memory.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <linux/kallsyms.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/tlb.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/pgtable.h>
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  120. {
  121. pgtable_t token = pmd_pgtable(*pmd);
  122. pmd_clear(pmd);
  123. pte_free_tlb(tlb, token);
  124. tlb->mm->nr_ptes--;
  125. }
  126. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  127. unsigned long addr, unsigned long end,
  128. unsigned long floor, unsigned long ceiling)
  129. {
  130. pmd_t *pmd;
  131. unsigned long next;
  132. unsigned long start;
  133. start = addr;
  134. pmd = pmd_offset(pud, addr);
  135. do {
  136. next = pmd_addr_end(addr, end);
  137. if (pmd_none_or_clear_bad(pmd))
  138. continue;
  139. free_pte_range(tlb, pmd);
  140. } while (pmd++, addr = next, addr != end);
  141. start &= PUD_MASK;
  142. if (start < floor)
  143. return;
  144. if (ceiling) {
  145. ceiling &= PUD_MASK;
  146. if (!ceiling)
  147. return;
  148. }
  149. if (end - 1 > ceiling - 1)
  150. return;
  151. pmd = pmd_offset(pud, start);
  152. pud_clear(pud);
  153. pmd_free_tlb(tlb, pmd);
  154. }
  155. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  156. unsigned long addr, unsigned long end,
  157. unsigned long floor, unsigned long ceiling)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. unsigned long start;
  162. start = addr;
  163. pud = pud_offset(pgd, addr);
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (pud_none_or_clear_bad(pud))
  167. continue;
  168. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  169. } while (pud++, addr = next, addr != end);
  170. start &= PGDIR_MASK;
  171. if (start < floor)
  172. return;
  173. if (ceiling) {
  174. ceiling &= PGDIR_MASK;
  175. if (!ceiling)
  176. return;
  177. }
  178. if (end - 1 > ceiling - 1)
  179. return;
  180. pud = pud_offset(pgd, start);
  181. pgd_clear(pgd);
  182. pud_free_tlb(tlb, pud);
  183. }
  184. /*
  185. * This function frees user-level page tables of a process.
  186. *
  187. * Must be called with pagetable lock held.
  188. */
  189. void free_pgd_range(struct mmu_gather *tlb,
  190. unsigned long addr, unsigned long end,
  191. unsigned long floor, unsigned long ceiling)
  192. {
  193. pgd_t *pgd;
  194. unsigned long next;
  195. unsigned long start;
  196. /*
  197. * The next few lines have given us lots of grief...
  198. *
  199. * Why are we testing PMD* at this top level? Because often
  200. * there will be no work to do at all, and we'd prefer not to
  201. * go all the way down to the bottom just to discover that.
  202. *
  203. * Why all these "- 1"s? Because 0 represents both the bottom
  204. * of the address space and the top of it (using -1 for the
  205. * top wouldn't help much: the masks would do the wrong thing).
  206. * The rule is that addr 0 and floor 0 refer to the bottom of
  207. * the address space, but end 0 and ceiling 0 refer to the top
  208. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  209. * that end 0 case should be mythical).
  210. *
  211. * Wherever addr is brought up or ceiling brought down, we must
  212. * be careful to reject "the opposite 0" before it confuses the
  213. * subsequent tests. But what about where end is brought down
  214. * by PMD_SIZE below? no, end can't go down to 0 there.
  215. *
  216. * Whereas we round start (addr) and ceiling down, by different
  217. * masks at different levels, in order to test whether a table
  218. * now has no other vmas using it, so can be freed, we don't
  219. * bother to round floor or end up - the tests don't need that.
  220. */
  221. addr &= PMD_MASK;
  222. if (addr < floor) {
  223. addr += PMD_SIZE;
  224. if (!addr)
  225. return;
  226. }
  227. if (ceiling) {
  228. ceiling &= PMD_MASK;
  229. if (!ceiling)
  230. return;
  231. }
  232. if (end - 1 > ceiling - 1)
  233. end -= PMD_SIZE;
  234. if (addr > end - 1)
  235. return;
  236. start = addr;
  237. pgd = pgd_offset(tlb->mm, addr);
  238. do {
  239. next = pgd_addr_end(addr, end);
  240. if (pgd_none_or_clear_bad(pgd))
  241. continue;
  242. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  243. } while (pgd++, addr = next, addr != end);
  244. }
  245. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  246. unsigned long floor, unsigned long ceiling)
  247. {
  248. while (vma) {
  249. struct vm_area_struct *next = vma->vm_next;
  250. unsigned long addr = vma->vm_start;
  251. /*
  252. * Hide vma from rmap and vmtruncate before freeing pgtables
  253. */
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. if (is_vm_hugetlb_page(vma)) {
  257. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. } else {
  260. /*
  261. * Optimization: gather nearby vmas into one call down
  262. */
  263. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  264. && !is_vm_hugetlb_page(next)) {
  265. vma = next;
  266. next = vma->vm_next;
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. }
  270. free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. }
  273. vma = next;
  274. }
  275. }
  276. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. pgtable_t new = pte_alloc_one(mm, address);
  279. if (!new)
  280. return -ENOMEM;
  281. /*
  282. * Ensure all pte setup (eg. pte page lock and page clearing) are
  283. * visible before the pte is made visible to other CPUs by being
  284. * put into page tables.
  285. *
  286. * The other side of the story is the pointer chasing in the page
  287. * table walking code (when walking the page table without locking;
  288. * ie. most of the time). Fortunately, these data accesses consist
  289. * of a chain of data-dependent loads, meaning most CPUs (alpha
  290. * being the notable exception) will already guarantee loads are
  291. * seen in-order. See the alpha page table accessors for the
  292. * smp_read_barrier_depends() barriers in page table walking code.
  293. */
  294. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  295. spin_lock(&mm->page_table_lock);
  296. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  297. mm->nr_ptes++;
  298. pmd_populate(mm, pmd, new);
  299. new = NULL;
  300. }
  301. spin_unlock(&mm->page_table_lock);
  302. if (new)
  303. pte_free(mm, new);
  304. return 0;
  305. }
  306. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  307. {
  308. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  309. if (!new)
  310. return -ENOMEM;
  311. smp_wmb(); /* See comment in __pte_alloc */
  312. spin_lock(&init_mm.page_table_lock);
  313. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  314. pmd_populate_kernel(&init_mm, pmd, new);
  315. new = NULL;
  316. }
  317. spin_unlock(&init_mm.page_table_lock);
  318. if (new)
  319. pte_free_kernel(&init_mm, new);
  320. return 0;
  321. }
  322. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  323. {
  324. if (file_rss)
  325. add_mm_counter(mm, file_rss, file_rss);
  326. if (anon_rss)
  327. add_mm_counter(mm, anon_rss, anon_rss);
  328. }
  329. /*
  330. * This function is called to print an error when a bad pte
  331. * is found. For example, we might have a PFN-mapped pte in
  332. * a region that doesn't allow it.
  333. *
  334. * The calling function must still handle the error.
  335. */
  336. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  337. pte_t pte, struct page *page)
  338. {
  339. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  340. pud_t *pud = pud_offset(pgd, addr);
  341. pmd_t *pmd = pmd_offset(pud, addr);
  342. struct address_space *mapping;
  343. pgoff_t index;
  344. static unsigned long resume;
  345. static unsigned long nr_shown;
  346. static unsigned long nr_unshown;
  347. /*
  348. * Allow a burst of 60 reports, then keep quiet for that minute;
  349. * or allow a steady drip of one report per second.
  350. */
  351. if (nr_shown == 60) {
  352. if (time_before(jiffies, resume)) {
  353. nr_unshown++;
  354. return;
  355. }
  356. if (nr_unshown) {
  357. printk(KERN_ALERT
  358. "BUG: Bad page map: %lu messages suppressed\n",
  359. nr_unshown);
  360. nr_unshown = 0;
  361. }
  362. nr_shown = 0;
  363. }
  364. if (nr_shown++ == 0)
  365. resume = jiffies + 60 * HZ;
  366. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  367. index = linear_page_index(vma, addr);
  368. printk(KERN_ALERT
  369. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  370. current->comm,
  371. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  372. if (page) {
  373. printk(KERN_ALERT
  374. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  375. page, (void *)page->flags, page_count(page),
  376. page_mapcount(page), page->mapping, page->index);
  377. }
  378. printk(KERN_ALERT
  379. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  380. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  381. /*
  382. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  383. */
  384. if (vma->vm_ops)
  385. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  386. (unsigned long)vma->vm_ops->fault);
  387. if (vma->vm_file && vma->vm_file->f_op)
  388. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  389. (unsigned long)vma->vm_file->f_op->mmap);
  390. dump_stack();
  391. add_taint(TAINT_BAD_PAGE);
  392. }
  393. static inline int is_cow_mapping(unsigned int flags)
  394. {
  395. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  396. }
  397. /*
  398. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  399. *
  400. * "Special" mappings do not wish to be associated with a "struct page" (either
  401. * it doesn't exist, or it exists but they don't want to touch it). In this
  402. * case, NULL is returned here. "Normal" mappings do have a struct page.
  403. *
  404. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  405. * pte bit, in which case this function is trivial. Secondly, an architecture
  406. * may not have a spare pte bit, which requires a more complicated scheme,
  407. * described below.
  408. *
  409. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  410. * special mapping (even if there are underlying and valid "struct pages").
