irq_64.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /* irq.c: UltraSparc IRQ handling/init/registry.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/linkage.h>
  10. #include <linux/ptrace.h>
  11. #include <linux/errno.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/signal.h>
  14. #include <linux/mm.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/init.h>
  19. #include <linux/delay.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/irq.h>
  24. #include <asm/ptrace.h>
  25. #include <asm/processor.h>
  26. #include <asm/atomic.h>
  27. #include <asm/system.h>
  28. #include <asm/irq.h>
  29. #include <asm/io.h>
  30. #include <asm/iommu.h>
  31. #include <asm/upa.h>
  32. #include <asm/oplib.h>
  33. #include <asm/prom.h>
  34. #include <asm/timer.h>
  35. #include <asm/smp.h>
  36. #include <asm/starfire.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/cache.h>
  39. #include <asm/cpudata.h>
  40. #include <asm/auxio.h>
  41. #include <asm/head.h>
  42. #include <asm/hypervisor.h>
  43. #include <asm/cacheflush.h>
  44. #include "entry.h"
  45. #define NUM_IVECS (IMAP_INR + 1)
  46. struct ino_bucket *ivector_table;
  47. unsigned long ivector_table_pa;
  48. /* On several sun4u processors, it is illegal to mix bypass and
  49. * non-bypass accesses. Therefore we access all INO buckets
  50. * using bypass accesses only.
  51. */
  52. static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  53. {
  54. unsigned long ret;
  55. __asm__ __volatile__("ldxa [%1] %2, %0"
  56. : "=&r" (ret)
  57. : "r" (bucket_pa +
  58. offsetof(struct ino_bucket,
  59. __irq_chain_pa)),
  60. "i" (ASI_PHYS_USE_EC));
  61. return ret;
  62. }
  63. static void bucket_clear_chain_pa(unsigned long bucket_pa)
  64. {
  65. __asm__ __volatile__("stxa %%g0, [%0] %1"
  66. : /* no outputs */
  67. : "r" (bucket_pa +
  68. offsetof(struct ino_bucket,
  69. __irq_chain_pa)),
  70. "i" (ASI_PHYS_USE_EC));
  71. }
  72. static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
  73. {
  74. unsigned int ret;
  75. __asm__ __volatile__("lduwa [%1] %2, %0"
  76. : "=&r" (ret)
  77. : "r" (bucket_pa +
  78. offsetof(struct ino_bucket,
  79. __virt_irq)),
  80. "i" (ASI_PHYS_USE_EC));
  81. return ret;
  82. }
  83. static void bucket_set_virt_irq(unsigned long bucket_pa,
  84. unsigned int virt_irq)
  85. {
  86. __asm__ __volatile__("stwa %0, [%1] %2"
  87. : /* no outputs */
  88. : "r" (virt_irq),
  89. "r" (bucket_pa +
  90. offsetof(struct ino_bucket,
  91. __virt_irq)),
  92. "i" (ASI_PHYS_USE_EC));
  93. }
  94. #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
  95. static struct {
  96. unsigned int dev_handle;
  97. unsigned int dev_ino;
  98. unsigned int in_use;
  99. } virt_irq_table[NR_IRQS];
  100. static DEFINE_SPINLOCK(virt_irq_alloc_lock);
  101. unsigned char virt_irq_alloc(unsigned int dev_handle,
  102. unsigned int dev_ino)
  103. {
  104. unsigned long flags;
  105. unsigned char ent;
  106. BUILD_BUG_ON(NR_IRQS >= 256);
  107. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  108. for (ent = 1; ent < NR_IRQS; ent++) {
  109. if (!virt_irq_table[ent].in_use)
  110. break;
  111. }
  112. if (ent >= NR_IRQS) {
  113. printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
  114. ent = 0;
  115. } else {
  116. virt_irq_table[ent].dev_handle = dev_handle;
  117. virt_irq_table[ent].dev_ino = dev_ino;
  118. virt_irq_table[ent].in_use = 1;
  119. }
  120. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  121. return ent;
  122. }
  123. #ifdef CONFIG_PCI_MSI
  124. void virt_irq_free(unsigned int virt_irq)
  125. {
  126. unsigned long flags;
  127. if (virt_irq >= NR_IRQS)
  128. return;
  129. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  130. virt_irq_table[virt_irq].in_use = 0;
