huge_memory.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. /*
  21. * By default transparent hugepage support is enabled for all mappings
  22. * and khugepaged scans all mappings. Defrag is only invoked by
  23. * khugepaged hugepage allocations and by page faults inside
  24. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  25. * allocations.
  26. */
  27. unsigned long transparent_hugepage_flags __read_mostly =
  28. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  29. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  30. /* default scan 8*512 pte (or vmas) every 30 second */
  31. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  32. static unsigned int khugepaged_pages_collapsed;
  33. static unsigned int khugepaged_full_scans;
  34. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  35. /* during fragmentation poll the hugepage allocator once every minute */
  36. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  37. static struct task_struct *khugepaged_thread __read_mostly;
  38. static DEFINE_MUTEX(khugepaged_mutex);
  39. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  40. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  41. /*
  42. * default collapse hugepages if there is at least one pte mapped like
  43. * it would have happened if the vma was large enough during page
  44. * fault.
  45. */
  46. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  47. static int khugepaged(void *none);
  48. static int mm_slots_hash_init(void);
  49. static int khugepaged_slab_init(void);
  50. static void khugepaged_slab_free(void);
  51. #define MM_SLOTS_HASH_HEADS 1024
  52. static struct hlist_head *mm_slots_hash __read_mostly;
  53. static struct kmem_cache *mm_slot_cache __read_mostly;
  54. /**
  55. * struct mm_slot - hash lookup from mm to mm_slot
  56. * @hash: hash collision list
  57. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  58. * @mm: the mm that this information is valid for
  59. */
  60. struct mm_slot {
  61. struct hlist_node hash;
  62. struct list_head mm_node;
  63. struct mm_struct *mm;
  64. };
  65. /**
  66. * struct khugepaged_scan - cursor for scanning
  67. * @mm_head: the head of the mm list to scan
  68. * @mm_slot: the current mm_slot we are scanning
  69. * @address: the next address inside that to be scanned
  70. *
  71. * There is only the one khugepaged_scan instance of this cursor structure.
  72. */
  73. struct khugepaged_scan {
  74. struct list_head mm_head;
  75. struct mm_slot *mm_slot;
  76. unsigned long address;
  77. } khugepaged_scan = {
  78. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  79. };
  80. static int start_khugepaged(void)
  81. {
  82. int err = 0;
  83. if (khugepaged_enabled()) {
  84. int wakeup;
  85. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  86. err = -ENOMEM;
  87. goto out;
  88. }
  89. mutex_lock(&khugepaged_mutex);
  90. if (!khugepaged_thread)
  91. khugepaged_thread = kthread_run(khugepaged, NULL,
  92. "khugepaged");
  93. if (unlikely(IS_ERR(khugepaged_thread))) {
  94. printk(KERN_ERR
  95. "khugepaged: kthread_run(khugepaged) failed\n");
  96. err = PTR_ERR(khugepaged_thread);
  97. khugepaged_thread = NULL;
  98. }
  99. wakeup = !list_empty(&khugepaged_scan.mm_head);
  100. mutex_unlock(&khugepaged_mutex);
  101. if (wakeup)
  102. wake_up_interruptible(&khugepaged_wait);
  103. } else
  104. /* wakeup to exit */
  105. wake_up_interruptible(&khugepaged_wait);
  106. out:
  107. return err;
  108. }
  109. #ifdef CONFIG_SYSFS
  110. static ssize_t double_flag_show(struct kobject *kobj,
  111. struct kobj_attribute *attr, char *buf,
  112. enum transparent_hugepage_flag enabled,
  113. enum transparent_hugepage_flag req_madv)
  114. {
  115. if (test_bit(enabled, &transparent_hugepage_flags)) {
  116. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  117. return sprintf(buf, "[always] madvise never\n");
  118. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  119. return sprintf(buf, "always [madvise] never\n");
  120. else
  121. return sprintf(buf, "always madvise [never]\n");
  122. }
  123. static ssize_t double_flag_store(struct kobject *kobj,
  124. struct kobj_attribute *attr,
  125. const char *buf, size_t count,
  126. enum transparent_hugepage_flag enabled,
  127. enum transparent_hugepage_flag req_madv)
  128. {
  129. if (!memcmp("always", buf,
  130. min(sizeof("always")-1, count))) {
  131. set_bit(enabled, &transparent_hugepage_flags);
  132. clear_bit(req_madv, &transparent_hugepage_flags);
  133. } else if (!memcmp("madvise", buf,
  134. min(sizeof("madvise")-1, count))) {
  135. clear_bit(enabled, &transparent_hugepage_flags);
  136. set_bit(req_madv, &transparent_hugepage_flags);
  137. } else if (!memcmp("never", buf,
  138. min(sizeof("never")-1, count))) {
  139. clear_bit(enabled, &transparent_hugepage_flags);
  140. clear_bit(req_madv, &transparent_hugepage_flags);
  141. } else
  142. return -EINVAL;
  143. return count;
  144. }
  145. static ssize_t enabled_show(struct kobject *kobj,
  146. struct kobj_attribute *attr, char *buf)
  147. {
  148. return double_flag_show(kobj, attr, buf,
  149. TRANSPARENT_HUGEPAGE_FLAG,
  150. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  151. }
  152. static ssize_t enabled_store(struct kobject *kobj,
  153. struct kobj_attribute *attr,
  154. const char *buf, size_t count)
  155. {
  156. ssize_t ret;
  157. ret = double_flag_store(kobj, attr, buf, count,
  158. TRANSPARENT_HUGEPAGE_FLAG,
  159. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  160. if (ret > 0) {
  161. int err = start_khugepaged();
  162. if (err)
  163. ret = err;
  164. }
  165. return ret;
  166. }
  167. static struct kobj_attribute enabled_attr =
  168. __ATTR(enabled, 0644, enabled_show, enabled_store);
  169. static ssize_t single_flag_show(struct kobject *kobj,
  170. struct kobj_attribute *attr, char *buf,
  171. enum transparent_hugepage_flag flag)
  172. {
  173. if (test_bit(flag, &transparent_hugepage_flags))
  174. return sprintf(buf, "[yes] no\n");
  175. else
  176. return sprintf(buf, "yes [no]\n");
  177. }
  178. static ssize_t single_flag_store(struct kobject *kobj,
  179. struct kobj_attribute *attr,
  180. const char *buf, size_t count,
  181. enum transparent_hugepage_flag flag)
  182. {
  183. if (!memcmp("yes", buf,
  184. min(sizeof("yes")-1, count))) {
  185. set_bit(flag, &transparent_hugepage_flags);
  186. } else if (!memcmp("no", buf,
  187. min(sizeof("no")-1, count))) {
  188. clear_bit(flag, &transparent_hugepage_flags);
  189. } else
  190. return -EINVAL;
  191. return count;
  192. }
  193. /*
  194. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  195. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  196. * memory just to allocate one more hugepage.