  411. * COWed pages of a VM_PFNMAP are always normal.
  412. *
  413. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  414. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  415. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  416. * mapping will always honor the rule
  417. *
  418. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  419. *
  420. * And for normal mappings this is false.
  421. *
  422. * This restricts such mappings to be a linear translation from virtual address
  423. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  424. * as the vma is not a COW mapping; in that case, we know that all ptes are
  425. * special (because none can have been COWed).
  426. *
  427. *
  428. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  429. *
  430. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  431. * page" backing, however the difference is that _all_ pages with a struct
  432. * page (that is, those where pfn_valid is true) are refcounted and considered
  433. * normal pages by the VM. The disadvantage is that pages are refcounted
  434. * (which can be slower and simply not an option for some PFNMAP users). The
  435. * advantage is that we don't have to follow the strict linearity rule of
  436. * PFNMAP mappings in order to support COWable mappings.
  437. *
  438. */
  439. #ifdef __HAVE_ARCH_PTE_SPECIAL
  440. # define HAVE_PTE_SPECIAL 1
  441. #else
  442. # define HAVE_PTE_SPECIAL 0
  443. #endif
  444. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  445. pte_t pte)
  446. {
  447. unsigned long pfn = pte_pfn(pte);
  448. if (HAVE_PTE_SPECIAL) {
  449. if (likely(!pte_special(pte)))
  450. goto check_pfn;
  451. if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
  452. print_bad_pte(vma, addr, pte, NULL);
  453. return NULL;
  454. }
  455. /* !HAVE_PTE_SPECIAL case follows: */
  456. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  457. if (vma->vm_flags & VM_MIXEDMAP) {
  458. if (!pfn_valid(pfn))
  459. return NULL;
  460. goto out;
  461. } else {
  462. unsigned long off;
  463. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  464. if (pfn == vma->vm_pgoff + off)
  465. return NULL;
  466. if (!is_cow_mapping(vma->vm_flags))
  467. return NULL;
  468. }
  469. }
  470. check_pfn:
  471. if (unlikely(pfn > highest_memmap_pfn)) {
  472. print_bad_pte(vma, addr, pte, NULL);
  473. return NULL;
  474. }
  475. /*
  476. * NOTE! We still have PageReserved() pages in the page tables.
  477. * eg. VDSO mappings can cause them to exist.
  478. */
  479. out:
  480. return pfn_to_page(pfn);
  481. }
  482. /*
  483. * copy one vm_area from one task to the other. Assumes the page tables
  484. * already present in the new task to be cleared in the whole range
  485. * covered by this vma.
  486. */
  487. static inline void
  488. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  489. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  490. unsigned long addr, int *rss)
  491. {
  492. unsigned long vm_flags = vma->vm_flags;
  493. pte_t pte = *src_pte;
  494. struct page *page;
  495. /* pte contains position in swap or file, so copy. */
  496. if (unlikely(!pte_present(pte))) {
  497. if (!pte_file(pte)) {
  498. swp_entry_t entry = pte_to_swp_entry(pte);
  499. swap_duplicate(entry);
  500. /* make sure dst_mm is on swapoff's mmlist. */
  501. if (unlikely(list_empty(&dst_mm->mmlist))) {
  502. spin_lock(&mmlist_lock);
  503. if (list_empty(&dst_mm->mmlist))
  504. list_add(&dst_mm->mmlist,
  505. &src_mm->mmlist);
  506. spin_unlock(&mmlist_lock);
  507. }
  508. if (is_write_migration_entry(entry) &&
  509. is_cow_mapping(vm_flags)) {
  510. /*
  511. * COW mappings require pages in both parent
  512. * and child to be set to read.
  513. */
  514. make_migration_entry_read(&entry);
  515. pte = swp_entry_to_pte(entry);
  516. set_pte_at(src_mm, addr, src_pte, pte);
  517. }
  518. }
  519. goto out_set_pte;
  520. }
  521. /*
  522. * If it's a COW mapping, write protect it both
  523. * in the parent and the child
  524. */
  525. if (is_cow_mapping(vm_flags)) {
  526. ptep_set_wrprotect(src_mm, addr, src_pte);
  527. pte = pte_wrprotect(pte);
  528. }
  529. /*
  530. * If it's a shared mapping, mark it clean in
  531. * the child
  532. */
  533. if (vm_flags & VM_SHARED)
  534. pte = pte_mkclean(pte);
  535. pte = pte_mkold(pte);
  536. page = vm_normal_page(vma, addr, pte);
  537. if (page) {
  538. get_page(page);
  539. page_dup_rmap(page, vma, addr);
  540. rss[!!PageAnon(page)]++;
  541. }
  542. out_set_pte:
  543. set_pte_at(dst_mm, addr, dst_pte, pte);
  544. }
  545. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  546. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  547. unsigned long addr, unsigned long end)
  548. {
  549. pte_t *src_pte, *dst_pte;
  550. spinlock_t *src_ptl, *dst_ptl;
  551. int progress = 0;
  552. int rss[2];
  553. again:
  554. rss[1] = rss[0] = 0;
  555. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  556. if (!dst_pte)
  557. return -ENOMEM;
  558. src_pte = pte_offset_map_nested(src_pmd, addr);
  559. src_ptl = pte_lockptr(src_mm, src_pmd);
  560. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  561. arch_enter_lazy_mmu_mode();
  562. do {
  563. /*
  564. * We are holding two locks at this point - either of them
  565. * could generate latencies in another task on another CPU.
  566. */
  567. if (progress >= 32) {
  568. progress = 0;
  569. if (need_resched() ||
  570. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  571. break;
  572. }
  573. if (pte_none(*src_pte)) {
  574. progress++;
  575. continue;
  576. }
  577. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  578. progress += 8;
  579. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  580. arch_leave_lazy_mmu_mode();
  581. spin_unlock(src_ptl);
  582. pte_unmap_nested(src_pte - 1);
  583. add_mm_rss(dst_mm, rss[0], rss[1]);
  584. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  585. cond_resched();
  586. if (addr != end)
  587. goto again;
  588. return 0;
  589. }
  590. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  591. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  592. unsigned long addr, unsigned long end)
  593. {
  594. pmd_t *src_pmd, *dst_pmd;
  595. unsigned long next;
  596. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  597. if (!dst_pmd)
  598. return -ENOMEM;
  599. src_pmd = pmd_offset(src_pud, addr);
  600. do {
  601. next = pmd_addr_end(addr, end);
  602. if (pmd_none_or_clear_bad(src_pmd))
  603. continue;
  604. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  605. vma, addr, next))
  606. return -ENOMEM;
  607. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  608. return 0;
  609. }
  610. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  611. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  612. unsigned long addr, unsigned long end)
  613. {
  614. pud_t *src_pud, *dst_pud;
  615. unsigned long next;
  616. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  617. if (!dst_pud)
  618. return -ENOMEM;
  619. src_pud = pud_offset(src_pgd, addr);
  620. do {
  621. next = pud_addr_end(addr, end);
  622. if (pud_none_or_clear_bad(src_pud))
  623. continue;
  624. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  625. vma, addr, next))
  626. return -ENOMEM;
  627. } while (dst_pud++, src_pud++, addr = next, addr != end);
  628. return 0;
  629. }
  630. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  631. struct vm_area_struct *vma)
  632. {
  633. pgd_t *src_pgd, *dst_pgd;
  634. unsigned long next;
  635. unsigned long addr = vma->vm_start;
  636. unsigned long end = vma->vm_end;
  637. int ret;
  638. /*
  639. * Don't copy ptes where a page fault will fill them correctly.
  640. * Fork becomes much lighter when there are big shared or private
  641. * readonly mappings. The tradeoff is that copy_page_range is more
  642. * efficient than faulting.
  643. */
  644. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  645. if (!vma->anon_vma)
  646. return 0;
  647. }
  648. if (is_vm_hugetlb_page(vma))
  649. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  650. if (unlikely(is_pfn_mapping(vma))) {
  651. /*
  652. * We do not free on error cases below as remove_vma
  653. * gets called on error from higher level routine
  654. */
  655. ret = track_pfn_vma_copy(vma);
  656. if (ret)
  657. return ret;
  658. }
  659. /*
  660. * We need to invalidate the secondary MMU mappings only when
  661. * there could be a permission downgrade on the ptes of the
  662. * parent mm. And a permission downgrade will only happen if
  663. * is_cow_mapping() returns true.
  664. */
  665. if (is_cow_mapping(vma->vm_flags))
  666. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  667. ret = 0;
  668. dst_pgd = pgd_offset(dst_mm, addr);
  669. src_pgd = pgd_offset(src_mm, addr);
  670. do {
  671. next = pgd_addr_end(addr, end);
  672. if (pgd_none_or_clear_bad(src_pgd))
  673. continue;
  674. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  675. vma, addr, next))) {
  676. ret = -ENOMEM;
  677. break;
  678. }
  679. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  680. if (is_cow_mapping(vma->vm_flags))
  681. mmu_notifier_invalidate_range_end(src_mm,
  682. vma->vm_start, end);
  683. return ret;
  684. }
  685. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  686. struct vm_area_struct *vma, pmd_t *pmd,
  687. unsigned long addr, unsigned long end,
  688. long *zap_work, struct zap_details *details)
  689. {
  690. struct mm_struct *mm = tlb->mm;
  691. pte_t *pte;
  692. spinlock_t *ptl;
  693. int file_rss = 0;
  694. int anon_rss = 0;
  695. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  696. arch_enter_lazy_mmu_mode();
  697. do {
  698. pte_t ptent = *pte;
  699. if (pte_none(ptent)) {
  700. (*zap_work)--;
  701. continue;
  702. }
  703. (*zap_work) -= PAGE_SIZE;
  704. if (pte_present(ptent)) {
  705. struct page *page;
  706. page = vm_normal_page(vma, addr, ptent);
  707. if (unlikely(details) && page) {
  708. /*
  709. * unmap_shared_mapping_pages() wants to
  710. * invalidate cache without truncating:
  711. * unmap shared but keep private pages.