  131. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  132. }
  133. #endif
  134. /*
  135. * /proc/interrupts printing:
  136. */
  137. int show_interrupts(struct seq_file *p, void *v)
  138. {
  139. int i = *(loff_t *) v, j;
  140. struct irqaction * action;
  141. unsigned long flags;
  142. if (i == 0) {
  143. seq_printf(p, " ");
  144. for_each_online_cpu(j)
  145. seq_printf(p, "CPU%d ",j);
  146. seq_putc(p, '\n');
  147. }
  148. if (i < NR_IRQS) {
  149. spin_lock_irqsave(&irq_desc[i].lock, flags);
  150. action = irq_desc[i].action;
  151. if (!action)
  152. goto skip;
  153. seq_printf(p, "%3d: ",i);
  154. #ifndef CONFIG_SMP
  155. seq_printf(p, "%10u ", kstat_irqs(i));
  156. #else
  157. for_each_online_cpu(j)
  158. seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  159. #endif
  160. seq_printf(p, " %9s", irq_desc[i].chip->typename);
  161. seq_printf(p, " %s", action->name);
  162. for (action=action->next; action; action = action->next)
  163. seq_printf(p, ", %s", action->name);
  164. seq_putc(p, '\n');
  165. skip:
  166. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  167. } else if (i == NR_IRQS) {
  168. seq_printf(p, "NMI: ");
  169. for_each_online_cpu(j)
  170. seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
  171. seq_printf(p, " Non-maskable interrupts\n");
  172. }
  173. return 0;
  174. }
  175. static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
  176. {
  177. unsigned int tid;
  178. if (this_is_starfire) {
  179. tid = starfire_translate(imap, cpuid);
  180. tid <<= IMAP_TID_SHIFT;
  181. tid &= IMAP_TID_UPA;
  182. } else {
  183. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  184. unsigned long ver;
  185. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  186. if ((ver >> 32UL) == __JALAPENO_ID ||
  187. (ver >> 32UL) == __SERRANO_ID) {
  188. tid = cpuid << IMAP_TID_SHIFT;
  189. tid &= IMAP_TID_JBUS;
  190. } else {
  191. unsigned int a = cpuid & 0x1f;
  192. unsigned int n = (cpuid >> 5) & 0x1f;
  193. tid = ((a << IMAP_AID_SHIFT) |
  194. (n << IMAP_NID_SHIFT));
  195. tid &= (IMAP_AID_SAFARI |
  196. IMAP_NID_SAFARI);;
  197. }
  198. } else {
  199. tid = cpuid << IMAP_TID_SHIFT;
  200. tid &= IMAP_TID_UPA;
  201. }
  202. }
  203. return tid;
  204. }
  205. struct irq_handler_data {
  206. unsigned long iclr;
  207. unsigned long imap;
  208. void (*pre_handler)(unsigned int, void *, void *);
  209. void *arg1;
  210. void *arg2;
  211. };
  212. #ifdef CONFIG_SMP
  213. static int irq_choose_cpu(unsigned int virt_irq)
  214. {
  215. cpumask_t mask = irq_desc[virt_irq].affinity;
  216. int cpuid;
  217. if (cpus_equal(mask, CPU_MASK_ALL)) {
  218. static int irq_rover;
  219. static DEFINE_SPINLOCK(irq_rover_lock);
  220. unsigned long flags;
  221. /* Round-robin distribution... */
  222. do_round_robin:
  223. spin_lock_irqsave(&irq_rover_lock, flags);
  224. while (!cpu_online(irq_rover)) {
  225. if (++irq_rover >= NR_CPUS)
  226. irq_rover = 0;
  227. }
  228. cpuid = irq_rover;
  229. do {
  230. if (++irq_rover >= NR_CPUS)
  231. irq_rover = 0;
  232. } while (!cpu_online(irq_rover));
  233. spin_unlock_irqrestore(&irq_rover_lock, flags);
  234. } else {
  235. cpumask_t tmp;
  236. cpus_and(tmp, cpu_online_map, mask);
  237. if (cpus_empty(tmp))
  238. goto do_round_robin;
  239. cpuid = first_cpu(tmp);
  240. }
  241. return cpuid;
  242. }
  243. #else
  244. static int irq_choose_cpu(unsigned int virt_irq)
  245. {
  246. return real_hard_smp_processor_id();
  247. }
  248. #endif
  249. static void sun4u_irq_enable(unsigned int virt_irq)
  250. {
  251. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  252. if (likely(data)) {
