sched.c 223 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. /* task_group_lock serializes the addition/removal of task groups */
  235. static DEFINE_SPINLOCK(task_group_lock);
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  238. /*
  239. * A weight of 0 or 1 can cause arithmetics problems.
  240. * A weight of a cfs_rq is the sum of weights of which entities
  241. * are queued on this cfs_rq, so a weight of a entity should not be
  242. * too large, so as the shares value of a task group.
  243. * (The default weight is 1024 - so there's no practical
  244. * limitation from this.)
  245. */
  246. #define MIN_SHARES 2
  247. #define MAX_SHARES (1UL << 18)
  248. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  249. #endif
  250. /* Default task group.
  251. * Every task in system belong to this group at bootup.
  252. */
  253. struct task_group root_task_group;
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned long nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. struct rb_root tasks_timeline;
  262. struct rb_node *rb_leftmost;
  263. struct list_head tasks;
  264. struct list_head *balance_iterator;
  265. /*
  266. * 'curr' points to currently running entity on this cfs_rq.
  267. * It is set to NULL otherwise (i.e when none are currently running).
  268. */
  269. struct sched_entity *curr, *next, *last;
  270. unsigned int nr_spread_over;
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  273. /*
  274. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  275. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  276. * (like users, containers etc.)
  277. *
  278. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  279. * list is used during load balance.
  280. */
  281. int on_list;
  282. struct list_head leaf_cfs_rq_list;
  283. struct task_group *tg; /* group that "owns" this runqueue */
  284. #ifdef CONFIG_SMP
  285. /*
  286. * the part of load.weight contributed by tasks
  287. */
  288. unsigned long task_weight;
  289. /*
  290. * h_load = weight * f(tg)
  291. *
  292. * Where f(tg) is the recursive weight fraction assigned to
  293. * this group.
  294. */
  295. unsigned long h_load;
  296. /*
  297. * Maintaining per-cpu shares distribution for group scheduling
  298. *
  299. * load_stamp is the last time we updated the load average
  300. * load_last is the last time we updated the load average and saw load
  301. * load_unacc_exec_time is currently unaccounted execution time
  302. */
  303. u64 load_avg;
  304. u64 load_period;
  305. u64 load_stamp, load_last, load_unacc_exec_time;
  306. unsigned long load_contribution;
  307. #endif
  308. #endif
  309. };
  310. /* Real-Time classes' related field in a runqueue: */
  311. struct rt_rq {
  312. struct rt_prio_array active;
  313. unsigned long rt_nr_running;
  314. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  315. struct {
  316. int curr; /* highest queued rt task prio */
  317. #ifdef CONFIG_SMP
  318. int next; /* next highest */
  319. #endif
  320. } highest_prio;
  321. #endif
  322. #ifdef CONFIG_SMP
  323. unsigned long rt_nr_migratory;
  324. unsigned long rt_nr_total;
  325. int overloaded;
  326. struct plist_head pushable_tasks;
  327. #endif
  328. int rt_throttled;
  329. u64 rt_time;
  330. u64 rt_runtime;
  331. /* Nests inside the rq lock: */
  332. raw_spinlock_t rt_runtime_lock;
  333. #ifdef CONFIG_RT_GROUP_SCHED
  334. unsigned long rt_nr_boosted;
  335. struct rq *rq;
  336. struct list_head leaf_rt_rq_list;
  337. struct task_group *tg;
  338. #endif
  339. };
  340. #ifdef CONFIG_SMP
  341. /*
  342. * We add the notion of a root-domain which will be used to define per-domain
  343. * variables. Each exclusive cpuset essentially defines an island domain by
  344. * fully partitioning the member cpus from any other cpuset. Whenever a new
  345. * exclusive cpuset is created, we also create and attach a new root-domain
  346. * object.
  347. *
  348. */
  349. struct root_domain {
  350. atomic_t refcount;
  351. cpumask_var_t span;
  352. cpumask_var_t online;
  353. /*
  354. * The "RT overload" flag: it gets set if a CPU has more than
  355. * one runnable RT task.
  356. */
  357. cpumask_var_t rto_mask;
  358. atomic_t rto_count;
  359. struct cpupri cpupri;
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif /* CONFIG_SMP */
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. unsigned long last_load_update_tick;
  385. #ifdef CONFIG_NO_HZ
  386. u64 nohz_stamp;
  387. unsigned char nohz_balance_kick;
  388. #endif
  389. unsigned int skip_clock_update;
  390. /* capture load from *all* tasks on this cpu: */
  391. struct load_weight load;
  392. unsigned long nr_load_updates;
  393. u64 nr_switches;
  394. struct cfs_rq cfs;
  395. struct rt_rq rt;
  396. #ifdef CONFIG_FAIR_GROUP_SCHED
  397. /* list of leaf cfs_rq on this cpu: */
  398. struct list_head leaf_cfs_rq_list;
  399. #endif
  400. #ifdef CONFIG_RT_GROUP_SCHED
  401. struct list_head leaf_rt_rq_list;
  402. #endif
  403. /*
  404. * This is part of a global counter where only the total sum
  405. * over all CPUs matters. A task can increase this counter on
  406. * one CPU and if it got migrated afterwards it may decrease
  407. * it on another CPU. Always updated under the runqueue lock:
  408. */
  409. unsigned long nr_uninterruptible;
  410. struct task_struct *curr, *idle, *stop;
  411. unsigned long next_balance;
  412. struct mm_struct *prev_mm;
  413. u64 clock;
  414. u64 clock_task;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  436. u64 prev_irq_time;
  437. #endif
  438. /* calc_load related fields */
  439. unsigned long calc_load_update;
  440. long calc_load_active;
  441. #ifdef CONFIG_SCHED_HRTICK
  442. #ifdef CONFIG_SMP
  443. int hrtick_csd_pending;
  444. struct call_single_data hrtick_csd;
  445. #endif
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. unsigned long long rq_cpu_time;
  452. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_count;
  455. /* schedule() stats */
  456. unsigned int sched_switch;
  457. unsigned int sched_count;
  458. unsigned int sched_goidle;
  459. /* try_to_wake_up() stats */
  460. unsigned int ttwu_count;
  461. unsigned int ttwu_local;
  462. #endif
  463. };
  464. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  465. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  466. static inline int cpu_of(struct rq *rq)
  467. {
  468. #ifdef CONFIG_SMP
  469. return rq->cpu;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. #define rcu_dereference_check_sched_domain(p) \
  475. rcu_dereference_check((p), \
  476. rcu_read_lock_sched_held() || \
  477. lockdep_is_held(&sched_domains_mutex))
  478. /*
  479. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  480. * See detach_destroy_domains: synchronize_sched for details.
  481. *
  482. * The domain tree of any CPU may only be accessed from within
  483. * preempt-disabled sections.
  484. */
  485. #define for_each_domain(cpu, __sd) \
  486. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  487. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  488. #define this_rq() (&__get_cpu_var(runqueues))
  489. #define task_rq(p) cpu_rq(task_cpu(p))
  490. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  491. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  492. #ifdef CONFIG_CGROUP_SCHED
  493. /*
  494. * Return the group to which this tasks belongs.
  495. *
  496. * We use task_subsys_state_check() and extend the RCU verification
  497. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  498. * holds that lock for each task it moves into the cgroup. Therefore
  499. * by holding that lock, we pin the task to the current cgroup.
  500. */
  501. static inline struct task_group *task_group(struct task_struct *p)
  502. {
  503. struct task_group *tg;
  504. struct cgroup_subsys_state *css;
  505. if (p->flags & PF_EXITING)
  506. return &root_task_group;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&task_rq(p)->lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. cmp = strstrip(buf);
  609. if (strncmp(cmp, "NO_", 3) == 0) {
  610. neg = 1;
  611. cmp += 3;
  612. }
  613. for (i = 0; sched_feat_names[i]; i++) {
  614. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * period over which we average the RT time consumption, measured
  654. * in ms.
  655. *
  656. * default: 1s
  657. */
  658. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  659. /*
  660. * period over which we measure -rt task cpu usage in us.
  661. * default: 1s
  662. */
  663. unsigned int sysctl_sched_rt_period = 1000000;
  664. static __read_mostly int scheduler_running;
  665. /*
  666. * part of the period that we allow rt tasks to run in us.
  667. * default: 0.95s
  668. */
  669. int sysctl_sched_rt_runtime = 950000;
  670. static inline u64 global_rt_period(void)
  671. {
  672. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  673. }
  674. static inline u64 global_rt_runtime(void)
  675. {
  676. if (sysctl_sched_rt_runtime < 0)
  677. return RUNTIME_INF;
  678. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  679. }
  680. #ifndef prepare_arch_switch
  681. # define prepare_arch_switch(next) do { } while (0)
  682. #endif
  683. #ifndef finish_arch_switch
  684. # define finish_arch_switch(prev) do { } while (0)
  685. #endif
  686. static inline int task_current(struct rq *rq, struct task_struct *p)
  687. {
  688. return rq->curr == p;
  689. }
  690. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  691. static inline int task_running(struct rq *rq, struct task_struct *p)
  692. {
  693. return task_current(rq, p);
  694. }
  695. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  696. {
  697. }
  698. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  699. {
  700. #ifdef CONFIG_DEBUG_SPINLOCK
  701. /* this is a valid case when another task releases the spinlock */
  702. rq->lock.owner = current;
  703. #endif
  704. /*
  705. * If we are tracking spinlock dependencies then we have to
  706. * fix up the runqueue lock - which gets 'carried over' from
  707. * prev into current:
  708. */
  709. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  710. raw_spin_unlock_irq(&rq->lock);
  711. }
  712. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  713. static inline int task_running(struct rq *rq, struct task_struct *p)
  714. {
  715. #ifdef CONFIG_SMP
  716. return p->oncpu;
  717. #else
  718. return task_current(rq, p);
  719. #endif
  720. }
  721. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  722. {
  723. #ifdef CONFIG_SMP
  724. /*
  725. * We can optimise this out completely for !SMP, because the
  726. * SMP rebalancing from interrupt is the only thing that cares
  727. * here.
  728. */
  729. next->oncpu = 1;
  730. #endif
  731. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  732. raw_spin_unlock_irq(&rq->lock);
  733. #else
  734. raw_spin_unlock(&rq->lock);
  735. #endif
  736. }
  737. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  738. {
  739. #ifdef CONFIG_SMP
  740. /*
  741. * After ->oncpu is cleared, the task can be moved to a different CPU.
  742. * We must ensure this doesn't happen until the switch is completely
  743. * finished.
  744. */
  745. smp_wmb();
  746. prev->oncpu = 0;
  747. #endif
  748. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  749. local_irq_enable();
  750. #endif
  751. }
  752. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  753. /*
  754. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  755. * against ttwu().
  756. */
  757. static inline int task_is_waking(struct task_struct *p)
  758. {
  759. return unlikely(p->state == TASK_WAKING);
  760. }
  761. /*
  762. * __task_rq_lock - lock the runqueue a given task resides on.
  763. * Must be called interrupts disabled.
  764. */
  765. static inline struct rq *__task_rq_lock(struct task_struct *p)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. rq = task_rq(p);
  771. raw_spin_lock(&rq->lock);
  772. if (likely(rq == task_rq(p)))
  773. return rq;
  774. raw_spin_unlock(&rq->lock);
  775. }
  776. }
  777. /*
  778. * task_rq_lock - lock the runqueue a given task resides on and disable
  779. * interrupts. Note the ordering: we can safely lookup the task_rq without
  780. * explicitly disabling preemption.
  781. */
  782. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. for (;;) {
  787. local_irq_save(*flags);
  788. rq = task_rq(p);
  789. raw_spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. }
  795. static void __task_rq_unlock(struct rq *rq)
  796. __releases(rq->lock)
  797. {
  798. raw_spin_unlock(&rq->lock);
  799. }
  800. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  801. __releases(rq->lock)
  802. {
  803. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. /*
  806. * this_rq_lock - lock this runqueue and disable interrupts.
  807. */
  808. static struct rq *this_rq_lock(void)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. local_irq_disable();
  813. rq = this_rq();
  814. raw_spin_lock(&rq->lock);
  815. return rq;
  816. }
  817. #ifdef CONFIG_SCHED_HRTICK
  818. /*
  819. * Use HR-timers to deliver accurate preemption points.
  820. *
  821. * Its all a bit involved since we cannot program an hrt while holding the
  822. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  823. * reschedule event.
  824. *
  825. * When we get rescheduled we reprogram the hrtick_timer outside of the
  826. * rq->lock.
  827. */
  828. /*
  829. * Use hrtick when:
  830. * - enabled by features
  831. * - hrtimer is actually high res
  832. */
  833. static inline int hrtick_enabled(struct rq *rq)
  834. {
  835. if (!sched_feat(HRTICK))
  836. return 0;
  837. if (!cpu_active(cpu_of(rq)))
  838. return 0;
  839. return hrtimer_is_hres_active(&rq->hrtick_timer);
  840. }
  841. static void hrtick_clear(struct rq *rq)
  842. {
  843. if (hrtimer_active(&rq->hrtick_timer))
  844. hrtimer_cancel(&rq->hrtick_timer);
  845. }
  846. /*
  847. * High-resolution timer tick.
  848. * Runs from hardirq context with interrupts disabled.
  849. */
  850. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  851. {
  852. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  853. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  854. raw_spin_lock(&rq->lock);
  855. update_rq_clock(rq);
  856. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  857. raw_spin_unlock(&rq->lock);
  858. return HRTIMER_NORESTART;
  859. }
  860. #ifdef CONFIG_SMP
  861. /*
  862. * called from hardirq (IPI) context
  863. */
  864. static void __hrtick_start(void *arg)
  865. {
  866. struct rq *rq = arg;
  867. raw_spin_lock(&rq->lock);
  868. hrtimer_restart(&rq->hrtick_timer);
  869. rq->hrtick_csd_pending = 0;
  870. raw_spin_unlock(&rq->lock);
  871. }
  872. /*
  873. * Called to set the hrtick timer state.
  874. *
  875. * called with rq->lock held and irqs disabled
  876. */
  877. static void hrtick_start(struct rq *rq, u64 delay)
  878. {
  879. struct hrtimer *timer = &rq->hrtick_timer;
  880. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  881. hrtimer_set_expires(timer, time);
  882. if (rq == this_rq()) {
  883. hrtimer_restart(timer);
  884. } else if (!rq->hrtick_csd_pending) {
  885. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  886. rq->hrtick_csd_pending = 1;
  887. }
  888. }
  889. static int
  890. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  891. {
  892. int cpu = (int)(long)hcpu;
  893. switch (action) {
  894. case CPU_UP_CANCELED:
  895. case CPU_UP_CANCELED_FROZEN:
  896. case CPU_DOWN_PREPARE:
  897. case CPU_DOWN_PREPARE_FROZEN:
  898. case CPU_DEAD:
  899. case CPU_DEAD_FROZEN:
  900. hrtick_clear(cpu_rq(cpu));
  901. return NOTIFY_OK;
  902. }
  903. return NOTIFY_DONE;
  904. }
  905. static __init void init_hrtick(void)
  906. {
  907. hotcpu_notifier(hotplug_hrtick, 0);
  908. }
  909. #else
  910. /*
  911. * Called to set the hrtick timer state.
  912. *
  913. * called with rq->lock held and irqs disabled
  914. */
  915. static void hrtick_start(struct rq *rq, u64 delay)
  916. {
  917. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  918. HRTIMER_MODE_REL_PINNED, 0);
  919. }
  920. static inline void init_hrtick(void)
  921. {
  922. }
  923. #endif /* CONFIG_SMP */
  924. static void init_rq_hrtick(struct rq *rq)
  925. {
  926. #ifdef CONFIG_SMP
  927. rq->hrtick_csd_pending = 0;
  928. rq->hrtick_csd.flags = 0;
  929. rq->hrtick_csd.func = __hrtick_start;
  930. rq->hrtick_csd.info = rq;
  931. #endif
  932. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  933. rq->hrtick_timer.function = hrtick;
  934. }
  935. #else /* CONFIG_SCHED_HRTICK */
  936. static inline void hrtick_clear(struct rq *rq)
  937. {
  938. }
  939. static inline void init_rq_hrtick(struct rq *rq)
  940. {
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SCHED_HRTICK */
  946. /*
  947. * resched_task - mark a task 'to be rescheduled now'.
  948. *
  949. * On UP this means the setting of the need_resched flag, on SMP it
  950. * might also involve a cross-CPU call to trigger the scheduler on
  951. * the target CPU.
  952. */
  953. #ifdef CONFIG_SMP
  954. #ifndef tsk_is_polling
  955. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  956. #endif
  957. static void resched_task(struct task_struct *p)
  958. {
  959. int cpu;
  960. assert_raw_spin_locked(&task_rq(p)->lock);
  961. if (test_tsk_need_resched(p))
  962. return;
  963. set_tsk_need_resched(p);
  964. cpu = task_cpu(p);
  965. if (cpu == smp_processor_id())
  966. return;
  967. /* NEED_RESCHED must be visible before we test polling */
  968. smp_mb();
  969. if (!tsk_is_polling(p))
  970. smp_send_reschedule(cpu);
  971. }
  972. static void resched_cpu(int cpu)
  973. {
  974. struct rq *rq = cpu_rq(cpu);
  975. unsigned long flags;
  976. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  977. return;
  978. resched_task(cpu_curr(cpu));
  979. raw_spin_unlock_irqrestore(&rq->lock, flags);
  980. }
  981. #ifdef CONFIG_NO_HZ
  982. /*
  983. * In the semi idle case, use the nearest busy cpu for migrating timers
  984. * from an idle cpu. This is good for power-savings.
  985. *
  986. * We don't do similar optimization for completely idle system, as
  987. * selecting an idle cpu will add more delays to the timers than intended
  988. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  989. */
  990. int get_nohz_timer_target(void)
  991. {
  992. int cpu = smp_processor_id();
  993. int i;
  994. struct sched_domain *sd;
  995. for_each_domain(cpu, sd) {
  996. for_each_cpu(i, sched_domain_span(sd))
  997. if (!idle_cpu(i))
  998. return i;
  999. }
  1000. return cpu;
  1001. }
  1002. /*
  1003. * When add_timer_on() enqueues a timer into the timer wheel of an
  1004. * idle CPU then this timer might expire before the next timer event
  1005. * which is scheduled to wake up that CPU. In case of a completely
  1006. * idle system the next event might even be infinite time into the
  1007. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1008. * leaves the inner idle loop so the newly added timer is taken into
  1009. * account when the CPU goes back to idle and evaluates the timer
  1010. * wheel for the next timer event.
  1011. */
  1012. void wake_up_idle_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /*
  1018. * This is safe, as this function is called with the timer
  1019. * wheel base lock of (cpu) held. When the CPU is on the way
  1020. * to idle and has not yet set rq->curr to idle then it will
  1021. * be serialized on the timer wheel base lock and take the new
  1022. * timer into account automatically.
  1023. */
  1024. if (rq->curr != rq->idle)
  1025. return;
  1026. /*
  1027. * We can set TIF_RESCHED on the idle task of the other CPU
  1028. * lockless. The worst case is that the other CPU runs the
  1029. * idle task through an additional NOOP schedule()
  1030. */
  1031. set_tsk_need_resched(rq->idle);
  1032. /* NEED_RESCHED must be visible before we test polling */
  1033. smp_mb();
  1034. if (!tsk_is_polling(rq->idle))
  1035. smp_send_reschedule(cpu);
  1036. }
  1037. #endif /* CONFIG_NO_HZ */
  1038. static u64 sched_avg_period(void)
  1039. {
  1040. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1041. }
  1042. static void sched_avg_update(struct rq *rq)
  1043. {
  1044. s64 period = sched_avg_period();
  1045. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1046. /*
  1047. * Inline assembly required to prevent the compiler
  1048. * optimising this loop into a divmod call.
  1049. * See __iter_div_u64_rem() for another example of this.
  1050. */
  1051. asm("" : "+rm" (rq->age_stamp));
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_raw_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. static void sched_avg_update(struct rq *rq)
  1071. {
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1121. {
  1122. lw->weight = w;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1175. enum cpuacct_stat_index {
  1176. CPUACCT_STAT_USER, /* ... user mode */
  1177. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1178. CPUACCT_STAT_NSTATS,
  1179. };
  1180. #ifdef CONFIG_CGROUP_CPUACCT
  1181. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1182. static void cpuacct_update_stats(struct task_struct *tsk,
  1183. enum cpuacct_stat_index idx, cputime_t val);
  1184. #else
  1185. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1186. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val) {}
  1188. #endif
  1189. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1190. {
  1191. update_load_add(&rq->load, load);
  1192. }
  1193. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_sub(&rq->load, load);
  1196. }
  1197. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1198. typedef int (*tg_visitor)(struct task_group *, void *);
  1199. /*
  1200. * Iterate the full tree, calling @down when first entering a node and @up when
  1201. * leaving it for the final time.
  1202. */
  1203. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1204. {
  1205. struct task_group *parent, *child;
  1206. int ret;
  1207. rcu_read_lock();
  1208. parent = &root_task_group;
  1209. down:
  1210. ret = (*down)(parent, data);
  1211. if (ret)
  1212. goto out_unlock;
  1213. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1214. parent = child;
  1215. goto down;
  1216. up:
  1217. continue;
  1218. }
  1219. ret = (*up)(parent, data);
  1220. if (ret)
  1221. goto out_unlock;
  1222. child = parent;
  1223. parent = parent->parent;
  1224. if (parent)
  1225. goto up;
  1226. out_unlock:
  1227. rcu_read_unlock();
  1228. return ret;
  1229. }
  1230. static int tg_nop(struct task_group *tg, void *data)
  1231. {
  1232. return 0;
  1233. }
  1234. #endif
  1235. #ifdef CONFIG_SMP
  1236. /* Used instead of source_load when we know the type == 0 */
  1237. static unsigned long weighted_cpuload(const int cpu)
  1238. {
  1239. return cpu_rq(cpu)->load.weight;
  1240. }
  1241. /*
  1242. * Return a low guess at the load of a migration-source cpu weighted
  1243. * according to the scheduling class and "nice" value.
  1244. *
  1245. * We want to under-estimate the load of migration sources, to
  1246. * balance conservatively.
  1247. */
  1248. static unsigned long source_load(int cpu, int type)
  1249. {
  1250. struct rq *rq = cpu_rq(cpu);
  1251. unsigned long total = weighted_cpuload(cpu);
  1252. if (type == 0 || !sched_feat(LB_BIAS))
  1253. return total;
  1254. return min(rq->cpu_load[type-1], total);
  1255. }
  1256. /*
  1257. * Return a high guess at the load of a migration-target cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. */
  1260. static unsigned long target_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return max(rq->cpu_load[type-1], total);
  1267. }
  1268. static unsigned long power_of(int cpu)
  1269. {
  1270. return cpu_rq(cpu)->cpu_power;
  1271. }
  1272. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1273. static unsigned long cpu_avg_load_per_task(int cpu)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1277. if (nr_running)
  1278. rq->avg_load_per_task = rq->load.weight / nr_running;
  1279. else
  1280. rq->avg_load_per_task = 0;
  1281. return rq->avg_load_per_task;
  1282. }
  1283. #ifdef CONFIG_FAIR_GROUP_SCHED
  1284. /*
  1285. * Compute the cpu's hierarchical load factor for each task group.
  1286. * This needs to be done in a top-down fashion because the load of a child
  1287. * group is a fraction of its parents load.
  1288. */
  1289. static int tg_load_down(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long load;
  1292. long cpu = (long)data;
  1293. if (!tg->parent) {
  1294. load = cpu_rq(cpu)->load.weight;
  1295. } else {
  1296. load = tg->parent->cfs_rq[cpu]->h_load;
  1297. load *= tg->se[cpu]->load.weight;
  1298. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1299. }
  1300. tg->cfs_rq[cpu]->h_load = load;
  1301. return 0;
  1302. }
  1303. static void update_h_load(long cpu)
  1304. {
  1305. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1306. }
  1307. #endif
  1308. #ifdef CONFIG_PREEMPT
  1309. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1310. /*
  1311. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1312. * way at the expense of forcing extra atomic operations in all
  1313. * invocations. This assures that the double_lock is acquired using the
  1314. * same underlying policy as the spinlock_t on this architecture, which
  1315. * reduces latency compared to the unfair variant below. However, it
  1316. * also adds more overhead and therefore may reduce throughput.
  1317. */
  1318. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1319. __releases(this_rq->lock)
  1320. __acquires(busiest->lock)
  1321. __acquires(this_rq->lock)
  1322. {
  1323. raw_spin_unlock(&this_rq->lock);
  1324. double_rq_lock(this_rq, busiest);
  1325. return 1;
  1326. }
  1327. #else
  1328. /*
  1329. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1330. * latency by eliminating extra atomic operations when the locks are
  1331. * already in proper order on entry. This favors lower cpu-ids and will
  1332. * grant the double lock to lower cpus over higher ids under contention,
  1333. * regardless of entry order into the function.
  1334. */
  1335. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1336. __releases(this_rq->lock)
  1337. __acquires(busiest->lock)
  1338. __acquires(this_rq->lock)
  1339. {
  1340. int ret = 0;
  1341. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1342. if (busiest < this_rq) {
  1343. raw_spin_unlock(&this_rq->lock);
  1344. raw_spin_lock(&busiest->lock);
  1345. raw_spin_lock_nested(&this_rq->lock,
  1346. SINGLE_DEPTH_NESTING);
  1347. ret = 1;
  1348. } else
  1349. raw_spin_lock_nested(&busiest->lock,
  1350. SINGLE_DEPTH_NESTING);
  1351. }
  1352. return ret;
  1353. }
  1354. #endif /* CONFIG_PREEMPT */
  1355. /*
  1356. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1357. */
  1358. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1359. {
  1360. if (unlikely(!irqs_disabled())) {
  1361. /* printk() doesn't work good under rq->lock */
  1362. raw_spin_unlock(&this_rq->lock);
  1363. BUG_ON(1);
  1364. }
  1365. return _double_lock_balance(this_rq, busiest);
  1366. }
  1367. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1368. __releases(busiest->lock)
  1369. {
  1370. raw_spin_unlock(&busiest->lock);
  1371. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1372. }
  1373. /*
  1374. * double_rq_lock - safely lock two runqueues
  1375. *
  1376. * Note this does not disable interrupts like task_rq_lock,
  1377. * you need to do so manually before calling.
  1378. */
  1379. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1380. __acquires(rq1->lock)
  1381. __acquires(rq2->lock)
  1382. {
  1383. BUG_ON(!irqs_disabled());
  1384. if (rq1 == rq2) {
  1385. raw_spin_lock(&rq1->lock);
  1386. __acquire(rq2->lock); /* Fake it out ;) */
  1387. } else {
  1388. if (rq1 < rq2) {
  1389. raw_spin_lock(&rq1->lock);
  1390. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1391. } else {
  1392. raw_spin_lock(&rq2->lock);
  1393. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1394. }
  1395. }
  1396. }
  1397. /*
  1398. * double_rq_unlock - safely unlock two runqueues
  1399. *
  1400. * Note this does not restore interrupts like task_rq_unlock,
  1401. * you need to do so manually after calling.
  1402. */
  1403. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1404. __releases(rq1->lock)
  1405. __releases(rq2->lock)
  1406. {
  1407. raw_spin_unlock(&rq1->lock);
  1408. if (rq1 != rq2)
  1409. raw_spin_unlock(&rq2->lock);
  1410. else
  1411. __release(rq2->lock);
  1412. }
  1413. #endif
  1414. static void calc_load_account_idle(struct rq *this_rq);
  1415. static void update_sysctl(void);
  1416. static int get_update_sysctl_factor(void);
  1417. static void update_cpu_load(struct rq *this_rq);
  1418. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1419. {
  1420. set_task_rq(p, cpu);
  1421. #ifdef CONFIG_SMP
  1422. /*
  1423. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1424. * successfuly executed on another CPU. We must ensure that updates of
  1425. * per-task data have been completed by this moment.
  1426. */
  1427. smp_wmb();
  1428. task_thread_info(p)->cpu = cpu;
  1429. #endif
  1430. }
  1431. static const struct sched_class rt_sched_class;
  1432. #define sched_class_highest (&stop_sched_class)
  1433. #define for_each_class(class) \
  1434. for (class = sched_class_highest; class; class = class->next)
  1435. #include "sched_stats.h"
  1436. static void inc_nr_running(struct rq *rq)
  1437. {
  1438. rq->nr_running++;
  1439. }
  1440. static void dec_nr_running(struct rq *rq)
  1441. {
  1442. rq->nr_running--;
  1443. }
  1444. static void set_load_weight(struct task_struct *p)
  1445. {
  1446. /*
  1447. * SCHED_IDLE tasks get minimal weight:
  1448. */
  1449. if (p->policy == SCHED_IDLE) {
  1450. p->se.load.weight = WEIGHT_IDLEPRIO;
  1451. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1452. return;
  1453. }
  1454. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1455. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1456. }
  1457. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1458. {
  1459. update_rq_clock(rq);
  1460. sched_info_queued(p);
  1461. p->sched_class->enqueue_task(rq, p, flags);
  1462. p->se.on_rq = 1;
  1463. }
  1464. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1465. {
  1466. update_rq_clock(rq);
  1467. sched_info_dequeued(p);
  1468. p->sched_class->dequeue_task(rq, p, flags);
  1469. p->se.on_rq = 0;
  1470. }
  1471. /*
  1472. * activate_task - move a task to the runqueue.
  1473. */
  1474. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1475. {
  1476. if (task_contributes_to_load(p))
  1477. rq->nr_uninterruptible--;
  1478. enqueue_task(rq, p, flags);
  1479. inc_nr_running(rq);
  1480. }
  1481. /*
  1482. * deactivate_task - remove a task from the runqueue.
  1483. */
  1484. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1485. {
  1486. if (task_contributes_to_load(p))
  1487. rq->nr_uninterruptible++;
  1488. dequeue_task(rq, p, flags);
  1489. dec_nr_running(rq);
  1490. }
  1491. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1492. /*
  1493. * There are no locks covering percpu hardirq/softirq time.
  1494. * They are only modified in account_system_vtime, on corresponding CPU
  1495. * with interrupts disabled. So, writes are safe.
  1496. * They are read and saved off onto struct rq in update_rq_clock().
  1497. * This may result in other CPU reading this CPU's irq time and can
  1498. * race with irq/account_system_vtime on this CPU. We would either get old
  1499. * or new value with a side effect of accounting a slice of irq time to wrong
  1500. * task when irq is in progress while we read rq->clock. That is a worthy
  1501. * compromise in place of having locks on each irq in account_system_time.