  197. */
  198. static ssize_t defrag_show(struct kobject *kobj,
  199. struct kobj_attribute *attr, char *buf)
  200. {
  201. return double_flag_show(kobj, attr, buf,
  202. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  203. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  204. }
  205. static ssize_t defrag_store(struct kobject *kobj,
  206. struct kobj_attribute *attr,
  207. const char *buf, size_t count)
  208. {
  209. return double_flag_store(kobj, attr, buf, count,
  210. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  211. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  212. }
  213. static struct kobj_attribute defrag_attr =
  214. __ATTR(defrag, 0644, defrag_show, defrag_store);
  215. #ifdef CONFIG_DEBUG_VM
  216. static ssize_t debug_cow_show(struct kobject *kobj,
  217. struct kobj_attribute *attr, char *buf)
  218. {
  219. return single_flag_show(kobj, attr, buf,
  220. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  221. }
  222. static ssize_t debug_cow_store(struct kobject *kobj,
  223. struct kobj_attribute *attr,
  224. const char *buf, size_t count)
  225. {
  226. return single_flag_store(kobj, attr, buf, count,
  227. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  228. }
  229. static struct kobj_attribute debug_cow_attr =
  230. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  231. #endif /* CONFIG_DEBUG_VM */
  232. static struct attribute *hugepage_attr[] = {
  233. &enabled_attr.attr,
  234. &defrag_attr.attr,
  235. #ifdef CONFIG_DEBUG_VM
  236. &debug_cow_attr.attr,
  237. #endif
  238. NULL,
  239. };
  240. static struct attribute_group hugepage_attr_group = {
  241. .attrs = hugepage_attr,
  242. };
  243. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  244. struct kobj_attribute *attr,
  245. char *buf)
  246. {
  247. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  248. }
  249. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  250. struct kobj_attribute *attr,
  251. const char *buf, size_t count)
  252. {
  253. unsigned long msecs;
  254. int err;
  255. err = strict_strtoul(buf, 10, &msecs);
  256. if (err || msecs > UINT_MAX)
  257. return -EINVAL;
  258. khugepaged_scan_sleep_millisecs = msecs;
  259. wake_up_interruptible(&khugepaged_wait);
  260. return count;
  261. }
  262. static struct kobj_attribute scan_sleep_millisecs_attr =
  263. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  264. scan_sleep_millisecs_store);
  265. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  266. struct kobj_attribute *attr,
  267. char *buf)
  268. {
  269. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  270. }
  271. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. unsigned long msecs;
  276. int err;
  277. err = strict_strtoul(buf, 10, &msecs);
  278. if (err || msecs > UINT_MAX)
  279. return -EINVAL;
  280. khugepaged_alloc_sleep_millisecs = msecs;
  281. wake_up_interruptible(&khugepaged_wait);
  282. return count;
  283. }
  284. static struct kobj_attribute alloc_sleep_millisecs_attr =
  285. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  286. alloc_sleep_millisecs_store);
  287. static ssize_t pages_to_scan_show(struct kobject *kobj,
  288. struct kobj_attribute *attr,
  289. char *buf)
  290. {
  291. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  292. }
  293. static ssize_t pages_to_scan_store(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. const char *buf, size_t count)
  296. {
  297. int err;
  298. unsigned long pages;
  299. err = strict_strtoul(buf, 10, &pages);
  300. if (err || !pages || pages > UINT_MAX)
  301. return -EINVAL;
  302. khugepaged_pages_to_scan = pages;
  303. return count;
  304. }
  305. static struct kobj_attribute pages_to_scan_attr =
  306. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  307. pages_to_scan_store);
  308. static ssize_t pages_collapsed_show(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. char *buf)
  311. {
  312. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  313. }
  314. static struct kobj_attribute pages_collapsed_attr =
  315. __ATTR_RO(pages_collapsed);
  316. static ssize_t full_scans_show(struct kobject *kobj,
  317. struct kobj_attribute *attr,
  318. char *buf)
  319. {
  320. return sprintf(buf, "%u\n", khugepaged_full_scans);
  321. }
  322. static struct kobj_attribute full_scans_attr =
  323. __ATTR_RO(full_scans);
  324. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  325. struct kobj_attribute *attr, char *buf)
  326. {
  327. return single_flag_show(kobj, attr, buf,
  328. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  329. }
  330. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. return single_flag_store(kobj, attr, buf, count,
  335. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  336. }
  337. static struct kobj_attribute khugepaged_defrag_attr =
  338. __ATTR(defrag, 0644, khugepaged_defrag_show,
  339. khugepaged_defrag_store);
  340. /*
  341. * max_ptes_none controls if khugepaged should collapse hugepages over
  342. * any unmapped ptes in turn potentially increasing the memory
  343. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  344. * reduce the available free memory in the system as it
  345. * runs. Increasing max_ptes_none will instead potentially reduce the
  346. * free memory in the system during the khugepaged scan.
  347. */
  348. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  349. struct kobj_attribute *attr,
  350. char *buf)
  351. {
  352. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  353. }
  354. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. const char *buf, size_t count)
  357. {
  358. int err;
  359. unsigned long max_ptes_none;
  360. err = strict_strtoul(buf, 10, &max_ptes_none);
  361. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  362. return -EINVAL;
  363. khugepaged_max_ptes_none = max_ptes_none;
  364. return count;
  365. }
  366. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  367. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  368. khugepaged_max_ptes_none_store);
  369. static struct attribute *khugepaged_attr[] = {
  370. &khugepaged_defrag_attr.attr,
  371. &khugepaged_max_ptes_none_attr.attr,
  372. &pages_to_scan_attr.attr,
  373. &pages_collapsed_attr.attr,
  374. &full_scans_attr.attr,
  375. &scan_sleep_millisecs_attr.attr,
  376. &alloc_sleep_millisecs_attr.attr,
  377. NULL,
  378. };
  379. static struct attribute_group khugepaged_attr_group = {
  380. .attrs = khugepaged_attr,
  381. .name = "khugepaged",
  382. };
  383. #endif /* CONFIG_SYSFS */
  384. static int __init hugepage_init(void)
  385. {
  386. int err;
  387. #ifdef CONFIG_SYSFS
  388. static struct kobject *hugepage_kobj;
  389. err = -ENOMEM;
  390. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  391. if (unlikely(!hugepage_kobj)) {
  392. printk(KERN_ERR "hugepage: failed kobject create\n");
  393. goto out;
  394. }
  395. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  396. if (err) {
  397. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  398. goto out;
  399. }
  400. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  401. if (err) {
  402. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  403. goto out;
  404. }
  405. #endif
  406. err = khugepaged_slab_init();
  407. if (err)
  408. goto out;
  409. err = mm_slots_hash_init();
  410. if (err) {
  411. khugepaged_slab_free();
  412. goto out;
  413. }
  414. start_khugepaged();
  415. out:
  416. return err;
  417. }
  418. module_init(hugepage_init)
  419. static int __init setup_transparent_hugepage(char *str)
  420. {
  421. int ret = 0;
  422. if (!str)
  423. goto out;
  424. if (!strcmp(str, "always")) {
  425. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  426. &transparent_hugepage_flags);
  427. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  428. &transparent_hugepage_flags);
  429. ret = 1;
  430. } else if (!strcmp(str, "madvise")) {
  431. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  432. &transparent_hugepage_flags);
  433. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  434. &transparent_hugepage_flags);
  435. ret = 1;
  436. } else if (!strcmp(str, "never")) {
  437. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  438. &transparent_hugepage_flags);
  439. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  440. &transparent_hugepage_flags);
  441. ret = 1;
  442. }
  443. out:
  444. if (!ret)
  445. printk(KERN_WARNING
  446. "transparent_hugepage= cannot parse, ignored\n");
  447. return ret;
  448. }
  449. __setup("transparent_hugepage=", setup_transparent_hugepage);
  450. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  451. struct mm_struct *mm)
  452. {
  453. assert_spin_locked(&mm->page_table_lock);
  454. /* FIFO */
  455. if (!mm->pmd_huge_pte)
  456. INIT_LIST_HEAD(&pgtable->lru);
  457. else
  458. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  459. mm->pmd_huge_pte = pgtable;
  460. }
  461. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  462. {
  463. if (likely(vma->vm_flags & VM_WRITE))
  464. pmd = pmd_mkwrite(pmd);
  465. return pmd;
  466. }
  467. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  468. struct vm_area_struct *vma,
  469. unsigned long haddr, pmd_t *pmd,
  470. struct page *page)
  471. {
  472. int ret = 0;
  473. pgtable_t pgtable;
  474. VM_BUG_ON(!PageCompound(page));
  475. pgtable = pte_alloc_one(mm, haddr);
  476. if (unlikely(!pgtable)) {
  477. mem_cgroup_uncharge_page(page);
  478. put_page(page);
  479. return VM_FAULT_OOM;
  480. }
  481. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  482. __SetPageUptodate(page);
  483. spin_lock(&mm->page_table_lock);
  484. if (unlikely(!pmd_none(*pmd))) {
  485. spin_unlock(&mm->page_table_lock);
  486. mem_cgroup_uncharge_page(page);
  487. put_page(page);
  488. pte_free(mm, pgtable);
  489. } else {
  490. pmd_t entry;
  491. entry = mk_pmd(page, vma->vm_page_prot);
  492. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  493. entry = pmd_mkhuge(entry);
  494. /*
  495. * The spinlocking to take the lru_lock inside
  496. * page_add_new_anon_rmap() acts as a full memory
  497. * barrier to be sure clear_huge_page writes become
  498. * visible after the set_pmd_at() write.