  253. unsigned long cpuid, imap, val;
  254. unsigned int tid;
  255. cpuid = irq_choose_cpu(virt_irq);
  256. imap = data->imap;
  257. tid = sun4u_compute_tid(imap, cpuid);
  258. val = upa_readq(imap);
  259. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  260. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  261. val |= tid | IMAP_VALID;
  262. upa_writeq(val, imap);
  263. upa_writeq(ICLR_IDLE, data->iclr);
  264. }
  265. }
  266. static void sun4u_set_affinity(unsigned int virt_irq,
  267. const struct cpumask *mask)
  268. {
  269. sun4u_irq_enable(virt_irq);
  270. }
  271. /* Don't do anything. The desc->status check for IRQ_DISABLED in
  272. * handler_irq() will skip the handler call and that will leave the
  273. * interrupt in the sent state. The next ->enable() call will hit the
  274. * ICLR register to reset the state machine.
  275. *
  276. * This scheme is necessary, instead of clearing the Valid bit in the
  277. * IMAP register, to handle the case of IMAP registers being shared by
  278. * multiple INOs (and thus ICLR registers). Since we use a different
  279. * virtual IRQ for each shared IMAP instance, the generic code thinks
  280. * there is only one user so it prematurely calls ->disable() on
  281. * free_irq().
  282. *
  283. * We have to provide an explicit ->disable() method instead of using
  284. * NULL to get the default. The reason is that if the generic code
  285. * sees that, it also hooks up a default ->shutdown method which
  286. * invokes ->mask() which we do not want. See irq_chip_set_defaults().
  287. */
  288. static void sun4u_irq_disable(unsigned int virt_irq)
  289. {
  290. }
  291. static void sun4u_irq_eoi(unsigned int virt_irq)
  292. {
  293. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  294. struct irq_desc *desc = irq_desc + virt_irq;
  295. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  296. return;
  297. if (likely(data))
  298. upa_writeq(ICLR_IDLE, data->iclr);
  299. }
  300. static void sun4v_irq_enable(unsigned int virt_irq)
  301. {
  302. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  303. unsigned long cpuid = irq_choose_cpu(virt_irq);
  304. int err;
  305. err = sun4v_intr_settarget(ino, cpuid);
  306. if (err != HV_EOK)
  307. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  308. "err(%d)\n", ino, cpuid, err);
  309. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  310. if (err != HV_EOK)
  311. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  312. "err(%d)\n", ino, err);
  313. err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
  314. if (err != HV_EOK)
  315. printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
  316. ino, err);
  317. }
  318. static void sun4v_set_affinity(unsigned int virt_irq,
  319. const struct cpumask *mask)
  320. {
  321. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  322. unsigned long cpuid = irq_choose_cpu(virt_irq);
  323. int err;
  324. err = sun4v_intr_settarget(ino, cpuid);
  325. if (err != HV_EOK)
  326. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  327. "err(%d)\n", ino, cpuid, err);
  328. }
  329. static void sun4v_irq_disable(unsigned int virt_irq)
  330. {
  331. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  332. int err;
  333. err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
  334. if (err != HV_EOK)
  335. printk(KERN_ERR "sun4v_intr_setenabled(%x): "
  336. "err(%d)\n", ino, err);
  337. }
  338. static void sun4v_irq_eoi(unsigned int virt_irq)
  339. {
  340. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  341. struct irq_desc *desc = irq_desc + virt_irq;
  342. int err;
  343. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  344. return;