  712. */
  713. if (details->check_mapping &&
  714. details->check_mapping != page->mapping)
  715. continue;
  716. /*
  717. * Each page->index must be checked when
  718. * invalidating or truncating nonlinear.
  719. */
  720. if (details->nonlinear_vma &&
  721. (page->index < details->first_index ||
  722. page->index > details->last_index))
  723. continue;
  724. }
  725. ptent = ptep_get_and_clear_full(mm, addr, pte,
  726. tlb->fullmm);
  727. tlb_remove_tlb_entry(tlb, pte, addr);
  728. if (unlikely(!page))
  729. continue;
  730. if (unlikely(details) && details->nonlinear_vma
  731. && linear_page_index(details->nonlinear_vma,
  732. addr) != page->index)
  733. set_pte_at(mm, addr, pte,
  734. pgoff_to_pte(page->index));
  735. if (PageAnon(page))
  736. anon_rss--;
  737. else {
  738. if (pte_dirty(ptent))
  739. set_page_dirty(page);
  740. if (pte_young(ptent) &&
  741. likely(!VM_SequentialReadHint(vma)))
  742. mark_page_accessed(page);
  743. file_rss--;
  744. }
  745. page_remove_rmap(page);
  746. if (unlikely(page_mapcount(page) < 0))
  747. print_bad_pte(vma, addr, ptent, page);
  748. tlb_remove_page(tlb, page);
  749. continue;
  750. }
  751. /*
  752. * If details->check_mapping, we leave swap entries;
  753. * if details->nonlinear_vma, we leave file entries.
  754. */
  755. if (unlikely(details))
  756. continue;
  757. if (pte_file(ptent)) {
  758. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  759. print_bad_pte(vma, addr, ptent, NULL);
  760. } else if
  761. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  762. print_bad_pte(vma, addr, ptent, NULL);
  763. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  764. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  765. add_mm_rss(mm, file_rss, anon_rss);
  766. arch_leave_lazy_mmu_mode();
  767. pte_unmap_unlock(pte - 1, ptl);
  768. return addr;
  769. }
  770. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  771. struct vm_area_struct *vma, pud_t *pud,
  772. unsigned long addr, unsigned long end,
  773. long *zap_work, struct zap_details *details)
  774. {
  775. pmd_t *pmd;
  776. unsigned long next;
  777. pmd = pmd_offset(pud, addr);
  778. do {
  779. next = pmd_addr_end(addr, end);
  780. if (pmd_none_or_clear_bad(pmd)) {
  781. (*zap_work)--;
  782. continue;
  783. }
  784. next = zap_pte_range(tlb, vma, pmd, addr, next,
  785. zap_work, details);
  786. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  787. return addr;
  788. }
  789. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  790. struct vm_area_struct *vma, pgd_t *pgd,
  791. unsigned long addr, unsigned long end,
  792. long *zap_work, struct zap_details *details)
  793. {
  794. pud_t *pud;
  795. unsigned long next;
  796. pud = pud_offset(pgd, addr);
  797. do {
  798. next = pud_addr_end(addr, end);
  799. if (pud_none_or_clear_bad(pud)) {
  800. (*zap_work)--;
  801. continue;
  802. }
  803. next = zap_pmd_range(tlb, vma, pud, addr, next,
  804. zap_work, details);
  805. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  806. return addr;
  807. }
  808. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  809. struct vm_area_struct *vma,
  810. unsigned long addr, unsigned long end,
  811. long *zap_work, struct zap_details *details)
  812. {
  813. pgd_t *pgd;
  814. unsigned long next;
  815. if (details && !details->check_mapping && !details->nonlinear_vma)
  816. details = NULL;
  817. BUG_ON(addr >= end);
  818. tlb_start_vma(tlb, vma);
  819. pgd = pgd_offset(vma->vm_mm, addr);
  820. do {
  821. next = pgd_addr_end(addr, end);
  822. if (pgd_none_or_clear_bad(pgd)) {
  823. (*zap_work)--;
  824. continue;
  825. }
  826. next = zap_pud_range(tlb, vma, pgd, addr, next,
  827. zap_work, details);
  828. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  829. tlb_end_vma(tlb, vma);
  830. return addr;
  831. }
  832. #ifdef CONFIG_PREEMPT
  833. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  834. #else
  835. /* No preempt: go for improved straight-line efficiency */
  836. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  837. #endif
  838. /**
  839. * unmap_vmas - unmap a range of memory covered by a list of vma's
  840. * @tlbp: address of the caller's struct mmu_gather
  841. * @vma: the starting vma
  842. * @start_addr: virtual address at which to start unmapping
  843. * @end_addr: virtual address at which to end unmapping
  844. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  845. * @details: details of nonlinear truncation or shared cache invalidation
  846. *
  847. * Returns the end address of the unmapping (restart addr if interrupted).
  848. *
  849. * Unmap all pages in the vma list.
  850. *
  851. * We aim to not hold locks for too long (for scheduling latency reasons).
  852. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  853. * return the ending mmu_gather to the caller.
  854. *
  855. * Only addresses between `start' and `end' will be unmapped.
  856. *
  857. * The VMA list must be sorted in ascending virtual address order.
  858. *
  859. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  860. * range after unmap_vmas() returns. So the only responsibility here is to
  861. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  862. * drops the lock and schedules.
  863. */
  864. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  865. struct vm_area_struct *vma, unsigned long start_addr,
  866. unsigned long end_addr, unsigned long *nr_accounted,
  867. struct zap_details *details)
  868. {
  869. long zap_work = ZAP_BLOCK_SIZE;
  870. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  871. int tlb_start_valid = 0;
  872. unsigned long start = start_addr;
  873. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  874. int fullmm = (*tlbp)->fullmm;
  875. struct mm_struct *mm = vma->vm_mm;
  876. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  877. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  878. unsigned long end;
  879. start = max(vma->vm_start, start_addr);
  880. if (start >= vma->vm_end)
  881. continue;
  882. end = min(vma->vm_end, end_addr);
  883. if (end <= vma->vm_start)
  884. continue;
  885. if (vma->vm_flags & VM_ACCOUNT)
  886. *nr_accounted += (end - start) >> PAGE_SHIFT;
  887. if (unlikely(is_pfn_mapping(vma)))
  888. untrack_pfn_vma(vma, 0, 0);
  889. while (start != end) {
  890. if (!tlb_start_valid) {
  891. tlb_start = start;
  892. tlb_start_valid = 1;
  893. }
  894. if (unlikely(is_vm_hugetlb_page(vma))) {
  895. /*
  896. * It is undesirable to test vma->vm_file as it
  897. * should be non-null for valid hugetlb area.
  898. * However, vm_file will be NULL in the error
  899. * cleanup path of do_mmap_pgoff. When
  900. * hugetlbfs ->mmap method fails,
  901. * do_mmap_pgoff() nullifies vma->vm_file
  902. * before calling this function to clean up.
  903. * Since no pte has actually been setup, it is
  904. * safe to do nothing in this case.
  905. */
  906. if (vma->vm_file) {
  907. unmap_hugepage_range(vma, start, end, NULL);
  908. zap_work -= (end - start) /
  909. pages_per_huge_page(hstate_vma(vma));
  910. }
  911. start = end;
  912. } else
  913. start = unmap_page_range(*tlbp, vma,
  914. start, end, &zap_work, details);
  915. if (zap_work > 0) {
  916. BUG_ON(start != end);
  917. break;
  918. }
  919. tlb_finish_mmu(*tlbp, tlb_start, start);
  920. if (need_resched() ||
  921. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  922. if (i_mmap_lock) {
  923. *tlbp = NULL;
  924. goto out;
  925. }
  926. cond_resched();
  927. }
  928. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  929. tlb_start_valid = 0;
  930. zap_work = ZAP_BLOCK_SIZE;
  931. }
  932. }
  933. out:
  934. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  935. return start; /* which is now the end (or restart) address */
  936. }
  937. /**
  938. * zap_page_range - remove user pages in a given range
  939. * @vma: vm_area_struct holding the applicable pages
  940. * @address: starting address of pages to zap
  941. * @size: number of bytes to zap
  942. * @details: details of nonlinear truncation or shared cache invalidation
  943. */
  944. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  945. unsigned long size, struct zap_details *details)
  946. {
  947. struct mm_struct *mm = vma->vm_mm;
  948. struct mmu_gather *tlb;
  949. unsigned long end = address + size;
  950. unsigned long nr_accounted = 0;
  951. lru_add_drain();
  952. tlb = tlb_gather_mmu(mm, 0);
  953. update_hiwater_rss(mm);
  954. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  955. if (tlb)
  956. tlb_finish_mmu(tlb, address, end);
  957. return end;
  958. }
  959. /**
  960. * zap_vma_ptes - remove ptes mapping the vma
  961. * @vma: vm_area_struct holding ptes to be zapped
  962. * @address: starting address of pages to zap
  963. * @size: number of bytes to zap
  964. *
  965. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  966. *
  967. * The entire address range must be fully contained within the vma.