  499. */
  500. page_add_new_anon_rmap(page, vma, haddr);
  501. set_pmd_at(mm, haddr, pmd, entry);
  502. prepare_pmd_huge_pte(pgtable, mm);
  503. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  504. spin_unlock(&mm->page_table_lock);
  505. }
  506. return ret;
  507. }
  508. static inline struct page *alloc_hugepage(int defrag)
  509. {
  510. return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT),
  511. HPAGE_PMD_ORDER);
  512. }
  513. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  514. unsigned long address, pmd_t *pmd,
  515. unsigned int flags)
  516. {
  517. struct page *page;
  518. unsigned long haddr = address & HPAGE_PMD_MASK;
  519. pte_t *pte;
  520. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  521. if (unlikely(anon_vma_prepare(vma)))
  522. return VM_FAULT_OOM;
  523. if (unlikely(khugepaged_enter(vma)))
  524. return VM_FAULT_OOM;
  525. page = alloc_hugepage(transparent_hugepage_defrag(vma));
  526. if (unlikely(!page))
  527. goto out;
  528. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  529. put_page(page);
  530. goto out;
  531. }
  532. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  533. }
  534. out:
  535. /*
  536. * Use __pte_alloc instead of pte_alloc_map, because we can't
  537. * run pte_offset_map on the pmd, if an huge pmd could
  538. * materialize from under us from a different thread.
  539. */
  540. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  541. return VM_FAULT_OOM;
  542. /* if an huge pmd materialized from under us just retry later */
  543. if (unlikely(pmd_trans_huge(*pmd)))
  544. return 0;
  545. /*
  546. * A regular pmd is established and it can't morph into a huge pmd
  547. * from under us anymore at this point because we hold the mmap_sem
  548. * read mode and khugepaged takes it in write mode. So now it's
  549. * safe to run pte_offset_map().
  550. */
  551. pte = pte_offset_map(pmd, address);
  552. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  553. }
  554. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  555. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  556. struct vm_area_struct *vma)
  557. {
  558. struct page *src_page;
  559. pmd_t pmd;
  560. pgtable_t pgtable;
  561. int ret;
  562. ret = -ENOMEM;
  563. pgtable = pte_alloc_one(dst_mm, addr);
  564. if (unlikely(!pgtable))
  565. goto out;
  566. spin_lock(&dst_mm->page_table_lock);
  567. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  568. ret = -EAGAIN;
  569. pmd = *src_pmd;
  570. if (unlikely(!pmd_trans_huge(pmd))) {
  571. pte_free(dst_mm, pgtable);
  572. goto out_unlock;
  573. }
  574. if (unlikely(pmd_trans_splitting(pmd))) {
  575. /* split huge page running from under us */
  576. spin_unlock(&src_mm->page_table_lock);
  577. spin_unlock(&dst_mm->page_table_lock);
  578. pte_free(dst_mm, pgtable);
  579. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  580. goto out;
  581. }
  582. src_page = pmd_page(pmd);
  583. VM_BUG_ON(!PageHead(src_page));
  584. get_page(src_page);
  585. page_dup_rmap(src_page);
  586. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  587. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  588. pmd = pmd_mkold(pmd_wrprotect(pmd));
  589. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  590. prepare_pmd_huge_pte(pgtable, dst_mm);
  591. ret = 0;
  592. out_unlock:
  593. spin_unlock(&src_mm->page_table_lock);
  594. spin_unlock(&dst_mm->page_table_lock);
  595. out:
  596. return ret;
  597. }
  598. /* no "address" argument so destroys page coloring of some arch */
  599. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  600. {
  601. pgtable_t pgtable;
  602. assert_spin_locked(&mm->page_table_lock);
  603. /* FIFO */
  604. pgtable = mm->pmd_huge_pte;
  605. if (list_empty(&pgtable->lru))
  606. mm->pmd_huge_pte = NULL;
  607. else {
  608. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  609. struct page, lru);
  610. list_del(&pgtable->lru);
  611. }
  612. return pgtable;
  613. }
  614. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  615. struct vm_area_struct *vma,
  616. unsigned long address,
  617. pmd_t *pmd, pmd_t orig_pmd,
  618. struct page *page,
  619. unsigned long haddr)
  620. {
  621. pgtable_t pgtable;
  622. pmd_t _pmd;
  623. int ret = 0, i;
  624. struct page **pages;
  625. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  626. GFP_KERNEL);
  627. if (unlikely(!pages)) {
  628. ret |= VM_FAULT_OOM;
  629. goto out;
  630. }
  631. for (i = 0; i < HPAGE_PMD_NR; i++) {
  632. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  633. vma, address);
  634. if (unlikely(!pages[i] ||
  635. mem_cgroup_newpage_charge(pages[i], mm,
  636. GFP_KERNEL))) {
  637. if (pages[i])
  638. put_page(pages[i]);
  639. mem_cgroup_uncharge_start();
  640. while (--i >= 0) {
  641. mem_cgroup_uncharge_page(pages[i]);
  642. put_page(pages[i]);
  643. }
  644. mem_cgroup_uncharge_end();
  645. kfree(pages);
  646. ret |= VM_FAULT_OOM;
  647. goto out;
  648. }
  649. }
  650. for (i = 0; i < HPAGE_PMD_NR; i++) {
  651. copy_user_highpage(pages[i], page + i,
  652. haddr + PAGE_SHIFT*i, vma);
  653. __SetPageUptodate(pages[i]);
  654. cond_resched();
  655. }
  656. spin_lock(&mm->page_table_lock);
  657. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  658. goto out_free_pages;
  659. VM_BUG_ON(!PageHead(page));
  660. pmdp_clear_flush_notify(vma, haddr, pmd);
  661. /* leave pmd empty until pte is filled */
  662. pgtable = get_pmd_huge_pte(mm);
  663. pmd_populate(mm, &_pmd, pgtable);
  664. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  665. pte_t *pte, entry;
  666. entry = mk_pte(pages[i], vma->vm_page_prot);
  667. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  668. page_add_new_anon_rmap(pages[i], vma, haddr);
  669. pte = pte_offset_map(&_pmd, haddr);
  670. VM_BUG_ON(!pte_none(*pte));
  671. set_pte_at(mm, haddr, pte, entry);
  672. pte_unmap(pte);
  673. }
  674. kfree(pages);
  675. mm->nr_ptes++;
  676. smp_wmb(); /* make pte visible before pmd */
  677. pmd_populate(mm, pmd, pgtable);
  678. page_remove_rmap(page);
  679. spin_unlock(&mm->page_table_lock);
  680. ret |= VM_FAULT_WRITE;
  681. put_page(page);
  682. out:
  683. return ret;
  684. out_free_pages:
  685. spin_unlock(&mm->page_table_lock);
  686. mem_cgroup_uncharge_start();
  687. for (i = 0; i < HPAGE_PMD_NR; i++) {
  688. mem_cgroup_uncharge_page(pages[i]);
  689. put_page(pages[i]);
  690. }
  691. mem_cgroup_uncharge_end();
  692. kfree(pages);
  693. goto out;
  694. }
  695. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  696. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  697. {
  698. int ret = 0;
  699. struct page *page, *new_page;
  700. unsigned long haddr;
  701. VM_BUG_ON(!vma->anon_vma);
  702. spin_lock(&mm->page_table_lock);
  703. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  704. goto out_unlock;
  705. page = pmd_page(orig_pmd);
  706. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  707. haddr = address & HPAGE_PMD_MASK;
  708. if (page_mapcount(page) == 1) {
  709. pmd_t entry;
  710. entry = pmd_mkyoung(orig_pmd);
  711. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  712. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  713. update_mmu_cache(vma, address, entry);
  714. ret |= VM_FAULT_WRITE;
  715. goto out_unlock;
  716. }
  717. get_page(page);
  718. spin_unlock(&mm->page_table_lock);
  719. if (transparent_hugepage_enabled(vma) &&
  720. !transparent_hugepage_debug_cow())
  721. new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
  722. else
  723. new_page = NULL;
  724. if (unlikely(!new_page)) {
  725. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  726. pmd, orig_pmd, page, haddr);
  727. put_page(page);
  728. goto out;
  729. }
  730. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  731. put_page(new_page);
  732. put_page(page);
  733. ret |= VM_FAULT_OOM;
  734. goto out;
  735. }
  736. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  737. __SetPageUptodate(new_page);
  738. spin_lock(&mm->page_table_lock);
  739. put_page(page);
  740. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  741. mem_cgroup_uncharge_page(new_page);
  742. put_page(new_page);
  743. } else {
  744. pmd_t entry;
  745. VM_BUG_ON(!PageHead(page));
  746. entry = mk_pmd(new_page, vma->vm_page_prot);
  747. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  748. entry = pmd_mkhuge(entry);
  749. pmdp_clear_flush_notify(vma, haddr, pmd);
  750. page_add_new_anon_rmap(new_page, vma, haddr);
  751. set_pmd_at(mm, haddr, pmd, entry);
  752. update_mmu_cache(vma, address, entry);
  753. page_remove_rmap(page);
  754. put_page(page);
  755. ret |= VM_FAULT_WRITE;
  756. }
  757. out_unlock:
  758. spin_unlock(&mm->page_table_lock);
  759. out:
  760. return ret;
  761. }
  762. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  763. unsigned long addr,
  764. pmd_t *pmd,
  765. unsigned int flags)
  766. {
  767. struct page *page = NULL;
  768. assert_spin_locked(&mm->page_table_lock);
  769. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  770. goto out;
  771. page = pmd_page(*pmd);
  772. VM_BUG_ON(!PageHead(page));
  773. if (flags & FOLL_TOUCH) {
  774. pmd_t _pmd;
  775. /*
  776. * We should set the dirty bit only for FOLL_WRITE but
  777. * for now the dirty bit in the pmd is meaningless.