  345. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  346. if (err != HV_EOK)
  347. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  348. "err(%d)\n", ino, err);
  349. }
  350. static void sun4v_virq_enable(unsigned int virt_irq)
  351. {
  352. unsigned long cpuid, dev_handle, dev_ino;
  353. int err;
  354. cpuid = irq_choose_cpu(virt_irq);
  355. dev_handle = virt_irq_table[virt_irq].dev_handle;
  356. dev_ino = virt_irq_table[virt_irq].dev_ino;
  357. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  358. if (err != HV_EOK)
  359. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  360. "err(%d)\n",
  361. dev_handle, dev_ino, cpuid, err);
  362. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  363. HV_INTR_STATE_IDLE);
  364. if (err != HV_EOK)
  365. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  366. "HV_INTR_STATE_IDLE): err(%d)\n",
  367. dev_handle, dev_ino, err);
  368. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  369. HV_INTR_ENABLED);
  370. if (err != HV_EOK)
  371. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  372. "HV_INTR_ENABLED): err(%d)\n",
  373. dev_handle, dev_ino, err);
  374. }
  375. static void sun4v_virt_set_affinity(unsigned int virt_irq,
  376. const struct cpumask *mask)
  377. {
  378. unsigned long cpuid, dev_handle, dev_ino;
  379. int err;
  380. cpuid = irq_choose_cpu(virt_irq);
  381. dev_handle = virt_irq_table[virt_irq].dev_handle;
  382. dev_ino = virt_irq_table[virt_irq].dev_ino;
  383. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  384. if (err != HV_EOK)
  385. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  386. "err(%d)\n",
  387. dev_handle, dev_ino, cpuid, err);
  388. }
  389. static void sun4v_virq_disable(unsigned int virt_irq)
  390. {
  391. unsigned long dev_handle, dev_ino;
  392. int err;
  393. dev_handle = virt_irq_table[virt_irq].dev_handle;
  394. dev_ino = virt_irq_table[virt_irq].dev_ino;
  395. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  396. HV_INTR_DISABLED);
  397. if (err != HV_EOK)
  398. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  399. "HV_INTR_DISABLED): err(%d)\n",
  400. dev_handle, dev_ino, err);
  401. }
  402. static void sun4v_virq_eoi(unsigned int virt_irq)
  403. {
  404. struct irq_desc *desc = irq_desc + virt_irq;
  405. unsigned long dev_handle, dev_ino;
  406. int err;
  407. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  408. return;
  409. dev_handle = virt_irq_table[virt_irq].dev_handle;
  410. dev_ino = virt_irq_table[virt_irq].dev_ino;
  411. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  412. HV_INTR_STATE_IDLE);
  413. if (err != HV_EOK)
  414. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  415. "HV_INTR_STATE_IDLE): err(%d)\n",
  416. dev_handle, dev_ino, err);
  417. }
  418. static struct irq_chip sun4u_irq = {
  419. .typename = "sun4u",
  420. .enable = sun4u_irq_enable,
  421. .disable = sun4u_irq_disable,
  422. .eoi = sun4u_irq_eoi,
  423. .set_affinity = sun4u_set_affinity,
  424. };
  425. static struct irq_chip sun4v_irq = {
  426. .typename = "sun4v",
  427. .enable = sun4v_irq_enable,
  428. .disable = sun4v_irq_disable,
  429. .eoi = sun4v_irq_eoi,
  430. .set_affinity = sun4v_set_affinity,
  431. };
  432. static struct irq_chip sun4v_virq = {
  433. .typename = "vsun4v",
  434. .enable = sun4v_virq_enable,
  435. .disable = sun4v_virq_disable,
  436. .eoi = sun4v_virq_eoi,
  437. .set_affinity = sun4v_virt_set_affinity,
  438. };
  439. static void pre_flow_handler(unsigned int virt_irq,
  440. struct irq_desc *desc)
  441. {
  442. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  443. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  444. data->pre_handler(ino, data->arg1, data->arg2);