  1502. */
  1503. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1504. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1505. static DEFINE_PER_CPU(u64, irq_start_time);
  1506. static int sched_clock_irqtime;
  1507. void enable_sched_clock_irqtime(void)
  1508. {
  1509. sched_clock_irqtime = 1;
  1510. }
  1511. void disable_sched_clock_irqtime(void)
  1512. {
  1513. sched_clock_irqtime = 0;
  1514. }
  1515. #ifndef CONFIG_64BIT
  1516. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1517. static inline void irq_time_write_begin(void)
  1518. {
  1519. __this_cpu_inc(irq_time_seq.sequence);
  1520. smp_wmb();
  1521. }
  1522. static inline void irq_time_write_end(void)
  1523. {
  1524. smp_wmb();
  1525. __this_cpu_inc(irq_time_seq.sequence);
  1526. }
  1527. static inline u64 irq_time_read(int cpu)
  1528. {
  1529. u64 irq_time;
  1530. unsigned seq;
  1531. do {
  1532. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1533. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1534. per_cpu(cpu_hardirq_time, cpu);
  1535. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1536. return irq_time;
  1537. }
  1538. #else /* CONFIG_64BIT */
  1539. static inline void irq_time_write_begin(void)
  1540. {
  1541. }
  1542. static inline void irq_time_write_end(void)
  1543. {
  1544. }
  1545. static inline u64 irq_time_read(int cpu)
  1546. {
  1547. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1548. }
  1549. #endif /* CONFIG_64BIT */
  1550. /*
  1551. * Called before incrementing preempt_count on {soft,}irq_enter
  1552. * and before decrementing preempt_count on {soft,}irq_exit.
  1553. */
  1554. void account_system_vtime(struct task_struct *curr)
  1555. {
  1556. unsigned long flags;
  1557. s64 delta;
  1558. int cpu;
  1559. if (!sched_clock_irqtime)
  1560. return;
  1561. local_irq_save(flags);
  1562. cpu = smp_processor_id();
  1563. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1564. __this_cpu_add(irq_start_time, delta);
  1565. irq_time_write_begin();
  1566. /*
  1567. * We do not account for softirq time from ksoftirqd here.
  1568. * We want to continue accounting softirq time to ksoftirqd thread
  1569. * in that case, so as not to confuse scheduler with a special task
  1570. * that do not consume any time, but still wants to run.
  1571. */
  1572. if (hardirq_count())
  1573. __this_cpu_add(cpu_hardirq_time, delta);
  1574. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1575. __this_cpu_add(cpu_softirq_time, delta);
  1576. irq_time_write_end();
  1577. local_irq_restore(flags);
  1578. }
  1579. EXPORT_SYMBOL_GPL(account_system_vtime);
  1580. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1581. {
  1582. s64 irq_delta;
  1583. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1584. /*
  1585. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1586. * this case when a previous update_rq_clock() happened inside a
  1587. * {soft,}irq region.
  1588. *
  1589. * When this happens, we stop ->clock_task and only update the
  1590. * prev_irq_time stamp to account for the part that fit, so that a next
  1591. * update will consume the rest. This ensures ->clock_task is
  1592. * monotonic.
  1593. *
  1594. * It does however cause some slight miss-attribution of {soft,}irq
  1595. * time, a more accurate solution would be to update the irq_time using
  1596. * the current rq->clock timestamp, except that would require using
  1597. * atomic ops.
  1598. */
  1599. if (irq_delta > delta)
  1600. irq_delta = delta;
  1601. rq->prev_irq_time += irq_delta;
  1602. delta -= irq_delta;
  1603. rq->clock_task += delta;
  1604. if (irq_delta && sched_feat(NONIRQ_POWER))
  1605. sched_rt_avg_update(rq, irq_delta);
  1606. }
  1607. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1608. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1609. {
  1610. rq->clock_task += delta;
  1611. }
  1612. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1613. #include "sched_idletask.c"
  1614. #include "sched_fair.c"
  1615. #include "sched_rt.c"
  1616. #include "sched_autogroup.c"
  1617. #include "sched_stoptask.c"
  1618. #ifdef CONFIG_SCHED_DEBUG
  1619. # include "sched_debug.c"
  1620. #endif
  1621. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1622. {
  1623. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1624. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1625. if (stop) {
  1626. /*
  1627. * Make it appear like a SCHED_FIFO task, its something
  1628. * userspace knows about and won't get confused about.
  1629. *
  1630. * Also, it will make PI more or less work without too
  1631. * much confusion -- but then, stop work should not
  1632. * rely on PI working anyway.
  1633. */
  1634. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1635. stop->sched_class = &stop_sched_class;
  1636. }
  1637. cpu_rq(cpu)->stop = stop;
  1638. if (old_stop) {
  1639. /*
  1640. * Reset it back to a normal scheduling class so that
  1641. * it can die in pieces.
  1642. */
  1643. old_stop->sched_class = &rt_sched_class;
  1644. }
  1645. }
  1646. /*
  1647. * __normal_prio - return the priority that is based on the static prio
  1648. */
  1649. static inline int __normal_prio(struct task_struct *p)
  1650. {
  1651. return p->static_prio;
  1652. }
  1653. /*
  1654. * Calculate the expected normal priority: i.e. priority
  1655. * without taking RT-inheritance into account. Might be
  1656. * boosted by interactivity modifiers. Changes upon fork,
  1657. * setprio syscalls, and whenever the interactivity
  1658. * estimator recalculates.
  1659. */
  1660. static inline int normal_prio(struct task_struct *p)
  1661. {
  1662. int prio;
  1663. if (task_has_rt_policy(p))
  1664. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1665. else
  1666. prio = __normal_prio(p);
  1667. return prio;
  1668. }
  1669. /*
  1670. * Calculate the current priority, i.e. the priority
  1671. * taken into account by the scheduler. This value might
  1672. * be boosted by RT tasks, or might be boosted by
  1673. * interactivity modifiers. Will be RT if the task got
  1674. * RT-boosted. If not then it returns p->normal_prio.
  1675. */
  1676. static int effective_prio(struct task_struct *p)
  1677. {
  1678. p->normal_prio = normal_prio(p);
  1679. /*
  1680. * If we are RT tasks or we were boosted to RT priority,
  1681. * keep the priority unchanged. Otherwise, update priority
  1682. * to the normal priority:
  1683. */
  1684. if (!rt_prio(p->prio))
  1685. return p->normal_prio;
  1686. return p->prio;
  1687. }
  1688. /**
  1689. * task_curr - is this task currently executing on a CPU?
  1690. * @p: the task in question.
  1691. */
  1692. inline int task_curr(const struct task_struct *p)
  1693. {
  1694. return cpu_curr(task_cpu(p)) == p;
  1695. }
  1696. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1697. const struct sched_class *prev_class,
  1698. int oldprio, int running)
  1699. {
  1700. if (prev_class != p->sched_class) {
  1701. if (prev_class->switched_from)
  1702. prev_class->switched_from(rq, p, running);
  1703. p->sched_class->switched_to(rq, p, running);
  1704. } else
  1705. p->sched_class->prio_changed(rq, p, oldprio, running);
  1706. }
  1707. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1708. {
  1709. const struct sched_class *class;
  1710. if (p->sched_class == rq->curr->sched_class) {
  1711. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1712. } else {
  1713. for_each_class(class) {
  1714. if (class == rq->curr->sched_class)
  1715. break;
  1716. if (class == p->sched_class) {
  1717. resched_task(rq->curr);
  1718. break;
  1719. }
  1720. }
  1721. }
  1722. /*
  1723. * A queue event has occurred, and we're going to schedule. In
  1724. * this case, we can save a useless back to back clock update.
  1725. */
  1726. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1727. rq->skip_clock_update = 1;
  1728. }
  1729. #ifdef CONFIG_SMP
  1730. /*
  1731. * Is this task likely cache-hot:
  1732. */
  1733. static int
  1734. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1735. {
  1736. s64 delta;
  1737. if (p->sched_class != &fair_sched_class)
  1738. return 0;
  1739. if (unlikely(p->policy == SCHED_IDLE))
  1740. return 0;
  1741. /*
  1742. * Buddy candidates are cache hot:
  1743. */
  1744. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1745. (&p->se == cfs_rq_of(&p->se)->next ||
  1746. &p->se == cfs_rq_of(&p->se)->last))
  1747. return 1;
  1748. if (sysctl_sched_migration_cost == -1)
  1749. return 1;
  1750. if (sysctl_sched_migration_cost == 0)
  1751. return 0;
  1752. delta = now - p->se.exec_start;
  1753. return delta < (s64)sysctl_sched_migration_cost;
  1754. }
  1755. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1756. {
  1757. #ifdef CONFIG_SCHED_DEBUG
  1758. /*
  1759. * We should never call set_task_cpu() on a blocked task,
  1760. * ttwu() will sort out the placement.
  1761. */
  1762. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1763. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1764. #endif
  1765. trace_sched_migrate_task(p, new_cpu);
  1766. if (task_cpu(p) != new_cpu) {
  1767. p->se.nr_migrations++;
  1768. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1769. }
  1770. __set_task_cpu(p, new_cpu);
  1771. }
  1772. struct migration_arg {
  1773. struct task_struct *task;
  1774. int dest_cpu;
  1775. };
  1776. static int migration_cpu_stop(void *data);
  1777. /*
  1778. * The task's runqueue lock must be held.
  1779. * Returns true if you have to wait for migration thread.
  1780. */
  1781. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1782. {
  1783. /*
  1784. * If the task is not on a runqueue (and not running), then
  1785. * the next wake-up will properly place the task.
  1786. */
  1787. return p->se.on_rq || task_running(rq, p);
  1788. }
  1789. /*
  1790. * wait_task_inactive - wait for a thread to unschedule.
  1791. *
  1792. * If @match_state is nonzero, it's the @p->state value just checked and
  1793. * not expected to change. If it changes, i.e. @p might have woken up,
  1794. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1795. * we return a positive number (its total switch count). If a second call
  1796. * a short while later returns the same number, the caller can be sure that
  1797. * @p has remained unscheduled the whole time.
  1798. *
  1799. * The caller must ensure that the task *will* unschedule sometime soon,
  1800. * else this function might spin for a *long* time. This function can't
  1801. * be called with interrupts off, or it may introduce deadlock with
  1802. * smp_call_function() if an IPI is sent by the same process we are
  1803. * waiting to become inactive.
  1804. */
  1805. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1806. {
  1807. unsigned long flags;
  1808. int running, on_rq;
  1809. unsigned long ncsw;
  1810. struct rq *rq;
  1811. for (;;) {
  1812. /*
  1813. * We do the initial early heuristics without holding
  1814. * any task-queue locks at all. We'll only try to get
  1815. * the runqueue lock when things look like they will
  1816. * work out!
  1817. */
  1818. rq = task_rq(p);
  1819. /*
  1820. * If the task is actively running on another CPU
  1821. * still, just relax and busy-wait without holding
  1822. * any locks.
  1823. *
  1824. * NOTE! Since we don't hold any locks, it's not
  1825. * even sure that "rq" stays as the right runqueue!
  1826. * But we don't care, since "task_running()" will
  1827. * return false if the runqueue has changed and p
  1828. * is actually now running somewhere else!
  1829. */
  1830. while (task_running(rq, p)) {
  1831. if (match_state && unlikely(p->state != match_state))
  1832. return 0;
  1833. cpu_relax();
  1834. }
  1835. /*
  1836. * Ok, time to look more closely! We need the rq
  1837. * lock now, to be *sure*. If we're wrong, we'll
  1838. * just go back and repeat.
  1839. */
  1840. rq = task_rq_lock(p, &flags);
  1841. trace_sched_wait_task(p);
  1842. running = task_running(rq, p);
  1843. on_rq = p->se.on_rq;
  1844. ncsw = 0;
  1845. if (!match_state || p->state == match_state)
  1846. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1847. task_rq_unlock(rq, &flags);
  1848. /*
  1849. * If it changed from the expected state, bail out now.
  1850. */
  1851. if (unlikely(!ncsw))
  1852. break;
  1853. /*
  1854. * Was it really running after all now that we
  1855. * checked with the proper locks actually held?
  1856. *
  1857. * Oops. Go back and try again..
  1858. */
  1859. if (unlikely(running)) {
  1860. cpu_relax();
  1861. continue;
  1862. }
  1863. /*
  1864. * It's not enough that it's not actively running,
  1865. * it must be off the runqueue _entirely_, and not
  1866. * preempted!
  1867. *
  1868. * So if it was still runnable (but just not actively
  1869. * running right now), it's preempted, and we should
  1870. * yield - it could be a while.
  1871. */
  1872. if (unlikely(on_rq)) {
  1873. schedule_timeout_uninterruptible(1);
  1874. continue;
  1875. }
  1876. /*
  1877. * Ahh, all good. It wasn't running, and it wasn't
  1878. * runnable, which means that it will never become
  1879. * running in the future either. We're all done!
  1880. */
  1881. break;
  1882. }
  1883. return ncsw;
  1884. }
  1885. /***
  1886. * kick_process - kick a running thread to enter/exit the kernel
  1887. * @p: the to-be-kicked thread
  1888. *
  1889. * Cause a process which is running on another CPU to enter
  1890. * kernel-mode, without any delay. (to get signals handled.)
  1891. *
  1892. * NOTE: this function doesnt have to take the runqueue lock,
  1893. * because all it wants to ensure is that the remote task enters
  1894. * the kernel. If the IPI races and the task has been migrated
  1895. * to another CPU then no harm is done and the purpose has been
  1896. * achieved as well.
  1897. */
  1898. void kick_process(struct task_struct *p)
  1899. {
  1900. int cpu;
  1901. preempt_disable();
  1902. cpu = task_cpu(p);
  1903. if ((cpu != smp_processor_id()) && task_curr(p))
  1904. smp_send_reschedule(cpu);
  1905. preempt_enable();
  1906. }
  1907. EXPORT_SYMBOL_GPL(kick_process);
  1908. #endif /* CONFIG_SMP */
  1909. /**
  1910. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1911. * @p: the task to evaluate
  1912. * @func: the function to be called
  1913. * @info: the function call argument
  1914. *
  1915. * Calls the function @func when the task is currently running. This might
  1916. * be on the current CPU, which just calls the function directly
  1917. */
  1918. void task_oncpu_function_call(struct task_struct *p,
  1919. void (*func) (void *info), void *info)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if (task_curr(p))
  1925. smp_call_function_single(cpu, func, info, 1);
  1926. preempt_enable();
  1927. }
  1928. #ifdef CONFIG_SMP
  1929. /*
  1930. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1931. */
  1932. static int select_fallback_rq(int cpu, struct task_struct *p)
  1933. {
  1934. int dest_cpu;
  1935. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1936. /* Look for allowed, online CPU in same node. */
  1937. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1938. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1939. return dest_cpu;
  1940. /* Any allowed, online CPU? */
  1941. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1942. if (dest_cpu < nr_cpu_ids)
  1943. return dest_cpu;
  1944. /* No more Mr. Nice Guy. */
  1945. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1946. /*
  1947. * Don't tell them about moving exiting tasks or
  1948. * kernel threads (both mm NULL), since they never
  1949. * leave kernel.
  1950. */
  1951. if (p->mm && printk_ratelimit()) {
  1952. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1953. task_pid_nr(p), p->comm, cpu);
  1954. }
  1955. return dest_cpu;
  1956. }
  1957. /*
  1958. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1959. */
  1960. static inline
  1961. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1962. {
  1963. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1964. /*
  1965. * In order not to call set_task_cpu() on a blocking task we need
  1966. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1967. * cpu.
  1968. *
  1969. * Since this is common to all placement strategies, this lives here.
  1970. *
  1971. * [ this allows ->select_task() to simply return task_cpu(p) and
  1972. * not worry about this generic constraint ]
  1973. */
  1974. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1975. !cpu_online(cpu)))
  1976. cpu = select_fallback_rq(task_cpu(p), p);
  1977. return cpu;
  1978. }
  1979. static void update_avg(u64 *avg, u64 sample)
  1980. {
  1981. s64 diff = sample - *avg;
  1982. *avg += diff >> 3;
  1983. }
  1984. #endif
  1985. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1986. bool is_sync, bool is_migrate, bool is_local,
  1987. unsigned long en_flags)
  1988. {
  1989. schedstat_inc(p, se.statistics.nr_wakeups);
  1990. if (is_sync)
  1991. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1992. if (is_migrate)
  1993. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1994. if (is_local)
  1995. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1996. else
  1997. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1998. activate_task(rq, p, en_flags);
  1999. }
  2000. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2001. int wake_flags, bool success)
  2002. {
  2003. trace_sched_wakeup(p, success);
  2004. check_preempt_curr(rq, p, wake_flags);
  2005. p->state = TASK_RUNNING;
  2006. #ifdef CONFIG_SMP
  2007. if (p->sched_class->task_woken)
  2008. p->sched_class->task_woken(rq, p);
  2009. if (unlikely(rq->idle_stamp)) {
  2010. u64 delta = rq->clock - rq->idle_stamp;
  2011. u64 max = 2*sysctl_sched_migration_cost;
  2012. if (delta > max)
  2013. rq->avg_idle = max;
  2014. else
  2015. update_avg(&rq->avg_idle, delta);
  2016. rq->idle_stamp = 0;
  2017. }
  2018. #endif
  2019. /* if a worker is waking up, notify workqueue */
  2020. if ((p->flags & PF_WQ_WORKER) && success)
  2021. wq_worker_waking_up(p, cpu_of(rq));
  2022. }
  2023. /**
  2024. * try_to_wake_up - wake up a thread
  2025. * @p: the thread to be awakened
  2026. * @state: the mask of task states that can be woken
  2027. * @wake_flags: wake modifier flags (WF_*)
  2028. *
  2029. * Put it on the run-queue if it's not already there. The "current"
  2030. * thread is always on the run-queue (except when the actual
  2031. * re-schedule is in progress), and as such you're allowed to do
  2032. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2033. * runnable without the overhead of this.
  2034. *
  2035. * Returns %true if @p was woken up, %false if it was already running
  2036. * or @state didn't match @p's state.
  2037. */
  2038. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2039. int wake_flags)
  2040. {
  2041. int cpu, orig_cpu, this_cpu, success = 0;
  2042. unsigned long flags;
  2043. unsigned long en_flags = ENQUEUE_WAKEUP;
  2044. struct rq *rq;
  2045. this_cpu = get_cpu();
  2046. smp_wmb();
  2047. rq = task_rq_lock(p, &flags);
  2048. if (!(p->state & state))
  2049. goto out;
  2050. if (p->se.on_rq)
  2051. goto out_running;
  2052. cpu = task_cpu(p);
  2053. orig_cpu = cpu;
  2054. #ifdef CONFIG_SMP
  2055. if (unlikely(task_running(rq, p)))
  2056. goto out_activate;
  2057. /*
  2058. * In order to handle concurrent wakeups and release the rq->lock
  2059. * we put the task in TASK_WAKING state.
  2060. *
  2061. * First fix up the nr_uninterruptible count:
  2062. */
  2063. if (task_contributes_to_load(p)) {
  2064. if (likely(cpu_online(orig_cpu)))
  2065. rq->nr_uninterruptible--;
  2066. else
  2067. this_rq()->nr_uninterruptible--;
  2068. }
  2069. p->state = TASK_WAKING;
  2070. if (p->sched_class->task_waking) {
  2071. p->sched_class->task_waking(rq, p);
  2072. en_flags |= ENQUEUE_WAKING;
  2073. }
  2074. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2075. if (cpu != orig_cpu)
  2076. set_task_cpu(p, cpu);
  2077. __task_rq_unlock(rq);
  2078. rq = cpu_rq(cpu);
  2079. raw_spin_lock(&rq->lock);
  2080. /*
  2081. * We migrated the task without holding either rq->lock, however
  2082. * since the task is not on the task list itself, nobody else
  2083. * will try and migrate the task, hence the rq should match the
  2084. * cpu we just moved it to.
  2085. */
  2086. WARN_ON(task_cpu(p) != cpu);
  2087. WARN_ON(p->state != TASK_WAKING);
  2088. #ifdef CONFIG_SCHEDSTATS
  2089. schedstat_inc(rq, ttwu_count);
  2090. if (cpu == this_cpu)
  2091. schedstat_inc(rq, ttwu_local);
  2092. else {
  2093. struct sched_domain *sd;
  2094. for_each_domain(this_cpu, sd) {
  2095. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2096. schedstat_inc(sd, ttwu_wake_remote);
  2097. break;
  2098. }
  2099. }
  2100. }
  2101. #endif /* CONFIG_SCHEDSTATS */
  2102. out_activate:
  2103. #endif /* CONFIG_SMP */
  2104. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2105. cpu == this_cpu, en_flags);
  2106. success = 1;
  2107. out_running:
  2108. ttwu_post_activation(p, rq, wake_flags, success);
  2109. out:
  2110. task_rq_unlock(rq, &flags);
  2111. put_cpu();
  2112. return success;
  2113. }
  2114. /**
  2115. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2116. * @p: the thread to be awakened
  2117. *
  2118. * Put @p on the run-queue if it's not already there. The caller must
  2119. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2120. * the current task. this_rq() stays locked over invocation.
  2121. */
  2122. static void try_to_wake_up_local(struct task_struct *p)
  2123. {
  2124. struct rq *rq = task_rq(p);
  2125. bool success = false;
  2126. BUG_ON(rq != this_rq());
  2127. BUG_ON(p == current);
  2128. lockdep_assert_held(&rq->lock);
  2129. if (!(p->state & TASK_NORMAL))
  2130. return;
  2131. if (!p->se.on_rq) {
  2132. if (likely(!task_running(rq, p))) {
  2133. schedstat_inc(rq, ttwu_count);
  2134. schedstat_inc(rq, ttwu_local);
  2135. }
  2136. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2137. success = true;
  2138. }
  2139. ttwu_post_activation(p, rq, 0, success);
  2140. }
  2141. /**
  2142. * wake_up_process - Wake up a specific process
  2143. * @p: The process to be woken up.
  2144. *
  2145. * Attempt to wake up the nominated process and move it to the set of runnable
  2146. * processes. Returns 1 if the process was woken up, 0 if it was already
  2147. * running.
  2148. *
  2149. * It may be assumed that this function implies a write memory barrier before
  2150. * changing the task state if and only if any tasks are woken up.
  2151. */
  2152. int wake_up_process(struct task_struct *p)
  2153. {
  2154. return try_to_wake_up(p, TASK_ALL, 0);
  2155. }
  2156. EXPORT_SYMBOL(wake_up_process);
  2157. int wake_up_state(struct task_struct *p, unsigned int state)
  2158. {
  2159. return try_to_wake_up(p, state, 0);
  2160. }
  2161. /*
  2162. * Perform scheduler related setup for a newly forked process p.
  2163. * p is forked by current.
  2164. *
  2165. * __sched_fork() is basic setup used by init_idle() too:
  2166. */
  2167. static void __sched_fork(struct task_struct *p)
  2168. {
  2169. p->se.exec_start = 0;
  2170. p->se.sum_exec_runtime = 0;
  2171. p->se.prev_sum_exec_runtime = 0;
  2172. p->se.nr_migrations = 0;
  2173. #ifdef CONFIG_SCHEDSTATS
  2174. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2175. #endif
  2176. INIT_LIST_HEAD(&p->rt.run_list);
  2177. p->se.on_rq = 0;
  2178. INIT_LIST_HEAD(&p->se.group_node);
  2179. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2180. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2181. #endif
  2182. }
  2183. /*
  2184. * fork()/clone()-time setup:
  2185. */
  2186. void sched_fork(struct task_struct *p, int clone_flags)
  2187. {
  2188. int cpu = get_cpu();
  2189. __sched_fork(p);
  2190. /*
  2191. * We mark the process as running here. This guarantees that
  2192. * nobody will actually run it, and a signal or other external
  2193. * event cannot wake it up and insert it on the runqueue either.
  2194. */
  2195. p->state = TASK_RUNNING;
  2196. /*
  2197. * Revert to default priority/policy on fork if requested.
  2198. */
  2199. if (unlikely(p->sched_reset_on_fork)) {
  2200. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2201. p->policy = SCHED_NORMAL;
  2202. p->normal_prio = p->static_prio;
  2203. }
  2204. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2205. p->static_prio = NICE_TO_PRIO(0);
  2206. p->normal_prio = p->static_prio;
  2207. set_load_weight(p);
  2208. }
  2209. /*
  2210. * We don't need the reset flag anymore after the fork. It has
  2211. * fulfilled its duty:
  2212. */
  2213. p->sched_reset_on_fork = 0;
  2214. }
  2215. /*
  2216. * Make sure we do not leak PI boosting priority to the child.
  2217. */
  2218. p->prio = current->normal_prio;
  2219. if (!rt_prio(p->prio))
  2220. p->sched_class = &fair_sched_class;
  2221. if (p->sched_class->task_fork)
  2222. p->sched_class->task_fork(p);
  2223. /*
  2224. * The child is not yet in the pid-hash so no cgroup attach races,
  2225. * and the cgroup is pinned to this child due to cgroup_fork()
  2226. * is ran before sched_fork().
  2227. *
  2228. * Silence PROVE_RCU.
  2229. */
  2230. rcu_read_lock();
  2231. set_task_cpu(p, cpu);
  2232. rcu_read_unlock();
  2233. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2234. if (likely(sched_info_on()))
  2235. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2236. #endif
  2237. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2238. p->oncpu = 0;
  2239. #endif
  2240. #ifdef CONFIG_PREEMPT
  2241. /* Want to start with kernel preemption disabled. */
  2242. task_thread_info(p)->preempt_count = 1;
  2243. #endif
  2244. #ifdef CONFIG_SMP
  2245. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2246. #endif
  2247. put_cpu();
  2248. }
  2249. /*
  2250. * wake_up_new_task - wake up a newly created task for the first time.
  2251. *
  2252. * This function will do some initial scheduler statistics housekeeping
  2253. * that must be done for every newly created context, then puts the task
  2254. * on the runqueue and wakes it.
  2255. */
  2256. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2257. {
  2258. unsigned long flags;
  2259. struct rq *rq;
  2260. int cpu __maybe_unused = get_cpu();
  2261. #ifdef CONFIG_SMP
  2262. rq = task_rq_lock(p, &flags);
  2263. p->state = TASK_WAKING;
  2264. /*
  2265. * Fork balancing, do it here and not earlier because:
  2266. * - cpus_allowed can change in the fork path
  2267. * - any previously selected cpu might disappear through hotplug
  2268. *
  2269. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2270. * without people poking at ->cpus_allowed.
  2271. */
  2272. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2273. set_task_cpu(p, cpu);
  2274. p->state = TASK_RUNNING;
  2275. task_rq_unlock(rq, &flags);
  2276. #endif
  2277. rq = task_rq_lock(p, &flags);
  2278. activate_task(rq, p, 0);
  2279. trace_sched_wakeup_new(p, 1);
  2280. check_preempt_curr(rq, p, WF_FORK);
  2281. #ifdef CONFIG_SMP
  2282. if (p->sched_class->task_woken)
  2283. p->sched_class->task_woken(rq, p);
  2284. #endif
  2285. task_rq_unlock(rq, &flags);
  2286. put_cpu();
  2287. }
  2288. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2289. /**
  2290. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2291. * @notifier: notifier struct to register
  2292. */
  2293. void preempt_notifier_register(struct preempt_notifier *notifier)
  2294. {
  2295. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2296. }
  2297. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2298. /**
  2299. * preempt_notifier_unregister - no longer interested in preemption notifications
  2300. * @notifier: notifier struct to unregister
  2301. *
  2302. * This is safe to call from within a preemption notifier.
  2303. */
  2304. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2305. {
  2306. hlist_del(&notifier->link);
  2307. }
  2308. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2309. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2310. {
  2311. struct preempt_notifier *notifier;
  2312. struct hlist_node *node;
  2313. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2314. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2315. }
  2316. static void
  2317. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2318. struct task_struct *next)
  2319. {
  2320. struct preempt_notifier *notifier;
  2321. struct hlist_node *node;
  2322. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2323. notifier->ops->sched_out(notifier, next);
  2324. }
  2325. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2326. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2327. {
  2328. }
  2329. static void
  2330. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2331. struct task_struct *next)
  2332. {
  2333. }
  2334. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2335. /**
  2336. * prepare_task_switch - prepare to switch tasks
  2337. * @rq: the runqueue preparing to switch
  2338. * @prev: the current task that is being switched out
  2339. * @next: the task we are going to switch to.
  2340. *
  2341. * This is called with the rq lock held and interrupts off. It must
  2342. * be paired with a subsequent finish_task_switch after the context
  2343. * switch.
  2344. *
  2345. * prepare_task_switch sets up locking and calls architecture specific
  2346. * hooks.
  2347. */
  2348. static inline void
  2349. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2350. struct task_struct *next)
  2351. {
  2352. fire_sched_out_preempt_notifiers(prev, next);
  2353. prepare_lock_switch(rq, next);
  2354. prepare_arch_switch(next);
  2355. }
  2356. /**
  2357. * finish_task_switch - clean up after a task-switch
  2358. * @rq: runqueue associated with task-switch
  2359. * @prev: the thread we just switched away from.
  2360. *
  2361. * finish_task_switch must be called after the context switch, paired
  2362. * with a prepare_task_switch call before the context switch.
  2363. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2364. * and do any other architecture-specific cleanup actions.
  2365. *
  2366. * Note that we may have delayed dropping an mm in context_switch(). If
  2367. * so, we finish that here outside of the runqueue lock. (Doing it
  2368. * with the lock held can cause deadlocks; see schedule() for
  2369. * details.)
  2370. */
  2371. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2372. __releases(rq->lock)
  2373. {
  2374. struct mm_struct *mm = rq->prev_mm;
  2375. long prev_state;
  2376. rq->prev_mm = NULL;
  2377. /*
  2378. * A task struct has one reference for the use as "current".
  2379. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2380. * schedule one last time. The schedule call will never return, and
  2381. * the scheduled task must drop that reference.
  2382. * The test for TASK_DEAD must occur while the runqueue locks are
  2383. * still held, otherwise prev could be scheduled on another cpu, die
  2384. * there before we look at prev->state, and then the reference would
  2385. * be dropped twice.
  2386. * Manfred Spraul <manfred@colorfullife.com>
  2387. */
  2388. prev_state = prev->state;
  2389. finish_arch_switch(prev);
  2390. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2391. local_irq_disable();
  2392. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2393. perf_event_task_sched_in(current);
  2394. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2395. local_irq_enable();
  2396. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2397. finish_lock_switch(rq, prev);
  2398. fire_sched_in_preempt_notifiers(current);
  2399. if (mm)
  2400. mmdrop(mm);
  2401. if (unlikely(prev_state == TASK_DEAD)) {
  2402. /*
  2403. * Remove function-return probe instances associated with this
  2404. * task and put them back on the free list.