  778. * And if the dirty bit will become meaningful and
  779. * we'll only set it with FOLL_WRITE, an atomic
  780. * set_bit will be required on the pmd to set the
  781. * young bit, instead of the current set_pmd_at.
  782. */
  783. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  784. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  785. }
  786. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  787. VM_BUG_ON(!PageCompound(page));
  788. if (flags & FOLL_GET)
  789. get_page(page);
  790. out:
  791. return page;
  792. }
  793. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  794. pmd_t *pmd)
  795. {
  796. int ret = 0;
  797. spin_lock(&tlb->mm->page_table_lock);
  798. if (likely(pmd_trans_huge(*pmd))) {
  799. if (unlikely(pmd_trans_splitting(*pmd))) {
  800. spin_unlock(&tlb->mm->page_table_lock);
  801. wait_split_huge_page(vma->anon_vma,
  802. pmd);
  803. } else {
  804. struct page *page;
  805. pgtable_t pgtable;
  806. pgtable = get_pmd_huge_pte(tlb->mm);
  807. page = pmd_page(*pmd);
  808. pmd_clear(pmd);
  809. page_remove_rmap(page);
  810. VM_BUG_ON(page_mapcount(page) < 0);
  811. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  812. VM_BUG_ON(!PageHead(page));
  813. spin_unlock(&tlb->mm->page_table_lock);
  814. tlb_remove_page(tlb, page);
  815. pte_free(tlb->mm, pgtable);
  816. ret = 1;
  817. }
  818. } else
  819. spin_unlock(&tlb->mm->page_table_lock);
  820. return ret;
  821. }
  822. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  823. unsigned long addr, unsigned long end,
  824. unsigned char *vec)
  825. {
  826. int ret = 0;
  827. spin_lock(&vma->vm_mm->page_table_lock);
  828. if (likely(pmd_trans_huge(*pmd))) {
  829. ret = !pmd_trans_splitting(*pmd);
  830. spin_unlock(&vma->vm_mm->page_table_lock);
  831. if (unlikely(!ret))
  832. wait_split_huge_page(vma->anon_vma, pmd);
  833. else {
  834. /*
  835. * All logical pages in the range are present
  836. * if backed by a huge page.
  837. */
  838. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  839. }
  840. } else
  841. spin_unlock(&vma->vm_mm->page_table_lock);
  842. return ret;
  843. }
  844. pmd_t *page_check_address_pmd(struct page *page,
  845. struct mm_struct *mm,
  846. unsigned long address,
  847. enum page_check_address_pmd_flag flag)
  848. {
  849. pgd_t *pgd;
  850. pud_t *pud;
  851. pmd_t *pmd, *ret = NULL;
  852. if (address & ~HPAGE_PMD_MASK)
  853. goto out;
  854. pgd = pgd_offset(mm, address);
  855. if (!pgd_present(*pgd))
  856. goto out;
  857. pud = pud_offset(pgd, address);
  858. if (!pud_present(*pud))
  859. goto out;
  860. pmd = pmd_offset(pud, address);
  861. if (pmd_none(*pmd))
  862. goto out;
  863. if (pmd_page(*pmd) != page)
  864. goto out;
  865. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  866. pmd_trans_splitting(*pmd));
  867. if (pmd_trans_huge(*pmd)) {
  868. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  869. !pmd_trans_splitting(*pmd));
  870. ret = pmd;
  871. }
  872. out:
  873. return ret;
  874. }
  875. static int __split_huge_page_splitting(struct page *page,
  876. struct vm_area_struct *vma,
  877. unsigned long address)
  878. {
  879. struct mm_struct *mm = vma->vm_mm;
  880. pmd_t *pmd;
  881. int ret = 0;
  882. spin_lock(&mm->page_table_lock);
  883. pmd = page_check_address_pmd(page, mm, address,
  884. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  885. if (pmd) {
  886. /*
  887. * We can't temporarily set the pmd to null in order
  888. * to split it, the pmd must remain marked huge at all
  889. * times or the VM won't take the pmd_trans_huge paths
  890. * and it won't wait on the anon_vma->root->lock to
  891. * serialize against split_huge_page*.
  892. */
  893. pmdp_splitting_flush_notify(vma, address, pmd);
  894. ret = 1;
  895. }
  896. spin_unlock(&mm->page_table_lock);
  897. return ret;
  898. }
  899. static void __split_huge_page_refcount(struct page *page)
  900. {
  901. int i;
  902. unsigned long head_index = page->index;
  903. struct zone *zone = page_zone(page);
  904. /* prevent PageLRU to go away from under us, and freeze lru stats */
  905. spin_lock_irq(&zone->lru_lock);
  906. compound_lock(page);
  907. for (i = 1; i < HPAGE_PMD_NR; i++) {
  908. struct page *page_tail = page + i;
  909. /* tail_page->_count cannot change */
  910. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  911. BUG_ON(page_count(page) <= 0);
  912. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  913. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  914. /* after clearing PageTail the gup refcount can be released */
  915. smp_mb();
  916. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  917. page_tail->flags |= (page->flags &
  918. ((1L << PG_referenced) |
  919. (1L << PG_swapbacked) |
  920. (1L << PG_mlocked) |
  921. (1L << PG_uptodate)));
  922. page_tail->flags |= (1L << PG_dirty);
  923. /*
  924. * 1) clear PageTail before overwriting first_page
  925. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  926. */
  927. smp_wmb();
  928. /*
  929. * __split_huge_page_splitting() already set the
  930. * splitting bit in all pmd that could map this
  931. * hugepage, that will ensure no CPU can alter the
  932. * mapcount on the head page. The mapcount is only
  933. * accounted in the head page and it has to be
  934. * transferred to all tail pages in the below code. So
  935. * for this code to be safe, the split the mapcount
  936. * can't change. But that doesn't mean userland can't
  937. * keep changing and reading the page contents while
  938. * we transfer the mapcount, so the pmd splitting
  939. * status is achieved setting a reserved bit in the
  940. * pmd, not by clearing the present bit.