  445. handle_fasteoi_irq(virt_irq, desc);
  446. }
  447. void irq_install_pre_handler(int virt_irq,
  448. void (*func)(unsigned int, void *, void *),
  449. void *arg1, void *arg2)
  450. {
  451. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  452. struct irq_desc *desc = irq_desc + virt_irq;
  453. data->pre_handler = func;
  454. data->arg1 = arg1;
  455. data->arg2 = arg2;
  456. desc->handle_irq = pre_flow_handler;
  457. }
  458. unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
  459. {
  460. struct ino_bucket *bucket;
  461. struct irq_handler_data *data;
  462. unsigned int virt_irq;
  463. int ino;
  464. BUG_ON(tlb_type == hypervisor);
  465. ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
  466. bucket = &ivector_table[ino];
  467. virt_irq = bucket_get_virt_irq(__pa(bucket));
  468. if (!virt_irq) {
  469. virt_irq = virt_irq_alloc(0, ino);
  470. bucket_set_virt_irq(__pa(bucket), virt_irq);
  471. set_irq_chip_and_handler_name(virt_irq,
  472. &sun4u_irq,
  473. handle_fasteoi_irq,
  474. "IVEC");
  475. }
  476. data = get_irq_chip_data(virt_irq);
  477. if (unlikely(data))
  478. goto out;
  479. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  480. if (unlikely(!data)) {
  481. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  482. prom_halt();
  483. }
  484. set_irq_chip_data(virt_irq, data);
  485. data->imap = imap;
  486. data->iclr = iclr;
  487. out:
  488. return virt_irq;
  489. }
  490. static unsigned int sun4v_build_common(unsigned long sysino,
  491. struct irq_chip *chip)
  492. {
  493. struct ino_bucket *bucket;
  494. struct irq_handler_data *data;
  495. unsigned int virt_irq;
  496. BUG_ON(tlb_type != hypervisor);
  497. bucket = &ivector_table[sysino];
  498. virt_irq = bucket_get_virt_irq(__pa(bucket));
  499. if (!virt_irq) {
  500. virt_irq = virt_irq_alloc(0, sysino);
  501. bucket_set_virt_irq(__pa(bucket), virt_irq);
  502. set_irq_chip_and_handler_name(virt_irq, chip,
  503. handle_fasteoi_irq,
  504. "IVEC");
  505. }
  506. data = get_irq_chip_data(virt_irq);
  507. if (unlikely(data))
  508. goto out;
  509. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  510. if (unlikely(!data)) {
  511. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  512. prom_halt();
  513. }
  514. set_irq_chip_data(virt_irq, data);
  515. /* Catch accidental accesses to these things. IMAP/ICLR handling
  516. * is done by hypervisor calls on sun4v platforms, not by direct
  517. * register accesses.
  518. */
  519. data->imap = ~0UL;
  520. data->iclr = ~0UL;
  521. out:
  522. return virt_irq;
  523. }
  524. unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
  525. {
  526. unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
  527. return sun4v_build_common(sysino, &sun4v_irq);
  528. }
  529. unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
  530. {
  531. struct irq_handler_data *data;
  532. unsigned long hv_err, cookie;
  533. struct ino_bucket *bucket;
  534. struct irq_desc *desc;
  535. unsigned int virt_irq;
  536. bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
  537. if (unlikely(!bucket))
  538. return 0;
  539. __flush_dcache_range((unsigned long) bucket,
  540. ((unsigned long) bucket +
  541. sizeof(struct ino_bucket)));
  542. virt_irq = virt_irq_alloc(devhandle, devino);
  543. bucket_set_virt_irq(__pa(bucket), virt_irq);
  544. set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
  545. handle_fasteoi_irq,
  546. "IVEC");
  547. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  548. if (unlikely(!data))
  549. return 0;
  550. /* In order to make the LDC channel startup sequence easier,
  551. * especially wrt. locking, we do not let request_irq() enable
  552. * the interrupt.