  968. *
  969. * Returns 0 if successful.
  970. */
  971. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  972. unsigned long size)
  973. {
  974. if (address < vma->vm_start || address + size > vma->vm_end ||
  975. !(vma->vm_flags & VM_PFNMAP))
  976. return -1;
  977. zap_page_range(vma, address, size, NULL);
  978. return 0;
  979. }
  980. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  981. /*
  982. * Do a quick page-table lookup for a single page.
  983. */
  984. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  985. unsigned int flags)
  986. {
  987. pgd_t *pgd;
  988. pud_t *pud;
  989. pmd_t *pmd;
  990. pte_t *ptep, pte;
  991. spinlock_t *ptl;
  992. struct page *page;
  993. struct mm_struct *mm = vma->vm_mm;
  994. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  995. if (!IS_ERR(page)) {
  996. BUG_ON(flags & FOLL_GET);
  997. goto out;
  998. }
  999. page = NULL;
  1000. pgd = pgd_offset(mm, address);
  1001. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1002. goto no_page_table;
  1003. pud = pud_offset(pgd, address);
  1004. if (pud_none(*pud))
  1005. goto no_page_table;
  1006. if (pud_huge(*pud)) {
  1007. BUG_ON(flags & FOLL_GET);
  1008. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1009. goto out;
  1010. }
  1011. if (unlikely(pud_bad(*pud)))
  1012. goto no_page_table;
  1013. pmd = pmd_offset(pud, address);
  1014. if (pmd_none(*pmd))
  1015. goto no_page_table;
  1016. if (pmd_huge(*pmd)) {
  1017. BUG_ON(flags & FOLL_GET);
  1018. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1019. goto out;
  1020. }
  1021. if (unlikely(pmd_bad(*pmd)))
  1022. goto no_page_table;
  1023. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1024. pte = *ptep;
  1025. if (!pte_present(pte))
  1026. goto no_page;
  1027. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1028. goto unlock;
  1029. page = vm_normal_page(vma, address, pte);
  1030. if (unlikely(!page))
  1031. goto bad_page;
  1032. if (flags & FOLL_GET)
  1033. get_page(page);
  1034. if (flags & FOLL_TOUCH) {
  1035. if ((flags & FOLL_WRITE) &&
  1036. !pte_dirty(pte) && !PageDirty(page))
  1037. set_page_dirty(page);
  1038. mark_page_accessed(page);
  1039. }
  1040. unlock:
  1041. pte_unmap_unlock(ptep, ptl);
  1042. out:
  1043. return page;
  1044. bad_page:
  1045. pte_unmap_unlock(ptep, ptl);
  1046. return ERR_PTR(-EFAULT);
  1047. no_page:
  1048. pte_unmap_unlock(ptep, ptl);
  1049. if (!pte_none(pte))
  1050. return page;
  1051. /* Fall through to ZERO_PAGE handling */
  1052. no_page_table:
  1053. /*
  1054. * When core dumping an enormous anonymous area that nobody
  1055. * has touched so far, we don't want to allocate page tables.
  1056. */
  1057. if (flags & FOLL_ANON) {
  1058. page = ZERO_PAGE(0);
  1059. if (flags & FOLL_GET)
  1060. get_page(page);
  1061. BUG_ON(flags & FOLL_WRITE);
  1062. }
  1063. return page;
  1064. }
  1065. /* Can we do the FOLL_ANON optimization? */
  1066. static inline int use_zero_page(struct vm_area_struct *vma)
  1067. {
  1068. /*
  1069. * We don't want to optimize FOLL_ANON for make_pages_present()
  1070. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1071. * we want to get the page from the page tables to make sure
  1072. * that we serialize and update with any other user of that
  1073. * mapping.
  1074. */
  1075. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1076. return 0;
  1077. /*
  1078. * And if we have a fault routine, it's not an anonymous region.
  1079. */
  1080. return !vma->vm_ops || !vma->vm_ops->fault;
  1081. }
  1082. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1083. unsigned long start, int len, int flags,
  1084. struct page **pages, struct vm_area_struct **vmas)
  1085. {
  1086. int i;
  1087. unsigned int vm_flags = 0;
  1088. int write = !!(flags & GUP_FLAGS_WRITE);
  1089. int force = !!(flags & GUP_FLAGS_FORCE);
  1090. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1091. int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
  1092. if (len <= 0)
  1093. return 0;
  1094. /*
  1095. * Require read or write permissions.
  1096. * If 'force' is set, we only require the "MAY" flags.
  1097. */
  1098. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1099. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1100. i = 0;
  1101. do {
  1102. struct vm_area_struct *vma;
  1103. unsigned int foll_flags;
  1104. vma = find_extend_vma(mm, start);
  1105. if (!vma && in_gate_area(tsk, start)) {
  1106. unsigned long pg = start & PAGE_MASK;
  1107. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1108. pgd_t *pgd;
  1109. pud_t *pud;
  1110. pmd_t *pmd;
  1111. pte_t *pte;
  1112. /* user gate pages are read-only */
  1113. if (!ignore && write)
  1114. return i ? : -EFAULT;
  1115. if (pg > TASK_SIZE)
  1116. pgd = pgd_offset_k(pg);
  1117. else
  1118. pgd = pgd_offset_gate(mm, pg);
  1119. BUG_ON(pgd_none(*pgd));
  1120. pud = pud_offset(pgd, pg);
  1121. BUG_ON(pud_none(*pud));
  1122. pmd = pmd_offset(pud, pg);
  1123. if (pmd_none(*pmd))
  1124. return i ? : -EFAULT;
  1125. pte = pte_offset_map(pmd, pg);
  1126. if (pte_none(*pte)) {
  1127. pte_unmap(pte);
  1128. return i ? : -EFAULT;
  1129. }
  1130. if (pages) {
  1131. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1132. pages[i] = page;
  1133. if (page)
  1134. get_page(page);
  1135. }
  1136. pte_unmap(pte);
  1137. if (vmas)
  1138. vmas[i] = gate_vma;
  1139. i++;
  1140. start += PAGE_SIZE;
  1141. len--;
  1142. continue;
  1143. }
  1144. if (!vma ||
  1145. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1146. (!ignore && !(vm_flags & vma->vm_flags)))
  1147. return i ? : -EFAULT;
  1148. if (is_vm_hugetlb_page(vma)) {
  1149. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1150. &start, &len, i, write);
  1151. continue;
  1152. }
  1153. foll_flags = FOLL_TOUCH;
  1154. if (pages)
  1155. foll_flags |= FOLL_GET;
  1156. if (!write && use_zero_page(vma))
  1157. foll_flags |= FOLL_ANON;
  1158. do {
  1159. struct page *page;
  1160. /*
  1161. * If we have a pending SIGKILL, don't keep faulting
  1162. * pages and potentially allocating memory, unless
  1163. * current is handling munlock--e.g., on exit. In
  1164. * that case, we are not allocating memory. Rather,
  1165. * we're only unlocking already resident/mapped pages.
  1166. */
  1167. if (unlikely(!ignore_sigkill &&
  1168. fatal_signal_pending(current)))
  1169. return i ? i : -ERESTARTSYS;
  1170. if (write)
  1171. foll_flags |= FOLL_WRITE;
  1172. cond_resched();
  1173. while (!(page = follow_page(vma, start, foll_flags))) {
  1174. int ret;
  1175. ret = handle_mm_fault(mm, vma, start,
  1176. foll_flags & FOLL_WRITE);
  1177. if (ret & VM_FAULT_ERROR) {
  1178. if (ret & VM_FAULT_OOM)
  1179. return i ? i : -ENOMEM;
  1180. else if (ret & VM_FAULT_SIGBUS)
  1181. return i ? i : -EFAULT;
  1182. BUG();
  1183. }
  1184. if (ret & VM_FAULT_MAJOR)
  1185. tsk->maj_flt++;
  1186. else
  1187. tsk->min_flt++;
  1188. /*
  1189. * The VM_FAULT_WRITE bit tells us that
  1190. * do_wp_page has broken COW when necessary,
  1191. * even if maybe_mkwrite decided not to set
  1192. * pte_write. We can thus safely do subsequent
  1193. * page lookups as if they were reads. But only
  1194. * do so when looping for pte_write is futile:
  1195. * in some cases userspace may also be wanting
  1196. * to write to the gotten user page, which a
  1197. * read fault here might prevent (a readonly
  1198. * page might get reCOWed by userspace write).