  2405. */
  2406. kprobe_flush_task(prev);
  2407. put_task_struct(prev);
  2408. }
  2409. }
  2410. #ifdef CONFIG_SMP
  2411. /* assumes rq->lock is held */
  2412. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2413. {
  2414. if (prev->sched_class->pre_schedule)
  2415. prev->sched_class->pre_schedule(rq, prev);
  2416. }
  2417. /* rq->lock is NOT held, but preemption is disabled */
  2418. static inline void post_schedule(struct rq *rq)
  2419. {
  2420. if (rq->post_schedule) {
  2421. unsigned long flags;
  2422. raw_spin_lock_irqsave(&rq->lock, flags);
  2423. if (rq->curr->sched_class->post_schedule)
  2424. rq->curr->sched_class->post_schedule(rq);
  2425. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2426. rq->post_schedule = 0;
  2427. }
  2428. }
  2429. #else
  2430. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2431. {
  2432. }
  2433. static inline void post_schedule(struct rq *rq)
  2434. {
  2435. }
  2436. #endif
  2437. /**
  2438. * schedule_tail - first thing a freshly forked thread must call.
  2439. * @prev: the thread we just switched away from.
  2440. */
  2441. asmlinkage void schedule_tail(struct task_struct *prev)
  2442. __releases(rq->lock)
  2443. {
  2444. struct rq *rq = this_rq();
  2445. finish_task_switch(rq, prev);
  2446. /*
  2447. * FIXME: do we need to worry about rq being invalidated by the
  2448. * task_switch?
  2449. */
  2450. post_schedule(rq);
  2451. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2452. /* In this case, finish_task_switch does not reenable preemption */
  2453. preempt_enable();
  2454. #endif
  2455. if (current->set_child_tid)
  2456. put_user(task_pid_vnr(current), current->set_child_tid);
  2457. }
  2458. /*
  2459. * context_switch - switch to the new MM and the new
  2460. * thread's register state.
  2461. */
  2462. static inline void
  2463. context_switch(struct rq *rq, struct task_struct *prev,
  2464. struct task_struct *next)
  2465. {
  2466. struct mm_struct *mm, *oldmm;
  2467. prepare_task_switch(rq, prev, next);
  2468. trace_sched_switch(prev, next);
  2469. mm = next->mm;
  2470. oldmm = prev->active_mm;
  2471. /*
  2472. * For paravirt, this is coupled with an exit in switch_to to
  2473. * combine the page table reload and the switch backend into
  2474. * one hypercall.
  2475. */
  2476. arch_start_context_switch(prev);
  2477. if (!mm) {
  2478. next->active_mm = oldmm;
  2479. atomic_inc(&oldmm->mm_count);
  2480. enter_lazy_tlb(oldmm, next);
  2481. } else
  2482. switch_mm(oldmm, mm, next);
  2483. if (!prev->mm) {
  2484. prev->active_mm = NULL;
  2485. rq->prev_mm = oldmm;
  2486. }
  2487. /*
  2488. * Since the runqueue lock will be released by the next
  2489. * task (which is an invalid locking op but in the case
  2490. * of the scheduler it's an obvious special-case), so we
  2491. * do an early lockdep release here:
  2492. */
  2493. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2494. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2495. #endif
  2496. /* Here we just switch the register state and the stack. */
  2497. switch_to(prev, next, prev);
  2498. barrier();
  2499. /*
  2500. * this_rq must be evaluated again because prev may have moved
  2501. * CPUs since it called schedule(), thus the 'rq' on its stack
  2502. * frame will be invalid.
  2503. */
  2504. finish_task_switch(this_rq(), prev);
  2505. }
  2506. /*
  2507. * nr_running, nr_uninterruptible and nr_context_switches:
  2508. *
  2509. * externally visible scheduler statistics: current number of runnable
  2510. * threads, current number of uninterruptible-sleeping threads, total
  2511. * number of context switches performed since bootup.
  2512. */
  2513. unsigned long nr_running(void)
  2514. {
  2515. unsigned long i, sum = 0;
  2516. for_each_online_cpu(i)
  2517. sum += cpu_rq(i)->nr_running;
  2518. return sum;
  2519. }
  2520. unsigned long nr_uninterruptible(void)
  2521. {
  2522. unsigned long i, sum = 0;
  2523. for_each_possible_cpu(i)
  2524. sum += cpu_rq(i)->nr_uninterruptible;
  2525. /*
  2526. * Since we read the counters lockless, it might be slightly
  2527. * inaccurate. Do not allow it to go below zero though:
  2528. */
  2529. if (unlikely((long)sum < 0))
  2530. sum = 0;
  2531. return sum;
  2532. }
  2533. unsigned long long nr_context_switches(void)
  2534. {
  2535. int i;
  2536. unsigned long long sum = 0;
  2537. for_each_possible_cpu(i)
  2538. sum += cpu_rq(i)->nr_switches;
  2539. return sum;
  2540. }
  2541. unsigned long nr_iowait(void)
  2542. {
  2543. unsigned long i, sum = 0;
  2544. for_each_possible_cpu(i)
  2545. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2546. return sum;
  2547. }
  2548. unsigned long nr_iowait_cpu(int cpu)
  2549. {
  2550. struct rq *this = cpu_rq(cpu);
  2551. return atomic_read(&this->nr_iowait);
  2552. }
  2553. unsigned long this_cpu_load(void)
  2554. {
  2555. struct rq *this = this_rq();
  2556. return this->cpu_load[0];
  2557. }
  2558. /* Variables and functions for calc_load */
  2559. static atomic_long_t calc_load_tasks;
  2560. static unsigned long calc_load_update;
  2561. unsigned long avenrun[3];
  2562. EXPORT_SYMBOL(avenrun);
  2563. static long calc_load_fold_active(struct rq *this_rq)
  2564. {
  2565. long nr_active, delta = 0;
  2566. nr_active = this_rq->nr_running;
  2567. nr_active += (long) this_rq->nr_uninterruptible;
  2568. if (nr_active != this_rq->calc_load_active) {
  2569. delta = nr_active - this_rq->calc_load_active;
  2570. this_rq->calc_load_active = nr_active;
  2571. }
  2572. return delta;
  2573. }
  2574. static unsigned long
  2575. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2576. {
  2577. load *= exp;
  2578. load += active * (FIXED_1 - exp);
  2579. load += 1UL << (FSHIFT - 1);
  2580. return load >> FSHIFT;
  2581. }
  2582. #ifdef CONFIG_NO_HZ
  2583. /*
  2584. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2585. *
  2586. * When making the ILB scale, we should try to pull this in as well.
  2587. */
  2588. static atomic_long_t calc_load_tasks_idle;
  2589. static void calc_load_account_idle(struct rq *this_rq)
  2590. {
  2591. long delta;
  2592. delta = calc_load_fold_active(this_rq);
  2593. if (delta)
  2594. atomic_long_add(delta, &calc_load_tasks_idle);
  2595. }
  2596. static long calc_load_fold_idle(void)
  2597. {
  2598. long delta = 0;
  2599. /*
  2600. * Its got a race, we don't care...
  2601. */
  2602. if (atomic_long_read(&calc_load_tasks_idle))
  2603. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2604. return delta;
  2605. }
  2606. /**
  2607. * fixed_power_int - compute: x^n, in O(log n) time
  2608. *
  2609. * @x: base of the power
  2610. * @frac_bits: fractional bits of @x
  2611. * @n: power to raise @x to.
  2612. *
  2613. * By exploiting the relation between the definition of the natural power
  2614. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2615. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2616. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2617. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2618. * of course trivially computable in O(log_2 n), the length of our binary
  2619. * vector.
  2620. */
  2621. static unsigned long
  2622. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2623. {
  2624. unsigned long result = 1UL << frac_bits;
  2625. if (n) for (;;) {
  2626. if (n & 1) {
  2627. result *= x;
  2628. result += 1UL << (frac_bits - 1);
  2629. result >>= frac_bits;
  2630. }
  2631. n >>= 1;
  2632. if (!n)
  2633. break;
  2634. x *= x;
  2635. x += 1UL << (frac_bits - 1);
  2636. x >>= frac_bits;
  2637. }
  2638. return result;
  2639. }
  2640. /*
  2641. * a1 = a0 * e + a * (1 - e)
  2642. *
  2643. * a2 = a1 * e + a * (1 - e)
  2644. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2645. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2646. *
  2647. * a3 = a2 * e + a * (1 - e)
  2648. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2649. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2650. *
  2651. * ...
  2652. *
  2653. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2654. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2655. * = a0 * e^n + a * (1 - e^n)
  2656. *
  2657. * [1] application of the geometric series:
  2658. *
  2659. * n 1 - x^(n+1)
  2660. * S_n := \Sum x^i = -------------
  2661. * i=0 1 - x
  2662. */
  2663. static unsigned long
  2664. calc_load_n(unsigned long load, unsigned long exp,
  2665. unsigned long active, unsigned int n)
  2666. {
  2667. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2668. }
  2669. /*
  2670. * NO_HZ can leave us missing all per-cpu ticks calling
  2671. * calc_load_account_active(), but since an idle CPU folds its delta into
  2672. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2673. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2674. *
  2675. * Once we've updated the global active value, we need to apply the exponential
  2676. * weights adjusted to the number of cycles missed.
  2677. */
  2678. static void calc_global_nohz(unsigned long ticks)
  2679. {
  2680. long delta, active, n;
  2681. if (time_before(jiffies, calc_load_update))
  2682. return;
  2683. /*
  2684. * If we crossed a calc_load_update boundary, make sure to fold
  2685. * any pending idle changes, the respective CPUs might have
  2686. * missed the tick driven calc_load_account_active() update
  2687. * due to NO_HZ.
  2688. */
  2689. delta = calc_load_fold_idle();
  2690. if (delta)
  2691. atomic_long_add(delta, &calc_load_tasks);
  2692. /*
  2693. * If we were idle for multiple load cycles, apply them.
  2694. */
  2695. if (ticks >= LOAD_FREQ) {
  2696. n = ticks / LOAD_FREQ;
  2697. active = atomic_long_read(&calc_load_tasks);
  2698. active = active > 0 ? active * FIXED_1 : 0;
  2699. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2700. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2701. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2702. calc_load_update += n * LOAD_FREQ;
  2703. }
  2704. /*
  2705. * Its possible the remainder of the above division also crosses
  2706. * a LOAD_FREQ period, the regular check in calc_global_load()
  2707. * which comes after this will take care of that.
  2708. *
  2709. * Consider us being 11 ticks before a cycle completion, and us
  2710. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2711. * age us 4 cycles, and the test in calc_global_load() will
  2712. * pick up the final one.
  2713. */
  2714. }
  2715. #else
  2716. static void calc_load_account_idle(struct rq *this_rq)
  2717. {
  2718. }
  2719. static inline long calc_load_fold_idle(void)
  2720. {
  2721. return 0;
  2722. }
  2723. static void calc_global_nohz(unsigned long ticks)
  2724. {
  2725. }
  2726. #endif
  2727. /**
  2728. * get_avenrun - get the load average array
  2729. * @loads: pointer to dest load array
  2730. * @offset: offset to add
  2731. * @shift: shift count to shift the result left
  2732. *
  2733. * These values are estimates at best, so no need for locking.
  2734. */
  2735. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2736. {
  2737. loads[0] = (avenrun[0] + offset) << shift;
  2738. loads[1] = (avenrun[1] + offset) << shift;
  2739. loads[2] = (avenrun[2] + offset) << shift;
  2740. }
  2741. /*
  2742. * calc_load - update the avenrun load estimates 10 ticks after the
  2743. * CPUs have updated calc_load_tasks.
  2744. */
  2745. void calc_global_load(unsigned long ticks)
  2746. {
  2747. long active;
  2748. calc_global_nohz(ticks);
  2749. if (time_before(jiffies, calc_load_update + 10))
  2750. return;
  2751. active = atomic_long_read(&calc_load_tasks);
  2752. active = active > 0 ? active * FIXED_1 : 0;
  2753. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2754. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2755. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2756. calc_load_update += LOAD_FREQ;
  2757. }
  2758. /*
  2759. * Called from update_cpu_load() to periodically update this CPU's
  2760. * active count.
  2761. */
  2762. static void calc_load_account_active(struct rq *this_rq)
  2763. {
  2764. long delta;
  2765. if (time_before(jiffies, this_rq->calc_load_update))
  2766. return;
  2767. delta = calc_load_fold_active(this_rq);
  2768. delta += calc_load_fold_idle();
  2769. if (delta)
  2770. atomic_long_add(delta, &calc_load_tasks);
  2771. this_rq->calc_load_update += LOAD_FREQ;
  2772. }
  2773. /*
  2774. * The exact cpuload at various idx values, calculated at every tick would be
  2775. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2776. *
  2777. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2778. * on nth tick when cpu may be busy, then we have:
  2779. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2780. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2781. *
  2782. * decay_load_missed() below does efficient calculation of
  2783. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2784. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2785. *
  2786. * The calculation is approximated on a 128 point scale.
  2787. * degrade_zero_ticks is the number of ticks after which load at any
  2788. * particular idx is approximated to be zero.
  2789. * degrade_factor is a precomputed table, a row for each load idx.
  2790. * Each column corresponds to degradation factor for a power of two ticks,
  2791. * based on 128 point scale.
  2792. * Example:
  2793. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2794. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2795. *
  2796. * With this power of 2 load factors, we can degrade the load n times
  2797. * by looking at 1 bits in n and doing as many mult/shift instead of
  2798. * n mult/shifts needed by the exact degradation.
  2799. */
  2800. #define DEGRADE_SHIFT 7
  2801. static const unsigned char
  2802. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2803. static const unsigned char
  2804. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2805. {0, 0, 0, 0, 0, 0, 0, 0},
  2806. {64, 32, 8, 0, 0, 0, 0, 0},
  2807. {96, 72, 40, 12, 1, 0, 0},
  2808. {112, 98, 75, 43, 15, 1, 0},
  2809. {120, 112, 98, 76, 45, 16, 2} };
  2810. /*
  2811. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2812. * would be when CPU is idle and so we just decay the old load without
  2813. * adding any new load.
  2814. */
  2815. static unsigned long
  2816. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2817. {
  2818. int j = 0;
  2819. if (!missed_updates)
  2820. return load;
  2821. if (missed_updates >= degrade_zero_ticks[idx])
  2822. return 0;
  2823. if (idx == 1)
  2824. return load >> missed_updates;
  2825. while (missed_updates) {
  2826. if (missed_updates % 2)
  2827. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2828. missed_updates >>= 1;
  2829. j++;
  2830. }
  2831. return load;
  2832. }
  2833. /*
  2834. * Update rq->cpu_load[] statistics. This function is usually called every
  2835. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2836. * every tick. We fix it up based on jiffies.
  2837. */
  2838. static void update_cpu_load(struct rq *this_rq)
  2839. {
  2840. unsigned long this_load = this_rq->load.weight;
  2841. unsigned long curr_jiffies = jiffies;
  2842. unsigned long pending_updates;
  2843. int i, scale;
  2844. this_rq->nr_load_updates++;
  2845. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2846. if (curr_jiffies == this_rq->last_load_update_tick)
  2847. return;
  2848. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2849. this_rq->last_load_update_tick = curr_jiffies;
  2850. /* Update our load: */
  2851. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2852. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2853. unsigned long old_load, new_load;
  2854. /* scale is effectively 1 << i now, and >> i divides by scale */
  2855. old_load = this_rq->cpu_load[i];
  2856. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2857. new_load = this_load;
  2858. /*
  2859. * Round up the averaging division if load is increasing. This
  2860. * prevents us from getting stuck on 9 if the load is 10, for
  2861. * example.
  2862. */
  2863. if (new_load > old_load)
  2864. new_load += scale - 1;
  2865. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2866. }
  2867. sched_avg_update(this_rq);
  2868. }
  2869. static void update_cpu_load_active(struct rq *this_rq)
  2870. {
  2871. update_cpu_load(this_rq);
  2872. calc_load_account_active(this_rq);
  2873. }
  2874. #ifdef CONFIG_SMP
  2875. /*
  2876. * sched_exec - execve() is a valuable balancing opportunity, because at
  2877. * this point the task has the smallest effective memory and cache footprint.
  2878. */
  2879. void sched_exec(void)
  2880. {
  2881. struct task_struct *p = current;
  2882. unsigned long flags;
  2883. struct rq *rq;
  2884. int dest_cpu;
  2885. rq = task_rq_lock(p, &flags);
  2886. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2887. if (dest_cpu == smp_processor_id())
  2888. goto unlock;
  2889. /*
  2890. * select_task_rq() can race against ->cpus_allowed
  2891. */
  2892. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2893. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2894. struct migration_arg arg = { p, dest_cpu };
  2895. task_rq_unlock(rq, &flags);
  2896. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2897. return;
  2898. }
  2899. unlock:
  2900. task_rq_unlock(rq, &flags);
  2901. }
  2902. #endif
  2903. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2904. EXPORT_PER_CPU_SYMBOL(kstat);
  2905. /*
  2906. * Return any ns on the sched_clock that have not yet been accounted in
  2907. * @p in case that task is currently running.
  2908. *
  2909. * Called with task_rq_lock() held on @rq.
  2910. */
  2911. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2912. {
  2913. u64 ns = 0;
  2914. if (task_current(rq, p)) {
  2915. update_rq_clock(rq);
  2916. ns = rq->clock_task - p->se.exec_start;
  2917. if ((s64)ns < 0)
  2918. ns = 0;
  2919. }
  2920. return ns;
  2921. }
  2922. unsigned long long task_delta_exec(struct task_struct *p)
  2923. {
  2924. unsigned long flags;
  2925. struct rq *rq;
  2926. u64 ns = 0;
  2927. rq = task_rq_lock(p, &flags);
  2928. ns = do_task_delta_exec(p, rq);
  2929. task_rq_unlock(rq, &flags);
  2930. return ns;
  2931. }
  2932. /*
  2933. * Return accounted runtime for the task.
  2934. * In case the task is currently running, return the runtime plus current's
  2935. * pending runtime that have not been accounted yet.
  2936. */
  2937. unsigned long long task_sched_runtime(struct task_struct *p)
  2938. {
  2939. unsigned long flags;
  2940. struct rq *rq;
  2941. u64 ns = 0;
  2942. rq = task_rq_lock(p, &flags);
  2943. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2944. task_rq_unlock(rq, &flags);
  2945. return ns;
  2946. }
  2947. /*
  2948. * Return sum_exec_runtime for the thread group.
  2949. * In case the task is currently running, return the sum plus current's
  2950. * pending runtime that have not been accounted yet.
  2951. *
  2952. * Note that the thread group might have other running tasks as well,
  2953. * so the return value not includes other pending runtime that other
  2954. * running tasks might have.
  2955. */
  2956. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2957. {
  2958. struct task_cputime totals;
  2959. unsigned long flags;
  2960. struct rq *rq;
  2961. u64 ns;
  2962. rq = task_rq_lock(p, &flags);
  2963. thread_group_cputime(p, &totals);
  2964. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2965. task_rq_unlock(rq, &flags);
  2966. return ns;
  2967. }
  2968. /*
  2969. * Account user cpu time to a process.
  2970. * @p: the process that the cpu time gets accounted to
  2971. * @cputime: the cpu time spent in user space since the last update
  2972. * @cputime_scaled: cputime scaled by cpu frequency
  2973. */
  2974. void account_user_time(struct task_struct *p, cputime_t cputime,
  2975. cputime_t cputime_scaled)
  2976. {
  2977. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2978. cputime64_t tmp;
  2979. /* Add user time to process. */
  2980. p->utime = cputime_add(p->utime, cputime);
  2981. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2982. account_group_user_time(p, cputime);
  2983. /* Add user time to cpustat. */
  2984. tmp = cputime_to_cputime64(cputime);
  2985. if (TASK_NICE(p) > 0)
  2986. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2987. else
  2988. cpustat->user = cputime64_add(cpustat->user, tmp);
  2989. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2990. /* Account for user time used */
  2991. acct_update_integrals(p);
  2992. }
  2993. /*
  2994. * Account guest cpu time to a process.
  2995. * @p: the process that the cpu time gets accounted to
  2996. * @cputime: the cpu time spent in virtual machine since the last update
  2997. * @cputime_scaled: cputime scaled by cpu frequency
  2998. */
  2999. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3000. cputime_t cputime_scaled)
  3001. {
  3002. cputime64_t tmp;
  3003. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3004. tmp = cputime_to_cputime64(cputime);
  3005. /* Add guest time to process. */
  3006. p->utime = cputime_add(p->utime, cputime);
  3007. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3008. account_group_user_time(p, cputime);
  3009. p->gtime = cputime_add(p->gtime, cputime);
  3010. /* Add guest time to cpustat. */
  3011. if (TASK_NICE(p) > 0) {
  3012. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3013. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3014. } else {
  3015. cpustat->user = cputime64_add(cpustat->user, tmp);
  3016. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3017. }
  3018. }
  3019. /*
  3020. * Account system cpu time to a process.
  3021. * @p: the process that the cpu time gets accounted to
  3022. * @hardirq_offset: the offset to subtract from hardirq_count()
  3023. * @cputime: the cpu time spent in kernel space since the last update
  3024. * @cputime_scaled: cputime scaled by cpu frequency
  3025. */
  3026. void account_system_time(struct task_struct *p, int hardirq_offset,
  3027. cputime_t cputime, cputime_t cputime_scaled)
  3028. {
  3029. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3030. cputime64_t tmp;
  3031. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3032. account_guest_time(p, cputime, cputime_scaled);
  3033. return;
  3034. }
  3035. /* Add system time to process. */
  3036. p->stime = cputime_add(p->stime, cputime);
  3037. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3038. account_group_system_time(p, cputime);
  3039. /* Add system time to cpustat. */
  3040. tmp = cputime_to_cputime64(cputime);
  3041. if (hardirq_count() - hardirq_offset)
  3042. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3043. else if (in_serving_softirq())
  3044. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3045. else
  3046. cpustat->system = cputime64_add(cpustat->system, tmp);
  3047. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3048. /* Account for system time used */
  3049. acct_update_integrals(p);
  3050. }
  3051. /*
  3052. * Account for involuntary wait time.
  3053. * @steal: the cpu time spent in involuntary wait
  3054. */
  3055. void account_steal_time(cputime_t cputime)
  3056. {
  3057. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3058. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3059. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3060. }
  3061. /*
  3062. * Account for idle time.
  3063. * @cputime: the cpu time spent in idle wait
  3064. */
  3065. void account_idle_time(cputime_t cputime)
  3066. {
  3067. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3068. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3069. struct rq *rq = this_rq();
  3070. if (atomic_read(&rq->nr_iowait) > 0)
  3071. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3072. else
  3073. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3074. }
  3075. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3076. /*
  3077. * Account a single tick of cpu time.
  3078. * @p: the process that the cpu time gets accounted to
  3079. * @user_tick: indicates if the tick is a user or a system tick
  3080. */
  3081. void account_process_tick(struct task_struct *p, int user_tick)
  3082. {
  3083. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3084. struct rq *rq = this_rq();
  3085. if (user_tick)
  3086. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3087. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3088. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3089. one_jiffy_scaled);
  3090. else
  3091. account_idle_time(cputime_one_jiffy);
  3092. }
  3093. /*
  3094. * Account multiple ticks of steal time.
  3095. * @p: the process from which the cpu time has been stolen
  3096. * @ticks: number of stolen ticks
  3097. */
  3098. void account_steal_ticks(unsigned long ticks)
  3099. {
  3100. account_steal_time(jiffies_to_cputime(ticks));
  3101. }
  3102. /*
  3103. * Account multiple ticks of idle time.
  3104. * @ticks: number of stolen ticks
  3105. */
  3106. void account_idle_ticks(unsigned long ticks)
  3107. {
  3108. account_idle_time(jiffies_to_cputime(ticks));
  3109. }
  3110. #endif
  3111. /*
  3112. * Use precise platform statistics if available:
  3113. */
  3114. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3115. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3116. {
  3117. *ut = p->utime;
  3118. *st = p->stime;
  3119. }
  3120. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3121. {
  3122. struct task_cputime cputime;
  3123. thread_group_cputime(p, &cputime);
  3124. *ut = cputime.utime;
  3125. *st = cputime.stime;
  3126. }
  3127. #else
  3128. #ifndef nsecs_to_cputime
  3129. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3130. #endif
  3131. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3132. {
  3133. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3134. /*
  3135. * Use CFS's precise accounting:
  3136. */
  3137. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3138. if (total) {
  3139. u64 temp = rtime;
  3140. temp *= utime;
  3141. do_div(temp, total);
  3142. utime = (cputime_t)temp;
  3143. } else
  3144. utime = rtime;
  3145. /*
  3146. * Compare with previous values, to keep monotonicity:
  3147. */
  3148. p->prev_utime = max(p->prev_utime, utime);
  3149. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3150. *ut = p->prev_utime;
  3151. *st = p->prev_stime;
  3152. }
  3153. /*
  3154. * Must be called with siglock held.
  3155. */
  3156. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3157. {
  3158. struct signal_struct *sig = p->signal;
  3159. struct task_cputime cputime;
  3160. cputime_t rtime, utime, total;
  3161. thread_group_cputime(p, &cputime);
  3162. total = cputime_add(cputime.utime, cputime.stime);
  3163. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3164. if (total) {
  3165. u64 temp = rtime;
  3166. temp *= cputime.utime;
  3167. do_div(temp, total);
  3168. utime = (cputime_t)temp;
  3169. } else
  3170. utime = rtime;
  3171. sig->prev_utime = max(sig->prev_utime, utime);
  3172. sig->prev_stime = max(sig->prev_stime,
  3173. cputime_sub(rtime, sig->prev_utime));
  3174. *ut = sig->prev_utime;
  3175. *st = sig->prev_stime;
  3176. }
  3177. #endif
  3178. /*
  3179. * This function gets called by the timer code, with HZ frequency.
  3180. * We call it with interrupts disabled.
  3181. *
  3182. * It also gets called by the fork code, when changing the parent's
  3183. * timeslices.
  3184. */
  3185. void scheduler_tick(void)
  3186. {
  3187. int cpu = smp_processor_id();
  3188. struct rq *rq = cpu_rq(cpu);
  3189. struct task_struct *curr = rq->curr;
  3190. sched_clock_tick();
  3191. raw_spin_lock(&rq->lock);
  3192. update_rq_clock(rq);
  3193. update_cpu_load_active(rq);
  3194. curr->sched_class->task_tick(rq, curr, 0);
  3195. raw_spin_unlock(&rq->lock);
  3196. perf_event_task_tick();
  3197. #ifdef CONFIG_SMP
  3198. rq->idle_at_tick = idle_cpu(cpu);
  3199. trigger_load_balance(rq, cpu);
  3200. #endif
  3201. }
  3202. notrace unsigned long get_parent_ip(unsigned long addr)
  3203. {
  3204. if (in_lock_functions(addr)) {
  3205. addr = CALLER_ADDR2;
  3206. if (in_lock_functions(addr))
  3207. addr = CALLER_ADDR3;
  3208. }
  3209. return addr;
  3210. }
  3211. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3212. defined(CONFIG_PREEMPT_TRACER))
  3213. void __kprobes add_preempt_count(int val)
  3214. {
  3215. #ifdef CONFIG_DEBUG_PREEMPT
  3216. /*
  3217. * Underflow?
  3218. */
  3219. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3220. return;
  3221. #endif
  3222. preempt_count() += val;
  3223. #ifdef CONFIG_DEBUG_PREEMPT
  3224. /*
  3225. * Spinlock count overflowing soon?
  3226. */
  3227. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3228. PREEMPT_MASK - 10);
  3229. #endif
  3230. if (preempt_count() == val)
  3231. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3232. }
  3233. EXPORT_SYMBOL(add_preempt_count);
  3234. void __kprobes sub_preempt_count(int val)
  3235. {
  3236. #ifdef CONFIG_DEBUG_PREEMPT
  3237. /*
  3238. * Underflow?
  3239. */
  3240. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3241. return;
  3242. /*
  3243. * Is the spinlock portion underflowing?
  3244. */
  3245. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3246. !(preempt_count() & PREEMPT_MASK)))
  3247. return;
  3248. #endif
  3249. if (preempt_count() == val)
  3250. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3251. preempt_count() -= val;
  3252. }
  3253. EXPORT_SYMBOL(sub_preempt_count);
  3254. #endif
  3255. /*
  3256. * Print scheduling while atomic bug:
  3257. */
  3258. static noinline void __schedule_bug(struct task_struct *prev)
  3259. {
  3260. struct pt_regs *regs = get_irq_regs();
  3261. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3262. prev->comm, prev->pid, preempt_count());
  3263. debug_show_held_locks(prev);
  3264. print_modules();
  3265. if (irqs_disabled())
  3266. print_irqtrace_events(prev);
  3267. if (regs)
  3268. show_regs(regs);
  3269. else
  3270. dump_stack();
  3271. }
  3272. /*
  3273. * Various schedule()-time debugging checks and statistics:
  3274. */
  3275. static inline void schedule_debug(struct task_struct *prev)
  3276. {
  3277. /*
  3278. * Test if we are atomic. Since do_exit() needs to call into
  3279. * schedule() atomically, we ignore that path for now.
  3280. * Otherwise, whine if we are scheduling when we should not be.
  3281. */
  3282. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3283. __schedule_bug(prev);
  3284. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3285. schedstat_inc(this_rq(), sched_count);
  3286. #ifdef CONFIG_SCHEDSTATS
  3287. if (unlikely(prev->lock_depth >= 0)) {
  3288. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3289. schedstat_inc(prev, sched_info.bkl_count);
  3290. }
  3291. #endif
  3292. }
  3293. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3294. {
  3295. if (prev->se.on_rq)
  3296. update_rq_clock(rq);
  3297. prev->sched_class->put_prev_task(rq, prev);
  3298. }
  3299. /*
  3300. * Pick up the highest-prio task:
  3301. */
  3302. static inline struct task_struct *
  3303. pick_next_task(struct rq *rq)
  3304. {
  3305. const struct sched_class *class;
  3306. struct task_struct *p;
  3307. /*
  3308. * Optimization: we know that if all tasks are in
  3309. * the fair class we can call that function directly:
  3310. */
  3311. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3312. p = fair_sched_class.pick_next_task(rq);
  3313. if (likely(p))
  3314. return p;
  3315. }
  3316. for_each_class(class) {
  3317. p = class->pick_next_task(rq);
  3318. if (p)
  3319. return p;
  3320. }
  3321. BUG(); /* the idle class will always have a runnable task */
  3322. }
  3323. /*
  3324. * schedule() is the main scheduler function.