  553. */
  554. desc = irq_desc + virt_irq;
  555. desc->status |= IRQ_NOAUTOEN;
  556. set_irq_chip_data(virt_irq, data);
  557. /* Catch accidental accesses to these things. IMAP/ICLR handling
  558. * is done by hypervisor calls on sun4v platforms, not by direct
  559. * register accesses.
  560. */
  561. data->imap = ~0UL;
  562. data->iclr = ~0UL;
  563. cookie = ~__pa(bucket);
  564. hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
  565. if (hv_err) {
  566. prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
  567. "err=%lu\n", devhandle, devino, hv_err);
  568. prom_halt();
  569. }
  570. return virt_irq;
  571. }
  572. void ack_bad_irq(unsigned int virt_irq)
  573. {
  574. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  575. if (!ino)
  576. ino = 0xdeadbeef;
  577. printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
  578. ino, virt_irq);
  579. }
  580. void *hardirq_stack[NR_CPUS];
  581. void *softirq_stack[NR_CPUS];
  582. static __attribute__((always_inline)) void *set_hardirq_stack(void)
  583. {
  584. void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
  585. __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
  586. if (orig_sp < sp ||
  587. orig_sp > (sp + THREAD_SIZE)) {
  588. sp += THREAD_SIZE - 192 - STACK_BIAS;
  589. __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
  590. }
  591. return orig_sp;
  592. }
  593. static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
  594. {
  595. __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
  596. }
  597. void handler_irq(int irq, struct pt_regs *regs)
  598. {
  599. unsigned long pstate, bucket_pa;
  600. struct pt_regs *old_regs;
  601. void *orig_sp;
  602. clear_softint(1 << irq);
  603. old_regs = set_irq_regs(regs);
  604. irq_enter();
  605. /* Grab an atomic snapshot of the pending IVECs. */
  606. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  607. "wrpr %0, %3, %%pstate\n\t"
  608. "ldx [%2], %1\n\t"
  609. "stx %%g0, [%2]\n\t"
  610. "wrpr %0, 0x0, %%pstate\n\t"
  611. : "=&r" (pstate), "=&r" (bucket_pa)
  612. : "r" (irq_work_pa(smp_processor_id())),
  613. "i" (PSTATE_IE)
  614. : "memory");
  615. orig_sp = set_hardirq_stack();
  616. while (bucket_pa) {
  617. struct irq_desc *desc;
  618. unsigned long next_pa;
  619. unsigned int virt_irq;
  620. next_pa = bucket_get_chain_pa(bucket_pa);
  621. virt_irq = bucket_get_virt_irq(bucket_pa);
  622. bucket_clear_chain_pa(bucket_pa);
  623. desc = irq_desc + virt_irq;
  624. if (!(desc->status & IRQ_DISABLED))
  625. desc->handle_irq(virt_irq, desc);
  626. bucket_pa = next_pa;
  627. }
  628. restore_hardirq_stack(orig_sp);
  629. irq_exit();
  630. set_irq_regs(old_regs);
  631. }
  632. void do_softirq(void)
  633. {
  634. unsigned long flags;
  635. if (in_interrupt())
  636. return;
  637. local_irq_save(flags);
  638. if (local_softirq_pending()) {
  639. void *orig_sp, *sp = softirq_stack[smp_processor_id()];
  640. sp += THREAD_SIZE - 192 - STACK_BIAS;
  641. __asm__ __volatile__("mov %%sp, %0\n\t"
  642. "mov %1, %%sp"
  643. : "=&r" (orig_sp)
  644. : "r" (sp));
  645. __do_softirq();