  1199. */
  1200. if ((ret & VM_FAULT_WRITE) &&
  1201. !(vma->vm_flags & VM_WRITE))
  1202. foll_flags &= ~FOLL_WRITE;
  1203. cond_resched();
  1204. }
  1205. if (IS_ERR(page))
  1206. return i ? i : PTR_ERR(page);
  1207. if (pages) {
  1208. pages[i] = page;
  1209. flush_anon_page(vma, page, start);
  1210. flush_dcache_page(page);
  1211. }
  1212. if (vmas)
  1213. vmas[i] = vma;
  1214. i++;
  1215. start += PAGE_SIZE;
  1216. len--;
  1217. } while (len && start < vma->vm_end);
  1218. } while (len);
  1219. return i;
  1220. }
  1221. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1222. unsigned long start, int len, int write, int force,
  1223. struct page **pages, struct vm_area_struct **vmas)
  1224. {
  1225. int flags = 0;
  1226. if (write)
  1227. flags |= GUP_FLAGS_WRITE;
  1228. if (force)
  1229. flags |= GUP_FLAGS_FORCE;
  1230. return __get_user_pages(tsk, mm,
  1231. start, len, flags,
  1232. pages, vmas);
  1233. }
  1234. EXPORT_SYMBOL(get_user_pages);
  1235. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1236. spinlock_t **ptl)
  1237. {
  1238. pgd_t * pgd = pgd_offset(mm, addr);
  1239. pud_t * pud = pud_alloc(mm, pgd, addr);
  1240. if (pud) {
  1241. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1242. if (pmd)
  1243. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1244. }
  1245. return NULL;
  1246. }
  1247. /*
  1248. * This is the old fallback for page remapping.
  1249. *
  1250. * For historical reasons, it only allows reserved pages. Only
  1251. * old drivers should use this, and they needed to mark their
  1252. * pages reserved for the old functions anyway.
  1253. */
  1254. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1255. struct page *page, pgprot_t prot)
  1256. {
  1257. struct mm_struct *mm = vma->vm_mm;
  1258. int retval;
  1259. pte_t *pte;
  1260. spinlock_t *ptl;
  1261. retval = -EINVAL;
  1262. if (PageAnon(page))
  1263. goto out;
  1264. retval = -ENOMEM;
  1265. flush_dcache_page(page);
  1266. pte = get_locked_pte(mm, addr, &ptl);
  1267. if (!pte)
  1268. goto out;
  1269. retval = -EBUSY;
  1270. if (!pte_none(*pte))
  1271. goto out_unlock;
  1272. /* Ok, finally just insert the thing.. */
  1273. get_page(page);
  1274. inc_mm_counter(mm, file_rss);
  1275. page_add_file_rmap(page);
  1276. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1277. retval = 0;
  1278. pte_unmap_unlock(pte, ptl);
  1279. return retval;
  1280. out_unlock:
  1281. pte_unmap_unlock(pte, ptl);
  1282. out:
  1283. return retval;
  1284. }
  1285. /**
  1286. * vm_insert_page - insert single page into user vma
  1287. * @vma: user vma to map to
  1288. * @addr: target user address of this page
  1289. * @page: source kernel page
  1290. *
  1291. * This allows drivers to insert individual pages they've allocated
  1292. * into a user vma.
  1293. *
  1294. * The page has to be a nice clean _individual_ kernel allocation.
  1295. * If you allocate a compound page, you need to have marked it as
  1296. * such (__GFP_COMP), or manually just split the page up yourself
  1297. * (see split_page()).
  1298. *
  1299. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1300. * took an arbitrary page protection parameter. This doesn't allow
  1301. * that. Your vma protection will have to be set up correctly, which
  1302. * means that if you want a shared writable mapping, you'd better
  1303. * ask for a shared writable mapping!
  1304. *
  1305. * The page does not need to be reserved.
  1306. */
  1307. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1308. struct page *page)
  1309. {
  1310. if (addr < vma->vm_start || addr >= vma->vm_end)
  1311. return -EFAULT;
  1312. if (!page_count(page))
  1313. return -EINVAL;
  1314. vma->vm_flags |= VM_INSERTPAGE;
  1315. return insert_page(vma, addr, page, vma->vm_page_prot);
  1316. }
  1317. EXPORT_SYMBOL(vm_insert_page);
  1318. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1319. unsigned long pfn, pgprot_t prot)
  1320. {
  1321. struct mm_struct *mm = vma->vm_mm;
  1322. int retval;
  1323. pte_t *pte, entry;
  1324. spinlock_t *ptl;
  1325. retval = -ENOMEM;
  1326. pte = get_locked_pte(mm, addr, &ptl);
  1327. if (!pte)
  1328. goto out;
  1329. retval = -EBUSY;
  1330. if (!pte_none(*pte))
  1331. goto out_unlock;
  1332. /* Ok, finally just insert the thing.. */
  1333. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1334. set_pte_at(mm, addr, pte, entry);
  1335. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1336. retval = 0;
  1337. out_unlock:
  1338. pte_unmap_unlock(pte, ptl);
  1339. out:
  1340. return retval;
  1341. }
  1342. /**
  1343. * vm_insert_pfn - insert single pfn into user vma
  1344. * @vma: user vma to map to
  1345. * @addr: target user address of this page
  1346. * @pfn: source kernel pfn
  1347. *
  1348. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1349. * they've allocated into a user vma. Same comments apply.
  1350. *
  1351. * This function should only be called from a vm_ops->fault handler, and
  1352. * in that case the handler should return NULL.
  1353. *
  1354. * vma cannot be a COW mapping.
  1355. *
  1356. * As this is called only for pages that do not currently exist, we
  1357. * do not need to flush old virtual caches or the TLB.
  1358. */
  1359. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1360. unsigned long pfn)
  1361. {
  1362. int ret;
  1363. pgprot_t pgprot = vma->vm_page_prot;
  1364. /*
  1365. * Technically, architectures with pte_special can avoid all these
  1366. * restrictions (same for remap_pfn_range). However we would like
  1367. * consistency in testing and feature parity among all, so we should
  1368. * try to keep these invariants in place for everybody.
  1369. */
  1370. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1371. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1372. (VM_PFNMAP|VM_MIXEDMAP));
  1373. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1374. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1375. if (addr < vma->vm_start || addr >= vma->vm_end)
  1376. return -EFAULT;
  1377. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1378. return -EINVAL;
  1379. ret = insert_pfn(vma, addr, pfn, pgprot);
  1380. if (ret)
  1381. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1382. return ret;
  1383. }
  1384. EXPORT_SYMBOL(vm_insert_pfn);
  1385. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1386. unsigned long pfn)
  1387. {
  1388. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1389. if (addr < vma->vm_start || addr >= vma->vm_end)
  1390. return -EFAULT;
  1391. /*
  1392. * If we don't have pte special, then we have to use the pfn_valid()
  1393. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1394. * refcount the page if pfn_valid is true (hence insert_page rather
  1395. * than insert_pfn).
  1396. */
  1397. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1398. struct page *page;
  1399. page = pfn_to_page(pfn);
  1400. return insert_page(vma, addr, page, vma->vm_page_prot);
  1401. }
  1402. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1403. }
  1404. EXPORT_SYMBOL(vm_insert_mixed);
  1405. /*
  1406. * maps a range of physical memory into the requested pages. the old
  1407. * mappings are removed. any references to nonexistent pages results
  1408. * in null mappings (currently treated as "copy-on-access")
  1409. */
  1410. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1411. unsigned long addr, unsigned long end,
  1412. unsigned long pfn, pgprot_t prot)
  1413. {
  1414. pte_t *pte;
  1415. spinlock_t *ptl;
  1416. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1417. if (!pte)
  1418. return -ENOMEM;
  1419. arch_enter_lazy_mmu_mode();
  1420. do {
  1421. BUG_ON(!pte_none(*pte));
  1422. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1423. pfn++;
  1424. } while (pte++, addr += PAGE_SIZE, addr != end);
  1425. arch_leave_lazy_mmu_mode();
  1426. pte_unmap_unlock(pte - 1, ptl);
  1427. return 0;
  1428. }
  1429. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1430. unsigned long addr, unsigned long end,
  1431. unsigned long pfn, pgprot_t prot)
  1432. {
  1433. pmd_t *pmd;
  1434. unsigned long next;
  1435. pfn -= addr >> PAGE_SHIFT;
  1436. pmd = pmd_alloc(mm, pud, addr);
  1437. if (!pmd)
  1438. return -ENOMEM;
  1439. do {
  1440. next = pmd_addr_end(addr, end);
  1441. if (remap_pte_range(mm, pmd, addr, next,
  1442. pfn + (addr >> PAGE_SHIFT), prot))
  1443. return -ENOMEM;
  1444. } while (pmd++, addr = next, addr != end);
  1445. return 0;
  1446. }
  1447. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1448. unsigned long addr, unsigned long end,
  1449. unsigned long pfn, pgprot_t prot)
  1450. {
  1451. pud_t *pud;
  1452. unsigned long next;
  1453. pfn -= addr >> PAGE_SHIFT;
  1454. pud = pud_alloc(mm, pgd, addr);
  1455. if (!pud)
  1456. return -ENOMEM;
  1457. do {
  1458. next = pud_addr_end(addr, end);
  1459. if (remap_pmd_range(mm, pud, addr, next,
  1460. pfn + (addr >> PAGE_SHIFT), prot))
  1461. return -ENOMEM;
  1462. } while (pud++, addr = next, addr != end);
  1463. return 0;
  1464. }
  1465. /**
  1466. * remap_pfn_range - remap kernel memory to userspace
  1467. * @vma: user vma to map to
  1468. * @addr: target user address to start at
  1469. * @pfn: physical address of kernel memory
  1470. * @size: size of map area
  1471. * @prot: page protection flags for this mapping
  1472. *
  1473. * Note: this is only safe if the mm semaphore is held when called.