  3325. */
  3326. asmlinkage void __sched schedule(void)
  3327. {
  3328. struct task_struct *prev, *next;
  3329. unsigned long *switch_count;
  3330. struct rq *rq;
  3331. int cpu;
  3332. need_resched:
  3333. preempt_disable();
  3334. cpu = smp_processor_id();
  3335. rq = cpu_rq(cpu);
  3336. rcu_note_context_switch(cpu);
  3337. prev = rq->curr;
  3338. release_kernel_lock(prev);
  3339. need_resched_nonpreemptible:
  3340. schedule_debug(prev);
  3341. if (sched_feat(HRTICK))
  3342. hrtick_clear(rq);
  3343. raw_spin_lock_irq(&rq->lock);
  3344. switch_count = &prev->nivcsw;
  3345. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3346. if (unlikely(signal_pending_state(prev->state, prev))) {
  3347. prev->state = TASK_RUNNING;
  3348. } else {
  3349. /*
  3350. * If a worker is going to sleep, notify and
  3351. * ask workqueue whether it wants to wake up a
  3352. * task to maintain concurrency. If so, wake
  3353. * up the task.
  3354. */
  3355. if (prev->flags & PF_WQ_WORKER) {
  3356. struct task_struct *to_wakeup;
  3357. to_wakeup = wq_worker_sleeping(prev, cpu);
  3358. if (to_wakeup)
  3359. try_to_wake_up_local(to_wakeup);
  3360. }
  3361. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3362. }
  3363. switch_count = &prev->nvcsw;
  3364. }
  3365. pre_schedule(rq, prev);
  3366. if (unlikely(!rq->nr_running))
  3367. idle_balance(cpu, rq);
  3368. put_prev_task(rq, prev);
  3369. next = pick_next_task(rq);
  3370. clear_tsk_need_resched(prev);
  3371. rq->skip_clock_update = 0;
  3372. if (likely(prev != next)) {
  3373. sched_info_switch(prev, next);
  3374. perf_event_task_sched_out(prev, next);
  3375. rq->nr_switches++;
  3376. rq->curr = next;
  3377. ++*switch_count;
  3378. context_switch(rq, prev, next); /* unlocks the rq */
  3379. /*
  3380. * The context switch have flipped the stack from under us
  3381. * and restored the local variables which were saved when
  3382. * this task called schedule() in the past. prev == current
  3383. * is still correct, but it can be moved to another cpu/rq.
  3384. */
  3385. cpu = smp_processor_id();
  3386. rq = cpu_rq(cpu);
  3387. } else
  3388. raw_spin_unlock_irq(&rq->lock);
  3389. post_schedule(rq);
  3390. if (unlikely(reacquire_kernel_lock(prev)))
  3391. goto need_resched_nonpreemptible;
  3392. preempt_enable_no_resched();
  3393. if (need_resched())
  3394. goto need_resched;
  3395. }
  3396. EXPORT_SYMBOL(schedule);
  3397. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3398. /*
  3399. * Look out! "owner" is an entirely speculative pointer
  3400. * access and not reliable.
  3401. */
  3402. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3403. {
  3404. unsigned int cpu;
  3405. struct rq *rq;
  3406. if (!sched_feat(OWNER_SPIN))
  3407. return 0;
  3408. #ifdef CONFIG_DEBUG_PAGEALLOC
  3409. /*
  3410. * Need to access the cpu field knowing that
  3411. * DEBUG_PAGEALLOC could have unmapped it if
  3412. * the mutex owner just released it and exited.
  3413. */
  3414. if (probe_kernel_address(&owner->cpu, cpu))
  3415. return 0;
  3416. #else
  3417. cpu = owner->cpu;
  3418. #endif
  3419. /*
  3420. * Even if the access succeeded (likely case),
  3421. * the cpu field may no longer be valid.
  3422. */
  3423. if (cpu >= nr_cpumask_bits)
  3424. return 0;
  3425. /*
  3426. * We need to validate that we can do a
  3427. * get_cpu() and that we have the percpu area.
  3428. */
  3429. if (!cpu_online(cpu))
  3430. return 0;
  3431. rq = cpu_rq(cpu);
  3432. for (;;) {
  3433. /*
  3434. * Owner changed, break to re-assess state.
  3435. */
  3436. if (lock->owner != owner) {
  3437. /*
  3438. * If the lock has switched to a different owner,
  3439. * we likely have heavy contention. Return 0 to quit
  3440. * optimistic spinning and not contend further:
  3441. */
  3442. if (lock->owner)
  3443. return 0;
  3444. break;
  3445. }
  3446. /*
  3447. * Is that owner really running on that cpu?
  3448. */
  3449. if (task_thread_info(rq->curr) != owner || need_resched())
  3450. return 0;
  3451. arch_mutex_cpu_relax();
  3452. }
  3453. return 1;
  3454. }
  3455. #endif
  3456. #ifdef CONFIG_PREEMPT
  3457. /*
  3458. * this is the entry point to schedule() from in-kernel preemption
  3459. * off of preempt_enable. Kernel preemptions off return from interrupt
  3460. * occur there and call schedule directly.
  3461. */
  3462. asmlinkage void __sched notrace preempt_schedule(void)
  3463. {
  3464. struct thread_info *ti = current_thread_info();
  3465. /*
  3466. * If there is a non-zero preempt_count or interrupts are disabled,
  3467. * we do not want to preempt the current task. Just return..
  3468. */
  3469. if (likely(ti->preempt_count || irqs_disabled()))
  3470. return;
  3471. do {
  3472. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3473. schedule();
  3474. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3475. /*
  3476. * Check again in case we missed a preemption opportunity
  3477. * between schedule and now.
  3478. */
  3479. barrier();
  3480. } while (need_resched());
  3481. }
  3482. EXPORT_SYMBOL(preempt_schedule);
  3483. /*
  3484. * this is the entry point to schedule() from kernel preemption
  3485. * off of irq context.
  3486. * Note, that this is called and return with irqs disabled. This will
  3487. * protect us against recursive calling from irq.
  3488. */
  3489. asmlinkage void __sched preempt_schedule_irq(void)
  3490. {
  3491. struct thread_info *ti = current_thread_info();
  3492. /* Catch callers which need to be fixed */
  3493. BUG_ON(ti->preempt_count || !irqs_disabled());
  3494. do {
  3495. add_preempt_count(PREEMPT_ACTIVE);
  3496. local_irq_enable();
  3497. schedule();
  3498. local_irq_disable();
  3499. sub_preempt_count(PREEMPT_ACTIVE);
  3500. /*
  3501. * Check again in case we missed a preemption opportunity
  3502. * between schedule and now.
  3503. */
  3504. barrier();
  3505. } while (need_resched());
  3506. }
  3507. #endif /* CONFIG_PREEMPT */
  3508. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3509. void *key)
  3510. {
  3511. return try_to_wake_up(curr->private, mode, wake_flags);
  3512. }
  3513. EXPORT_SYMBOL(default_wake_function);
  3514. /*
  3515. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3516. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3517. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3518. *
  3519. * There are circumstances in which we can try to wake a task which has already
  3520. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3521. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3522. */
  3523. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3524. int nr_exclusive, int wake_flags, void *key)
  3525. {
  3526. wait_queue_t *curr, *next;
  3527. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3528. unsigned flags = curr->flags;
  3529. if (curr->func(curr, mode, wake_flags, key) &&
  3530. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3531. break;
  3532. }
  3533. }
  3534. /**
  3535. * __wake_up - wake up threads blocked on a waitqueue.
  3536. * @q: the waitqueue
  3537. * @mode: which threads
  3538. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3539. * @key: is directly passed to the wakeup function
  3540. *
  3541. * It may be assumed that this function implies a write memory barrier before
  3542. * changing the task state if and only if any tasks are woken up.
  3543. */
  3544. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3545. int nr_exclusive, void *key)
  3546. {
  3547. unsigned long flags;
  3548. spin_lock_irqsave(&q->lock, flags);
  3549. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3550. spin_unlock_irqrestore(&q->lock, flags);
  3551. }
  3552. EXPORT_SYMBOL(__wake_up);
  3553. /*
  3554. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3555. */
  3556. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3557. {
  3558. __wake_up_common(q, mode, 1, 0, NULL);
  3559. }
  3560. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3561. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3562. {
  3563. __wake_up_common(q, mode, 1, 0, key);
  3564. }
  3565. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3566. /**
  3567. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3568. * @q: the waitqueue
  3569. * @mode: which threads
  3570. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3571. * @key: opaque value to be passed to wakeup targets
  3572. *
  3573. * The sync wakeup differs that the waker knows that it will schedule
  3574. * away soon, so while the target thread will be woken up, it will not
  3575. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3576. * with each other. This can prevent needless bouncing between CPUs.
  3577. *
  3578. * On UP it can prevent extra preemption.
  3579. *
  3580. * It may be assumed that this function implies a write memory barrier before
  3581. * changing the task state if and only if any tasks are woken up.
  3582. */
  3583. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3584. int nr_exclusive, void *key)
  3585. {
  3586. unsigned long flags;
  3587. int wake_flags = WF_SYNC;
  3588. if (unlikely(!q))
  3589. return;
  3590. if (unlikely(!nr_exclusive))
  3591. wake_flags = 0;
  3592. spin_lock_irqsave(&q->lock, flags);
  3593. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3594. spin_unlock_irqrestore(&q->lock, flags);
  3595. }
  3596. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3597. /*
  3598. * __wake_up_sync - see __wake_up_sync_key()
  3599. */
  3600. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3601. {
  3602. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3603. }
  3604. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3605. /**
  3606. * complete: - signals a single thread waiting on this completion
  3607. * @x: holds the state of this particular completion
  3608. *
  3609. * This will wake up a single thread waiting on this completion. Threads will be
  3610. * awakened in the same order in which they were queued.
  3611. *
  3612. * See also complete_all(), wait_for_completion() and related routines.
  3613. *
  3614. * It may be assumed that this function implies a write memory barrier before
  3615. * changing the task state if and only if any tasks are woken up.
  3616. */
  3617. void complete(struct completion *x)
  3618. {
  3619. unsigned long flags;
  3620. spin_lock_irqsave(&x->wait.lock, flags);
  3621. x->done++;
  3622. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3623. spin_unlock_irqrestore(&x->wait.lock, flags);
  3624. }
  3625. EXPORT_SYMBOL(complete);
  3626. /**
  3627. * complete_all: - signals all threads waiting on this completion
  3628. * @x: holds the state of this particular completion
  3629. *
  3630. * This will wake up all threads waiting on this particular completion event.
  3631. *
  3632. * It may be assumed that this function implies a write memory barrier before
  3633. * changing the task state if and only if any tasks are woken up.
  3634. */
  3635. void complete_all(struct completion *x)
  3636. {
  3637. unsigned long flags;
  3638. spin_lock_irqsave(&x->wait.lock, flags);
  3639. x->done += UINT_MAX/2;
  3640. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3641. spin_unlock_irqrestore(&x->wait.lock, flags);
  3642. }
  3643. EXPORT_SYMBOL(complete_all);
  3644. static inline long __sched
  3645. do_wait_for_common(struct completion *x, long timeout, int state)
  3646. {
  3647. if (!x->done) {
  3648. DECLARE_WAITQUEUE(wait, current);
  3649. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3650. do {
  3651. if (signal_pending_state(state, current)) {
  3652. timeout = -ERESTARTSYS;
  3653. break;
  3654. }
  3655. __set_current_state(state);
  3656. spin_unlock_irq(&x->wait.lock);
  3657. timeout = schedule_timeout(timeout);
  3658. spin_lock_irq(&x->wait.lock);
  3659. } while (!x->done && timeout);
  3660. __remove_wait_queue(&x->wait, &wait);
  3661. if (!x->done)
  3662. return timeout;
  3663. }
  3664. x->done--;
  3665. return timeout ?: 1;
  3666. }
  3667. static long __sched
  3668. wait_for_common(struct completion *x, long timeout, int state)
  3669. {
  3670. might_sleep();
  3671. spin_lock_irq(&x->wait.lock);
  3672. timeout = do_wait_for_common(x, timeout, state);
  3673. spin_unlock_irq(&x->wait.lock);
  3674. return timeout;
  3675. }
  3676. /**
  3677. * wait_for_completion: - waits for completion of a task
  3678. * @x: holds the state of this particular completion
  3679. *
  3680. * This waits to be signaled for completion of a specific task. It is NOT
  3681. * interruptible and there is no timeout.
  3682. *
  3683. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3684. * and interrupt capability. Also see complete().
  3685. */
  3686. void __sched wait_for_completion(struct completion *x)
  3687. {
  3688. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3689. }
  3690. EXPORT_SYMBOL(wait_for_completion);
  3691. /**
  3692. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3693. * @x: holds the state of this particular completion
  3694. * @timeout: timeout value in jiffies
  3695. *
  3696. * This waits for either a completion of a specific task to be signaled or for a
  3697. * specified timeout to expire. The timeout is in jiffies. It is not
  3698. * interruptible.
  3699. */
  3700. unsigned long __sched
  3701. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3702. {
  3703. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3704. }
  3705. EXPORT_SYMBOL(wait_for_completion_timeout);
  3706. /**
  3707. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3708. * @x: holds the state of this particular completion
  3709. *
  3710. * This waits for completion of a specific task to be signaled. It is
  3711. * interruptible.
  3712. */
  3713. int __sched wait_for_completion_interruptible(struct completion *x)
  3714. {
  3715. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3716. if (t == -ERESTARTSYS)
  3717. return t;
  3718. return 0;
  3719. }
  3720. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3721. /**
  3722. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3723. * @x: holds the state of this particular completion
  3724. * @timeout: timeout value in jiffies
  3725. *
  3726. * This waits for either a completion of a specific task to be signaled or for a
  3727. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3728. */
  3729. long __sched
  3730. wait_for_completion_interruptible_timeout(struct completion *x,
  3731. unsigned long timeout)
  3732. {
  3733. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3734. }
  3735. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3736. /**
  3737. * wait_for_completion_killable: - waits for completion of a task (killable)
  3738. * @x: holds the state of this particular completion
  3739. *
  3740. * This waits to be signaled for completion of a specific task. It can be
  3741. * interrupted by a kill signal.
  3742. */
  3743. int __sched wait_for_completion_killable(struct completion *x)
  3744. {
  3745. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3746. if (t == -ERESTARTSYS)
  3747. return t;
  3748. return 0;
  3749. }
  3750. EXPORT_SYMBOL(wait_for_completion_killable);
  3751. /**
  3752. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3753. * @x: holds the state of this particular completion
  3754. * @timeout: timeout value in jiffies
  3755. *
  3756. * This waits for either a completion of a specific task to be
  3757. * signaled or for a specified timeout to expire. It can be
  3758. * interrupted by a kill signal. The timeout is in jiffies.
  3759. */
  3760. long __sched
  3761. wait_for_completion_killable_timeout(struct completion *x,
  3762. unsigned long timeout)
  3763. {
  3764. return wait_for_common(x, timeout, TASK_KILLABLE);
  3765. }
  3766. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3767. /**
  3768. * try_wait_for_completion - try to decrement a completion without blocking
  3769. * @x: completion structure
  3770. *
  3771. * Returns: 0 if a decrement cannot be done without blocking
  3772. * 1 if a decrement succeeded.
  3773. *
  3774. * If a completion is being used as a counting completion,
  3775. * attempt to decrement the counter without blocking. This
  3776. * enables us to avoid waiting if the resource the completion
  3777. * is protecting is not available.
  3778. */
  3779. bool try_wait_for_completion(struct completion *x)
  3780. {
  3781. unsigned long flags;
  3782. int ret = 1;
  3783. spin_lock_irqsave(&x->wait.lock, flags);
  3784. if (!x->done)
  3785. ret = 0;
  3786. else
  3787. x->done--;
  3788. spin_unlock_irqrestore(&x->wait.lock, flags);
  3789. return ret;
  3790. }
  3791. EXPORT_SYMBOL(try_wait_for_completion);
  3792. /**
  3793. * completion_done - Test to see if a completion has any waiters
  3794. * @x: completion structure
  3795. *
  3796. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3797. * 1 if there are no waiters.
  3798. *
  3799. */
  3800. bool completion_done(struct completion *x)
  3801. {
  3802. unsigned long flags;
  3803. int ret = 1;
  3804. spin_lock_irqsave(&x->wait.lock, flags);
  3805. if (!x->done)
  3806. ret = 0;
  3807. spin_unlock_irqrestore(&x->wait.lock, flags);
  3808. return ret;
  3809. }
  3810. EXPORT_SYMBOL(completion_done);
  3811. static long __sched
  3812. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3813. {
  3814. unsigned long flags;
  3815. wait_queue_t wait;
  3816. init_waitqueue_entry(&wait, current);
  3817. __set_current_state(state);
  3818. spin_lock_irqsave(&q->lock, flags);
  3819. __add_wait_queue(q, &wait);
  3820. spin_unlock(&q->lock);
  3821. timeout = schedule_timeout(timeout);
  3822. spin_lock_irq(&q->lock);
  3823. __remove_wait_queue(q, &wait);
  3824. spin_unlock_irqrestore(&q->lock, flags);
  3825. return timeout;
  3826. }
  3827. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3828. {
  3829. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3830. }
  3831. EXPORT_SYMBOL(interruptible_sleep_on);
  3832. long __sched
  3833. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3834. {
  3835. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3836. }
  3837. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3838. void __sched sleep_on(wait_queue_head_t *q)
  3839. {
  3840. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3841. }
  3842. EXPORT_SYMBOL(sleep_on);
  3843. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3844. {
  3845. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3846. }
  3847. EXPORT_SYMBOL(sleep_on_timeout);
  3848. #ifdef CONFIG_RT_MUTEXES
  3849. /*
  3850. * rt_mutex_setprio - set the current priority of a task
  3851. * @p: task
  3852. * @prio: prio value (kernel-internal form)
  3853. *
  3854. * This function changes the 'effective' priority of a task. It does
  3855. * not touch ->normal_prio like __setscheduler().
  3856. *
  3857. * Used by the rt_mutex code to implement priority inheritance logic.
  3858. */
  3859. void rt_mutex_setprio(struct task_struct *p, int prio)
  3860. {
  3861. unsigned long flags;
  3862. int oldprio, on_rq, running;
  3863. struct rq *rq;
  3864. const struct sched_class *prev_class;
  3865. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3866. rq = task_rq_lock(p, &flags);
  3867. trace_sched_pi_setprio(p, prio);
  3868. oldprio = p->prio;
  3869. prev_class = p->sched_class;
  3870. on_rq = p->se.on_rq;
  3871. running = task_current(rq, p);
  3872. if (on_rq)
  3873. dequeue_task(rq, p, 0);
  3874. if (running)
  3875. p->sched_class->put_prev_task(rq, p);
  3876. if (rt_prio(prio))
  3877. p->sched_class = &rt_sched_class;
  3878. else
  3879. p->sched_class = &fair_sched_class;
  3880. p->prio = prio;
  3881. if (running)
  3882. p->sched_class->set_curr_task(rq);
  3883. if (on_rq) {
  3884. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3885. check_class_changed(rq, p, prev_class, oldprio, running);
  3886. }
  3887. task_rq_unlock(rq, &flags);
  3888. }
  3889. #endif
  3890. void set_user_nice(struct task_struct *p, long nice)
  3891. {
  3892. int old_prio, delta, on_rq;
  3893. unsigned long flags;
  3894. struct rq *rq;
  3895. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3896. return;
  3897. /*
  3898. * We have to be careful, if called from sys_setpriority(),
  3899. * the task might be in the middle of scheduling on another CPU.
  3900. */
  3901. rq = task_rq_lock(p, &flags);
  3902. /*
  3903. * The RT priorities are set via sched_setscheduler(), but we still
  3904. * allow the 'normal' nice value to be set - but as expected
  3905. * it wont have any effect on scheduling until the task is
  3906. * SCHED_FIFO/SCHED_RR:
  3907. */
  3908. if (task_has_rt_policy(p)) {
  3909. p->static_prio = NICE_TO_PRIO(nice);
  3910. goto out_unlock;
  3911. }
  3912. on_rq = p->se.on_rq;
  3913. if (on_rq)
  3914. dequeue_task(rq, p, 0);
  3915. p->static_prio = NICE_TO_PRIO(nice);
  3916. set_load_weight(p);
  3917. old_prio = p->prio;
  3918. p->prio = effective_prio(p);
  3919. delta = p->prio - old_prio;
  3920. if (on_rq) {
  3921. enqueue_task(rq, p, 0);
  3922. /*
  3923. * If the task increased its priority or is running and
  3924. * lowered its priority, then reschedule its CPU:
  3925. */
  3926. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3927. resched_task(rq->curr);
  3928. }
  3929. out_unlock:
  3930. task_rq_unlock(rq, &flags);
  3931. }
  3932. EXPORT_SYMBOL(set_user_nice);
  3933. /*
  3934. * can_nice - check if a task can reduce its nice value
  3935. * @p: task
  3936. * @nice: nice value
  3937. */
  3938. int can_nice(const struct task_struct *p, const int nice)
  3939. {
  3940. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3941. int nice_rlim = 20 - nice;
  3942. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3943. capable(CAP_SYS_NICE));
  3944. }
  3945. #ifdef __ARCH_WANT_SYS_NICE
  3946. /*
  3947. * sys_nice - change the priority of the current process.
  3948. * @increment: priority increment
  3949. *
  3950. * sys_setpriority is a more generic, but much slower function that
  3951. * does similar things.
  3952. */
  3953. SYSCALL_DEFINE1(nice, int, increment)
  3954. {
  3955. long nice, retval;
  3956. /*
  3957. * Setpriority might change our priority at the same moment.
  3958. * We don't have to worry. Conceptually one call occurs first
  3959. * and we have a single winner.
  3960. */
  3961. if (increment < -40)
  3962. increment = -40;
  3963. if (increment > 40)
  3964. increment = 40;
  3965. nice = TASK_NICE(current) + increment;
  3966. if (nice < -20)
  3967. nice = -20;
  3968. if (nice > 19)
  3969. nice = 19;
  3970. if (increment < 0 && !can_nice(current, nice))
  3971. return -EPERM;
  3972. retval = security_task_setnice(current, nice);
  3973. if (retval)
  3974. return retval;
  3975. set_user_nice(current, nice);
  3976. return 0;
  3977. }
  3978. #endif
  3979. /**
  3980. * task_prio - return the priority value of a given task.
  3981. * @p: the task in question.
  3982. *
  3983. * This is the priority value as seen by users in /proc.
  3984. * RT tasks are offset by -200. Normal tasks are centered
  3985. * around 0, value goes from -16 to +15.
  3986. */
  3987. int task_prio(const struct task_struct *p)
  3988. {
  3989. return p->prio - MAX_RT_PRIO;
  3990. }
  3991. /**
  3992. * task_nice - return the nice value of a given task.
  3993. * @p: the task in question.
  3994. */
  3995. int task_nice(const struct task_struct *p)
  3996. {
  3997. return TASK_NICE(p);
  3998. }
  3999. EXPORT_SYMBOL(task_nice);
  4000. /**
  4001. * idle_cpu - is a given cpu idle currently?
  4002. * @cpu: the processor in question.
  4003. */
  4004. int idle_cpu(int cpu)
  4005. {
  4006. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4007. }
  4008. /**
  4009. * idle_task - return the idle task for a given cpu.
  4010. * @cpu: the processor in question.
  4011. */
  4012. struct task_struct *idle_task(int cpu)
  4013. {
  4014. return cpu_rq(cpu)->idle;
  4015. }
  4016. /**
  4017. * find_process_by_pid - find a process with a matching PID value.
  4018. * @pid: the pid in question.
  4019. */
  4020. static struct task_struct *find_process_by_pid(pid_t pid)
  4021. {
  4022. return pid ? find_task_by_vpid(pid) : current;
  4023. }
  4024. /* Actually do priority change: must hold rq lock. */
  4025. static void
  4026. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4027. {
  4028. BUG_ON(p->se.on_rq);
  4029. p->policy = policy;
  4030. p->rt_priority = prio;
  4031. p->normal_prio = normal_prio(p);
  4032. /* we are holding p->pi_lock already */
  4033. p->prio = rt_mutex_getprio(p);
  4034. if (rt_prio(p->prio))
  4035. p->sched_class = &rt_sched_class;
  4036. else
  4037. p->sched_class = &fair_sched_class;
  4038. set_load_weight(p);
  4039. }
  4040. /*
  4041. * check the target process has a UID that matches the current process's
  4042. */
  4043. static bool check_same_owner(struct task_struct *p)
  4044. {
  4045. const struct cred *cred = current_cred(), *pcred;
  4046. bool match;
  4047. rcu_read_lock();
  4048. pcred = __task_cred(p);
  4049. match = (cred->euid == pcred->euid ||
  4050. cred->euid == pcred->uid);
  4051. rcu_read_unlock();
  4052. return match;
  4053. }
  4054. static int __sched_setscheduler(struct task_struct *p, int policy,
  4055. const struct sched_param *param, bool user)
  4056. {
  4057. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4058. unsigned long flags;
  4059. const struct sched_class *prev_class;
  4060. struct rq *rq;
  4061. int reset_on_fork;
  4062. /* may grab non-irq protected spin_locks */
  4063. BUG_ON(in_interrupt());
  4064. recheck:
  4065. /* double check policy once rq lock held */
  4066. if (policy < 0) {
  4067. reset_on_fork = p->sched_reset_on_fork;
  4068. policy = oldpolicy = p->policy;
  4069. } else {
  4070. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4071. policy &= ~SCHED_RESET_ON_FORK;
  4072. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4073. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4074. policy != SCHED_IDLE)
  4075. return -EINVAL;
  4076. }
  4077. /*
  4078. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4079. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4080. * SCHED_BATCH and SCHED_IDLE is 0.
  4081. */
  4082. if (param->sched_priority < 0 ||
  4083. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4084. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4085. return -EINVAL;
  4086. if (rt_policy(policy) != (param->sched_priority != 0))
  4087. return -EINVAL;
  4088. /*
  4089. * Allow unprivileged RT tasks to decrease priority:
  4090. */
  4091. if (user && !capable(CAP_SYS_NICE)) {
  4092. if (rt_policy(policy)) {
  4093. unsigned long rlim_rtprio =
  4094. task_rlimit(p, RLIMIT_RTPRIO);
  4095. /* can't set/change the rt policy */
  4096. if (policy != p->policy && !rlim_rtprio)
  4097. return -EPERM;
  4098. /* can't increase priority */
  4099. if (param->sched_priority > p->rt_priority &&
  4100. param->sched_priority > rlim_rtprio)
  4101. return -EPERM;
  4102. }
  4103. /*
  4104. * Like positive nice levels, dont allow tasks to
  4105. * move out of SCHED_IDLE either:
  4106. */
  4107. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4108. return -EPERM;
  4109. /* can't change other user's priorities */
  4110. if (!check_same_owner(p))
  4111. return -EPERM;
  4112. /* Normal users shall not reset the sched_reset_on_fork flag */
  4113. if (p->sched_reset_on_fork && !reset_on_fork)
  4114. return -EPERM;
  4115. }
  4116. if (user) {
  4117. retval = security_task_setscheduler(p);
  4118. if (retval)
  4119. return retval;
  4120. }
  4121. /*
  4122. * make sure no PI-waiters arrive (or leave) while we are
  4123. * changing the priority of the task:
  4124. */
  4125. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4126. /*
  4127. * To be able to change p->policy safely, the apropriate
  4128. * runqueue lock must be held.
  4129. */
  4130. rq = __task_rq_lock(p);
  4131. /*
  4132. * Changing the policy of the stop threads its a very bad idea
  4133. */
  4134. if (p == rq->stop) {
  4135. __task_rq_unlock(rq);
  4136. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4137. return -EINVAL;
  4138. }
  4139. #ifdef CONFIG_RT_GROUP_SCHED
  4140. if (user) {
  4141. /*
  4142. * Do not allow realtime tasks into groups that have no runtime
  4143. * assigned.
  4144. */
  4145. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4146. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4147. !task_group_is_autogroup(task_group(p))) {
  4148. __task_rq_unlock(rq);
  4149. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4150. return -EPERM;
  4151. }
  4152. }
  4153. #endif
  4154. /* recheck policy now with rq lock held */
  4155. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4156. policy = oldpolicy = -1;
  4157. __task_rq_unlock(rq);
  4158. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4159. goto recheck;
  4160. }
  4161. on_rq = p->se.on_rq;
  4162. running = task_current(rq, p);
  4163. if (on_rq)
  4164. deactivate_task(rq, p, 0);
  4165. if (running)
  4166. p->sched_class->put_prev_task(rq, p);
  4167. p->sched_reset_on_fork = reset_on_fork;
  4168. oldprio = p->prio;
  4169. prev_class = p->sched_class;
  4170. __setscheduler(rq, p, policy, param->sched_priority);
  4171. if (running)
  4172. p->sched_class->set_curr_task(rq);
  4173. if (on_rq) {
  4174. activate_task(rq, p, 0);
  4175. check_class_changed(rq, p, prev_class, oldprio, running);
  4176. }
  4177. __task_rq_unlock(rq);
  4178. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4179. rt_mutex_adjust_pi(p);
  4180. return 0;
  4181. }
  4182. /**
  4183. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4184. * @p: the task in question.
  4185. * @policy: new policy.
  4186. * @param: structure containing the new RT priority.
  4187. *
  4188. * NOTE that the task may be already dead.
  4189. */
  4190. int sched_setscheduler(struct task_struct *p, int policy,
  4191. const struct sched_param *param)
  4192. {
  4193. return __sched_setscheduler(p, policy, param, true);
  4194. }
  4195. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4196. /**
  4197. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4198. * @p: the task in question.
  4199. * @policy: new policy.
  4200. * @param: structure containing the new RT priority.
  4201. *
  4202. * Just like sched_setscheduler, only don't bother checking if the
  4203. * current context has permission. For example, this is needed in
  4204. * stop_machine(): we create temporary high priority worker threads,
  4205. * but our caller might not have that capability.
  4206. */
  4207. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4208. const struct sched_param *param)
  4209. {
  4210. return __sched_setscheduler(p, policy, param, false);
  4211. }
  4212. static int
  4213. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4214. {
  4215. struct sched_param lparam;
  4216. struct task_struct *p;
  4217. int retval;
  4218. if (!param || pid < 0)
  4219. return -EINVAL;
  4220. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4221. return -EFAULT;
  4222. rcu_read_lock();
  4223. retval = -ESRCH;
  4224. p = find_process_by_pid(pid);
  4225. if (p != NULL)
  4226. retval = sched_setscheduler(p, policy, &lparam);
  4227. rcu_read_unlock();
  4228. return retval;
  4229. }
  4230. /**
  4231. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4232. * @pid: the pid in question.