  646. __asm__ __volatile__("mov %0, %%sp"
  647. : : "r" (orig_sp));
  648. }
  649. local_irq_restore(flags);
  650. }
  651. #ifdef CONFIG_HOTPLUG_CPU
  652. void fixup_irqs(void)
  653. {
  654. unsigned int irq;
  655. for (irq = 0; irq < NR_IRQS; irq++) {
  656. unsigned long flags;
  657. spin_lock_irqsave(&irq_desc[irq].lock, flags);
  658. if (irq_desc[irq].action &&
  659. !(irq_desc[irq].status & IRQ_PER_CPU)) {
  660. if (irq_desc[irq].chip->set_affinity)
  661. irq_desc[irq].chip->set_affinity(irq,
  662. &irq_desc[irq].affinity);
  663. }
  664. spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
  665. }
  666. tick_ops->disable_irq();
  667. }
  668. #endif
  669. struct sun5_timer {
  670. u64 count0;
  671. u64 limit0;
  672. u64 count1;
  673. u64 limit1;
  674. };
  675. static struct sun5_timer *prom_timers;
  676. static u64 prom_limit0, prom_limit1;
  677. static void map_prom_timers(void)
  678. {
  679. struct device_node *dp;
  680. const unsigned int *addr;
  681. /* PROM timer node hangs out in the top level of device siblings... */
  682. dp = of_find_node_by_path("/");
  683. dp = dp->child;
  684. while (dp) {
  685. if (!strcmp(dp->name, "counter-timer"))
  686. break;
  687. dp = dp->sibling;
  688. }
  689. /* Assume if node is not present, PROM uses different tick mechanism
  690. * which we should not care about.
  691. */
  692. if (!dp) {
  693. prom_timers = (struct sun5_timer *) 0;
  694. return;
  695. }
  696. /* If PROM is really using this, it must be mapped by him. */
  697. addr = of_get_property(dp, "address", NULL);
  698. if (!addr) {
  699. prom_printf("PROM does not have timer mapped, trying to continue.\n");
  700. prom_timers = (struct sun5_timer *) 0;
  701. return;
  702. }
  703. prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
  704. }
  705. static void kill_prom_timer(void)
  706. {
  707. if (!prom_timers)
  708. return;
  709. /* Save them away for later. */
  710. prom_limit0 = prom_timers->limit0;
  711. prom_limit1 = prom_timers->limit1;
  712. /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
  713. * We turn both off here just to be paranoid.
  714. */
  715. prom_timers->limit0 = 0;
  716. prom_timers->limit1 = 0;
  717. /* Wheee, eat the interrupt packet too... */
  718. __asm__ __volatile__(
  719. " mov 0x40, %%g2\n"
  720. " ldxa [%%g0] %0, %%g1\n"
  721. " ldxa [%%g2] %1, %%g1\n"
  722. " stxa %%g0, [%%g0] %0\n"
  723. " membar #Sync\n"
  724. : /* no outputs */
  725. : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
  726. : "g1", "g2");
  727. }
  728. void notrace init_irqwork_curcpu(void)
  729. {
  730. int cpu = hard_smp_processor_id();
  731. trap_block[cpu].irq_worklist_pa = 0UL;
  732. }
  733. /* Please be very careful with register_one_mondo() and
  734. * sun4v_register_mondo_queues().
  735. *
  736. * On SMP this gets invoked from the CPU trampoline before
  737. * the cpu has fully taken over the trap table from OBP,
  738. * and it's kernel stack + %g6 thread register state is
  739. * not fully cooked yet.
  740. *
  741. * Therefore you cannot make any OBP calls, not even prom_printf,
  742. * from these two routines.