  1474. */
  1475. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1476. unsigned long pfn, unsigned long size, pgprot_t prot)
  1477. {
  1478. pgd_t *pgd;
  1479. unsigned long next;
  1480. unsigned long end = addr + PAGE_ALIGN(size);
  1481. struct mm_struct *mm = vma->vm_mm;
  1482. int err;
  1483. /*
  1484. * Physically remapped pages are special. Tell the
  1485. * rest of the world about it:
  1486. * VM_IO tells people not to look at these pages
  1487. * (accesses can have side effects).
  1488. * VM_RESERVED is specified all over the place, because
  1489. * in 2.4 it kept swapout's vma scan off this vma; but
  1490. * in 2.6 the LRU scan won't even find its pages, so this
  1491. * flag means no more than count its pages in reserved_vm,
  1492. * and omit it from core dump, even when VM_IO turned off.
  1493. * VM_PFNMAP tells the core MM that the base pages are just
  1494. * raw PFN mappings, and do not have a "struct page" associated
  1495. * with them.
  1496. *
  1497. * There's a horrible special case to handle copy-on-write
  1498. * behaviour that some programs depend on. We mark the "original"
  1499. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1500. */
  1501. if (addr == vma->vm_start && end == vma->vm_end) {
  1502. vma->vm_pgoff = pfn;
  1503. vma->vm_flags |= VM_PFN_AT_MMAP;
  1504. } else if (is_cow_mapping(vma->vm_flags))
  1505. return -EINVAL;
  1506. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1507. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1508. if (err) {
  1509. /*
  1510. * To indicate that track_pfn related cleanup is not
  1511. * needed from higher level routine calling unmap_vmas
  1512. */
  1513. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1514. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1515. return -EINVAL;
  1516. }
  1517. BUG_ON(addr >= end);
  1518. pfn -= addr >> PAGE_SHIFT;
  1519. pgd = pgd_offset(mm, addr);
  1520. flush_cache_range(vma, addr, end);
  1521. do {
  1522. next = pgd_addr_end(addr, end);
  1523. err = remap_pud_range(mm, pgd, addr, next,
  1524. pfn + (addr >> PAGE_SHIFT), prot);
  1525. if (err)
  1526. break;
  1527. } while (pgd++, addr = next, addr != end);
  1528. if (err)
  1529. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1530. return err;
  1531. }
  1532. EXPORT_SYMBOL(remap_pfn_range);
  1533. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1534. unsigned long addr, unsigned long end,
  1535. pte_fn_t fn, void *data)
  1536. {
  1537. pte_t *pte;
  1538. int err;
  1539. pgtable_t token;
  1540. spinlock_t *uninitialized_var(ptl);
  1541. pte = (mm == &init_mm) ?
  1542. pte_alloc_kernel(pmd, addr) :
  1543. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1544. if (!pte)
  1545. return -ENOMEM;
  1546. BUG_ON(pmd_huge(*pmd));
  1547. arch_enter_lazy_mmu_mode();
  1548. token = pmd_pgtable(*pmd);
  1549. do {
  1550. err = fn(pte, token, addr, data);
  1551. if (err)
  1552. break;
  1553. } while (pte++, addr += PAGE_SIZE, addr != end);
  1554. arch_leave_lazy_mmu_mode();
  1555. if (mm != &init_mm)
  1556. pte_unmap_unlock(pte-1, ptl);
  1557. return err;
  1558. }
  1559. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1560. unsigned long addr, unsigned long end,
  1561. pte_fn_t fn, void *data)
  1562. {
  1563. pmd_t *pmd;
  1564. unsigned long next;
  1565. int err;
  1566. BUG_ON(pud_huge(*pud));
  1567. pmd = pmd_alloc(mm, pud, addr);
  1568. if (!pmd)
  1569. return -ENOMEM;
  1570. do {
  1571. next = pmd_addr_end(addr, end);
  1572. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1573. if (err)
  1574. break;
  1575. } while (pmd++, addr = next, addr != end);
  1576. return err;
  1577. }
  1578. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1579. unsigned long addr, unsigned long end,
  1580. pte_fn_t fn, void *data)
  1581. {
  1582. pud_t *pud;
  1583. unsigned long next;
  1584. int err;
  1585. pud = pud_alloc(mm, pgd, addr);
  1586. if (!pud)
  1587. return -ENOMEM;
  1588. do {
  1589. next = pud_addr_end(addr, end);
  1590. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1591. if (err)
  1592. break;
  1593. } while (pud++, addr = next, addr != end);
  1594. return err;
  1595. }
  1596. /*
  1597. * Scan a region of virtual memory, filling in page tables as necessary
  1598. * and calling a provided function on each leaf page table.
  1599. */
  1600. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1601. unsigned long size, pte_fn_t fn, void *data)
  1602. {
  1603. pgd_t *pgd;
  1604. unsigned long next;
  1605. unsigned long start = addr, end = addr + size;
  1606. int err;
  1607. BUG_ON(addr >= end);
  1608. mmu_notifier_invalidate_range_start(mm, start, end);
  1609. pgd = pgd_offset(mm, addr);
  1610. do {
  1611. next = pgd_addr_end(addr, end);
  1612. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1613. if (err)
  1614. break;
  1615. } while (pgd++, addr = next, addr != end);
  1616. mmu_notifier_invalidate_range_end(mm, start, end);
  1617. return err;
  1618. }
  1619. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1620. /*
  1621. * handle_pte_fault chooses page fault handler according to an entry
  1622. * which was read non-atomically. Before making any commitment, on
  1623. * those architectures or configurations (e.g. i386 with PAE) which
  1624. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1625. * must check under lock before unmapping the pte and proceeding
  1626. * (but do_wp_page is only called after already making such a check;
  1627. * and do_anonymous_page and do_no_page can safely check later on).
  1628. */
  1629. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1630. pte_t *page_table, pte_t orig_pte)
  1631. {
  1632. int same = 1;
  1633. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1634. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1635. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1636. spin_lock(ptl);
  1637. same = pte_same(*page_table, orig_pte);
  1638. spin_unlock(ptl);
  1639. }
  1640. #endif
  1641. pte_unmap(page_table);
  1642. return same;
  1643. }
  1644. /*
  1645. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1646. * servicing faults for write access. In the normal case, do always want
  1647. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1648. * that do not have writing enabled, when used by access_process_vm.
  1649. */
  1650. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1651. {
  1652. if (likely(vma->vm_flags & VM_WRITE))
  1653. pte = pte_mkwrite(pte);
  1654. return pte;
  1655. }
  1656. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1657. {
  1658. /*
  1659. * If the source page was a PFN mapping, we don't have
  1660. * a "struct page" for it. We do a best-effort copy by
  1661. * just copying from the original user address. If that
  1662. * fails, we just zero-fill it. Live with it.
  1663. */
  1664. if (unlikely(!src)) {
  1665. void *kaddr = kmap_atomic(dst, KM_USER0);
  1666. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1667. /*
  1668. * This really shouldn't fail, because the page is there
  1669. * in the page tables. But it might just be unreadable,
  1670. * in which case we just give up and fill the result with
  1671. * zeroes.
  1672. */
  1673. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1674. memset(kaddr, 0, PAGE_SIZE);
  1675. kunmap_atomic(kaddr, KM_USER0);
  1676. flush_dcache_page(dst);
  1677. } else
  1678. copy_user_highpage(dst, src, va, vma);
  1679. }
  1680. /*
  1681. * This routine handles present pages, when users try to write
  1682. * to a shared page. It is done by copying the page to a new address
  1683. * and decrementing the shared-page counter for the old page.
  1684. *
  1685. * Note that this routine assumes that the protection checks have been
  1686. * done by the caller (the low-level page fault routine in most cases).
  1687. * Thus we can safely just mark it writable once we've done any necessary
  1688. * COW.
  1689. *
  1690. * We also mark the page dirty at this point even though the page will
  1691. * change only once the write actually happens. This avoids a few races,
  1692. * and potentially makes it more efficient.
  1693. *
  1694. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1695. * but allow concurrent faults), with pte both mapped and locked.
  1696. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1697. */
  1698. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1699. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1700. spinlock_t *ptl, pte_t orig_pte)
  1701. {
  1702. struct page *old_page, *new_page;
  1703. pte_t entry;
  1704. int reuse = 0, ret = 0;
  1705. int page_mkwrite = 0;
  1706. struct page *dirty_page = NULL;
  1707. old_page = vm_normal_page(vma, address, orig_pte);
  1708. if (!old_page) {
  1709. /*
  1710. * VM_MIXEDMAP !pfn_valid() case
  1711. *
  1712. * We should not cow pages in a shared writeable mapping.
  1713. * Just mark the pages writable as we can't do any dirty
  1714. * accounting on raw pfn maps.
  1715. */
  1716. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1717. (VM_WRITE|VM_SHARED))
  1718. goto reuse;
  1719. goto gotten;
  1720. }
  1721. /*
  1722. * Take out anonymous pages first, anonymous shared vmas are
  1723. * not dirty accountable.
  1724. */
  1725. if (PageAnon(old_page)) {
  1726. if (!trylock_page(old_page)) {
  1727. page_cache_get(old_page);
  1728. pte_unmap_unlock(page_table, ptl);
  1729. lock_page(old_page);
  1730. page_table = pte_offset_map_lock(mm, pmd, address,
  1731. &ptl);
  1732. if (!pte_same(*page_table, orig_pte)) {
  1733. unlock_page(old_page);
  1734. page_cache_release(old_page);
  1735. goto unlock;
  1736. }
  1737. page_cache_release(old_page);
  1738. }
  1739. reuse = reuse_swap_page(old_page);
  1740. unlock_page(old_page);
  1741. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1742. (VM_WRITE|VM_SHARED))) {
  1743. /*
  1744. * Only catch write-faults on shared writable pages,
  1745. * read-only shared pages can get COWed by
  1746. * get_user_pages(.write=1, .force=1).