  4233. * @policy: new policy.
  4234. * @param: structure containing the new RT priority.
  4235. */
  4236. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4237. struct sched_param __user *, param)
  4238. {
  4239. /* negative values for policy are not valid */
  4240. if (policy < 0)
  4241. return -EINVAL;
  4242. return do_sched_setscheduler(pid, policy, param);
  4243. }
  4244. /**
  4245. * sys_sched_setparam - set/change the RT priority of a thread
  4246. * @pid: the pid in question.
  4247. * @param: structure containing the new RT priority.
  4248. */
  4249. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4250. {
  4251. return do_sched_setscheduler(pid, -1, param);
  4252. }
  4253. /**
  4254. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4255. * @pid: the pid in question.
  4256. */
  4257. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4258. {
  4259. struct task_struct *p;
  4260. int retval;
  4261. if (pid < 0)
  4262. return -EINVAL;
  4263. retval = -ESRCH;
  4264. rcu_read_lock();
  4265. p = find_process_by_pid(pid);
  4266. if (p) {
  4267. retval = security_task_getscheduler(p);
  4268. if (!retval)
  4269. retval = p->policy
  4270. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4271. }
  4272. rcu_read_unlock();
  4273. return retval;
  4274. }
  4275. /**
  4276. * sys_sched_getparam - get the RT priority of a thread
  4277. * @pid: the pid in question.
  4278. * @param: structure containing the RT priority.
  4279. */
  4280. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4281. {
  4282. struct sched_param lp;
  4283. struct task_struct *p;
  4284. int retval;
  4285. if (!param || pid < 0)
  4286. return -EINVAL;
  4287. rcu_read_lock();
  4288. p = find_process_by_pid(pid);
  4289. retval = -ESRCH;
  4290. if (!p)
  4291. goto out_unlock;
  4292. retval = security_task_getscheduler(p);
  4293. if (retval)
  4294. goto out_unlock;
  4295. lp.sched_priority = p->rt_priority;
  4296. rcu_read_unlock();
  4297. /*
  4298. * This one might sleep, we cannot do it with a spinlock held ...
  4299. */
  4300. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4301. return retval;
  4302. out_unlock:
  4303. rcu_read_unlock();
  4304. return retval;
  4305. }
  4306. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4307. {
  4308. cpumask_var_t cpus_allowed, new_mask;
  4309. struct task_struct *p;
  4310. int retval;
  4311. get_online_cpus();
  4312. rcu_read_lock();
  4313. p = find_process_by_pid(pid);
  4314. if (!p) {
  4315. rcu_read_unlock();
  4316. put_online_cpus();
  4317. return -ESRCH;
  4318. }
  4319. /* Prevent p going away */
  4320. get_task_struct(p);
  4321. rcu_read_unlock();
  4322. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4323. retval = -ENOMEM;
  4324. goto out_put_task;
  4325. }
  4326. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4327. retval = -ENOMEM;
  4328. goto out_free_cpus_allowed;
  4329. }
  4330. retval = -EPERM;
  4331. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4332. goto out_unlock;
  4333. retval = security_task_setscheduler(p);
  4334. if (retval)
  4335. goto out_unlock;
  4336. cpuset_cpus_allowed(p, cpus_allowed);
  4337. cpumask_and(new_mask, in_mask, cpus_allowed);
  4338. again:
  4339. retval = set_cpus_allowed_ptr(p, new_mask);
  4340. if (!retval) {
  4341. cpuset_cpus_allowed(p, cpus_allowed);
  4342. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4343. /*
  4344. * We must have raced with a concurrent cpuset
  4345. * update. Just reset the cpus_allowed to the
  4346. * cpuset's cpus_allowed
  4347. */
  4348. cpumask_copy(new_mask, cpus_allowed);
  4349. goto again;
  4350. }
  4351. }
  4352. out_unlock:
  4353. free_cpumask_var(new_mask);
  4354. out_free_cpus_allowed:
  4355. free_cpumask_var(cpus_allowed);
  4356. out_put_task:
  4357. put_task_struct(p);
  4358. put_online_cpus();
  4359. return retval;
  4360. }
  4361. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4362. struct cpumask *new_mask)
  4363. {
  4364. if (len < cpumask_size())
  4365. cpumask_clear(new_mask);
  4366. else if (len > cpumask_size())
  4367. len = cpumask_size();
  4368. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4369. }
  4370. /**
  4371. * sys_sched_setaffinity - set the cpu affinity of a process
  4372. * @pid: pid of the process
  4373. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4374. * @user_mask_ptr: user-space pointer to the new cpu mask
  4375. */
  4376. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4377. unsigned long __user *, user_mask_ptr)
  4378. {
  4379. cpumask_var_t new_mask;
  4380. int retval;
  4381. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4382. return -ENOMEM;
  4383. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4384. if (retval == 0)
  4385. retval = sched_setaffinity(pid, new_mask);
  4386. free_cpumask_var(new_mask);
  4387. return retval;
  4388. }
  4389. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4390. {
  4391. struct task_struct *p;
  4392. unsigned long flags;
  4393. struct rq *rq;
  4394. int retval;
  4395. get_online_cpus();
  4396. rcu_read_lock();
  4397. retval = -ESRCH;
  4398. p = find_process_by_pid(pid);
  4399. if (!p)
  4400. goto out_unlock;
  4401. retval = security_task_getscheduler(p);
  4402. if (retval)
  4403. goto out_unlock;
  4404. rq = task_rq_lock(p, &flags);
  4405. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4406. task_rq_unlock(rq, &flags);
  4407. out_unlock:
  4408. rcu_read_unlock();
  4409. put_online_cpus();
  4410. return retval;
  4411. }
  4412. /**
  4413. * sys_sched_getaffinity - get the cpu affinity of a process
  4414. * @pid: pid of the process
  4415. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4416. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4417. */
  4418. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4419. unsigned long __user *, user_mask_ptr)
  4420. {
  4421. int ret;
  4422. cpumask_var_t mask;
  4423. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4424. return -EINVAL;
  4425. if (len & (sizeof(unsigned long)-1))
  4426. return -EINVAL;
  4427. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4428. return -ENOMEM;
  4429. ret = sched_getaffinity(pid, mask);
  4430. if (ret == 0) {
  4431. size_t retlen = min_t(size_t, len, cpumask_size());
  4432. if (copy_to_user(user_mask_ptr, mask, retlen))
  4433. ret = -EFAULT;
  4434. else
  4435. ret = retlen;
  4436. }
  4437. free_cpumask_var(mask);
  4438. return ret;
  4439. }
  4440. /**
  4441. * sys_sched_yield - yield the current processor to other threads.
  4442. *
  4443. * This function yields the current CPU to other tasks. If there are no
  4444. * other threads running on this CPU then this function will return.
  4445. */
  4446. SYSCALL_DEFINE0(sched_yield)
  4447. {
  4448. struct rq *rq = this_rq_lock();
  4449. schedstat_inc(rq, yld_count);
  4450. current->sched_class->yield_task(rq);
  4451. /*
  4452. * Since we are going to call schedule() anyway, there's
  4453. * no need to preempt or enable interrupts:
  4454. */
  4455. __release(rq->lock);
  4456. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4457. do_raw_spin_unlock(&rq->lock);
  4458. preempt_enable_no_resched();
  4459. schedule();
  4460. return 0;
  4461. }
  4462. static inline int should_resched(void)
  4463. {
  4464. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4465. }
  4466. static void __cond_resched(void)
  4467. {
  4468. add_preempt_count(PREEMPT_ACTIVE);
  4469. schedule();
  4470. sub_preempt_count(PREEMPT_ACTIVE);
  4471. }
  4472. int __sched _cond_resched(void)
  4473. {
  4474. if (should_resched()) {
  4475. __cond_resched();
  4476. return 1;
  4477. }
  4478. return 0;
  4479. }
  4480. EXPORT_SYMBOL(_cond_resched);
  4481. /*
  4482. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4483. * call schedule, and on return reacquire the lock.
  4484. *
  4485. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4486. * operations here to prevent schedule() from being called twice (once via
  4487. * spin_unlock(), once by hand).
  4488. */
  4489. int __cond_resched_lock(spinlock_t *lock)
  4490. {
  4491. int resched = should_resched();
  4492. int ret = 0;
  4493. lockdep_assert_held(lock);
  4494. if (spin_needbreak(lock) || resched) {
  4495. spin_unlock(lock);
  4496. if (resched)
  4497. __cond_resched();
  4498. else
  4499. cpu_relax();
  4500. ret = 1;
  4501. spin_lock(lock);
  4502. }
  4503. return ret;
  4504. }
  4505. EXPORT_SYMBOL(__cond_resched_lock);
  4506. int __sched __cond_resched_softirq(void)
  4507. {
  4508. BUG_ON(!in_softirq());
  4509. if (should_resched()) {
  4510. local_bh_enable();
  4511. __cond_resched();
  4512. local_bh_disable();
  4513. return 1;
  4514. }
  4515. return 0;
  4516. }
  4517. EXPORT_SYMBOL(__cond_resched_softirq);
  4518. /**
  4519. * yield - yield the current processor to other threads.
  4520. *
  4521. * This is a shortcut for kernel-space yielding - it marks the
  4522. * thread runnable and calls sys_sched_yield().
  4523. */
  4524. void __sched yield(void)
  4525. {
  4526. set_current_state(TASK_RUNNING);
  4527. sys_sched_yield();
  4528. }
  4529. EXPORT_SYMBOL(yield);
  4530. /*
  4531. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4532. * that process accounting knows that this is a task in IO wait state.
  4533. */
  4534. void __sched io_schedule(void)
  4535. {
  4536. struct rq *rq = raw_rq();
  4537. delayacct_blkio_start();
  4538. atomic_inc(&rq->nr_iowait);
  4539. current->in_iowait = 1;
  4540. schedule();
  4541. current->in_iowait = 0;
  4542. atomic_dec(&rq->nr_iowait);
  4543. delayacct_blkio_end();
  4544. }
  4545. EXPORT_SYMBOL(io_schedule);
  4546. long __sched io_schedule_timeout(long timeout)
  4547. {
  4548. struct rq *rq = raw_rq();
  4549. long ret;
  4550. delayacct_blkio_start();
  4551. atomic_inc(&rq->nr_iowait);
  4552. current->in_iowait = 1;
  4553. ret = schedule_timeout(timeout);
  4554. current->in_iowait = 0;
  4555. atomic_dec(&rq->nr_iowait);
  4556. delayacct_blkio_end();
  4557. return ret;
  4558. }
  4559. /**
  4560. * sys_sched_get_priority_max - return maximum RT priority.
  4561. * @policy: scheduling class.
  4562. *
  4563. * this syscall returns the maximum rt_priority that can be used
  4564. * by a given scheduling class.
  4565. */
  4566. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4567. {
  4568. int ret = -EINVAL;
  4569. switch (policy) {
  4570. case SCHED_FIFO:
  4571. case SCHED_RR:
  4572. ret = MAX_USER_RT_PRIO-1;
  4573. break;
  4574. case SCHED_NORMAL:
  4575. case SCHED_BATCH:
  4576. case SCHED_IDLE:
  4577. ret = 0;
  4578. break;
  4579. }
  4580. return ret;
  4581. }
  4582. /**
  4583. * sys_sched_get_priority_min - return minimum RT priority.
  4584. * @policy: scheduling class.
  4585. *
  4586. * this syscall returns the minimum rt_priority that can be used
  4587. * by a given scheduling class.
  4588. */
  4589. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4590. {
  4591. int ret = -EINVAL;
  4592. switch (policy) {
  4593. case SCHED_FIFO:
  4594. case SCHED_RR:
  4595. ret = 1;
  4596. break;
  4597. case SCHED_NORMAL:
  4598. case SCHED_BATCH:
  4599. case SCHED_IDLE:
  4600. ret = 0;
  4601. }
  4602. return ret;
  4603. }
  4604. /**
  4605. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4606. * @pid: pid of the process.
  4607. * @interval: userspace pointer to the timeslice value.
  4608. *
  4609. * this syscall writes the default timeslice value of a given process
  4610. * into the user-space timespec buffer. A value of '0' means infinity.
  4611. */
  4612. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4613. struct timespec __user *, interval)
  4614. {
  4615. struct task_struct *p;
  4616. unsigned int time_slice;
  4617. unsigned long flags;
  4618. struct rq *rq;
  4619. int retval;
  4620. struct timespec t;
  4621. if (pid < 0)
  4622. return -EINVAL;
  4623. retval = -ESRCH;
  4624. rcu_read_lock();
  4625. p = find_process_by_pid(pid);
  4626. if (!p)
  4627. goto out_unlock;
  4628. retval = security_task_getscheduler(p);
  4629. if (retval)
  4630. goto out_unlock;
  4631. rq = task_rq_lock(p, &flags);
  4632. time_slice = p->sched_class->get_rr_interval(rq, p);
  4633. task_rq_unlock(rq, &flags);
  4634. rcu_read_unlock();
  4635. jiffies_to_timespec(time_slice, &t);
  4636. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4637. return retval;
  4638. out_unlock:
  4639. rcu_read_unlock();
  4640. return retval;
  4641. }
  4642. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4643. void sched_show_task(struct task_struct *p)
  4644. {
  4645. unsigned long free = 0;
  4646. unsigned state;
  4647. state = p->state ? __ffs(p->state) + 1 : 0;
  4648. printk(KERN_INFO "%-15.15s %c", p->comm,
  4649. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4650. #if BITS_PER_LONG == 32
  4651. if (state == TASK_RUNNING)
  4652. printk(KERN_CONT " running ");
  4653. else
  4654. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4655. #else
  4656. if (state == TASK_RUNNING)
  4657. printk(KERN_CONT " running task ");
  4658. else
  4659. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4660. #endif
  4661. #ifdef CONFIG_DEBUG_STACK_USAGE
  4662. free = stack_not_used(p);
  4663. #endif
  4664. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4665. task_pid_nr(p), task_pid_nr(p->real_parent),
  4666. (unsigned long)task_thread_info(p)->flags);
  4667. show_stack(p, NULL);
  4668. }
  4669. void show_state_filter(unsigned long state_filter)
  4670. {
  4671. struct task_struct *g, *p;
  4672. #if BITS_PER_LONG == 32
  4673. printk(KERN_INFO
  4674. " task PC stack pid father\n");
  4675. #else
  4676. printk(KERN_INFO
  4677. " task PC stack pid father\n");
  4678. #endif
  4679. read_lock(&tasklist_lock);
  4680. do_each_thread(g, p) {
  4681. /*
  4682. * reset the NMI-timeout, listing all files on a slow
  4683. * console might take alot of time:
  4684. */
  4685. touch_nmi_watchdog();
  4686. if (!state_filter || (p->state & state_filter))
  4687. sched_show_task(p);
  4688. } while_each_thread(g, p);
  4689. touch_all_softlockup_watchdogs();
  4690. #ifdef CONFIG_SCHED_DEBUG
  4691. sysrq_sched_debug_show();
  4692. #endif
  4693. read_unlock(&tasklist_lock);
  4694. /*
  4695. * Only show locks if all tasks are dumped:
  4696. */
  4697. if (!state_filter)
  4698. debug_show_all_locks();
  4699. }
  4700. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4701. {
  4702. idle->sched_class = &idle_sched_class;
  4703. }
  4704. /**
  4705. * init_idle - set up an idle thread for a given CPU
  4706. * @idle: task in question
  4707. * @cpu: cpu the idle task belongs to
  4708. *
  4709. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4710. * flag, to make booting more robust.
  4711. */
  4712. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4713. {
  4714. struct rq *rq = cpu_rq(cpu);
  4715. unsigned long flags;
  4716. raw_spin_lock_irqsave(&rq->lock, flags);
  4717. __sched_fork(idle);
  4718. idle->state = TASK_RUNNING;
  4719. idle->se.exec_start = sched_clock();
  4720. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4721. /*
  4722. * We're having a chicken and egg problem, even though we are
  4723. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4724. * lockdep check in task_group() will fail.
  4725. *
  4726. * Similar case to sched_fork(). / Alternatively we could
  4727. * use task_rq_lock() here and obtain the other rq->lock.
  4728. *
  4729. * Silence PROVE_RCU
  4730. */
  4731. rcu_read_lock();
  4732. __set_task_cpu(idle, cpu);
  4733. rcu_read_unlock();
  4734. rq->curr = rq->idle = idle;
  4735. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4736. idle->oncpu = 1;
  4737. #endif
  4738. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4739. /* Set the preempt count _outside_ the spinlocks! */
  4740. #if defined(CONFIG_PREEMPT)
  4741. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4742. #else
  4743. task_thread_info(idle)->preempt_count = 0;
  4744. #endif
  4745. /*
  4746. * The idle tasks have their own, simple scheduling class:
  4747. */
  4748. idle->sched_class = &idle_sched_class;
  4749. ftrace_graph_init_task(idle);
  4750. }
  4751. /*
  4752. * In a system that switches off the HZ timer nohz_cpu_mask
  4753. * indicates which cpus entered this state. This is used
  4754. * in the rcu update to wait only for active cpus. For system
  4755. * which do not switch off the HZ timer nohz_cpu_mask should
  4756. * always be CPU_BITS_NONE.
  4757. */
  4758. cpumask_var_t nohz_cpu_mask;
  4759. /*
  4760. * Increase the granularity value when there are more CPUs,
  4761. * because with more CPUs the 'effective latency' as visible
  4762. * to users decreases. But the relationship is not linear,
  4763. * so pick a second-best guess by going with the log2 of the
  4764. * number of CPUs.
  4765. *
  4766. * This idea comes from the SD scheduler of Con Kolivas:
  4767. */
  4768. static int get_update_sysctl_factor(void)
  4769. {
  4770. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4771. unsigned int factor;
  4772. switch (sysctl_sched_tunable_scaling) {
  4773. case SCHED_TUNABLESCALING_NONE:
  4774. factor = 1;
  4775. break;
  4776. case SCHED_TUNABLESCALING_LINEAR:
  4777. factor = cpus;
  4778. break;
  4779. case SCHED_TUNABLESCALING_LOG:
  4780. default:
  4781. factor = 1 + ilog2(cpus);
  4782. break;
  4783. }
  4784. return factor;
  4785. }
  4786. static void update_sysctl(void)
  4787. {
  4788. unsigned int factor = get_update_sysctl_factor();
  4789. #define SET_SYSCTL(name) \
  4790. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4791. SET_SYSCTL(sched_min_granularity);
  4792. SET_SYSCTL(sched_latency);
  4793. SET_SYSCTL(sched_wakeup_granularity);
  4794. #undef SET_SYSCTL
  4795. }
  4796. static inline void sched_init_granularity(void)
  4797. {
  4798. update_sysctl();
  4799. }
  4800. #ifdef CONFIG_SMP
  4801. /*
  4802. * This is how migration works:
  4803. *
  4804. * 1) we invoke migration_cpu_stop() on the target CPU using
  4805. * stop_one_cpu().
  4806. * 2) stopper starts to run (implicitly forcing the migrated thread
  4807. * off the CPU)
  4808. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4809. * 4) if it's in the wrong runqueue then the migration thread removes
  4810. * it and puts it into the right queue.
  4811. * 5) stopper completes and stop_one_cpu() returns and the migration
  4812. * is done.
  4813. */
  4814. /*
  4815. * Change a given task's CPU affinity. Migrate the thread to a
  4816. * proper CPU and schedule it away if the CPU it's executing on
  4817. * is removed from the allowed bitmask.
  4818. *
  4819. * NOTE: the caller must have a valid reference to the task, the
  4820. * task must not exit() & deallocate itself prematurely. The
  4821. * call is not atomic; no spinlocks may be held.
  4822. */
  4823. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4824. {
  4825. unsigned long flags;
  4826. struct rq *rq;
  4827. unsigned int dest_cpu;
  4828. int ret = 0;
  4829. /*
  4830. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4831. * drop the rq->lock and still rely on ->cpus_allowed.
  4832. */
  4833. again:
  4834. while (task_is_waking(p))
  4835. cpu_relax();
  4836. rq = task_rq_lock(p, &flags);
  4837. if (task_is_waking(p)) {
  4838. task_rq_unlock(rq, &flags);
  4839. goto again;
  4840. }
  4841. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4842. ret = -EINVAL;
  4843. goto out;
  4844. }
  4845. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4846. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4847. ret = -EINVAL;
  4848. goto out;
  4849. }
  4850. if (p->sched_class->set_cpus_allowed)
  4851. p->sched_class->set_cpus_allowed(p, new_mask);
  4852. else {
  4853. cpumask_copy(&p->cpus_allowed, new_mask);
  4854. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4855. }
  4856. /* Can the task run on the task's current CPU? If so, we're done */
  4857. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4858. goto out;
  4859. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4860. if (migrate_task(p, rq)) {
  4861. struct migration_arg arg = { p, dest_cpu };
  4862. /* Need help from migration thread: drop lock and wait. */
  4863. task_rq_unlock(rq, &flags);
  4864. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4865. tlb_migrate_finish(p->mm);
  4866. return 0;
  4867. }
  4868. out:
  4869. task_rq_unlock(rq, &flags);
  4870. return ret;
  4871. }
  4872. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4873. /*
  4874. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4875. * this because either it can't run here any more (set_cpus_allowed()
  4876. * away from this CPU, or CPU going down), or because we're
  4877. * attempting to rebalance this task on exec (sched_exec).
  4878. *
  4879. * So we race with normal scheduler movements, but that's OK, as long
  4880. * as the task is no longer on this CPU.
  4881. *
  4882. * Returns non-zero if task was successfully migrated.
  4883. */
  4884. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4885. {
  4886. struct rq *rq_dest, *rq_src;
  4887. int ret = 0;
  4888. if (unlikely(!cpu_active(dest_cpu)))
  4889. return ret;
  4890. rq_src = cpu_rq(src_cpu);
  4891. rq_dest = cpu_rq(dest_cpu);
  4892. double_rq_lock(rq_src, rq_dest);
  4893. /* Already moved. */
  4894. if (task_cpu(p) != src_cpu)
  4895. goto done;
  4896. /* Affinity changed (again). */
  4897. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4898. goto fail;
  4899. /*
  4900. * If we're not on a rq, the next wake-up will ensure we're
  4901. * placed properly.
  4902. */
  4903. if (p->se.on_rq) {
  4904. deactivate_task(rq_src, p, 0);
  4905. set_task_cpu(p, dest_cpu);
  4906. activate_task(rq_dest, p, 0);
  4907. check_preempt_curr(rq_dest, p, 0);
  4908. }
  4909. done:
  4910. ret = 1;
  4911. fail:
  4912. double_rq_unlock(rq_src, rq_dest);
  4913. return ret;
  4914. }
  4915. /*
  4916. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4917. * and performs thread migration by bumping thread off CPU then
  4918. * 'pushing' onto another runqueue.
  4919. */
  4920. static int migration_cpu_stop(void *data)
  4921. {
  4922. struct migration_arg *arg = data;
  4923. /*
  4924. * The original target cpu might have gone down and we might
  4925. * be on another cpu but it doesn't matter.
  4926. */
  4927. local_irq_disable();
  4928. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4929. local_irq_enable();
  4930. return 0;
  4931. }
  4932. #ifdef CONFIG_HOTPLUG_CPU
  4933. /*
  4934. * Ensures that the idle task is using init_mm right before its cpu goes
  4935. * offline.
  4936. */
  4937. void idle_task_exit(void)
  4938. {
  4939. struct mm_struct *mm = current->active_mm;
  4940. BUG_ON(cpu_online(smp_processor_id()));
  4941. if (mm != &init_mm)
  4942. switch_mm(mm, &init_mm, current);
  4943. mmdrop(mm);
  4944. }
  4945. /*
  4946. * While a dead CPU has no uninterruptible tasks queued at this point,
  4947. * it might still have a nonzero ->nr_uninterruptible counter, because
  4948. * for performance reasons the counter is not stricly tracking tasks to
  4949. * their home CPUs. So we just add the counter to another CPU's counter,
  4950. * to keep the global sum constant after CPU-down:
  4951. */
  4952. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4953. {
  4954. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4955. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4956. rq_src->nr_uninterruptible = 0;
  4957. }
  4958. /*
  4959. * remove the tasks which were accounted by rq from calc_load_tasks.
  4960. */
  4961. static void calc_global_load_remove(struct rq *rq)
  4962. {
  4963. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4964. rq->calc_load_active = 0;
  4965. }
  4966. /*
  4967. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4968. * try_to_wake_up()->select_task_rq().
  4969. *
  4970. * Called with rq->lock held even though we'er in stop_machine() and
  4971. * there's no concurrency possible, we hold the required locks anyway
  4972. * because of lock validation efforts.
  4973. */
  4974. static void migrate_tasks(unsigned int dead_cpu)
  4975. {
  4976. struct rq *rq = cpu_rq(dead_cpu);
  4977. struct task_struct *next, *stop = rq->stop;
  4978. int dest_cpu;
  4979. /*
  4980. * Fudge the rq selection such that the below task selection loop
  4981. * doesn't get stuck on the currently eligible stop task.
  4982. *
  4983. * We're currently inside stop_machine() and the rq is either stuck
  4984. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4985. * either way we should never end up calling schedule() until we're
  4986. * done here.
  4987. */
  4988. rq->stop = NULL;
  4989. for ( ; ; ) {
  4990. /*
  4991. * There's this thread running, bail when that's the only
  4992. * remaining thread.
  4993. */
  4994. if (rq->nr_running == 1)
  4995. break;
  4996. next = pick_next_task(rq);
  4997. BUG_ON(!next);
  4998. next->sched_class->put_prev_task(rq, next);
  4999. /* Find suitable destination for @next, with force if needed. */
  5000. dest_cpu = select_fallback_rq(dead_cpu, next);
  5001. raw_spin_unlock(&rq->lock);
  5002. __migrate_task(next, dead_cpu, dest_cpu);
  5003. raw_spin_lock(&rq->lock);
  5004. }
  5005. rq->stop = stop;
  5006. }
  5007. #endif /* CONFIG_HOTPLUG_CPU */
  5008. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5009. static struct ctl_table sd_ctl_dir[] = {
  5010. {
  5011. .procname = "sched_domain",
  5012. .mode = 0555,
  5013. },
  5014. {}
  5015. };
  5016. static struct ctl_table sd_ctl_root[] = {
  5017. {
  5018. .procname = "kernel",
  5019. .mode = 0555,
  5020. .child = sd_ctl_dir,
  5021. },
  5022. {}
  5023. };
  5024. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5025. {
  5026. struct ctl_table *entry =
  5027. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5028. return entry;
  5029. }
  5030. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5031. {
  5032. struct ctl_table *entry;
  5033. /*
  5034. * In the intermediate directories, both the child directory and
  5035. * procname are dynamically allocated and could fail but the mode
  5036. * will always be set. In the lowest directory the names are
  5037. * static strings and all have proc handlers.
  5038. */
  5039. for (entry = *tablep; entry->mode; entry++) {
  5040. if (entry->child)
  5041. sd_free_ctl_entry(&entry->child);
  5042. if (entry->proc_handler == NULL)
  5043. kfree(entry->procname);
  5044. }
  5045. kfree(*tablep);
  5046. *tablep = NULL;
  5047. }
  5048. static void
  5049. set_table_entry(struct ctl_table *entry,
  5050. const char *procname, void *data, int maxlen,
  5051. mode_t mode, proc_handler *proc_handler)
  5052. {
  5053. entry->procname = procname;
  5054. entry->data = data;
  5055. entry->maxlen = maxlen;
  5056. entry->mode = mode;
  5057. entry->proc_handler = proc_handler;
  5058. }
  5059. static struct ctl_table *
  5060. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5061. {
  5062. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5063. if (table == NULL)
  5064. return NULL;
  5065. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5066. sizeof(long), 0644, proc_doulongvec_minmax);
  5067. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5068. sizeof(long), 0644, proc_doulongvec_minmax);
  5069. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5070. sizeof(int), 0644, proc_dointvec_minmax);
  5071. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5072. sizeof(int), 0644, proc_dointvec_minmax);
  5073. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5074. sizeof(int), 0644, proc_dointvec_minmax);
  5075. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5076. sizeof(int), 0644, proc_dointvec_minmax);
  5077. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5078. sizeof(int), 0644, proc_dointvec_minmax);
  5079. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5080. sizeof(int), 0644, proc_dointvec_minmax);
  5081. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5082. sizeof(int), 0644, proc_dointvec_minmax);
  5083. set_table_entry(&table[9], "cache_nice_tries",
  5084. &sd->cache_nice_tries,
  5085. sizeof(int), 0644, proc_dointvec_minmax);
  5086. set_table_entry(&table[10], "flags", &sd->flags,
  5087. sizeof(int), 0644, proc_dointvec_minmax);
  5088. set_table_entry(&table[11], "name", sd->name,
  5089. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5090. /* &table[12] is terminator */
  5091. return table;
  5092. }
  5093. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5094. {
  5095. struct ctl_table *entry, *table;
  5096. struct sched_domain *sd;
  5097. int domain_num = 0, i;
  5098. char buf[32];
  5099. for_each_domain(cpu, sd)
  5100. domain_num++;
  5101. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5102. if (table == NULL)
  5103. return NULL;
  5104. i = 0;
  5105. for_each_domain(cpu, sd) {
  5106. snprintf(buf, 32, "domain%d", i);
  5107. entry->procname = kstrdup(buf, GFP_KERNEL);
  5108. entry->mode = 0555;
  5109. entry->child = sd_alloc_ctl_domain_table(sd);
  5110. entry++;
  5111. i++;
  5112. }
  5113. return table;
  5114. }
  5115. static struct ctl_table_header *sd_sysctl_header;
  5116. static void register_sched_domain_sysctl(void)
  5117. {
  5118. int i, cpu_num = num_possible_cpus();
  5119. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5120. char buf[32];
  5121. WARN_ON(sd_ctl_dir[0].child);
  5122. sd_ctl_dir[0].child = entry;
  5123. if (entry == NULL)
  5124. return;
  5125. for_each_possible_cpu(i) {
  5126. snprintf(buf, 32, "cpu%d", i);
  5127. entry->procname = kstrdup(buf, GFP_KERNEL);
  5128. entry->mode = 0555;
  5129. entry->child = sd_alloc_ctl_cpu_table(i);
  5130. entry++;
  5131. }
  5132. WARN_ON(sd_sysctl_header);
  5133. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5134. }
  5135. /* may be called multiple times per register */
  5136. static void unregister_sched_domain_sysctl(void)
  5137. {
  5138. if (sd_sysctl_header)
  5139. unregister_sysctl_table(sd_sysctl_header);
  5140. sd_sysctl_header = NULL;
  5141. if (sd_ctl_dir[0].child)
  5142. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5143. }
  5144. #else
  5145. static void register_sched_domain_sysctl(void)
  5146. {
  5147. }
  5148. static void unregister_sched_domain_sysctl(void)
  5149. {
  5150. }
  5151. #endif
  5152. static void set_rq_online(struct rq *rq)
  5153. {
  5154. if (!rq->online) {
  5155. const struct sched_class *class;
  5156. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5157. rq->online = 1;
  5158. for_each_class(class) {
  5159. if (class->rq_online)
  5160. class->rq_online(rq);
  5161. }
  5162. }
  5163. }
  5164. static void set_rq_offline(struct rq *rq)
  5165. {
  5166. if (rq->online) {
  5167. const struct sched_class *class;
  5168. for_each_class(class) {
  5169. if (class->rq_offline)
  5170. class->rq_offline(rq);
  5171. }
  5172. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5173. rq->online = 0;
  5174. }
  5175. }
  5176. /*
  5177. * migration_call - callback that gets triggered when a CPU is added.