  743. */
  744. static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
  745. {
  746. unsigned long num_entries = (qmask + 1) / 64;
  747. unsigned long status;
  748. status = sun4v_cpu_qconf(type, paddr, num_entries);
  749. if (status != HV_EOK) {
  750. prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
  751. "err %lu\n", type, paddr, num_entries, status);
  752. prom_halt();
  753. }
  754. }
  755. void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
  756. {
  757. struct trap_per_cpu *tb = &trap_block[this_cpu];
  758. register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
  759. tb->cpu_mondo_qmask);
  760. register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
  761. tb->dev_mondo_qmask);
  762. register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
  763. tb->resum_qmask);
  764. register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
  765. tb->nonresum_qmask);
  766. }
  767. static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
  768. {
  769. unsigned long size = PAGE_ALIGN(qmask + 1);
  770. void *p = __alloc_bootmem(size, size, 0);
  771. if (!p) {
  772. prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
  773. prom_halt();
  774. }
  775. *pa_ptr = __pa(p);
  776. }
  777. static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
  778. {
  779. unsigned long size = PAGE_ALIGN(qmask + 1);
  780. void *p = __alloc_bootmem(size, size, 0);
  781. if (!p) {
  782. prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
  783. prom_halt();
  784. }
  785. *pa_ptr = __pa(p);
  786. }
  787. static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
  788. {
  789. #ifdef CONFIG_SMP
  790. void *page;
  791. BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
  792. page = alloc_bootmem_pages(PAGE_SIZE);
  793. if (!page) {
  794. prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
  795. prom_halt();
  796. }
  797. tb->cpu_mondo_block_pa = __pa(page);
  798. tb->cpu_list_pa = __pa(page + 64);
  799. #endif
  800. }
  801. /* Allocate mondo and error queues for all possible cpus. */
  802. static void __init sun4v_init_mondo_queues(void)
  803. {
  804. int cpu;
  805. for_each_possible_cpu(cpu) {
  806. struct trap_per_cpu *tb = &trap_block[cpu];
  807. alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
  808. alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
  809. alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
  810. alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
  811. alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
  812. alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
  813. tb->nonresum_qmask);
  814. }
  815. }
  816. static void __init init_send_mondo_info(void)
  817. {
  818. int cpu;
  819. for_each_possible_cpu(cpu) {
  820. struct trap_per_cpu *tb = &trap_block[cpu];
  821. init_cpu_send_mondo_info(tb);
  822. }
  823. }
  824. static struct irqaction timer_irq_action = {
  825. .name = "timer",
  826. };
  827. /* Only invoked on boot processor. */
  828. void __init init_IRQ(void)
  829. {
  830. unsigned long size;
  831. map_prom_timers();
  832. kill_prom_timer();
  833. size = sizeof(struct ino_bucket) * NUM_IVECS;
  834. ivector_table = alloc_bootmem(size);
  835. if (!ivector_table) {
  836. prom_printf("Fatal error, cannot allocate ivector_table\n");
  837. prom_halt();
  838. }
  839. __flush_dcache_range((unsigned long) ivector_table,
  840. ((unsigned long) ivector_table) + size);
  841. ivector_table_pa = __pa(ivector_table);
  842. if (tlb_type == hypervisor)
  843. sun4v_init_mondo_queues();
  844. init_send_mondo_info();
  845. if (tlb_type == hypervisor) {
  846. /* Load up the boot cpu's entries. */
  847. sun4v_register_mondo_queues(hard_smp_processor_id());
  848. }
  849. /* We need to clear any IRQ's pending in the soft interrupt
  850. * registers, a spurious one could be left around from the
  851. * PROM timer which we just disabled.
  852. */
  853. clear_softint(get_softint());
  854. /* Now that ivector table is initialized, it is safe
  855. * to receive IRQ vector traps. We will normally take
  856. * one or two right now, in case some device PROM used
  857. * to boot us wants to speak to us. We just ignore them.
  858. */
  859. __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
  860. "or %%g1, %0, %%g1\n\t"
  861. "wrpr %%g1, 0x0, %%pstate"
  862. : /* No outputs */
  863. : "i" (PSTATE_IE)
  864. : "g1");
  865. irq_desc[0].action = &timer_irq_action;
  866. }