  1747. */
  1748. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1749. /*
  1750. * Notify the address space that the page is about to
  1751. * become writable so that it can prohibit this or wait
  1752. * for the page to get into an appropriate state.
  1753. *
  1754. * We do this without the lock held, so that it can
  1755. * sleep if it needs to.
  1756. */
  1757. page_cache_get(old_page);
  1758. pte_unmap_unlock(page_table, ptl);
  1759. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1760. goto unwritable_page;
  1761. /*
  1762. * Since we dropped the lock we need to revalidate
  1763. * the PTE as someone else may have changed it. If
  1764. * they did, we just return, as we can count on the
  1765. * MMU to tell us if they didn't also make it writable.
  1766. */
  1767. page_table = pte_offset_map_lock(mm, pmd, address,
  1768. &ptl);
  1769. page_cache_release(old_page);
  1770. if (!pte_same(*page_table, orig_pte))
  1771. goto unlock;
  1772. page_mkwrite = 1;
  1773. }
  1774. dirty_page = old_page;
  1775. get_page(dirty_page);
  1776. reuse = 1;
  1777. }
  1778. if (reuse) {
  1779. reuse:
  1780. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1781. entry = pte_mkyoung(orig_pte);
  1782. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1783. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1784. update_mmu_cache(vma, address, entry);
  1785. ret |= VM_FAULT_WRITE;
  1786. goto unlock;
  1787. }
  1788. /*
  1789. * Ok, we need to copy. Oh, well..
  1790. */
  1791. page_cache_get(old_page);
  1792. gotten:
  1793. pte_unmap_unlock(page_table, ptl);
  1794. if (unlikely(anon_vma_prepare(vma)))
  1795. goto oom;
  1796. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1797. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1798. if (!new_page)
  1799. goto oom;
  1800. /*
  1801. * Don't let another task, with possibly unlocked vma,
  1802. * keep the mlocked page.
  1803. */
  1804. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1805. lock_page(old_page); /* for LRU manipulation */
  1806. clear_page_mlock(old_page);
  1807. unlock_page(old_page);
  1808. }
  1809. cow_user_page(new_page, old_page, address, vma);
  1810. __SetPageUptodate(new_page);
  1811. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1812. goto oom_free_new;
  1813. /*
  1814. * Re-check the pte - we dropped the lock
  1815. */
  1816. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1817. if (likely(pte_same(*page_table, orig_pte))) {
  1818. if (old_page) {
  1819. if (!PageAnon(old_page)) {
  1820. dec_mm_counter(mm, file_rss);
  1821. inc_mm_counter(mm, anon_rss);
  1822. }
  1823. } else
  1824. inc_mm_counter(mm, anon_rss);
  1825. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1826. entry = mk_pte(new_page, vma->vm_page_prot);
  1827. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1828. /*
  1829. * Clear the pte entry and flush it first, before updating the
  1830. * pte with the new entry. This will avoid a race condition
  1831. * seen in the presence of one thread doing SMC and another
  1832. * thread doing COW.
  1833. */
  1834. ptep_clear_flush_notify(vma, address, page_table);
  1835. page_add_new_anon_rmap(new_page, vma, address);
  1836. set_pte_at(mm, address, page_table, entry);
  1837. update_mmu_cache(vma, address, entry);
  1838. if (old_page) {
  1839. /*
  1840. * Only after switching the pte to the new page may
  1841. * we remove the mapcount here. Otherwise another
  1842. * process may come and find the rmap count decremented
  1843. * before the pte is switched to the new page, and
  1844. * "reuse" the old page writing into it while our pte
  1845. * here still points into it and can be read by other
  1846. * threads.
  1847. *
  1848. * The critical issue is to order this
  1849. * page_remove_rmap with the ptp_clear_flush above.
  1850. * Those stores are ordered by (if nothing else,)
  1851. * the barrier present in the atomic_add_negative
  1852. * in page_remove_rmap.
  1853. *
  1854. * Then the TLB flush in ptep_clear_flush ensures that
  1855. * no process can access the old page before the
  1856. * decremented mapcount is visible. And the old page
  1857. * cannot be reused until after the decremented
  1858. * mapcount is visible. So transitively, TLBs to
  1859. * old page will be flushed before it can be reused.
  1860. */
  1861. page_remove_rmap(old_page);
  1862. }
  1863. /* Free the old page.. */
  1864. new_page = old_page;
  1865. ret |= VM_FAULT_WRITE;
  1866. } else
  1867. mem_cgroup_uncharge_page(new_page);
  1868. if (new_page)
  1869. page_cache_release(new_page);
  1870. if (old_page)
  1871. page_cache_release(old_page);
  1872. unlock:
  1873. pte_unmap_unlock(page_table, ptl);
  1874. if (dirty_page) {
  1875. if (vma->vm_file)
  1876. file_update_time(vma->vm_file);
  1877. /*
  1878. * Yes, Virginia, this is actually required to prevent a race
  1879. * with clear_page_dirty_for_io() from clearing the page dirty
  1880. * bit after it clear all dirty ptes, but before a racing
  1881. * do_wp_page installs a dirty pte.
  1882. *
  1883. * do_no_page is protected similarly.
  1884. */
  1885. wait_on_page_locked(dirty_page);
  1886. set_page_dirty_balance(dirty_page, page_mkwrite);
  1887. put_page(dirty_page);
  1888. }
  1889. return ret;
  1890. oom_free_new:
  1891. page_cache_release(new_page);
  1892. oom:
  1893. if (old_page)
  1894. page_cache_release(old_page);
  1895. return VM_FAULT_OOM;
  1896. unwritable_page:
  1897. page_cache_release(old_page);
  1898. return VM_FAULT_SIGBUS;
  1899. }
  1900. /*
  1901. * Helper functions for unmap_mapping_range().
  1902. *
  1903. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1904. *
  1905. * We have to restart searching the prio_tree whenever we drop the lock,
  1906. * since the iterator is only valid while the lock is held, and anyway
  1907. * a later vma might be split and reinserted earlier while lock dropped.
  1908. *
  1909. * The list of nonlinear vmas could be handled more efficiently, using
  1910. * a placeholder, but handle it in the same way until a need is shown.
  1911. * It is important to search the prio_tree before nonlinear list: a vma
  1912. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1913. * while the lock is dropped; but never shifted from list to prio_tree.
  1914. *
  1915. * In order to make forward progress despite restarting the search,
  1916. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1917. * quickly skip it next time around. Since the prio_tree search only
  1918. * shows us those vmas affected by unmapping the range in question, we
  1919. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1920. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1921. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1922. * i_mmap_lock.
  1923. *
  1924. * In order to make forward progress despite repeatedly restarting some
  1925. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1926. * and restart from that address when we reach that vma again. It might
  1927. * have been split or merged, shrunk or extended, but never shifted: so
  1928. * restart_addr remains valid so long as it remains in the vma's range.
  1929. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1930. * values so we can save vma's restart_addr in its truncate_count field.
  1931. */
  1932. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1933. static void reset_vma_truncate_counts(struct address_space *mapping)
  1934. {
  1935. struct vm_area_struct *vma;
  1936. struct prio_tree_iter iter;
  1937. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1938. vma->vm_truncate_count = 0;
  1939. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1940. vma->vm_truncate_count = 0;
  1941. }
  1942. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1943. unsigned long start_addr, unsigned long end_addr,
  1944. struct zap_details *details)
  1945. {
  1946. unsigned long restart_addr;
  1947. int need_break;
  1948. /*
  1949. * files that support invalidating or truncating portions of the
  1950. * file from under mmaped areas must have their ->fault function
  1951. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1952. * This provides synchronisation against concurrent unmapping here.
  1953. */
  1954. again:
  1955. restart_addr = vma->vm_truncate_count;
  1956. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1957. start_addr = restart_addr;
  1958. if (start_addr >= end_addr) {
  1959. /* Top of vma has been split off since last time */
  1960. vma->vm_truncate_count = details->truncate_count;
  1961. return 0;
  1962. }
  1963. }
  1964. restart_addr = zap_page_range(vma, start_addr,
  1965. end_addr - start_addr, details);
  1966. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1967. if (restart_addr >= end_addr) {
  1968. /* We have now completed this vma: mark it so */
  1969. vma->vm_truncate_count = details->truncate_count;
  1970. if (!need_break)
  1971. return 0;
  1972. } else {
  1973. /* Note restart_addr in vma's truncate_count field */
  1974. vma->vm_truncate_count = restart_addr;
  1975. if (!need_break)
  1976. goto again;
  1977. }
  1978. spin_unlock(details->i_mmap_lock);
  1979. cond_resched();
  1980. spin_lock(details->i_mmap_lock);
  1981. return -EINTR;
  1982. }
  1983. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1984. struct zap_details *details)
  1985. {
  1986. struct vm_area_struct *vma;
  1987. struct prio_tree_iter iter;
  1988. pgoff_t vba, vea, zba, zea;
  1989. restart:
  1990. vma_prio_tree_foreach(vma, &iter, root,
  1991. details->first_index, details->last_index) {
  1992. /* Skip quickly over those we have already dealt with */
  1993. if (vma->vm_truncate_count == details->truncate_count)
  1994. continue;
  1995. vba = vma->vm_pgoff;
  1996. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1997. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1998. zba = details->first_index;
  1999. if (zba < vba)
  2000. zba = vba;
  2001. zea = details->last_index;
  2002. if (zea > vea)
  2003. zea = vea;
  2004. if (unmap_mapping_range_vma(vma,
  2005. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2006. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2007. details) < 0)
  2008. goto restart;
  2009. }
  2010. }
  2011. static inline void unmap_mapping_range_list(struct list_head *head,
  2012. struct zap_details *details)
  2013. {
  2014. struct vm_area_struct *vma;
  2015. /*
  2016. * In nonlinear VMAs there is no correspondence between virtual address
  2017. * offset and file offset. So we must perform an exhaustive search
  2018. * across *all* the pages in each nonlinear VMA, not just the pages
  2019. * whose virtual address lies outside the file truncation point.