  941. */
  942. BUG_ON(page_mapcount(page_tail));
  943. page_tail->_mapcount = page->_mapcount;
  944. BUG_ON(page_tail->mapping);
  945. page_tail->mapping = page->mapping;
  946. page_tail->index = ++head_index;
  947. BUG_ON(!PageAnon(page_tail));
  948. BUG_ON(!PageUptodate(page_tail));
  949. BUG_ON(!PageDirty(page_tail));
  950. BUG_ON(!PageSwapBacked(page_tail));
  951. lru_add_page_tail(zone, page, page_tail);
  952. }
  953. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  954. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  955. ClearPageCompound(page);
  956. compound_unlock(page);
  957. spin_unlock_irq(&zone->lru_lock);
  958. for (i = 1; i < HPAGE_PMD_NR; i++) {
  959. struct page *page_tail = page + i;
  960. BUG_ON(page_count(page_tail) <= 0);
  961. /*
  962. * Tail pages may be freed if there wasn't any mapping
  963. * like if add_to_swap() is running on a lru page that
  964. * had its mapping zapped. And freeing these pages
  965. * requires taking the lru_lock so we do the put_page
  966. * of the tail pages after the split is complete.
  967. */
  968. put_page(page_tail);
  969. }
  970. /*
  971. * Only the head page (now become a regular page) is required
  972. * to be pinned by the caller.
  973. */
  974. BUG_ON(page_count(page) <= 0);
  975. }
  976. static int __split_huge_page_map(struct page *page,
  977. struct vm_area_struct *vma,
  978. unsigned long address)
  979. {
  980. struct mm_struct *mm = vma->vm_mm;
  981. pmd_t *pmd, _pmd;
  982. int ret = 0, i;
  983. pgtable_t pgtable;
  984. unsigned long haddr;
  985. spin_lock(&mm->page_table_lock);
  986. pmd = page_check_address_pmd(page, mm, address,
  987. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  988. if (pmd) {
  989. pgtable = get_pmd_huge_pte(mm);
  990. pmd_populate(mm, &_pmd, pgtable);
  991. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  992. i++, haddr += PAGE_SIZE) {
  993. pte_t *pte, entry;
  994. BUG_ON(PageCompound(page+i));
  995. entry = mk_pte(page + i, vma->vm_page_prot);
  996. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  997. if (!pmd_write(*pmd))
  998. entry = pte_wrprotect(entry);
  999. else
  1000. BUG_ON(page_mapcount(page) != 1);
  1001. if (!pmd_young(*pmd))
  1002. entry = pte_mkold(entry);
  1003. pte = pte_offset_map(&_pmd, haddr);
  1004. BUG_ON(!pte_none(*pte));
  1005. set_pte_at(mm, haddr, pte, entry);
  1006. pte_unmap(pte);
  1007. }
  1008. mm->nr_ptes++;
  1009. smp_wmb(); /* make pte visible before pmd */
  1010. /*
  1011. * Up to this point the pmd is present and huge and
  1012. * userland has the whole access to the hugepage
  1013. * during the split (which happens in place). If we
  1014. * overwrite the pmd with the not-huge version
  1015. * pointing to the pte here (which of course we could
  1016. * if all CPUs were bug free), userland could trigger
  1017. * a small page size TLB miss on the small sized TLB
  1018. * while the hugepage TLB entry is still established
  1019. * in the huge TLB. Some CPU doesn't like that. See
  1020. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1021. * Erratum 383 on page 93. Intel should be safe but is
  1022. * also warns that it's only safe if the permission
  1023. * and cache attributes of the two entries loaded in
  1024. * the two TLB is identical (which should be the case
  1025. * here). But it is generally safer to never allow
  1026. * small and huge TLB entries for the same virtual
  1027. * address to be loaded simultaneously. So instead of
  1028. * doing "pmd_populate(); flush_tlb_range();" we first
  1029. * mark the current pmd notpresent (atomically because
  1030. * here the pmd_trans_huge and pmd_trans_splitting
  1031. * must remain set at all times on the pmd until the
  1032. * split is complete for this pmd), then we flush the
  1033. * SMP TLB and finally we write the non-huge version
  1034. * of the pmd entry with pmd_populate.
  1035. */
  1036. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1037. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1038. pmd_populate(mm, pmd, pgtable);
  1039. ret = 1;
  1040. }
  1041. spin_unlock(&mm->page_table_lock);
  1042. return ret;
  1043. }
  1044. /* must be called with anon_vma->root->lock hold */
  1045. static void __split_huge_page(struct page *page,
  1046. struct anon_vma *anon_vma)
  1047. {
  1048. int mapcount, mapcount2;
  1049. struct anon_vma_chain *avc;
  1050. BUG_ON(!PageHead(page));
  1051. BUG_ON(PageTail(page));
  1052. mapcount = 0;
  1053. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1054. struct vm_area_struct *vma = avc->vma;
  1055. unsigned long addr = vma_address(page, vma);
  1056. BUG_ON(is_vma_temporary_stack(vma));
  1057. if (addr == -EFAULT)
  1058. continue;
  1059. mapcount += __split_huge_page_splitting(page, vma, addr);
  1060. }
  1061. /*
  1062. * It is critical that new vmas are added to the tail of the
  1063. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1064. * and establishes a child pmd before
  1065. * __split_huge_page_splitting() freezes the parent pmd (so if
  1066. * we fail to prevent copy_huge_pmd() from running until the
  1067. * whole __split_huge_page() is complete), we will still see
  1068. * the newly established pmd of the child later during the
  1069. * walk, to be able to set it as pmd_trans_splitting too.
  1070. */
  1071. if (mapcount != page_mapcount(page))
  1072. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1073. mapcount, page_mapcount(page));
  1074. BUG_ON(mapcount != page_mapcount(page));
  1075. __split_huge_page_refcount(page);
  1076. mapcount2 = 0;
  1077. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1078. struct vm_area_struct *vma = avc->vma;
  1079. unsigned long addr = vma_address(page, vma);
  1080. BUG_ON(is_vma_temporary_stack(vma));
  1081. if (addr == -EFAULT)
  1082. continue;
  1083. mapcount2 += __split_huge_page_map(page, vma, addr);
  1084. }
  1085. if (mapcount != mapcount2)
  1086. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1087. mapcount, mapcount2, page_mapcount(page));
  1088. BUG_ON(mapcount != mapcount2);
  1089. }
  1090. int split_huge_page(struct page *page)
  1091. {
  1092. struct anon_vma *anon_vma;
  1093. int ret = 1;
  1094. BUG_ON(!PageAnon(page));
  1095. anon_vma = page_lock_anon_vma(page);
  1096. if (!anon_vma)
  1097. goto out;
  1098. ret = 0;
  1099. if (!PageCompound(page))
  1100. goto out_unlock;
  1101. BUG_ON(!PageSwapBacked(page));
  1102. __split_huge_page(page, anon_vma);
  1103. BUG_ON(PageCompound(page));
  1104. out_unlock:
  1105. page_unlock_anon_vma(anon_vma);
  1106. out:
  1107. return ret;
  1108. }
  1109. int hugepage_madvise(unsigned long *vm_flags)
  1110. {
  1111. /*
  1112. * Be somewhat over-protective like KSM for now!