  5178. * Here we can start up the necessary migration thread for the new CPU.
  5179. */
  5180. static int __cpuinit
  5181. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5182. {
  5183. int cpu = (long)hcpu;
  5184. unsigned long flags;
  5185. struct rq *rq = cpu_rq(cpu);
  5186. switch (action & ~CPU_TASKS_FROZEN) {
  5187. case CPU_UP_PREPARE:
  5188. rq->calc_load_update = calc_load_update;
  5189. break;
  5190. case CPU_ONLINE:
  5191. /* Update our root-domain */
  5192. raw_spin_lock_irqsave(&rq->lock, flags);
  5193. if (rq->rd) {
  5194. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5195. set_rq_online(rq);
  5196. }
  5197. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5198. break;
  5199. #ifdef CONFIG_HOTPLUG_CPU
  5200. case CPU_DYING:
  5201. /* Update our root-domain */
  5202. raw_spin_lock_irqsave(&rq->lock, flags);
  5203. if (rq->rd) {
  5204. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5205. set_rq_offline(rq);
  5206. }
  5207. migrate_tasks(cpu);
  5208. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5209. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5210. migrate_nr_uninterruptible(rq);
  5211. calc_global_load_remove(rq);
  5212. break;
  5213. #endif
  5214. }
  5215. return NOTIFY_OK;
  5216. }
  5217. /*
  5218. * Register at high priority so that task migration (migrate_all_tasks)
  5219. * happens before everything else. This has to be lower priority than
  5220. * the notifier in the perf_event subsystem, though.
  5221. */
  5222. static struct notifier_block __cpuinitdata migration_notifier = {
  5223. .notifier_call = migration_call,
  5224. .priority = CPU_PRI_MIGRATION,
  5225. };
  5226. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5227. unsigned long action, void *hcpu)
  5228. {
  5229. switch (action & ~CPU_TASKS_FROZEN) {
  5230. case CPU_ONLINE:
  5231. case CPU_DOWN_FAILED:
  5232. set_cpu_active((long)hcpu, true);
  5233. return NOTIFY_OK;
  5234. default:
  5235. return NOTIFY_DONE;
  5236. }
  5237. }
  5238. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5239. unsigned long action, void *hcpu)
  5240. {
  5241. switch (action & ~CPU_TASKS_FROZEN) {
  5242. case CPU_DOWN_PREPARE:
  5243. set_cpu_active((long)hcpu, false);
  5244. return NOTIFY_OK;
  5245. default:
  5246. return NOTIFY_DONE;
  5247. }
  5248. }
  5249. static int __init migration_init(void)
  5250. {
  5251. void *cpu = (void *)(long)smp_processor_id();
  5252. int err;
  5253. /* Initialize migration for the boot CPU */
  5254. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5255. BUG_ON(err == NOTIFY_BAD);
  5256. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5257. register_cpu_notifier(&migration_notifier);
  5258. /* Register cpu active notifiers */
  5259. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5260. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5261. return 0;
  5262. }
  5263. early_initcall(migration_init);
  5264. #endif
  5265. #ifdef CONFIG_SMP
  5266. #ifdef CONFIG_SCHED_DEBUG
  5267. static __read_mostly int sched_domain_debug_enabled;
  5268. static int __init sched_domain_debug_setup(char *str)
  5269. {
  5270. sched_domain_debug_enabled = 1;
  5271. return 0;
  5272. }
  5273. early_param("sched_debug", sched_domain_debug_setup);
  5274. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5275. struct cpumask *groupmask)
  5276. {
  5277. struct sched_group *group = sd->groups;
  5278. char str[256];
  5279. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5280. cpumask_clear(groupmask);
  5281. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5282. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5283. printk("does not load-balance\n");
  5284. if (sd->parent)
  5285. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5286. " has parent");
  5287. return -1;
  5288. }
  5289. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5290. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5291. printk(KERN_ERR "ERROR: domain->span does not contain "
  5292. "CPU%d\n", cpu);
  5293. }
  5294. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5295. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5296. " CPU%d\n", cpu);
  5297. }
  5298. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5299. do {
  5300. if (!group) {
  5301. printk("\n");
  5302. printk(KERN_ERR "ERROR: group is NULL\n");
  5303. break;
  5304. }
  5305. if (!group->cpu_power) {
  5306. printk(KERN_CONT "\n");
  5307. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5308. "set\n");
  5309. break;
  5310. }
  5311. if (!cpumask_weight(sched_group_cpus(group))) {
  5312. printk(KERN_CONT "\n");
  5313. printk(KERN_ERR "ERROR: empty group\n");
  5314. break;
  5315. }
  5316. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5317. printk(KERN_CONT "\n");
  5318. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5319. break;
  5320. }
  5321. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5322. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5323. printk(KERN_CONT " %s", str);
  5324. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5325. printk(KERN_CONT " (cpu_power = %d)",
  5326. group->cpu_power);
  5327. }
  5328. group = group->next;
  5329. } while (group != sd->groups);
  5330. printk(KERN_CONT "\n");
  5331. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5332. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5333. if (sd->parent &&
  5334. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5335. printk(KERN_ERR "ERROR: parent span is not a superset "
  5336. "of domain->span\n");
  5337. return 0;
  5338. }
  5339. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5340. {
  5341. cpumask_var_t groupmask;
  5342. int level = 0;
  5343. if (!sched_domain_debug_enabled)
  5344. return;
  5345. if (!sd) {
  5346. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5347. return;
  5348. }
  5349. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5350. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5351. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5352. return;
  5353. }
  5354. for (;;) {
  5355. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5356. break;
  5357. level++;
  5358. sd = sd->parent;
  5359. if (!sd)
  5360. break;
  5361. }
  5362. free_cpumask_var(groupmask);
  5363. }
  5364. #else /* !CONFIG_SCHED_DEBUG */
  5365. # define sched_domain_debug(sd, cpu) do { } while (0)
  5366. #endif /* CONFIG_SCHED_DEBUG */
  5367. static int sd_degenerate(struct sched_domain *sd)
  5368. {
  5369. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5370. return 1;
  5371. /* Following flags need at least 2 groups */
  5372. if (sd->flags & (SD_LOAD_BALANCE |
  5373. SD_BALANCE_NEWIDLE |
  5374. SD_BALANCE_FORK |
  5375. SD_BALANCE_EXEC |
  5376. SD_SHARE_CPUPOWER |
  5377. SD_SHARE_PKG_RESOURCES)) {
  5378. if (sd->groups != sd->groups->next)
  5379. return 0;
  5380. }
  5381. /* Following flags don't use groups */
  5382. if (sd->flags & (SD_WAKE_AFFINE))
  5383. return 0;
  5384. return 1;
  5385. }
  5386. static int
  5387. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5388. {
  5389. unsigned long cflags = sd->flags, pflags = parent->flags;
  5390. if (sd_degenerate(parent))
  5391. return 1;
  5392. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5393. return 0;
  5394. /* Flags needing groups don't count if only 1 group in parent */
  5395. if (parent->groups == parent->groups->next) {
  5396. pflags &= ~(SD_LOAD_BALANCE |
  5397. SD_BALANCE_NEWIDLE |
  5398. SD_BALANCE_FORK |
  5399. SD_BALANCE_EXEC |
  5400. SD_SHARE_CPUPOWER |
  5401. SD_SHARE_PKG_RESOURCES);
  5402. if (nr_node_ids == 1)
  5403. pflags &= ~SD_SERIALIZE;
  5404. }
  5405. if (~cflags & pflags)
  5406. return 0;
  5407. return 1;
  5408. }
  5409. static void free_rootdomain(struct root_domain *rd)
  5410. {
  5411. synchronize_sched();
  5412. cpupri_cleanup(&rd->cpupri);
  5413. free_cpumask_var(rd->rto_mask);
  5414. free_cpumask_var(rd->online);
  5415. free_cpumask_var(rd->span);
  5416. kfree(rd);
  5417. }
  5418. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5419. {
  5420. struct root_domain *old_rd = NULL;
  5421. unsigned long flags;
  5422. raw_spin_lock_irqsave(&rq->lock, flags);
  5423. if (rq->rd) {
  5424. old_rd = rq->rd;
  5425. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5426. set_rq_offline(rq);
  5427. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5428. /*
  5429. * If we dont want to free the old_rt yet then
  5430. * set old_rd to NULL to skip the freeing later
  5431. * in this function:
  5432. */
  5433. if (!atomic_dec_and_test(&old_rd->refcount))
  5434. old_rd = NULL;
  5435. }
  5436. atomic_inc(&rd->refcount);
  5437. rq->rd = rd;
  5438. cpumask_set_cpu(rq->cpu, rd->span);
  5439. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5440. set_rq_online(rq);
  5441. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5442. if (old_rd)
  5443. free_rootdomain(old_rd);
  5444. }
  5445. static int init_rootdomain(struct root_domain *rd)
  5446. {
  5447. memset(rd, 0, sizeof(*rd));
  5448. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5449. goto out;
  5450. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5451. goto free_span;
  5452. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5453. goto free_online;
  5454. if (cpupri_init(&rd->cpupri) != 0)
  5455. goto free_rto_mask;
  5456. return 0;
  5457. free_rto_mask:
  5458. free_cpumask_var(rd->rto_mask);
  5459. free_online:
  5460. free_cpumask_var(rd->online);
  5461. free_span:
  5462. free_cpumask_var(rd->span);
  5463. out:
  5464. return -ENOMEM;
  5465. }
  5466. static void init_defrootdomain(void)
  5467. {
  5468. init_rootdomain(&def_root_domain);
  5469. atomic_set(&def_root_domain.refcount, 1);
  5470. }
  5471. static struct root_domain *alloc_rootdomain(void)
  5472. {
  5473. struct root_domain *rd;
  5474. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5475. if (!rd)
  5476. return NULL;
  5477. if (init_rootdomain(rd) != 0) {
  5478. kfree(rd);
  5479. return NULL;
  5480. }
  5481. return rd;
  5482. }
  5483. /*
  5484. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5485. * hold the hotplug lock.
  5486. */
  5487. static void
  5488. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5489. {
  5490. struct rq *rq = cpu_rq(cpu);
  5491. struct sched_domain *tmp;
  5492. for (tmp = sd; tmp; tmp = tmp->parent)
  5493. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5494. /* Remove the sched domains which do not contribute to scheduling. */
  5495. for (tmp = sd; tmp; ) {
  5496. struct sched_domain *parent = tmp->parent;
  5497. if (!parent)
  5498. break;
  5499. if (sd_parent_degenerate(tmp, parent)) {
  5500. tmp->parent = parent->parent;
  5501. if (parent->parent)
  5502. parent->parent->child = tmp;
  5503. } else
  5504. tmp = tmp->parent;
  5505. }
  5506. if (sd && sd_degenerate(sd)) {
  5507. sd = sd->parent;
  5508. if (sd)
  5509. sd->child = NULL;
  5510. }
  5511. sched_domain_debug(sd, cpu);
  5512. rq_attach_root(rq, rd);
  5513. rcu_assign_pointer(rq->sd, sd);
  5514. }
  5515. /* cpus with isolated domains */
  5516. static cpumask_var_t cpu_isolated_map;
  5517. /* Setup the mask of cpus configured for isolated domains */
  5518. static int __init isolated_cpu_setup(char *str)
  5519. {
  5520. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5521. cpulist_parse(str, cpu_isolated_map);
  5522. return 1;
  5523. }
  5524. __setup("isolcpus=", isolated_cpu_setup);
  5525. /*
  5526. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5527. * to a function which identifies what group(along with sched group) a CPU
  5528. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5529. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5530. *
  5531. * init_sched_build_groups will build a circular linked list of the groups
  5532. * covered by the given span, and will set each group's ->cpumask correctly,
  5533. * and ->cpu_power to 0.
  5534. */
  5535. static void
  5536. init_sched_build_groups(const struct cpumask *span,
  5537. const struct cpumask *cpu_map,
  5538. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5539. struct sched_group **sg,
  5540. struct cpumask *tmpmask),
  5541. struct cpumask *covered, struct cpumask *tmpmask)
  5542. {
  5543. struct sched_group *first = NULL, *last = NULL;
  5544. int i;
  5545. cpumask_clear(covered);
  5546. for_each_cpu(i, span) {
  5547. struct sched_group *sg;
  5548. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5549. int j;
  5550. if (cpumask_test_cpu(i, covered))
  5551. continue;
  5552. cpumask_clear(sched_group_cpus(sg));
  5553. sg->cpu_power = 0;
  5554. for_each_cpu(j, span) {
  5555. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5556. continue;
  5557. cpumask_set_cpu(j, covered);
  5558. cpumask_set_cpu(j, sched_group_cpus(sg));
  5559. }
  5560. if (!first)
  5561. first = sg;
  5562. if (last)
  5563. last->next = sg;
  5564. last = sg;
  5565. }
  5566. last->next = first;
  5567. }
  5568. #define SD_NODES_PER_DOMAIN 16
  5569. #ifdef CONFIG_NUMA
  5570. /**
  5571. * find_next_best_node - find the next node to include in a sched_domain
  5572. * @node: node whose sched_domain we're building
  5573. * @used_nodes: nodes already in the sched_domain
  5574. *
  5575. * Find the next node to include in a given scheduling domain. Simply
  5576. * finds the closest node not already in the @used_nodes map.
  5577. *
  5578. * Should use nodemask_t.
  5579. */
  5580. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5581. {
  5582. int i, n, val, min_val, best_node = 0;
  5583. min_val = INT_MAX;
  5584. for (i = 0; i < nr_node_ids; i++) {
  5585. /* Start at @node */
  5586. n = (node + i) % nr_node_ids;
  5587. if (!nr_cpus_node(n))
  5588. continue;
  5589. /* Skip already used nodes */
  5590. if (node_isset(n, *used_nodes))
  5591. continue;
  5592. /* Simple min distance search */
  5593. val = node_distance(node, n);
  5594. if (val < min_val) {
  5595. min_val = val;
  5596. best_node = n;
  5597. }
  5598. }
  5599. node_set(best_node, *used_nodes);
  5600. return best_node;
  5601. }
  5602. /**
  5603. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5604. * @node: node whose cpumask we're constructing
  5605. * @span: resulting cpumask
  5606. *
  5607. * Given a node, construct a good cpumask for its sched_domain to span. It
  5608. * should be one that prevents unnecessary balancing, but also spreads tasks
  5609. * out optimally.
  5610. */
  5611. static void sched_domain_node_span(int node, struct cpumask *span)
  5612. {
  5613. nodemask_t used_nodes;
  5614. int i;
  5615. cpumask_clear(span);
  5616. nodes_clear(used_nodes);
  5617. cpumask_or(span, span, cpumask_of_node(node));
  5618. node_set(node, used_nodes);
  5619. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5620. int next_node = find_next_best_node(node, &used_nodes);
  5621. cpumask_or(span, span, cpumask_of_node(next_node));
  5622. }
  5623. }
  5624. #endif /* CONFIG_NUMA */
  5625. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5626. /*
  5627. * The cpus mask in sched_group and sched_domain hangs off the end.
  5628. *
  5629. * ( See the the comments in include/linux/sched.h:struct sched_group
  5630. * and struct sched_domain. )
  5631. */
  5632. struct static_sched_group {
  5633. struct sched_group sg;
  5634. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5635. };
  5636. struct static_sched_domain {
  5637. struct sched_domain sd;
  5638. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5639. };
  5640. struct s_data {
  5641. #ifdef CONFIG_NUMA
  5642. int sd_allnodes;
  5643. cpumask_var_t domainspan;
  5644. cpumask_var_t covered;
  5645. cpumask_var_t notcovered;
  5646. #endif
  5647. cpumask_var_t nodemask;
  5648. cpumask_var_t this_sibling_map;
  5649. cpumask_var_t this_core_map;
  5650. cpumask_var_t this_book_map;
  5651. cpumask_var_t send_covered;
  5652. cpumask_var_t tmpmask;
  5653. struct sched_group **sched_group_nodes;
  5654. struct root_domain *rd;
  5655. };
  5656. enum s_alloc {
  5657. sa_sched_groups = 0,
  5658. sa_rootdomain,
  5659. sa_tmpmask,
  5660. sa_send_covered,
  5661. sa_this_book_map,
  5662. sa_this_core_map,
  5663. sa_this_sibling_map,
  5664. sa_nodemask,
  5665. sa_sched_group_nodes,
  5666. #ifdef CONFIG_NUMA
  5667. sa_notcovered,
  5668. sa_covered,
  5669. sa_domainspan,
  5670. #endif
  5671. sa_none,
  5672. };
  5673. /*
  5674. * SMT sched-domains:
  5675. */
  5676. #ifdef CONFIG_SCHED_SMT
  5677. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5678. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5679. static int
  5680. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5681. struct sched_group **sg, struct cpumask *unused)
  5682. {
  5683. if (sg)
  5684. *sg = &per_cpu(sched_groups, cpu).sg;
  5685. return cpu;
  5686. }
  5687. #endif /* CONFIG_SCHED_SMT */
  5688. /*
  5689. * multi-core sched-domains:
  5690. */
  5691. #ifdef CONFIG_SCHED_MC
  5692. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5693. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5694. static int
  5695. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5696. struct sched_group **sg, struct cpumask *mask)
  5697. {
  5698. int group;
  5699. #ifdef CONFIG_SCHED_SMT
  5700. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5701. group = cpumask_first(mask);
  5702. #else
  5703. group = cpu;
  5704. #endif
  5705. if (sg)
  5706. *sg = &per_cpu(sched_group_core, group).sg;
  5707. return group;
  5708. }
  5709. #endif /* CONFIG_SCHED_MC */
  5710. /*
  5711. * book sched-domains:
  5712. */
  5713. #ifdef CONFIG_SCHED_BOOK
  5714. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5715. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5716. static int
  5717. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5718. struct sched_group **sg, struct cpumask *mask)
  5719. {
  5720. int group = cpu;
  5721. #ifdef CONFIG_SCHED_MC
  5722. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5723. group = cpumask_first(mask);
  5724. #elif defined(CONFIG_SCHED_SMT)
  5725. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5726. group = cpumask_first(mask);
  5727. #endif
  5728. if (sg)
  5729. *sg = &per_cpu(sched_group_book, group).sg;
  5730. return group;
  5731. }
  5732. #endif /* CONFIG_SCHED_BOOK */
  5733. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5734. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5735. static int
  5736. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5737. struct sched_group **sg, struct cpumask *mask)
  5738. {
  5739. int group;
  5740. #ifdef CONFIG_SCHED_BOOK
  5741. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5742. group = cpumask_first(mask);
  5743. #elif defined(CONFIG_SCHED_MC)
  5744. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5745. group = cpumask_first(mask);
  5746. #elif defined(CONFIG_SCHED_SMT)
  5747. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5748. group = cpumask_first(mask);
  5749. #else
  5750. group = cpu;
  5751. #endif
  5752. if (sg)
  5753. *sg = &per_cpu(sched_group_phys, group).sg;
  5754. return group;
  5755. }
  5756. #ifdef CONFIG_NUMA
  5757. /*
  5758. * The init_sched_build_groups can't handle what we want to do with node
  5759. * groups, so roll our own. Now each node has its own list of groups which
  5760. * gets dynamically allocated.
  5761. */
  5762. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5763. static struct sched_group ***sched_group_nodes_bycpu;
  5764. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5765. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5766. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5767. struct sched_group **sg,
  5768. struct cpumask *nodemask)
  5769. {
  5770. int group;
  5771. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5772. group = cpumask_first(nodemask);
  5773. if (sg)
  5774. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5775. return group;
  5776. }
  5777. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5778. {
  5779. struct sched_group *sg = group_head;
  5780. int j;
  5781. if (!sg)
  5782. return;
  5783. do {
  5784. for_each_cpu(j, sched_group_cpus(sg)) {
  5785. struct sched_domain *sd;
  5786. sd = &per_cpu(phys_domains, j).sd;
  5787. if (j != group_first_cpu(sd->groups)) {
  5788. /*
  5789. * Only add "power" once for each
  5790. * physical package.
  5791. */
  5792. continue;
  5793. }
  5794. sg->cpu_power += sd->groups->cpu_power;
  5795. }
  5796. sg = sg->next;
  5797. } while (sg != group_head);
  5798. }
  5799. static int build_numa_sched_groups(struct s_data *d,
  5800. const struct cpumask *cpu_map, int num)
  5801. {
  5802. struct sched_domain *sd;
  5803. struct sched_group *sg, *prev;
  5804. int n, j;
  5805. cpumask_clear(d->covered);
  5806. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5807. if (cpumask_empty(d->nodemask)) {
  5808. d->sched_group_nodes[num] = NULL;
  5809. goto out;
  5810. }
  5811. sched_domain_node_span(num, d->domainspan);
  5812. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5813. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5814. GFP_KERNEL, num);
  5815. if (!sg) {
  5816. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5817. num);
  5818. return -ENOMEM;
  5819. }
  5820. d->sched_group_nodes[num] = sg;
  5821. for_each_cpu(j, d->nodemask) {
  5822. sd = &per_cpu(node_domains, j).sd;
  5823. sd->groups = sg;
  5824. }
  5825. sg->cpu_power = 0;
  5826. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5827. sg->next = sg;
  5828. cpumask_or(d->covered, d->covered, d->nodemask);
  5829. prev = sg;
  5830. for (j = 0; j < nr_node_ids; j++) {
  5831. n = (num + j) % nr_node_ids;
  5832. cpumask_complement(d->notcovered, d->covered);
  5833. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5834. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5835. if (cpumask_empty(d->tmpmask))
  5836. break;
  5837. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5838. if (cpumask_empty(d->tmpmask))
  5839. continue;
  5840. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5841. GFP_KERNEL, num);
  5842. if (!sg) {
  5843. printk(KERN_WARNING
  5844. "Can not alloc domain group for node %d\n", j);
  5845. return -ENOMEM;
  5846. }
  5847. sg->cpu_power = 0;
  5848. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5849. sg->next = prev->next;
  5850. cpumask_or(d->covered, d->covered, d->tmpmask);
  5851. prev->next = sg;
  5852. prev = sg;
  5853. }
  5854. out:
  5855. return 0;
  5856. }
  5857. #endif /* CONFIG_NUMA */
  5858. #ifdef CONFIG_NUMA
  5859. /* Free memory allocated for various sched_group structures */
  5860. static void free_sched_groups(const struct cpumask *cpu_map,
  5861. struct cpumask *nodemask)
  5862. {
  5863. int cpu, i;
  5864. for_each_cpu(cpu, cpu_map) {
  5865. struct sched_group **sched_group_nodes
  5866. = sched_group_nodes_bycpu[cpu];
  5867. if (!sched_group_nodes)
  5868. continue;
  5869. for (i = 0; i < nr_node_ids; i++) {
  5870. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5871. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5872. if (cpumask_empty(nodemask))
  5873. continue;
  5874. if (sg == NULL)
  5875. continue;
  5876. sg = sg->next;
  5877. next_sg:
  5878. oldsg = sg;
  5879. sg = sg->next;
  5880. kfree(oldsg);
  5881. if (oldsg != sched_group_nodes[i])
  5882. goto next_sg;
  5883. }
  5884. kfree(sched_group_nodes);
  5885. sched_group_nodes_bycpu[cpu] = NULL;
  5886. }
  5887. }
  5888. #else /* !CONFIG_NUMA */
  5889. static void free_sched_groups(const struct cpumask *cpu_map,
  5890. struct cpumask *nodemask)
  5891. {
  5892. }
  5893. #endif /* CONFIG_NUMA */
  5894. /*
  5895. * Initialize sched groups cpu_power.
  5896. *
  5897. * cpu_power indicates the capacity of sched group, which is used while
  5898. * distributing the load between different sched groups in a sched domain.
  5899. * Typically cpu_power for all the groups in a sched domain will be same unless
  5900. * there are asymmetries in the topology. If there are asymmetries, group
  5901. * having more cpu_power will pickup more load compared to the group having
  5902. * less cpu_power.
  5903. */
  5904. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5905. {
  5906. struct sched_domain *child;
  5907. struct sched_group *group;
  5908. long power;
  5909. int weight;
  5910. WARN_ON(!sd || !sd->groups);
  5911. if (cpu != group_first_cpu(sd->groups))
  5912. return;
  5913. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5914. child = sd->child;
  5915. sd->groups->cpu_power = 0;
  5916. if (!child) {
  5917. power = SCHED_LOAD_SCALE;
  5918. weight = cpumask_weight(sched_domain_span(sd));
  5919. /*
  5920. * SMT siblings share the power of a single core.
  5921. * Usually multiple threads get a better yield out of
  5922. * that one core than a single thread would have,
  5923. * reflect that in sd->smt_gain.
  5924. */
  5925. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5926. power *= sd->smt_gain;
  5927. power /= weight;
  5928. power >>= SCHED_LOAD_SHIFT;
  5929. }
  5930. sd->groups->cpu_power += power;
  5931. return;
  5932. }
  5933. /*
  5934. * Add cpu_power of each child group to this groups cpu_power.
