
  530. #endif
  531. /* capability check */
  532. if (perf->state_count <= 1) {
  533. dprintk("No P-States\n");
  534. result = -ENODEV;
  535. goto err_unreg;
  536. }
  537. if (perf->control_register.space_id != perf->status_register.space_id) {
  538. result = -ENODEV;
  539. goto err_unreg;
  540. }
  541. switch (perf->control_register.space_id) {
  542. case ACPI_ADR_SPACE_SYSTEM_IO:
  543. dprintk("SYSTEM IO addr space\n");
  544. data->cpu_feature = SYSTEM_IO_CAPABLE;
  545. break;
  546. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  547. dprintk("HARDWARE addr space\n");
  548. if (!check_est_cpu(cpu)) {
  549. result = -ENODEV;
  550. goto err_unreg;
  551. }
  552. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  553. break;
  554. default:
  555. dprintk("Unknown addr space %d\n",
  556. (u32) (perf->control_register.space_id));
  557. result = -ENODEV;
  558. goto err_unreg;
  559. }
  560. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  561. (perf->state_count+1), GFP_KERNEL);
  562. if (!data->freq_table) {
  563. result = -ENOMEM;
  564. goto err_unreg;
  565. }
  566. /* detect transition latency */
  567. policy->cpuinfo.transition_latency = 0;
  568. for (i=0; i<perf->state_count; i++) {
  569. if ((perf->states[i].transition_latency * 1000) >
  570. policy->cpuinfo.transition_latency)
  571. policy->cpuinfo.transition_latency =
  572. perf->states[i].transition_latency * 1000;
  573. }
  574. data->max_freq = perf->states[0].core_frequency * 1000;
  575. /* table init */
  576. for (i=0; i<perf->state_count; i++) {
  577. if (i>0 && perf->states[i].core_frequency >=
  578. data->freq_table[valid_states-1].frequency / 1000)
  579. continue;
  580. data->freq_table[valid_states].index = i;
  581. data->freq_table[valid_states].frequency =
  582. perf->states[i].core_frequency * 1000;
  583. valid_states++;
  584. }
  585. data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
  586. perf->state = 0;
  587. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  588. if (result)
  589. goto err_freqfree;
  590. switch (perf->control_register.space_id) {
  591. case ACPI_ADR_SPACE_SYSTEM_IO:
  592. /* Current speed is unknown and not detectable by IO port */
  593. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  594. break;
  595. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  596. acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
  597. policy->cur = get_cur_freq_on_cpu(cpu);
  598. break;
  599. default:
  600. break;
  601. }
  602. /* notify BIOS that we exist */
  603. acpi_processor_notify_smm(THIS_MODULE);
  604. /* Check for APERF/MPERF support in hardware */
  605. if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
  606. unsigned int ecx;
  607. ecx = cpuid_ecx(6);
  608. if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
  609. acpi_cpufreq_driver.getavg = get_measured_perf;
  610. }
  611. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  612. for (i = 0; i < perf->state_count; i++)
  613. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  614. (i == perf->state ? '*' : ' '), i,
  615. (u32) perf->states[i].core_frequency,
  616. (u32) perf->states[i].power,
  617. (u32) perf->states[i].transition_latency);
  618. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  619. /*
  620. * the first call to ->target() should result in us actually
  621. * writing something to the appropriate registers.
  622. */
  623. data->resume = 1;
  624. return result;
  625. err_freqfree:
  626. kfree(data->freq_table);
  627. err_unreg:
  628. acpi_processor_unregister_performance(perf, cpu);
  629. err_free:
  630. kfree(data);
  631. per_cpu(drv_data, cpu) = NULL;
  632. return result;
  633. }
  634. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  635. {
  636. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  637. dprintk("acpi_cpufreq_cpu_exit\n");
  638. if (data) {
  639. cpufreq_frequency_table_put_attr(policy->cpu);
  640. per_cpu(drv_data, policy->cpu) = NULL;
  641. acpi_processor_unregister_performance(data->acpi_data,
  642. policy->cpu);
  643. kfree(data);
  644. }
  645. return 0;
  646. }
  647. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  648. {
  649. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  650. dprintk("acpi_cpufreq_resume\n");
  651. data->resume = 1;
  652. return 0;
  653. }
  654. static struct freq_attr *acpi_cpufreq_attr[] = {
  655. &cpufreq_freq_attr_scaling_available_freqs,
  656. NULL,
  657. };
  658. static struct cpufreq_driver acpi_cpufreq_driver = {
  659. .verify = acpi_cpufreq_verify,
  660. .target = acpi_cpufreq_target,
  661. .init = acpi_cpufreq_cpu_init,
  662. .exit = acpi_cpufreq_cpu_exit,
  663. .resume = acpi_cpufreq_resume,
  664. .name = "acpi-cpufreq",
  665. .owner = THIS_MODULE,
  666. .attr = acpi_cpufreq_attr,
  667. };
  668. static int __init acpi_cpufreq_init(void)
  669. {
  670. int ret;
  671. if (acpi_disabled)
  672. return 0;
  673. dprintk("acpi_cpufreq_init\n");
  674. ret = acpi_cpufreq_early_init();
  675. if (ret)
  676. return ret;
  677. ret = cpufreq_register_driver(&acpi_cpufreq_driver);
  678. if (ret)
  679. free_acpi_perf_data();
  680. return ret;
  681. }
  682. static void __exit acpi_cpufreq_exit(void)
  683. {
  684. dprintk("acpi_cpufreq_exit\n");
  685. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  686. free_percpu(acpi_perf_data);
  687. }
  688. module_param(acpi_pstate_strict, uint, 0644);
  689. MODULE_PARM_DESC(acpi_pstate_strict,
  690. "value 0 or non-zero. non-zero -> strict ACPI checks are "
  691. "performed during frequency changes.");
  692. late_initcall(acpi_cpufreq_init);
  693. module_exit(acpi_cpufreq_exit);
  694. MODULE_ALIAS("acpi");