  1113. */
  1114. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1115. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1116. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1117. VM_MIXEDMAP | VM_SAO))
  1118. return -EINVAL;
  1119. *vm_flags |= VM_HUGEPAGE;
  1120. return 0;
  1121. }
  1122. static int __init khugepaged_slab_init(void)
  1123. {
  1124. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1125. sizeof(struct mm_slot),
  1126. __alignof__(struct mm_slot), 0, NULL);
  1127. if (!mm_slot_cache)
  1128. return -ENOMEM;
  1129. return 0;
  1130. }
  1131. static void __init khugepaged_slab_free(void)
  1132. {
  1133. kmem_cache_destroy(mm_slot_cache);
  1134. mm_slot_cache = NULL;
  1135. }
  1136. static inline struct mm_slot *alloc_mm_slot(void)
  1137. {
  1138. if (!mm_slot_cache) /* initialization failed */
  1139. return NULL;
  1140. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1141. }
  1142. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1143. {
  1144. kmem_cache_free(mm_slot_cache, mm_slot);
  1145. }
  1146. static int __init mm_slots_hash_init(void)
  1147. {
  1148. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1149. GFP_KERNEL);
  1150. if (!mm_slots_hash)
  1151. return -ENOMEM;
  1152. return 0;
  1153. }
  1154. #if 0
  1155. static void __init mm_slots_hash_free(void)
  1156. {
  1157. kfree(mm_slots_hash);
  1158. mm_slots_hash = NULL;
  1159. }
  1160. #endif
  1161. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1162. {
  1163. struct mm_slot *mm_slot;
  1164. struct hlist_head *bucket;
  1165. struct hlist_node *node;
  1166. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1167. % MM_SLOTS_HASH_HEADS];
  1168. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1169. if (mm == mm_slot->mm)
  1170. return mm_slot;
  1171. }
  1172. return NULL;
  1173. }
  1174. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1175. struct mm_slot *mm_slot)
  1176. {
  1177. struct hlist_head *bucket;
  1178. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1179. % MM_SLOTS_HASH_HEADS];
  1180. mm_slot->mm = mm;
  1181. hlist_add_head(&mm_slot->hash, bucket);
  1182. }
  1183. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1184. {
  1185. return atomic_read(&mm->mm_users) == 0;
  1186. }
  1187. int __khugepaged_enter(struct mm_struct *mm)
  1188. {
  1189. struct mm_slot *mm_slot;
  1190. int wakeup;
  1191. mm_slot = alloc_mm_slot();
  1192. if (!mm_slot)
  1193. return -ENOMEM;
  1194. /* __khugepaged_exit() must not run from under us */
  1195. VM_BUG_ON(khugepaged_test_exit(mm));
  1196. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1197. free_mm_slot(mm_slot);
  1198. return 0;
  1199. }
  1200. spin_lock(&khugepaged_mm_lock);
  1201. insert_to_mm_slots_hash(mm, mm_slot);
  1202. /*
  1203. * Insert just behind the scanning cursor, to let the area settle
  1204. * down a little.
  1205. */
  1206. wakeup = list_empty(&khugepaged_scan.mm_head);
  1207. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1208. spin_unlock(&khugepaged_mm_lock);
  1209. atomic_inc(&mm->mm_count);
  1210. if (wakeup)
  1211. wake_up_interruptible(&khugepaged_wait);
  1212. return 0;
  1213. }
  1214. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1215. {
  1216. unsigned long hstart, hend;
  1217. if (!vma->anon_vma)
  1218. /*
  1219. * Not yet faulted in so we will register later in the
  1220. * page fault if needed.
  1221. */
  1222. return 0;
  1223. if (vma->vm_file || vma->vm_ops)
  1224. /* khugepaged not yet working on file or special mappings */
  1225. return 0;
  1226. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1227. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1228. hend = vma->vm_end & HPAGE_PMD_MASK;
  1229. if (hstart < hend)
  1230. return khugepaged_enter(vma);
  1231. return 0;
  1232. }
  1233. void __khugepaged_exit(struct mm_struct *mm)
  1234. {
  1235. struct mm_slot *mm_slot;
  1236. int free = 0;
  1237. spin_lock(&khugepaged_mm_lock);
  1238. mm_slot = get_mm_slot(mm);
  1239. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1240. hlist_del(&mm_slot->hash);
  1241. list_del(&mm_slot->mm_node);
  1242. free = 1;
  1243. }
  1244. if (free) {
  1245. spin_unlock(&khugepaged_mm_lock);
  1246. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1247. free_mm_slot(mm_slot);
  1248. mmdrop(mm);
  1249. } else if (mm_slot) {
  1250. spin_unlock(&khugepaged_mm_lock);
  1251. /*
  1252. * This is required to serialize against
  1253. * khugepaged_test_exit() (which is guaranteed to run
  1254. * under mmap sem read mode). Stop here (after we
  1255. * return all pagetables will be destroyed) until
  1256. * khugepaged has finished working on the pagetables
  1257. * under the mmap_sem.
  1258. */
  1259. down_write(&mm->mmap_sem);
  1260. up_write(&mm->mmap_sem);
  1261. } else
  1262. spin_unlock(&khugepaged_mm_lock);
  1263. }
  1264. static void release_pte_page(struct page *page)
  1265. {
  1266. /* 0 stands for page_is_file_cache(page) == false */
  1267. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1268. unlock_page(page);
  1269. putback_lru_page(page);
  1270. }
  1271. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1272. {
  1273. while (--_pte >= pte) {
  1274. pte_t pteval = *_pte;
  1275. if (!pte_none(pteval))
  1276. release_pte_page(pte_page(pteval));
  1277. }
  1278. }
  1279. static void release_all_pte_pages(pte_t *pte)
  1280. {
  1281. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1282. }
  1283. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1284. unsigned long address,
  1285. pte_t *pte)
  1286. {
  1287. struct page *page;
  1288. pte_t *_pte;
  1289. int referenced = 0, isolated = 0, none = 0;
  1290. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1291. _pte++, address += PAGE_SIZE) {
  1292. pte_t pteval = *_pte;
  1293. if (pte_none(pteval)) {
  1294. if (++none <= khugepaged_max_ptes_none)
  1295. continue;
  1296. else {
  1297. release_pte_pages(pte, _pte);
  1298. goto out;
  1299. }
  1300. }
  1301. if (!pte_present(pteval) || !pte_write(pteval)) {
  1302. release_pte_pages(pte, _pte);
  1303. goto out;
  1304. }
  1305. page = vm_normal_page(vma, address, pteval);
  1306. if (unlikely(!page)) {
  1307. release_pte_pages(pte, _pte);
  1308. goto out;
  1309. }
  1310. VM_BUG_ON(PageCompound(page));
  1311. BUG_ON(!PageAnon(page));
  1312. VM_BUG_ON(!PageSwapBacked(page));
  1313. /* cannot use mapcount: can't collapse if there's a gup pin */
  1314. if (page_count(page) != 1) {
  1315. release_pte_pages(pte, _pte);
  1316. goto out;
  1317. }
  1318. /*
  1319. * We can do it before isolate_lru_page because the
  1320. * page can't be freed from under us. NOTE: PG_lock
  1321. * is needed to serialize against split_huge_page
  1322. * when invoked from the VM.
  1323. */
  1324. if (!trylock_page(page)) {
  1325. release_pte_pages(pte, _pte);
  1326. goto out;
  1327. }
  1328. /*
  1329. * Isolate the page to avoid collapsing an hugepage
  1330. * currently in use by the VM.
  1331. */
  1332. if (isolate_lru_page(page)) {
  1333. unlock_page(page);
  1334. release_pte_pages(pte, _pte);
  1335. goto out;
  1336. }
  1337. /* 0 stands for page_is_file_cache(page) == false */
  1338. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1339. VM_BUG_ON(!PageLocked(page));
  1340. VM_BUG_ON(PageLRU(page));
  1341. /* If there is no mapped pte young don't collapse the page */
  1342. if (pte_young(pteval))
  1343. referenced = 1;
  1344. }
  1345. if (unlikely(!referenced))
  1346. release_all_pte_pages(pte);
  1347. else
  1348. isolated = 1;
  1349. out:
  1350. return isolated;
  1351. }
  1352. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1353. struct vm_area_struct *vma,
  1354. unsigned long address,
  1355. spinlock_t *ptl)
  1356. {
  1357. pte_t *_pte;
  1358. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1359. pte_t pteval = *_pte;
  1360. struct page *src_page;
  1361. if (pte_none(pteval)) {
  1362. clear_user_highpage(page, address);
  1363. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1364. } else {
  1365. src_page = pte_page(pteval);
  1366. copy_user_highpage(page, src_page, address, vma);
  1367. VM_BUG_ON(page_mapcount(src_page) != 1);
  1368. VM_BUG_ON(page_count(src_page) != 2);
  1369. release_pte_page(src_page);
  1370. /*
  1371. * ptl mostly unnecessary, but preempt has to
  1372. * be disabled to update the per-cpu stats
  1373. * inside page_remove_rmap().