  5935. */
  5936. group = child->groups;
  5937. do {
  5938. sd->groups->cpu_power += group->cpu_power;
  5939. group = group->next;
  5940. } while (group != child->groups);
  5941. }
  5942. /*
  5943. * Initializers for schedule domains
  5944. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5945. */
  5946. #ifdef CONFIG_SCHED_DEBUG
  5947. # define SD_INIT_NAME(sd, type) sd->name = #type
  5948. #else
  5949. # define SD_INIT_NAME(sd, type) do { } while (0)
  5950. #endif
  5951. #define SD_INIT(sd, type) sd_init_##type(sd)
  5952. #define SD_INIT_FUNC(type) \
  5953. static noinline void sd_init_##type(struct sched_domain *sd) \
  5954. { \
  5955. memset(sd, 0, sizeof(*sd)); \
  5956. *sd = SD_##type##_INIT; \
  5957. sd->level = SD_LV_##type; \
  5958. SD_INIT_NAME(sd, type); \
  5959. }
  5960. SD_INIT_FUNC(CPU)
  5961. #ifdef CONFIG_NUMA
  5962. SD_INIT_FUNC(ALLNODES)
  5963. SD_INIT_FUNC(NODE)
  5964. #endif
  5965. #ifdef CONFIG_SCHED_SMT
  5966. SD_INIT_FUNC(SIBLING)
  5967. #endif
  5968. #ifdef CONFIG_SCHED_MC
  5969. SD_INIT_FUNC(MC)
  5970. #endif
  5971. #ifdef CONFIG_SCHED_BOOK
  5972. SD_INIT_FUNC(BOOK)
  5973. #endif
  5974. static int default_relax_domain_level = -1;
  5975. static int __init setup_relax_domain_level(char *str)
  5976. {
  5977. unsigned long val;
  5978. val = simple_strtoul(str, NULL, 0);
  5979. if (val < SD_LV_MAX)
  5980. default_relax_domain_level = val;
  5981. return 1;
  5982. }
  5983. __setup("relax_domain_level=", setup_relax_domain_level);
  5984. static void set_domain_attribute(struct sched_domain *sd,
  5985. struct sched_domain_attr *attr)
  5986. {
  5987. int request;
  5988. if (!attr || attr->relax_domain_level < 0) {
  5989. if (default_relax_domain_level < 0)
  5990. return;
  5991. else
  5992. request = default_relax_domain_level;
  5993. } else
  5994. request = attr->relax_domain_level;
  5995. if (request < sd->level) {
  5996. /* turn off idle balance on this domain */
  5997. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5998. } else {
  5999. /* turn on idle balance on this domain */
  6000. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6001. }
  6002. }
  6003. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6004. const struct cpumask *cpu_map)
  6005. {
  6006. switch (what) {
  6007. case sa_sched_groups:
  6008. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6009. d->sched_group_nodes = NULL;
  6010. case sa_rootdomain:
  6011. free_rootdomain(d->rd); /* fall through */
  6012. case sa_tmpmask:
  6013. free_cpumask_var(d->tmpmask); /* fall through */
  6014. case sa_send_covered:
  6015. free_cpumask_var(d->send_covered); /* fall through */
  6016. case sa_this_book_map:
  6017. free_cpumask_var(d->this_book_map); /* fall through */
  6018. case sa_this_core_map:
  6019. free_cpumask_var(d->this_core_map); /* fall through */
  6020. case sa_this_sibling_map:
  6021. free_cpumask_var(d->this_sibling_map); /* fall through */
  6022. case sa_nodemask:
  6023. free_cpumask_var(d->nodemask); /* fall through */
  6024. case sa_sched_group_nodes:
  6025. #ifdef CONFIG_NUMA
  6026. kfree(d->sched_group_nodes); /* fall through */
  6027. case sa_notcovered:
  6028. free_cpumask_var(d->notcovered); /* fall through */
  6029. case sa_covered:
  6030. free_cpumask_var(d->covered); /* fall through */
  6031. case sa_domainspan:
  6032. free_cpumask_var(d->domainspan); /* fall through */
  6033. #endif
  6034. case sa_none:
  6035. break;
  6036. }
  6037. }
  6038. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6039. const struct cpumask *cpu_map)
  6040. {
  6041. #ifdef CONFIG_NUMA
  6042. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6043. return sa_none;
  6044. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6045. return sa_domainspan;
  6046. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6047. return sa_covered;
  6048. /* Allocate the per-node list of sched groups */
  6049. d->sched_group_nodes = kcalloc(nr_node_ids,
  6050. sizeof(struct sched_group *), GFP_KERNEL);
  6051. if (!d->sched_group_nodes) {
  6052. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6053. return sa_notcovered;
  6054. }
  6055. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6056. #endif
  6057. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6058. return sa_sched_group_nodes;
  6059. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6060. return sa_nodemask;
  6061. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6062. return sa_this_sibling_map;
  6063. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6064. return sa_this_core_map;
  6065. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6066. return sa_this_book_map;
  6067. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6068. return sa_send_covered;
  6069. d->rd = alloc_rootdomain();
  6070. if (!d->rd) {
  6071. printk(KERN_WARNING "Cannot alloc root domain\n");
  6072. return sa_tmpmask;
  6073. }
  6074. return sa_rootdomain;
  6075. }
  6076. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6077. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6078. {
  6079. struct sched_domain *sd = NULL;
  6080. #ifdef CONFIG_NUMA
  6081. struct sched_domain *parent;
  6082. d->sd_allnodes = 0;
  6083. if (cpumask_weight(cpu_map) >
  6084. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6085. sd = &per_cpu(allnodes_domains, i).sd;
  6086. SD_INIT(sd, ALLNODES);
  6087. set_domain_attribute(sd, attr);
  6088. cpumask_copy(sched_domain_span(sd), cpu_map);
  6089. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6090. d->sd_allnodes = 1;
  6091. }
  6092. parent = sd;
  6093. sd = &per_cpu(node_domains, i).sd;
  6094. SD_INIT(sd, NODE);
  6095. set_domain_attribute(sd, attr);
  6096. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6097. sd->parent = parent;
  6098. if (parent)
  6099. parent->child = sd;
  6100. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6101. #endif
  6102. return sd;
  6103. }
  6104. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6105. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6106. struct sched_domain *parent, int i)
  6107. {
  6108. struct sched_domain *sd;
  6109. sd = &per_cpu(phys_domains, i).sd;
  6110. SD_INIT(sd, CPU);
  6111. set_domain_attribute(sd, attr);
  6112. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6113. sd->parent = parent;
  6114. if (parent)
  6115. parent->child = sd;
  6116. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6117. return sd;
  6118. }
  6119. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6120. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6121. struct sched_domain *parent, int i)
  6122. {
  6123. struct sched_domain *sd = parent;
  6124. #ifdef CONFIG_SCHED_BOOK
  6125. sd = &per_cpu(book_domains, i).sd;
  6126. SD_INIT(sd, BOOK);
  6127. set_domain_attribute(sd, attr);
  6128. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6129. sd->parent = parent;
  6130. parent->child = sd;
  6131. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6132. #endif
  6133. return sd;
  6134. }
  6135. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6136. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6137. struct sched_domain *parent, int i)
  6138. {
  6139. struct sched_domain *sd = parent;
  6140. #ifdef CONFIG_SCHED_MC
  6141. sd = &per_cpu(core_domains, i).sd;
  6142. SD_INIT(sd, MC);
  6143. set_domain_attribute(sd, attr);
  6144. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6145. sd->parent = parent;
  6146. parent->child = sd;
  6147. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6148. #endif
  6149. return sd;
  6150. }
  6151. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6152. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6153. struct sched_domain *parent, int i)
  6154. {
  6155. struct sched_domain *sd = parent;
  6156. #ifdef CONFIG_SCHED_SMT
  6157. sd = &per_cpu(cpu_domains, i).sd;
  6158. SD_INIT(sd, SIBLING);
  6159. set_domain_attribute(sd, attr);
  6160. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6161. sd->parent = parent;
  6162. parent->child = sd;
  6163. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6164. #endif
  6165. return sd;
  6166. }
  6167. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6168. const struct cpumask *cpu_map, int cpu)
  6169. {
  6170. switch (l) {
  6171. #ifdef CONFIG_SCHED_SMT
  6172. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6173. cpumask_and(d->this_sibling_map, cpu_map,
  6174. topology_thread_cpumask(cpu));
  6175. if (cpu == cpumask_first(d->this_sibling_map))
  6176. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6177. &cpu_to_cpu_group,
  6178. d->send_covered, d->tmpmask);
  6179. break;
  6180. #endif
  6181. #ifdef CONFIG_SCHED_MC
  6182. case SD_LV_MC: /* set up multi-core groups */
  6183. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6184. if (cpu == cpumask_first(d->this_core_map))
  6185. init_sched_build_groups(d->this_core_map, cpu_map,
  6186. &cpu_to_core_group,
  6187. d->send_covered, d->tmpmask);
  6188. break;
  6189. #endif
  6190. #ifdef CONFIG_SCHED_BOOK
  6191. case SD_LV_BOOK: /* set up book groups */
  6192. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6193. if (cpu == cpumask_first(d->this_book_map))
  6194. init_sched_build_groups(d->this_book_map, cpu_map,
  6195. &cpu_to_book_group,
  6196. d->send_covered, d->tmpmask);
  6197. break;
  6198. #endif
  6199. case SD_LV_CPU: /* set up physical groups */
  6200. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6201. if (!cpumask_empty(d->nodemask))
  6202. init_sched_build_groups(d->nodemask, cpu_map,
  6203. &cpu_to_phys_group,
  6204. d->send_covered, d->tmpmask);
  6205. break;
  6206. #ifdef CONFIG_NUMA
  6207. case SD_LV_ALLNODES:
  6208. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6209. d->send_covered, d->tmpmask);
  6210. break;
  6211. #endif
  6212. default:
  6213. break;
  6214. }
  6215. }
  6216. /*
  6217. * Build sched domains for a given set of cpus and attach the sched domains
  6218. * to the individual cpus
  6219. */
  6220. static int __build_sched_domains(const struct cpumask *cpu_map,
  6221. struct sched_domain_attr *attr)
  6222. {
  6223. enum s_alloc alloc_state = sa_none;
  6224. struct s_data d;
  6225. struct sched_domain *sd;
  6226. int i;
  6227. #ifdef CONFIG_NUMA
  6228. d.sd_allnodes = 0;
  6229. #endif
  6230. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6231. if (alloc_state != sa_rootdomain)
  6232. goto error;
  6233. alloc_state = sa_sched_groups;
  6234. /*
  6235. * Set up domains for cpus specified by the cpu_map.
  6236. */
  6237. for_each_cpu(i, cpu_map) {
  6238. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6239. cpu_map);
  6240. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6241. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6242. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6243. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6244. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6245. }
  6246. for_each_cpu(i, cpu_map) {
  6247. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6248. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6249. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6250. }
  6251. /* Set up physical groups */
  6252. for (i = 0; i < nr_node_ids; i++)
  6253. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6254. #ifdef CONFIG_NUMA
  6255. /* Set up node groups */
  6256. if (d.sd_allnodes)
  6257. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6258. for (i = 0; i < nr_node_ids; i++)
  6259. if (build_numa_sched_groups(&d, cpu_map, i))
  6260. goto error;
  6261. #endif
  6262. /* Calculate CPU power for physical packages and nodes */
  6263. #ifdef CONFIG_SCHED_SMT
  6264. for_each_cpu(i, cpu_map) {
  6265. sd = &per_cpu(cpu_domains, i).sd;
  6266. init_sched_groups_power(i, sd);
  6267. }
  6268. #endif
  6269. #ifdef CONFIG_SCHED_MC
  6270. for_each_cpu(i, cpu_map) {
  6271. sd = &per_cpu(core_domains, i).sd;
  6272. init_sched_groups_power(i, sd);
  6273. }
  6274. #endif
  6275. #ifdef CONFIG_SCHED_BOOK
  6276. for_each_cpu(i, cpu_map) {
  6277. sd = &per_cpu(book_domains, i).sd;
  6278. init_sched_groups_power(i, sd);
  6279. }
  6280. #endif
  6281. for_each_cpu(i, cpu_map) {
  6282. sd = &per_cpu(phys_domains, i).sd;
  6283. init_sched_groups_power(i, sd);
  6284. }
  6285. #ifdef CONFIG_NUMA
  6286. for (i = 0; i < nr_node_ids; i++)
  6287. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6288. if (d.sd_allnodes) {
  6289. struct sched_group *sg;
  6290. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6291. d.tmpmask);
  6292. init_numa_sched_groups_power(sg);
  6293. }
  6294. #endif
  6295. /* Attach the domains */
  6296. for_each_cpu(i, cpu_map) {
  6297. #ifdef CONFIG_SCHED_SMT
  6298. sd = &per_cpu(cpu_domains, i).sd;
  6299. #elif defined(CONFIG_SCHED_MC)
  6300. sd = &per_cpu(core_domains, i).sd;
  6301. #elif defined(CONFIG_SCHED_BOOK)
  6302. sd = &per_cpu(book_domains, i).sd;
  6303. #else
  6304. sd = &per_cpu(phys_domains, i).sd;
  6305. #endif
  6306. cpu_attach_domain(sd, d.rd, i);
  6307. }
  6308. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6309. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6310. return 0;
  6311. error:
  6312. __free_domain_allocs(&d, alloc_state, cpu_map);
  6313. return -ENOMEM;
  6314. }
  6315. static int build_sched_domains(const struct cpumask *cpu_map)
  6316. {
  6317. return __build_sched_domains(cpu_map, NULL);
  6318. }
  6319. static cpumask_var_t *doms_cur; /* current sched domains */
  6320. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6321. static struct sched_domain_attr *dattr_cur;
  6322. /* attribues of custom domains in 'doms_cur' */
  6323. /*
  6324. * Special case: If a kmalloc of a doms_cur partition (array of
  6325. * cpumask) fails, then fallback to a single sched domain,
  6326. * as determined by the single cpumask fallback_doms.
  6327. */
  6328. static cpumask_var_t fallback_doms;
  6329. /*
  6330. * arch_update_cpu_topology lets virtualized architectures update the
  6331. * cpu core maps. It is supposed to return 1 if the topology changed
  6332. * or 0 if it stayed the same.
  6333. */
  6334. int __attribute__((weak)) arch_update_cpu_topology(void)
  6335. {
  6336. return 0;
  6337. }
  6338. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6339. {
  6340. int i;
  6341. cpumask_var_t *doms;
  6342. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6343. if (!doms)
  6344. return NULL;
  6345. for (i = 0; i < ndoms; i++) {
  6346. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6347. free_sched_domains(doms, i);
  6348. return NULL;
  6349. }
  6350. }
  6351. return doms;
  6352. }
  6353. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6354. {
  6355. unsigned int i;
  6356. for (i = 0; i < ndoms; i++)
  6357. free_cpumask_var(doms[i]);
  6358. kfree(doms);
  6359. }
  6360. /*
  6361. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6362. * For now this just excludes isolated cpus, but could be used to
  6363. * exclude other special cases in the future.
  6364. */
  6365. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6366. {
  6367. int err;
  6368. arch_update_cpu_topology();
  6369. ndoms_cur = 1;
  6370. doms_cur = alloc_sched_domains(ndoms_cur);
  6371. if (!doms_cur)
  6372. doms_cur = &fallback_doms;
  6373. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6374. dattr_cur = NULL;
  6375. err = build_sched_domains(doms_cur[0]);
  6376. register_sched_domain_sysctl();
  6377. return err;
  6378. }
  6379. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6380. struct cpumask *tmpmask)
  6381. {
  6382. free_sched_groups(cpu_map, tmpmask);
  6383. }
  6384. /*
  6385. * Detach sched domains from a group of cpus specified in cpu_map
  6386. * These cpus will now be attached to the NULL domain
  6387. */
  6388. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6389. {
  6390. /* Save because hotplug lock held. */
  6391. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6392. int i;
  6393. for_each_cpu(i, cpu_map)
  6394. cpu_attach_domain(NULL, &def_root_domain, i);
  6395. synchronize_sched();
  6396. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6397. }
  6398. /* handle null as "default" */
  6399. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6400. struct sched_domain_attr *new, int idx_new)
  6401. {
  6402. struct sched_domain_attr tmp;
  6403. /* fast path */
  6404. if (!new && !cur)
  6405. return 1;
  6406. tmp = SD_ATTR_INIT;
  6407. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6408. new ? (new + idx_new) : &tmp,
  6409. sizeof(struct sched_domain_attr));
  6410. }
  6411. /*
  6412. * Partition sched domains as specified by the 'ndoms_new'
  6413. * cpumasks in the array doms_new[] of cpumasks. This compares
  6414. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6415. * It destroys each deleted domain and builds each new domain.
  6416. *
  6417. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6418. * The masks don't intersect (don't overlap.) We should setup one
  6419. * sched domain for each mask. CPUs not in any of the cpumasks will
  6420. * not be load balanced. If the same cpumask appears both in the
  6421. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6422. * it as it is.
  6423. *
  6424. * The passed in 'doms_new' should be allocated using
  6425. * alloc_sched_domains. This routine takes ownership of it and will
  6426. * free_sched_domains it when done with it. If the caller failed the
  6427. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6428. * and partition_sched_domains() will fallback to the single partition
  6429. * 'fallback_doms', it also forces the domains to be rebuilt.
  6430. *
  6431. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6432. * ndoms_new == 0 is a special case for destroying existing domains,
  6433. * and it will not create the default domain.
  6434. *
  6435. * Call with hotplug lock held
  6436. */
  6437. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6438. struct sched_domain_attr *dattr_new)
  6439. {
  6440. int i, j, n;
  6441. int new_topology;
  6442. mutex_lock(&sched_domains_mutex);
  6443. /* always unregister in case we don't destroy any domains */
  6444. unregister_sched_domain_sysctl();
  6445. /* Let architecture update cpu core mappings. */
  6446. new_topology = arch_update_cpu_topology();
  6447. n = doms_new ? ndoms_new : 0;
  6448. /* Destroy deleted domains */
  6449. for (i = 0; i < ndoms_cur; i++) {
  6450. for (j = 0; j < n && !new_topology; j++) {
  6451. if (cpumask_equal(doms_cur[i], doms_new[j])
  6452. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6453. goto match1;
  6454. }
  6455. /* no match - a current sched domain not in new doms_new[] */
  6456. detach_destroy_domains(doms_cur[i]);
  6457. match1:
  6458. ;
  6459. }
  6460. if (doms_new == NULL) {
  6461. ndoms_cur = 0;
  6462. doms_new = &fallback_doms;
  6463. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6464. WARN_ON_ONCE(dattr_new);
  6465. }
  6466. /* Build new domains */
  6467. for (i = 0; i < ndoms_new; i++) {
  6468. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6469. if (cpumask_equal(doms_new[i], doms_cur[j])
  6470. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6471. goto match2;
  6472. }
  6473. /* no match - add a new doms_new */
  6474. __build_sched_domains(doms_new[i],
  6475. dattr_new ? dattr_new + i : NULL);
  6476. match2:
  6477. ;
  6478. }
  6479. /* Remember the new sched domains */
  6480. if (doms_cur != &fallback_doms)
  6481. free_sched_domains(doms_cur, ndoms_cur);
  6482. kfree(dattr_cur); /* kfree(NULL) is safe */
  6483. doms_cur = doms_new;
  6484. dattr_cur = dattr_new;
  6485. ndoms_cur = ndoms_new;
  6486. register_sched_domain_sysctl();
  6487. mutex_unlock(&sched_domains_mutex);
  6488. }
  6489. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6490. static void arch_reinit_sched_domains(void)
  6491. {
  6492. get_online_cpus();
  6493. /* Destroy domains first to force the rebuild */
  6494. partition_sched_domains(0, NULL, NULL);
  6495. rebuild_sched_domains();
  6496. put_online_cpus();
  6497. }
  6498. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6499. {
  6500. unsigned int level = 0;
  6501. if (sscanf(buf, "%u", &level) != 1)
  6502. return -EINVAL;
  6503. /*
  6504. * level is always be positive so don't check for
  6505. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6506. * What happens on 0 or 1 byte write,
  6507. * need to check for count as well?
  6508. */
  6509. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6510. return -EINVAL;
  6511. if (smt)
  6512. sched_smt_power_savings = level;
  6513. else
  6514. sched_mc_power_savings = level;
  6515. arch_reinit_sched_domains();
  6516. return count;
  6517. }
  6518. #ifdef CONFIG_SCHED_MC
  6519. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6520. struct sysdev_class_attribute *attr,
  6521. char *page)
  6522. {
  6523. return sprintf(page, "%u\n", sched_mc_power_savings);
  6524. }
  6525. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6526. struct sysdev_class_attribute *attr,
  6527. const char *buf, size_t count)
  6528. {
  6529. return sched_power_savings_store(buf, count, 0);
  6530. }
  6531. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6532. sched_mc_power_savings_show,
  6533. sched_mc_power_savings_store);
  6534. #endif
  6535. #ifdef CONFIG_SCHED_SMT
  6536. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6537. struct sysdev_class_attribute *attr,
  6538. char *page)
  6539. {
  6540. return sprintf(page, "%u\n", sched_smt_power_savings);
  6541. }
  6542. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6543. struct sysdev_class_attribute *attr,
  6544. const char *buf, size_t count)
  6545. {
  6546. return sched_power_savings_store(buf, count, 1);
  6547. }
  6548. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6549. sched_smt_power_savings_show,
  6550. sched_smt_power_savings_store);
  6551. #endif
  6552. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6553. {
  6554. int err = 0;
  6555. #ifdef CONFIG_SCHED_SMT
  6556. if (smt_capable())
  6557. err = sysfs_create_file(&cls->kset.kobj,
  6558. &attr_sched_smt_power_savings.attr);
  6559. #endif
  6560. #ifdef CONFIG_SCHED_MC
  6561. if (!err && mc_capable())
  6562. err = sysfs_create_file(&cls->kset.kobj,
  6563. &attr_sched_mc_power_savings.attr);
  6564. #endif
  6565. return err;
  6566. }
  6567. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6568. /*
  6569. * Update cpusets according to cpu_active mask. If cpusets are
  6570. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6571. * around partition_sched_domains().
  6572. */
  6573. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6574. void *hcpu)
  6575. {
  6576. switch (action & ~CPU_TASKS_FROZEN) {
  6577. case CPU_ONLINE:
  6578. case CPU_DOWN_FAILED:
  6579. cpuset_update_active_cpus();
  6580. return NOTIFY_OK;
  6581. default:
  6582. return NOTIFY_DONE;
  6583. }
  6584. }
  6585. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6586. void *hcpu)
  6587. {
  6588. switch (action & ~CPU_TASKS_FROZEN) {
  6589. case CPU_DOWN_PREPARE:
  6590. cpuset_update_active_cpus();
  6591. return NOTIFY_OK;
  6592. default:
  6593. return NOTIFY_DONE;
  6594. }
  6595. }
  6596. static int update_runtime(struct notifier_block *nfb,
  6597. unsigned long action, void *hcpu)
  6598. {
  6599. int cpu = (int)(long)hcpu;
  6600. switch (action) {
  6601. case CPU_DOWN_PREPARE:
  6602. case CPU_DOWN_PREPARE_FROZEN:
  6603. disable_runtime(cpu_rq(cpu));
  6604. return NOTIFY_OK;
  6605. case CPU_DOWN_FAILED:
  6606. case CPU_DOWN_FAILED_FROZEN:
  6607. case CPU_ONLINE:
  6608. case CPU_ONLINE_FROZEN:
  6609. enable_runtime(cpu_rq(cpu));
  6610. return NOTIFY_OK;
  6611. default:
  6612. return NOTIFY_DONE;
  6613. }
  6614. }
  6615. void __init sched_init_smp(void)
  6616. {
  6617. cpumask_var_t non_isolated_cpus;
  6618. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6619. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6620. #if defined(CONFIG_NUMA)
  6621. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6622. GFP_KERNEL);
  6623. BUG_ON(sched_group_nodes_bycpu == NULL);
  6624. #endif
  6625. get_online_cpus();
  6626. mutex_lock(&sched_domains_mutex);
  6627. arch_init_sched_domains(cpu_active_mask);
  6628. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6629. if (cpumask_empty(non_isolated_cpus))
  6630. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6631. mutex_unlock(&sched_domains_mutex);
  6632. put_online_cpus();
  6633. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6634. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6635. /* RT runtime code needs to handle some hotplug events */
  6636. hotcpu_notifier(update_runtime, 0);
  6637. init_hrtick();
  6638. /* Move init over to a non-isolated CPU */
  6639. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6640. BUG();
  6641. sched_init_granularity();
  6642. free_cpumask_var(non_isolated_cpus);
  6643. init_sched_rt_class();
  6644. }
  6645. #else
  6646. void __init sched_init_smp(void)
  6647. {
  6648. sched_init_granularity();
  6649. }
  6650. #endif /* CONFIG_SMP */
  6651. const_debug unsigned int sysctl_timer_migration = 1;
  6652. int in_sched_functions(unsigned long addr)
  6653. {
  6654. return in_lock_functions(addr) ||
  6655. (addr >= (unsigned long)__sched_text_start
  6656. && addr < (unsigned long)__sched_text_end);
  6657. }
  6658. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6659. {
  6660. cfs_rq->tasks_timeline = RB_ROOT;
  6661. INIT_LIST_HEAD(&cfs_rq->tasks);
  6662. #ifdef CONFIG_FAIR_GROUP_SCHED
  6663. cfs_rq->rq = rq;
  6664. #endif
  6665. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6666. }
  6667. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6668. {
  6669. struct rt_prio_array *array;
  6670. int i;
  6671. array = &rt_rq->active;
  6672. for (i = 0; i < MAX_RT_PRIO; i++) {
  6673. INIT_LIST_HEAD(array->queue + i);
  6674. __clear_bit(i, array->bitmap);
  6675. }
  6676. /* delimiter for bitsearch: */
  6677. __set_bit(MAX_RT_PRIO, array->bitmap);
  6678. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6679. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6680. #ifdef CONFIG_SMP
  6681. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6682. #endif
  6683. #endif
  6684. #ifdef CONFIG_SMP
  6685. rt_rq->rt_nr_migratory = 0;
  6686. rt_rq->overloaded = 0;
  6687. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6688. #endif
  6689. rt_rq->rt_time = 0;
  6690. rt_rq->rt_throttled = 0;
  6691. rt_rq->rt_runtime = 0;
  6692. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6693. #ifdef CONFIG_RT_GROUP_SCHED
  6694. rt_rq->rt_nr_boosted = 0;
  6695. rt_rq->rq = rq;
  6696. #endif
  6697. }
  6698. #ifdef CONFIG_FAIR_GROUP_SCHED
  6699. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6700. struct sched_entity *se, int cpu,
  6701. struct sched_entity *parent)
  6702. {
  6703. struct rq *rq = cpu_rq(cpu);
  6704. tg->cfs_rq[cpu] = cfs_rq;
  6705. init_cfs_rq(cfs_rq, rq);
  6706. cfs_rq->tg = tg;
  6707. tg->se[cpu] = se;
  6708. /* se could be NULL for root_task_group */
  6709. if (!se)
  6710. return;
  6711. if (!parent)
  6712. se->cfs_rq = &rq->cfs;
  6713. else
  6714. se->cfs_rq = parent->my_q;
  6715. se->my_q = cfs_rq;
  6716. update_load_set(&se->load, 0);
  6717. se->parent = parent;
  6718. }
  6719. #endif
  6720. #ifdef CONFIG_RT_GROUP_SCHED
  6721. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6722. struct sched_rt_entity *rt_se, int cpu,
  6723. struct sched_rt_entity *parent)
  6724. {
  6725. struct rq *rq = cpu_rq(cpu);
  6726. tg->rt_rq[cpu] = rt_rq;
  6727. init_rt_rq(rt_rq, rq);
  6728. rt_rq->tg = tg;
  6729. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6730. tg->rt_se[cpu] = rt_se;
  6731. if (!rt_se)
  6732. return;
  6733. if (!parent)
  6734. rt_se->rt_rq = &rq->rt;
  6735. else
  6736. rt_se->rt_rq = parent->my_q;
  6737. rt_se->my_q = rt_rq;
  6738. rt_se->parent = parent;
  6739. INIT_LIST_HEAD(&rt_se->run_list);
  6740. }
  6741. #endif
  6742. void __init sched_init(void)
  6743. {
  6744. int i, j;
  6745. unsigned long alloc_size = 0, ptr;
  6746. #ifdef CONFIG_FAIR_GROUP_SCHED
  6747. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6748. #endif
  6749. #ifdef CONFIG_RT_GROUP_SCHED
  6750. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6751. #endif
  6752. #ifdef CONFIG_CPUMASK_OFFSTACK
  6753. alloc_size += num_possible_cpus() * cpumask_size();
  6754. #endif
  6755. if (alloc_size) {
  6756. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6757. #ifdef CONFIG_FAIR_GROUP_SCHED
  6758. root_task_group.se = (struct sched_entity **)ptr;
  6759. ptr += nr_cpu_ids * sizeof(void **);
  6760. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6761. ptr += nr_cpu_ids * sizeof(void **);
  6762. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6763. #ifdef CONFIG_RT_GROUP_SCHED
  6764. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6765. ptr += nr_cpu_ids * sizeof(void **);
  6766. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6767. ptr += nr_cpu_ids * sizeof(void **);
  6768. #endif /* CONFIG_RT_GROUP_SCHED */
  6769. #ifdef CONFIG_CPUMASK_OFFSTACK
  6770. for_each_possible_cpu(i) {
  6771. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6772. ptr += cpumask_size();
  6773. }
  6774. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6775. }
  6776. #ifdef CONFIG_SMP
  6777. init_defrootdomain();
  6778. #endif
  6779. init_rt_bandwidth(&def_rt_bandwidth,
  6780. global_rt_period(), global_rt_runtime());
  6781. #ifdef CONFIG_RT_GROUP_SCHED
  6782. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6783. global_rt_period(), global_rt_runtime());
  6784. #endif /* CONFIG_RT_GROUP_SCHED */
  6785. #ifdef CONFIG_CGROUP_SCHED
  6786. list_add(&root_task_group.list, &task_groups);
  6787. INIT_LIST_HEAD(&root_task_group.children);
  6788. autogroup_init(&init_task);
  6789. #endif /* CONFIG_CGROUP_SCHED */
  6790. for_each_possible_cpu(i) {
  6791. struct rq *rq;
  6792. rq = cpu_rq(i);
  6793. raw_spin_lock_init(&rq->lock);
  6794. rq->nr_running = 0;
  6795. rq->calc_load_active = 0;
  6796. rq->calc_load_update = jiffies + LOAD_FREQ;
  6797. init_cfs_rq(&rq->cfs, rq);
  6798. init_rt_rq(&rq->rt, rq);
  6799. #ifdef CONFIG_FAIR_GROUP_SCHED
  6800. root_task_group.shares = root_task_group_load;
  6801. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6802. /*
  6803. * How much cpu bandwidth does root_task_group get?
  6804. *
  6805. * In case of task-groups formed thr' the cgroup filesystem, it
  6806. * gets 100% of the cpu resources in the system. This overall
  6807. * system cpu resource is divided among the tasks of
  6808. * root_task_group and its child task-groups in a fair manner,
  6809. * based on each entity's (task or task-group's) weight
  6810. * (se->load.weight).
  6811. *
  6812. * In other words, if root_task_group has 10 tasks of weight
  6813. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6814. * then A0's share of the cpu resource is:
  6815. *
  6816. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6817. *
  6818. * We achieve this by letting root_task_group's tasks sit
  6819. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6820. */
  6821. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6822. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6823. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6824. #ifdef CONFIG_RT_GROUP_SCHED
  6825. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6826. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6827. #endif
  6828. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6829. rq->cpu_load[j] = 0;
  6830. rq->last_load_update_tick = jiffies;
  6831. #ifdef CONFIG_SMP
  6832. rq->sd = NULL;
  6833. rq->rd = NULL;
  6834. rq->cpu_power = SCHED_LOAD_SCALE;
  6835. rq->post_schedule = 0;
  6836. rq->active_balance = 0;
  6837. rq->next_balance = jiffies;
  6838. rq->push_cpu = 0;
  6839. rq->cpu = i;
  6840. rq->online = 0;
  6841. rq->idle_stamp = 0;
  6842. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6843. rq_attach_root(rq, &def_root_domain);
  6844. #ifdef CONFIG_NO_HZ
  6845. rq->nohz_balance_kick = 0;
  6846. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6847. #endif
  6848. #endif
  6849. init_rq_hrtick(rq);
  6850. atomic_set(&rq->nr_iowait, 0);
  6851. }
  6852. set_load_weight(&init_task);
  6853. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6854. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6855. #endif
  6856. #ifdef CONFIG_SMP
  6857. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6858. #endif
  6859. #ifdef CONFIG_RT_MUTEXES
  6860. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6861. #endif
  6862. /*
  6863. * The boot idle thread does lazy MMU switching as well:
  6864. */
  6865. atomic_inc(&init_mm.mm_count);
  6866. enter_lazy_tlb(&init_mm, current);
  6867. /*
  6868. * Make us the idle thread. Technically, schedule() should not be
  6869. * called from this thread, however somewhere below it might be,
  6870. * but because we are the idle thread, we just pick up running again
  6871. * when this runqueue becomes "idle".