  1374. */
  1375. spin_lock(ptl);
  1376. /*
  1377. * paravirt calls inside pte_clear here are
  1378. * superfluous.
  1379. */
  1380. pte_clear(vma->vm_mm, address, _pte);
  1381. page_remove_rmap(src_page);
  1382. spin_unlock(ptl);
  1383. free_page_and_swap_cache(src_page);
  1384. }
  1385. address += PAGE_SIZE;
  1386. page++;
  1387. }
  1388. }
  1389. static void collapse_huge_page(struct mm_struct *mm,
  1390. unsigned long address,
  1391. struct page **hpage)
  1392. {
  1393. struct vm_area_struct *vma;
  1394. pgd_t *pgd;
  1395. pud_t *pud;
  1396. pmd_t *pmd, _pmd;
  1397. pte_t *pte;
  1398. pgtable_t pgtable;
  1399. struct page *new_page;
  1400. spinlock_t *ptl;
  1401. int isolated;
  1402. unsigned long hstart, hend;
  1403. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1404. VM_BUG_ON(!*hpage);
  1405. /*
  1406. * Prevent all access to pagetables with the exception of
  1407. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1408. * handled by the anon_vma lock + PG_lock.
  1409. */
  1410. down_write(&mm->mmap_sem);
  1411. if (unlikely(khugepaged_test_exit(mm)))
  1412. goto out;
  1413. vma = find_vma(mm, address);
  1414. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1415. hend = vma->vm_end & HPAGE_PMD_MASK;
  1416. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1417. goto out;
  1418. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1419. goto out;
  1420. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1421. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1422. goto out;
  1423. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1424. pgd = pgd_offset(mm, address);
  1425. if (!pgd_present(*pgd))
  1426. goto out;
  1427. pud = pud_offset(pgd, address);
  1428. if (!pud_present(*pud))
  1429. goto out;
  1430. pmd = pmd_offset(pud, address);
  1431. /* pmd can't go away or become huge under us */
  1432. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1433. goto out;
  1434. new_page = *hpage;
  1435. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1436. goto out;
  1437. anon_vma_lock(vma->anon_vma);
  1438. pte = pte_offset_map(pmd, address);
  1439. ptl = pte_lockptr(mm, pmd);
  1440. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1441. /*
  1442. * After this gup_fast can't run anymore. This also removes
  1443. * any huge TLB entry from the CPU so we won't allow
  1444. * huge and small TLB entries for the same virtual address
  1445. * to avoid the risk of CPU bugs in that area.
  1446. */
  1447. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1448. spin_unlock(&mm->page_table_lock);
  1449. spin_lock(ptl);
  1450. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1451. spin_unlock(ptl);
  1452. pte_unmap(pte);
  1453. if (unlikely(!isolated)) {
  1454. spin_lock(&mm->page_table_lock);
  1455. BUG_ON(!pmd_none(*pmd));
  1456. set_pmd_at(mm, address, pmd, _pmd);
  1457. spin_unlock(&mm->page_table_lock);
  1458. anon_vma_unlock(vma->anon_vma);
  1459. mem_cgroup_uncharge_page(new_page);
  1460. goto out;
  1461. }
  1462. /*
  1463. * All pages are isolated and locked so anon_vma rmap
  1464. * can't run anymore.
  1465. */
  1466. anon_vma_unlock(vma->anon_vma);
  1467. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1468. __SetPageUptodate(new_page);
  1469. pgtable = pmd_pgtable(_pmd);
  1470. VM_BUG_ON(page_count(pgtable) != 1);
  1471. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1472. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1473. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1474. _pmd = pmd_mkhuge(_pmd);
  1475. /*
  1476. * spin_lock() below is not the equivalent of smp_wmb(), so
  1477. * this is needed to avoid the copy_huge_page writes to become
  1478. * visible after the set_pmd_at() write.
  1479. */
  1480. smp_wmb();
  1481. spin_lock(&mm->page_table_lock);
  1482. BUG_ON(!pmd_none(*pmd));
  1483. page_add_new_anon_rmap(new_page, vma, address);
  1484. set_pmd_at(mm, address, pmd, _pmd);
  1485. update_mmu_cache(vma, address, entry);
  1486. prepare_pmd_huge_pte(pgtable, mm);
  1487. mm->nr_ptes--;
  1488. spin_unlock(&mm->page_table_lock);
  1489. *hpage = NULL;
  1490. khugepaged_pages_collapsed++;
  1491. out:
  1492. up_write(&mm->mmap_sem);
  1493. }
  1494. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1495. struct vm_area_struct *vma,
  1496. unsigned long address,
  1497. struct page **hpage)
  1498. {
  1499. pgd_t *pgd;
  1500. pud_t *pud;
  1501. pmd_t *pmd;
  1502. pte_t *pte, *_pte;
  1503. int ret = 0, referenced = 0, none = 0;
  1504. struct page *page;
  1505. unsigned long _address;
  1506. spinlock_t *ptl;
  1507. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1508. pgd = pgd_offset(mm, address);
  1509. if (!pgd_present(*pgd))
  1510. goto out;
  1511. pud = pud_offset(pgd, address);
  1512. if (!pud_present(*pud))
  1513. goto out;
  1514. pmd = pmd_offset(pud, address);
  1515. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1516. goto out;
  1517. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1518. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1519. _pte++, _address += PAGE_SIZE) {
  1520. pte_t pteval = *_pte;
  1521. if (pte_none(pteval)) {
  1522. if (++none <= khugepaged_max_ptes_none)
  1523. continue;
  1524. else
  1525. goto out_unmap;
  1526. }
  1527. if (!pte_present(pteval) || !pte_write(pteval))
  1528. goto out_unmap;
  1529. page = vm_normal_page(vma, _address, pteval);
  1530. if (unlikely(!page))
  1531. goto out_unmap;
  1532. VM_BUG_ON(PageCompound(page));
  1533. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1534. goto out_unmap;
  1535. /* cannot use mapcount: can't collapse if there's a gup pin */
  1536. if (page_count(page) != 1)
  1537. goto out_unmap;
  1538. if (pte_young(pteval))
  1539. referenced = 1;
  1540. }
  1541. if (referenced)
  1542. ret = 1;
  1543. out_unmap:
  1544. pte_unmap_unlock(pte, ptl);
  1545. if (ret) {
  1546. up_read(&mm->mmap_sem);
  1547. collapse_huge_page(mm, address, hpage);
  1548. }
  1549. out:
  1550. return ret;
  1551. }
  1552. static void collect_mm_slot(struct mm_slot *mm_slot)
  1553. {
  1554. struct mm_struct *mm = mm_slot->mm;
  1555. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1556. if (khugepaged_test_exit(mm)) {
  1557. /* free mm_slot */
  1558. hlist_del(&mm_slot->hash);
  1559. list_del(&mm_slot->mm_node);
  1560. /*
  1561. * Not strictly needed because the mm exited already.