  6872. */
  6873. init_idle(current, smp_processor_id());
  6874. calc_load_update = jiffies + LOAD_FREQ;
  6875. /*
  6876. * During early bootup we pretend to be a normal task:
  6877. */
  6878. current->sched_class = &fair_sched_class;
  6879. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6880. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6881. #ifdef CONFIG_SMP
  6882. #ifdef CONFIG_NO_HZ
  6883. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6884. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6885. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6886. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6887. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6888. #endif
  6889. /* May be allocated at isolcpus cmdline parse time */
  6890. if (cpu_isolated_map == NULL)
  6891. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6892. #endif /* SMP */
  6893. scheduler_running = 1;
  6894. }
  6895. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6896. static inline int preempt_count_equals(int preempt_offset)
  6897. {
  6898. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6899. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6900. }
  6901. void __might_sleep(const char *file, int line, int preempt_offset)
  6902. {
  6903. #ifdef in_atomic
  6904. static unsigned long prev_jiffy; /* ratelimiting */
  6905. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6906. system_state != SYSTEM_RUNNING || oops_in_progress)
  6907. return;
  6908. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6909. return;
  6910. prev_jiffy = jiffies;
  6911. printk(KERN_ERR
  6912. "BUG: sleeping function called from invalid context at %s:%d\n",
  6913. file, line);
  6914. printk(KERN_ERR
  6915. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6916. in_atomic(), irqs_disabled(),
  6917. current->pid, current->comm);
  6918. debug_show_held_locks(current);
  6919. if (irqs_disabled())
  6920. print_irqtrace_events(current);
  6921. dump_stack();
  6922. #endif
  6923. }
  6924. EXPORT_SYMBOL(__might_sleep);
  6925. #endif
  6926. #ifdef CONFIG_MAGIC_SYSRQ
  6927. static void normalize_task(struct rq *rq, struct task_struct *p)
  6928. {
  6929. int on_rq;
  6930. on_rq = p->se.on_rq;
  6931. if (on_rq)
  6932. deactivate_task(rq, p, 0);
  6933. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6934. if (on_rq) {
  6935. activate_task(rq, p, 0);
  6936. resched_task(rq->curr);
  6937. }
  6938. }
  6939. void normalize_rt_tasks(void)
  6940. {
  6941. struct task_struct *g, *p;
  6942. unsigned long flags;
  6943. struct rq *rq;
  6944. read_lock_irqsave(&tasklist_lock, flags);
  6945. do_each_thread(g, p) {
  6946. /*
  6947. * Only normalize user tasks:
  6948. */
  6949. if (!p->mm)
  6950. continue;
  6951. p->se.exec_start = 0;
  6952. #ifdef CONFIG_SCHEDSTATS
  6953. p->se.statistics.wait_start = 0;
  6954. p->se.statistics.sleep_start = 0;
  6955. p->se.statistics.block_start = 0;
  6956. #endif
  6957. if (!rt_task(p)) {
  6958. /*
  6959. * Renice negative nice level userspace
  6960. * tasks back to 0:
  6961. */
  6962. if (TASK_NICE(p) < 0 && p->mm)
  6963. set_user_nice(p, 0);
  6964. continue;
  6965. }
  6966. raw_spin_lock(&p->pi_lock);
  6967. rq = __task_rq_lock(p);
  6968. normalize_task(rq, p);
  6969. __task_rq_unlock(rq);
  6970. raw_spin_unlock(&p->pi_lock);
  6971. } while_each_thread(g, p);
  6972. read_unlock_irqrestore(&tasklist_lock, flags);
  6973. }
  6974. #endif /* CONFIG_MAGIC_SYSRQ */
  6975. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6976. /*
  6977. * These functions are only useful for the IA64 MCA handling, or kdb.
  6978. *
  6979. * They can only be called when the whole system has been
  6980. * stopped - every CPU needs to be quiescent, and no scheduling
  6981. * activity can take place. Using them for anything else would
  6982. * be a serious bug, and as a result, they aren't even visible
  6983. * under any other configuration.
  6984. */
  6985. /**
  6986. * curr_task - return the current task for a given cpu.
  6987. * @cpu: the processor in question.
  6988. *
  6989. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6990. */
  6991. struct task_struct *curr_task(int cpu)
  6992. {
  6993. return cpu_curr(cpu);
  6994. }
  6995. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6996. #ifdef CONFIG_IA64
  6997. /**
  6998. * set_curr_task - set the current task for a given cpu.
  6999. * @cpu: the processor in question.
  7000. * @p: the task pointer to set.
  7001. *
  7002. * Description: This function must only be used when non-maskable interrupts
  7003. * are serviced on a separate stack. It allows the architecture to switch the
  7004. * notion of the current task on a cpu in a non-blocking manner. This function
  7005. * must be called with all CPU's synchronized, and interrupts disabled, the
  7006. * and caller must save the original value of the current task (see
  7007. * curr_task() above) and restore that value before reenabling interrupts and
  7008. * re-starting the system.
  7009. *
  7010. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7011. */
  7012. void set_curr_task(int cpu, struct task_struct *p)
  7013. {
  7014. cpu_curr(cpu) = p;
  7015. }
  7016. #endif
  7017. #ifdef CONFIG_FAIR_GROUP_SCHED
  7018. static void free_fair_sched_group(struct task_group *tg)
  7019. {
  7020. int i;
  7021. for_each_possible_cpu(i) {
  7022. if (tg->cfs_rq)
  7023. kfree(tg->cfs_rq[i]);
  7024. if (tg->se)
  7025. kfree(tg->se[i]);
  7026. }
  7027. kfree(tg->cfs_rq);
  7028. kfree(tg->se);
  7029. }
  7030. static
  7031. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7032. {
  7033. struct cfs_rq *cfs_rq;
  7034. struct sched_entity *se;
  7035. struct rq *rq;
  7036. int i;
  7037. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7038. if (!tg->cfs_rq)
  7039. goto err;
  7040. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7041. if (!tg->se)
  7042. goto err;
  7043. tg->shares = NICE_0_LOAD;
  7044. for_each_possible_cpu(i) {
  7045. rq = cpu_rq(i);
  7046. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7047. GFP_KERNEL, cpu_to_node(i));
  7048. if (!cfs_rq)
  7049. goto err;
  7050. se = kzalloc_node(sizeof(struct sched_entity),
  7051. GFP_KERNEL, cpu_to_node(i));
  7052. if (!se)
  7053. goto err_free_rq;
  7054. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7055. }
  7056. return 1;
  7057. err_free_rq:
  7058. kfree(cfs_rq);
  7059. err:
  7060. return 0;
  7061. }
  7062. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7063. {
  7064. struct rq *rq = cpu_rq(cpu);
  7065. unsigned long flags;
  7066. /*
  7067. * Only empty task groups can be destroyed; so we can speculatively
  7068. * check on_list without danger of it being re-added.
  7069. */
  7070. if (!tg->cfs_rq[cpu]->on_list)
  7071. return;
  7072. raw_spin_lock_irqsave(&rq->lock, flags);
  7073. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7074. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7075. }
  7076. #else /* !CONFG_FAIR_GROUP_SCHED */
  7077. static inline void free_fair_sched_group(struct task_group *tg)
  7078. {
  7079. }
  7080. static inline
  7081. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7082. {
  7083. return 1;
  7084. }
  7085. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7086. {
  7087. }
  7088. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7089. #ifdef CONFIG_RT_GROUP_SCHED
  7090. static void free_rt_sched_group(struct task_group *tg)
  7091. {
  7092. int i;
  7093. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7094. for_each_possible_cpu(i) {
  7095. if (tg->rt_rq)
  7096. kfree(tg->rt_rq[i]);
  7097. if (tg->rt_se)
  7098. kfree(tg->rt_se[i]);
  7099. }
  7100. kfree(tg->rt_rq);
  7101. kfree(tg->rt_se);
  7102. }
  7103. static
  7104. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7105. {
  7106. struct rt_rq *rt_rq;
  7107. struct sched_rt_entity *rt_se;
  7108. struct rq *rq;
  7109. int i;
  7110. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7111. if (!tg->rt_rq)
  7112. goto err;
  7113. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7114. if (!tg->rt_se)
  7115. goto err;
  7116. init_rt_bandwidth(&tg->rt_bandwidth,
  7117. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7118. for_each_possible_cpu(i) {
  7119. rq = cpu_rq(i);
  7120. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7121. GFP_KERNEL, cpu_to_node(i));
  7122. if (!rt_rq)
  7123. goto err;
  7124. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7125. GFP_KERNEL, cpu_to_node(i));
  7126. if (!rt_se)
  7127. goto err_free_rq;
  7128. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7129. }
  7130. return 1;
  7131. err_free_rq:
  7132. kfree(rt_rq);
  7133. err:
  7134. return 0;
  7135. }
  7136. #else /* !CONFIG_RT_GROUP_SCHED */
  7137. static inline void free_rt_sched_group(struct task_group *tg)
  7138. {
  7139. }
  7140. static inline
  7141. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7142. {
  7143. return 1;
  7144. }
  7145. #endif /* CONFIG_RT_GROUP_SCHED */
  7146. #ifdef CONFIG_CGROUP_SCHED
  7147. static void free_sched_group(struct task_group *tg)
  7148. {
  7149. free_fair_sched_group(tg);
  7150. free_rt_sched_group(tg);
  7151. autogroup_free(tg);
  7152. kfree(tg);
  7153. }
  7154. /* allocate runqueue etc for a new task group */
  7155. struct task_group *sched_create_group(struct task_group *parent)
  7156. {
  7157. struct task_group *tg;
  7158. unsigned long flags;
  7159. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7160. if (!tg)
  7161. return ERR_PTR(-ENOMEM);
  7162. if (!alloc_fair_sched_group(tg, parent))
  7163. goto err;
  7164. if (!alloc_rt_sched_group(tg, parent))
  7165. goto err;
  7166. spin_lock_irqsave(&task_group_lock, flags);
  7167. list_add_rcu(&tg->list, &task_groups);
  7168. WARN_ON(!parent); /* root should already exist */
  7169. tg->parent = parent;
  7170. INIT_LIST_HEAD(&tg->children);
  7171. list_add_rcu(&tg->siblings, &parent->children);
  7172. spin_unlock_irqrestore(&task_group_lock, flags);
  7173. return tg;
  7174. err:
  7175. free_sched_group(tg);
  7176. return ERR_PTR(-ENOMEM);
  7177. }
  7178. /* rcu callback to free various structures associated with a task group */
  7179. static void free_sched_group_rcu(struct rcu_head *rhp)
  7180. {
  7181. /* now it should be safe to free those cfs_rqs */
  7182. free_sched_group(container_of(rhp, struct task_group, rcu));
  7183. }
  7184. /* Destroy runqueue etc associated with a task group */
  7185. void sched_destroy_group(struct task_group *tg)
  7186. {
  7187. unsigned long flags;
  7188. int i;
  7189. /* end participation in shares distribution */
  7190. for_each_possible_cpu(i)
  7191. unregister_fair_sched_group(tg, i);
  7192. spin_lock_irqsave(&task_group_lock, flags);
  7193. list_del_rcu(&tg->list);
  7194. list_del_rcu(&tg->siblings);
  7195. spin_unlock_irqrestore(&task_group_lock, flags);
  7196. /* wait for possible concurrent references to cfs_rqs complete */
  7197. call_rcu(&tg->rcu, free_sched_group_rcu);
  7198. }
  7199. /* change task's runqueue when it moves between groups.
  7200. * The caller of this function should have put the task in its new group
  7201. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7202. * reflect its new group.
  7203. */
  7204. void sched_move_task(struct task_struct *tsk)
  7205. {
  7206. int on_rq, running;
  7207. unsigned long flags;
  7208. struct rq *rq;
  7209. rq = task_rq_lock(tsk, &flags);
  7210. running = task_current(rq, tsk);
  7211. on_rq = tsk->se.on_rq;
  7212. if (on_rq)
  7213. dequeue_task(rq, tsk, 0);
  7214. if (unlikely(running))
  7215. tsk->sched_class->put_prev_task(rq, tsk);
  7216. #ifdef CONFIG_FAIR_GROUP_SCHED
  7217. if (tsk->sched_class->task_move_group)
  7218. tsk->sched_class->task_move_group(tsk, on_rq);
  7219. else
  7220. #endif
  7221. set_task_rq(tsk, task_cpu(tsk));
  7222. if (unlikely(running))
  7223. tsk->sched_class->set_curr_task(rq);
  7224. if (on_rq)
  7225. enqueue_task(rq, tsk, 0);
  7226. task_rq_unlock(rq, &flags);
  7227. }
  7228. #endif /* CONFIG_CGROUP_SCHED */
  7229. #ifdef CONFIG_FAIR_GROUP_SCHED
  7230. static DEFINE_MUTEX(shares_mutex);
  7231. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7232. {
  7233. int i;
  7234. unsigned long flags;
  7235. /*
  7236. * We can't change the weight of the root cgroup.
  7237. */
  7238. if (!tg->se[0])
  7239. return -EINVAL;
  7240. if (shares < MIN_SHARES)
  7241. shares = MIN_SHARES;
  7242. else if (shares > MAX_SHARES)
  7243. shares = MAX_SHARES;
  7244. mutex_lock(&shares_mutex);
  7245. if (tg->shares == shares)
  7246. goto done;
  7247. tg->shares = shares;
  7248. for_each_possible_cpu(i) {
  7249. struct rq *rq = cpu_rq(i);
  7250. struct sched_entity *se;
  7251. se = tg->se[i];
  7252. /* Propagate contribution to hierarchy */
  7253. raw_spin_lock_irqsave(&rq->lock, flags);
  7254. for_each_sched_entity(se)
  7255. update_cfs_shares(group_cfs_rq(se), 0);
  7256. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7257. }
  7258. done:
  7259. mutex_unlock(&shares_mutex);
  7260. return 0;
  7261. }
  7262. unsigned long sched_group_shares(struct task_group *tg)
  7263. {
  7264. return tg->shares;
  7265. }
  7266. #endif
  7267. #ifdef CONFIG_RT_GROUP_SCHED
  7268. /*
  7269. * Ensure that the real time constraints are schedulable.
  7270. */
  7271. static DEFINE_MUTEX(rt_constraints_mutex);
  7272. static unsigned long to_ratio(u64 period, u64 runtime)
  7273. {
  7274. if (runtime == RUNTIME_INF)
  7275. return 1ULL << 20;
  7276. return div64_u64(runtime << 20, period);
  7277. }
  7278. /* Must be called with tasklist_lock held */
  7279. static inline int tg_has_rt_tasks(struct task_group *tg)
  7280. {
  7281. struct task_struct *g, *p;
  7282. do_each_thread(g, p) {
  7283. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7284. return 1;
  7285. } while_each_thread(g, p);
  7286. return 0;
  7287. }
  7288. struct rt_schedulable_data {
  7289. struct task_group *tg;
  7290. u64 rt_period;
  7291. u64 rt_runtime;
  7292. };
  7293. static int tg_schedulable(struct task_group *tg, void *data)
  7294. {
  7295. struct rt_schedulable_data *d = data;
  7296. struct task_group *child;
  7297. unsigned long total, sum = 0;
  7298. u64 period, runtime;
  7299. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7300. runtime = tg->rt_bandwidth.rt_runtime;
  7301. if (tg == d->tg) {
  7302. period = d->rt_period;
  7303. runtime = d->rt_runtime;
  7304. }
  7305. /*
  7306. * Cannot have more runtime than the period.
  7307. */
  7308. if (runtime > period && runtime != RUNTIME_INF)
  7309. return -EINVAL;
  7310. /*
  7311. * Ensure we don't starve existing RT tasks.
  7312. */
  7313. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7314. return -EBUSY;
  7315. total = to_ratio(period, runtime);
  7316. /*
  7317. * Nobody can have more than the global setting allows.
  7318. */
  7319. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7320. return -EINVAL;
  7321. /*
  7322. * The sum of our children's runtime should not exceed our own.
  7323. */
  7324. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7325. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7326. runtime = child->rt_bandwidth.rt_runtime;
  7327. if (child == d->tg) {
  7328. period = d->rt_period;
  7329. runtime = d->rt_runtime;
  7330. }
  7331. sum += to_ratio(period, runtime);
  7332. }
  7333. if (sum > total)
  7334. return -EINVAL;
  7335. return 0;
  7336. }
  7337. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7338. {
  7339. struct rt_schedulable_data data = {
  7340. .tg = tg,
  7341. .rt_period = period,
  7342. .rt_runtime = runtime,
  7343. };
  7344. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7345. }
  7346. static int tg_set_bandwidth(struct task_group *tg,
  7347. u64 rt_period, u64 rt_runtime)
  7348. {
  7349. int i, err = 0;
  7350. mutex_lock(&rt_constraints_mutex);
  7351. read_lock(&tasklist_lock);
  7352. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7353. if (err)
  7354. goto unlock;
  7355. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7356. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7357. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7358. for_each_possible_cpu(i) {
  7359. struct rt_rq *rt_rq = tg->rt_rq[i];
  7360. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7361. rt_rq->rt_runtime = rt_runtime;
  7362. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7363. }
  7364. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7365. unlock:
  7366. read_unlock(&tasklist_lock);
  7367. mutex_unlock(&rt_constraints_mutex);
  7368. return err;
  7369. }
  7370. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7371. {
  7372. u64 rt_runtime, rt_period;
  7373. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7374. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7375. if (rt_runtime_us < 0)
  7376. rt_runtime = RUNTIME_INF;
  7377. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7378. }
  7379. long sched_group_rt_runtime(struct task_group *tg)
  7380. {
  7381. u64 rt_runtime_us;
  7382. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7383. return -1;
  7384. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7385. do_div(rt_runtime_us, NSEC_PER_USEC);
  7386. return rt_runtime_us;
  7387. }
  7388. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7389. {
  7390. u64 rt_runtime, rt_period;
  7391. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7392. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7393. if (rt_period == 0)
  7394. return -EINVAL;
  7395. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7396. }
  7397. long sched_group_rt_period(struct task_group *tg)
  7398. {
  7399. u64 rt_period_us;
  7400. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7401. do_div(rt_period_us, NSEC_PER_USEC);
  7402. return rt_period_us;
  7403. }
  7404. static int sched_rt_global_constraints(void)
  7405. {
  7406. u64 runtime, period;
  7407. int ret = 0;
  7408. if (sysctl_sched_rt_period <= 0)
  7409. return -EINVAL;
  7410. runtime = global_rt_runtime();
  7411. period = global_rt_period();
  7412. /*
  7413. * Sanity check on the sysctl variables.
  7414. */
  7415. if (runtime > period && runtime != RUNTIME_INF)
  7416. return -EINVAL;
  7417. mutex_lock(&rt_constraints_mutex);
  7418. read_lock(&tasklist_lock);
  7419. ret = __rt_schedulable(NULL, 0, 0);
  7420. read_unlock(&tasklist_lock);
  7421. mutex_unlock(&rt_constraints_mutex);
  7422. return ret;
  7423. }
  7424. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7425. {
  7426. /* Don't accept realtime tasks when there is no way for them to run */
  7427. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7428. return 0;
  7429. return 1;
  7430. }
  7431. #else /* !CONFIG_RT_GROUP_SCHED */
  7432. static int sched_rt_global_constraints(void)
  7433. {
  7434. unsigned long flags;
  7435. int i;
  7436. if (sysctl_sched_rt_period <= 0)
  7437. return -EINVAL;
  7438. /*
  7439. * There's always some RT tasks in the root group
  7440. * -- migration, kstopmachine etc..
  7441. */
  7442. if (sysctl_sched_rt_runtime == 0)
  7443. return -EBUSY;
  7444. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7445. for_each_possible_cpu(i) {
  7446. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7447. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7448. rt_rq->rt_runtime = global_rt_runtime();
  7449. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7450. }
  7451. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7452. return 0;
  7453. }
  7454. #endif /* CONFIG_RT_GROUP_SCHED */
  7455. int sched_rt_handler(struct ctl_table *table, int write,
  7456. void __user *buffer, size_t *lenp,
  7457. loff_t *ppos)
  7458. {
  7459. int ret;
  7460. int old_period, old_runtime;
  7461. static DEFINE_MUTEX(mutex);
  7462. mutex_lock(&mutex);
  7463. old_period = sysctl_sched_rt_period;
  7464. old_runtime = sysctl_sched_rt_runtime;
  7465. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7466. if (!ret && write) {
  7467. ret = sched_rt_global_constraints();
  7468. if (ret) {
  7469. sysctl_sched_rt_period = old_period;
  7470. sysctl_sched_rt_runtime = old_runtime;
  7471. } else {
  7472. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7473. def_rt_bandwidth.rt_period =
  7474. ns_to_ktime(global_rt_period());
  7475. }
  7476. }
  7477. mutex_unlock(&mutex);
  7478. return ret;
  7479. }
  7480. #ifdef CONFIG_CGROUP_SCHED
  7481. /* return corresponding task_group object of a cgroup */
  7482. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7483. {
  7484. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7485. struct task_group, css);
  7486. }
  7487. static struct cgroup_subsys_state *
  7488. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7489. {
  7490. struct task_group *tg, *parent;
  7491. if (!cgrp->parent) {
  7492. /* This is early initialization for the top cgroup */
  7493. return &root_task_group.css;
  7494. }
  7495. parent = cgroup_tg(cgrp->parent);
  7496. tg = sched_create_group(parent);
  7497. if (IS_ERR(tg))
  7498. return ERR_PTR(-ENOMEM);
  7499. return &tg->css;
  7500. }
  7501. static void
  7502. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7503. {
  7504. struct task_group *tg = cgroup_tg(cgrp);
  7505. sched_destroy_group(tg);
  7506. }
  7507. static int
  7508. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7509. {
  7510. #ifdef CONFIG_RT_GROUP_SCHED
  7511. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7512. return -EINVAL;
  7513. #else
  7514. /* We don't support RT-tasks being in separate groups */
  7515. if (tsk->sched_class != &fair_sched_class)
  7516. return -EINVAL;
  7517. #endif
  7518. return 0;
  7519. }
  7520. static int
  7521. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7522. struct task_struct *tsk, bool threadgroup)
  7523. {
  7524. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7525. if (retval)
  7526. return retval;
  7527. if (threadgroup) {
  7528. struct task_struct *c;
  7529. rcu_read_lock();
  7530. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7531. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7532. if (retval) {
  7533. rcu_read_unlock();
  7534. return retval;
  7535. }
  7536. }
  7537. rcu_read_unlock();
  7538. }
  7539. return 0;
  7540. }
  7541. static void
  7542. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7543. struct cgroup *old_cont, struct task_struct *tsk,
  7544. bool threadgroup)
  7545. {
  7546. sched_move_task(tsk);
  7547. if (threadgroup) {
  7548. struct task_struct *c;
  7549. rcu_read_lock();
  7550. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7551. sched_move_task(c);
  7552. }
  7553. rcu_read_unlock();
  7554. }
  7555. }
  7556. static void
  7557. cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
  7558. {
  7559. /*
  7560. * cgroup_exit() is called in the copy_process() failure path.
  7561. * Ignore this case since the task hasn't ran yet, this avoids
  7562. * trying to poke a half freed task state from generic code.
  7563. */
  7564. if (!(task->flags & PF_EXITING))
  7565. return;
  7566. sched_move_task(task);
  7567. }
  7568. #ifdef CONFIG_FAIR_GROUP_SCHED
  7569. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7570. u64 shareval)
  7571. {
  7572. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7573. }
  7574. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7575. {
  7576. struct task_group *tg = cgroup_tg(cgrp);
  7577. return (u64) tg->shares;
  7578. }
  7579. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7580. #ifdef CONFIG_RT_GROUP_SCHED
  7581. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7582. s64 val)
  7583. {
  7584. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7585. }
  7586. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7587. {
  7588. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7589. }
  7590. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7591. u64 rt_period_us)
  7592. {
  7593. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7594. }
  7595. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7596. {
  7597. return sched_group_rt_period(cgroup_tg(cgrp));
  7598. }
  7599. #endif /* CONFIG_RT_GROUP_SCHED */
  7600. static struct cftype cpu_files[] = {
  7601. #ifdef CONFIG_FAIR_GROUP_SCHED
  7602. {
  7603. .name = "shares",
  7604. .read_u64 = cpu_shares_read_u64,
  7605. .write_u64 = cpu_shares_write_u64,
  7606. },
  7607. #endif
  7608. #ifdef CONFIG_RT_GROUP_SCHED
  7609. {
  7610. .name = "rt_runtime_us",
  7611. .read_s64 = cpu_rt_runtime_read,
  7612. .write_s64 = cpu_rt_runtime_write,
  7613. },
  7614. {
  7615. .name = "rt_period_us",
  7616. .read_u64 = cpu_rt_period_read_uint,
  7617. .write_u64 = cpu_rt_period_write_uint,
  7618. },
  7619. #endif
  7620. };
  7621. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7622. {
  7623. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7624. }
  7625. struct cgroup_subsys cpu_cgroup_subsys = {
  7626. .name = "cpu",
  7627. .create = cpu_cgroup_create,
  7628. .destroy = cpu_cgroup_destroy,
  7629. .can_attach = cpu_cgroup_can_attach,
  7630. .attach = cpu_cgroup_attach,
  7631. .exit = cpu_cgroup_exit,
  7632. .populate = cpu_cgroup_populate,
  7633. .subsys_id = cpu_cgroup_subsys_id,
  7634. .early_init = 1,
  7635. };
  7636. #endif /* CONFIG_CGROUP_SCHED */
  7637. #ifdef CONFIG_CGROUP_CPUACCT
  7638. /*
  7639. * CPU accounting code for task groups.
  7640. *
  7641. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7642. * (balbir@in.ibm.com).
  7643. */
  7644. /* track cpu usage of a group of tasks and its child groups */
  7645. struct cpuacct {
  7646. struct cgroup_subsys_state css;
  7647. /* cpuusage holds pointer to a u64-type object on every cpu */
  7648. u64 __percpu *cpuusage;
  7649. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7650. struct cpuacct *parent;
  7651. };
  7652. struct cgroup_subsys cpuacct_subsys;
  7653. /* return cpu accounting group corresponding to this container */
  7654. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7655. {
  7656. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7657. struct cpuacct, css);
  7658. }
  7659. /* return cpu accounting group to which this task belongs */
  7660. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7661. {
  7662. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7663. struct cpuacct, css);
  7664. }
  7665. /* create a new cpu accounting group */
  7666. static struct cgroup_subsys_state *cpuacct_create(
  7667. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7668. {
  7669. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7670. int i;
  7671. if (!ca)
  7672. goto out;
  7673. ca->cpuusage = alloc_percpu(u64);
  7674. if (!ca->cpuusage)
  7675. goto out_free_ca;
  7676. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7677. if (percpu_counter_init(&ca->cpustat[i], 0))
  7678. goto out_free_counters;
  7679. if (cgrp->parent)
  7680. ca->parent = cgroup_ca(cgrp->parent);
  7681. return &ca->css;
  7682. out_free_counters:
  7683. while (--i >= 0)
  7684. percpu_counter_destroy(&ca->cpustat[i]);
  7685. free_percpu(ca->cpuusage);
  7686. out_free_ca:
  7687. kfree(ca);
  7688. out:
  7689. return ERR_PTR(-ENOMEM);
  7690. }
  7691. /* destroy an existing cpu accounting group */
  7692. static void
  7693. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7694. {
  7695. struct cpuacct *ca = cgroup_ca(cgrp);
  7696. int i;
  7697. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7698. percpu_counter_destroy(&ca->cpustat[i]);
  7699. free_percpu(ca->cpuusage);
  7700. kfree(ca);
  7701. }
  7702. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7703. {
  7704. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7705. u64 data;
  7706. #ifndef CONFIG_64BIT
  7707. /*
  7708. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7709. */
  7710. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7711. data = *cpuusage;
  7712. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7713. #else
  7714. data = *cpuusage;
  7715. #endif
  7716. return data;
  7717. }
  7718. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7719. {
  7720. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7721. #ifndef CONFIG_64BIT
  7722. /*
  7723. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7724. */
  7725. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7726. *cpuusage = val;
  7727. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7728. #else
  7729. *cpuusage = val;
  7730. #endif
  7731. }
  7732. /* return total cpu usage (in nanoseconds) of a group */
  7733. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7734. {
  7735. struct cpuacct *ca = cgroup_ca(cgrp);
  7736. u64 totalcpuusage = 0;
  7737. int i;
  7738. for_each_present_cpu(i)
  7739. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7740. return totalcpuusage;
  7741. }
  7742. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7743. u64 reset)
  7744. {
  7745. struct cpuacct *ca = cgroup_ca(cgrp);
  7746. int err = 0;
  7747. int i;
  7748. if (reset) {
  7749. err = -EINVAL;
  7750. goto out;
  7751. }
  7752. for_each_present_cpu(i)
  7753. cpuacct_cpuusage_write(ca, i, 0);
  7754. out:
  7755. return err;
  7756. }
  7757. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7758. struct seq_file *m)
  7759. {
  7760. struct cpuacct *ca = cgroup_ca(cgroup);
  7761. u64 percpu;
  7762. int i;
  7763. for_each_present_cpu(i) {
  7764. percpu = cpuacct_cpuusage_read(ca, i);
  7765. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7766. }
  7767. seq_printf(m, "\n");
  7768. return 0;
  7769. }
  7770. static const char *cpuacct_stat_desc[] = {
  7771. [CPUACCT_STAT_USER] = "user",
  7772. [CPUACCT_STAT_SYSTEM] = "system",
  7773. };
  7774. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7775. struct cgroup_map_cb *cb)
  7776. {
  7777. struct cpuacct *ca = cgroup_ca(cgrp);
  7778. int i;
  7779. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7780. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7781. val = cputime64_to_clock_t(val);
  7782. cb->fill(cb, cpuacct_stat_desc[i], val);
  7783. }
  7784. return 0;
  7785. }
  7786. static struct cftype files[] = {
  7787. {
  7788. .name = "usage",
  7789. .read_u64 = cpuusage_read,
  7790. .write_u64 = cpuusage_write,
  7791. },
  7792. {
  7793. .name = "usage_percpu",
  7794. .read_seq_string = cpuacct_percpu_seq_read,
  7795. },
  7796. {
  7797. .name = "stat",
  7798. .read_map = cpuacct_stats_show,
  7799. },
  7800. };
  7801. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7802. {
  7803. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7804. }
  7805. /*
  7806. * charge this task's execution time to its accounting group.
  7807. *
  7808. * called with rq->lock held.
  7809. */
  7810. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7811. {
  7812. struct cpuacct *ca;
  7813. int cpu;
  7814. if (unlikely(!cpuacct_subsys.active))
  7815. return;
  7816. cpu = task_cpu(tsk);
  7817. rcu_read_lock();
  7818. ca = task_ca(tsk);
  7819. for (; ca; ca = ca->parent) {
  7820. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7821. *cpuusage += cputime;
  7822. }
  7823. rcu_read_unlock();
  7824. }
  7825. /*
  7826. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7827. * in cputime_t units. As a result, cpuacct_update_stats calls
  7828. * percpu_counter_add with values large enough to always overflow the
  7829. * per cpu batch limit causing bad SMP scalability.
  7830. *
  7831. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7832. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7833. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7834. */
  7835. #ifdef CONFIG_SMP
  7836. #define CPUACCT_BATCH \
  7837. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7838. #else
  7839. #define CPUACCT_BATCH 0
  7840. #endif
  7841. /*
  7842. * Charge the system/user time to the task's accounting group.
  7843. */
  7844. static void cpuacct_update_stats(struct task_struct *tsk,
  7845. enum cpuacct_stat_index idx, cputime_t val)
  7846. {
  7847. struct cpuacct *ca;
  7848. int batch = CPUACCT_BATCH;
  7849. if (unlikely(!cpuacct_subsys.active))
  7850. return;
  7851. rcu_read_lock();
  7852. ca = task_ca(tsk);
  7853. do {
  7854. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7855. ca = ca->parent;
  7856. } while (ca);
  7857. rcu_read_unlock();
  7858. }
  7859. struct cgroup_subsys cpuacct_subsys = {
  7860. .name = "cpuacct",
  7861. .create = cpuacct_create,
  7862. .destroy = cpuacct_destroy,
  7863. .populate = cpuacct_populate,
  7864. .subsys_id = cpuacct_subsys_id,
  7865. };
  7866. #endif /* CONFIG_CGROUP_CPUACCT */