  1562. *
  1563. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1564. */
  1565. /* khugepaged_mm_lock actually not necessary for the below */
  1566. free_mm_slot(mm_slot);
  1567. mmdrop(mm);
  1568. }
  1569. }
  1570. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1571. struct page **hpage)
  1572. {
  1573. struct mm_slot *mm_slot;
  1574. struct mm_struct *mm;
  1575. struct vm_area_struct *vma;
  1576. int progress = 0;
  1577. VM_BUG_ON(!pages);
  1578. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1579. if (khugepaged_scan.mm_slot)
  1580. mm_slot = khugepaged_scan.mm_slot;
  1581. else {
  1582. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1583. struct mm_slot, mm_node);
  1584. khugepaged_scan.address = 0;
  1585. khugepaged_scan.mm_slot = mm_slot;
  1586. }
  1587. spin_unlock(&khugepaged_mm_lock);
  1588. mm = mm_slot->mm;
  1589. down_read(&mm->mmap_sem);
  1590. if (unlikely(khugepaged_test_exit(mm)))
  1591. vma = NULL;
  1592. else
  1593. vma = find_vma(mm, khugepaged_scan.address);
  1594. progress++;
  1595. for (; vma; vma = vma->vm_next) {
  1596. unsigned long hstart, hend;
  1597. cond_resched();
  1598. if (unlikely(khugepaged_test_exit(mm))) {
  1599. progress++;
  1600. break;
  1601. }
  1602. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1603. !khugepaged_always()) {
  1604. progress++;
  1605. continue;
  1606. }
  1607. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1608. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1609. khugepaged_scan.address = vma->vm_end;
  1610. progress++;
  1611. continue;
  1612. }
  1613. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1614. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1615. hend = vma->vm_end & HPAGE_PMD_MASK;
  1616. if (hstart >= hend) {
  1617. progress++;
  1618. continue;
  1619. }
  1620. if (khugepaged_scan.address < hstart)
  1621. khugepaged_scan.address = hstart;
  1622. if (khugepaged_scan.address > hend) {
  1623. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1624. progress++;
  1625. continue;
  1626. }
  1627. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1628. while (khugepaged_scan.address < hend) {
  1629. int ret;
  1630. cond_resched();
  1631. if (unlikely(khugepaged_test_exit(mm)))
  1632. goto breakouterloop;
  1633. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1634. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1635. hend);
  1636. ret = khugepaged_scan_pmd(mm, vma,
  1637. khugepaged_scan.address,
  1638. hpage);
  1639. /* move to next address */
  1640. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1641. progress += HPAGE_PMD_NR;
  1642. if (ret)
  1643. /* we released mmap_sem so break loop */
  1644. goto breakouterloop_mmap_sem;
  1645. if (progress >= pages)
  1646. goto breakouterloop;
  1647. }
  1648. }
  1649. breakouterloop:
  1650. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1651. breakouterloop_mmap_sem:
  1652. spin_lock(&khugepaged_mm_lock);
  1653. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1654. /*
  1655. * Release the current mm_slot if this mm is about to die, or
  1656. * if we scanned all vmas of this mm.
  1657. */
  1658. if (khugepaged_test_exit(mm) || !vma) {
  1659. /*
  1660. * Make sure that if mm_users is reaching zero while
  1661. * khugepaged runs here, khugepaged_exit will find
  1662. * mm_slot not pointing to the exiting mm.
  1663. */
  1664. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1665. khugepaged_scan.mm_slot = list_entry(
  1666. mm_slot->mm_node.next,
  1667. struct mm_slot, mm_node);
  1668. khugepaged_scan.address = 0;
  1669. } else {
  1670. khugepaged_scan.mm_slot = NULL;
  1671. khugepaged_full_scans++;
  1672. }
  1673. collect_mm_slot(mm_slot);
  1674. }
  1675. return progress;
  1676. }
  1677. static int khugepaged_has_work(void)
  1678. {
  1679. return !list_empty(&khugepaged_scan.mm_head) &&
  1680. khugepaged_enabled();
  1681. }
  1682. static int khugepaged_wait_event(void)
  1683. {
  1684. return !list_empty(&khugepaged_scan.mm_head) ||
  1685. !khugepaged_enabled();
  1686. }
  1687. static void khugepaged_do_scan(struct page **hpage)
  1688. {
  1689. unsigned int progress = 0, pass_through_head = 0;
  1690. unsigned int pages = khugepaged_pages_to_scan;
  1691. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1692. while (progress < pages) {
  1693. cond_resched();
  1694. if (!*hpage) {
  1695. *hpage = alloc_hugepage(khugepaged_defrag());
  1696. if (unlikely(!*hpage))
  1697. break;
  1698. }
  1699. spin_lock(&khugepaged_mm_lock);
  1700. if (!khugepaged_scan.mm_slot)
  1701. pass_through_head++;
  1702. if (khugepaged_has_work() &&
  1703. pass_through_head < 2)
  1704. progress += khugepaged_scan_mm_slot(pages - progress,
  1705. hpage);
  1706. else
  1707. progress = pages;
  1708. spin_unlock(&khugepaged_mm_lock);
  1709. }
  1710. }
  1711. static struct page *khugepaged_alloc_hugepage(void)
  1712. {
  1713. struct page *hpage;
  1714. do {
  1715. hpage = alloc_hugepage(khugepaged_defrag());
  1716. if (!hpage) {
  1717. DEFINE_WAIT(wait);
  1718. add_wait_queue(&khugepaged_wait, &wait);
  1719. schedule_timeout_interruptible(
  1720. msecs_to_jiffies(
  1721. khugepaged_alloc_sleep_millisecs));
  1722. remove_wait_queue(&khugepaged_wait, &wait);
  1723. }
  1724. } while (unlikely(!hpage) &&
  1725. likely(khugepaged_enabled()));
  1726. return hpage;
  1727. }
  1728. static void khugepaged_loop(void)
  1729. {
  1730. struct page *hpage;
  1731. while (likely(khugepaged_enabled())) {
  1732. hpage = khugepaged_alloc_hugepage();
  1733. if (unlikely(!hpage))
  1734. break;
  1735. khugepaged_do_scan(&hpage);
  1736. if (hpage)
  1737. put_page(hpage);
  1738. if (khugepaged_has_work()) {
  1739. DEFINE_WAIT(wait);
  1740. if (!khugepaged_scan_sleep_millisecs)
  1741. continue;
  1742. add_wait_queue(&khugepaged_wait, &wait);
  1743. schedule_timeout_interruptible(
  1744. msecs_to_jiffies(
  1745. khugepaged_scan_sleep_millisecs));
  1746. remove_wait_queue(&khugepaged_wait, &wait);
  1747. } else if (khugepaged_enabled())
  1748. wait_event_interruptible(khugepaged_wait,
  1749. khugepaged_wait_event());
  1750. }
  1751. }
  1752. static int khugepaged(void *none)
  1753. {
  1754. struct mm_slot *mm_slot;
  1755. set_user_nice(current, 19);
  1756. /* serialize with start_khugepaged() */
  1757. mutex_lock(&khugepaged_mutex);
  1758. for (;;) {
  1759. mutex_unlock(&khugepaged_mutex);
  1760. BUG_ON(khugepaged_thread != current);
  1761. khugepaged_loop();
  1762. BUG_ON(khugepaged_thread != current);
  1763. mutex_lock(&khugepaged_mutex);
  1764. if (!khugepaged_enabled())
  1765. break;
  1766. }
  1767. spin_lock(&khugepaged_mm_lock);
  1768. mm_slot = khugepaged_scan.mm_slot;
  1769. khugepaged_scan.mm_slot = NULL;
  1770. if (mm_slot)
  1771. collect_mm_slot(mm_slot);
  1772. spin_unlock(&khugepaged_mm_lock);
  1773. khugepaged_thread = NULL;
  1774. mutex_unlock(&khugepaged_mutex);
  1775. return 0;
  1776. }
  1777. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1778. {
  1779. struct page *page;
  1780. spin_lock(&mm->page_table_lock);
  1781. if (unlikely(!pmd_trans_huge(*pmd))) {
  1782. spin_unlock(&mm->page_table_lock);
  1783. return;
  1784. }
  1785. page = pmd_page(*pmd);
  1786. VM_BUG_ON(!page_count(page));
  1787. get_page(page);
  1788. spin_unlock(&mm->page_table_lock);
  1789. split_huge_page(page);
  1790. put_page(page);
  1791. BUG_ON(pmd_trans_huge(*pmd));
  1792. }