  2020. */
  2021. restart:
  2022. list_for_each_entry(vma, head, shared.vm_set.list) {
  2023. /* Skip quickly over those we have already dealt with */
  2024. if (vma->vm_truncate_count == details->truncate_count)
  2025. continue;
  2026. details->nonlinear_vma = vma;
  2027. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2028. vma->vm_end, details) < 0)
  2029. goto restart;
  2030. }
  2031. }
  2032. /**
  2033. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2034. * @mapping: the address space containing mmaps to be unmapped.
  2035. * @holebegin: byte in first page to unmap, relative to the start of
  2036. * the underlying file. This will be rounded down to a PAGE_SIZE
  2037. * boundary. Note that this is different from vmtruncate(), which
  2038. * must keep the partial page. In contrast, we must get rid of
  2039. * partial pages.
  2040. * @holelen: size of prospective hole in bytes. This will be rounded
  2041. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2042. * end of the file.
  2043. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2044. * but 0 when invalidating pagecache, don't throw away private data.
  2045. */
  2046. void unmap_mapping_range(struct address_space *mapping,
  2047. loff_t const holebegin, loff_t const holelen, int even_cows)
  2048. {
  2049. struct zap_details details;
  2050. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2051. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2052. /* Check for overflow. */
  2053. if (sizeof(holelen) > sizeof(hlen)) {
  2054. long long holeend =
  2055. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2056. if (holeend & ~(long long)ULONG_MAX)
  2057. hlen = ULONG_MAX - hba + 1;
  2058. }
  2059. details.check_mapping = even_cows? NULL: mapping;
  2060. details.nonlinear_vma = NULL;
  2061. details.first_index = hba;
  2062. details.last_index = hba + hlen - 1;
  2063. if (details.last_index < details.first_index)
  2064. details.last_index = ULONG_MAX;
  2065. details.i_mmap_lock = &mapping->i_mmap_lock;
  2066. spin_lock(&mapping->i_mmap_lock);
  2067. /* Protect against endless unmapping loops */
  2068. mapping->truncate_count++;
  2069. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2070. if (mapping->truncate_count == 0)
  2071. reset_vma_truncate_counts(mapping);
  2072. mapping->truncate_count++;
  2073. }
  2074. details.truncate_count = mapping->truncate_count;
  2075. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2076. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2077. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2078. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2079. spin_unlock(&mapping->i_mmap_lock);
  2080. }
  2081. EXPORT_SYMBOL(unmap_mapping_range);
  2082. /**
  2083. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2084. * @inode: inode of the file used
  2085. * @offset: file offset to start truncating
  2086. *
  2087. * NOTE! We have to be ready to update the memory sharing
  2088. * between the file and the memory map for a potential last
  2089. * incomplete page. Ugly, but necessary.
  2090. */
  2091. int vmtruncate(struct inode * inode, loff_t offset)
  2092. {
  2093. if (inode->i_size < offset) {
  2094. unsigned long limit;
  2095. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2096. if (limit != RLIM_INFINITY && offset > limit)
  2097. goto out_sig;
  2098. if (offset > inode->i_sb->s_maxbytes)
  2099. goto out_big;
  2100. i_size_write(inode, offset);
  2101. } else {
  2102. struct address_space *mapping = inode->i_mapping;
  2103. /*
  2104. * truncation of in-use swapfiles is disallowed - it would
  2105. * cause subsequent swapout to scribble on the now-freed
  2106. * blocks.
  2107. */
  2108. if (IS_SWAPFILE(inode))
  2109. return -ETXTBSY;
  2110. i_size_write(inode, offset);
  2111. /*
  2112. * unmap_mapping_range is called twice, first simply for
  2113. * efficiency so that truncate_inode_pages does fewer
  2114. * single-page unmaps. However after this first call, and
  2115. * before truncate_inode_pages finishes, it is possible for
  2116. * private pages to be COWed, which remain after
  2117. * truncate_inode_pages finishes, hence the second
  2118. * unmap_mapping_range call must be made for correctness.
  2119. */
  2120. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2121. truncate_inode_pages(mapping, offset);
  2122. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2123. }
  2124. if (inode->i_op->truncate)
  2125. inode->i_op->truncate(inode);
  2126. return 0;
  2127. out_sig:
  2128. send_sig(SIGXFSZ, current, 0);
  2129. out_big:
  2130. return -EFBIG;
  2131. }
  2132. EXPORT_SYMBOL(vmtruncate);
  2133. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2134. {
  2135. struct address_space *mapping = inode->i_mapping;
  2136. /*
  2137. * If the underlying filesystem is not going to provide
  2138. * a way to truncate a range of blocks (punch a hole) -
  2139. * we should return failure right now.
  2140. */
  2141. if (!inode->i_op->truncate_range)
  2142. return -ENOSYS;
  2143. mutex_lock(&inode->i_mutex);
  2144. down_write(&inode->i_alloc_sem);
  2145. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2146. truncate_inode_pages_range(mapping, offset, end);
  2147. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2148. inode->i_op->truncate_range(inode, offset, end);
  2149. up_write(&inode->i_alloc_sem);
  2150. mutex_unlock(&inode->i_mutex);
  2151. return 0;
  2152. }
  2153. /*
  2154. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2155. * but allow concurrent faults), and pte mapped but not yet locked.
  2156. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2157. */
  2158. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2159. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2160. int write_access, pte_t orig_pte)
  2161. {
  2162. spinlock_t *ptl;
  2163. struct page *page;
  2164. swp_entry_t entry;
  2165. pte_t pte;
  2166. struct mem_cgroup *ptr = NULL;
  2167. int ret = 0;
  2168. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2169. goto out;
  2170. entry = pte_to_swp_entry(orig_pte);
  2171. if (is_migration_entry(entry)) {
  2172. migration_entry_wait(mm, pmd, address);
  2173. goto out;
  2174. }
  2175. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2176. page = lookup_swap_cache(entry);
  2177. if (!page) {
  2178. grab_swap_token(); /* Contend for token _before_ read-in */
  2179. page = swapin_readahead(entry,
  2180. GFP_HIGHUSER_MOVABLE, vma, address);
  2181. if (!page) {
  2182. /*
  2183. * Back out if somebody else faulted in this pte
  2184. * while we released the pte lock.
  2185. */
  2186. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2187. if (likely(pte_same(*page_table, orig_pte)))
  2188. ret = VM_FAULT_OOM;
  2189. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2190. goto unlock;
  2191. }
  2192. /* Had to read the page from swap area: Major fault */
  2193. ret = VM_FAULT_MAJOR;
  2194. count_vm_event(PGMAJFAULT);
  2195. }
  2196. mark_page_accessed(page);
  2197. lock_page(page);
  2198. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2199. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2200. ret = VM_FAULT_OOM;
  2201. unlock_page(page);
  2202. goto out;
  2203. }
  2204. /*
  2205. * Back out if somebody else already faulted in this pte.
  2206. */
  2207. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2208. if (unlikely(!pte_same(*page_table, orig_pte)))
  2209. goto out_nomap;
  2210. if (unlikely(!PageUptodate(page))) {
  2211. ret = VM_FAULT_SIGBUS;
  2212. goto out_nomap;
  2213. }
  2214. /*
  2215. * The page isn't present yet, go ahead with the fault.
  2216. *
  2217. * Be careful about the sequence of operations here.
  2218. * To get its accounting right, reuse_swap_page() must be called
  2219. * while the page is counted on swap but not yet in mapcount i.e.
  2220. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2221. * must be called after the swap_free(), or it will never succeed.
  2222. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2223. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2224. * in page->private. In this case, a record in swap_cgroup is silently
  2225. * discarded at swap_free().
  2226. */
  2227. inc_mm_counter(mm, anon_rss);
  2228. pte = mk_pte(page, vma->vm_page_prot);
  2229. if (write_access && reuse_swap_page(page)) {
  2230. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2231. write_access = 0;
  2232. }
  2233. flush_icache_page(vma, page);
  2234. set_pte_at(mm, address, page_table, pte);
  2235. page_add_anon_rmap(page, vma, address);
  2236. /* It's better to call commit-charge after rmap is established */
  2237. mem_cgroup_commit_charge_swapin(page, ptr);
  2238. swap_free(entry);
  2239. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2240. try_to_free_swap(page);
  2241. unlock_page(page);
  2242. if (write_access) {
  2243. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2244. if (ret & VM_FAULT_ERROR)
  2245. ret &= VM_FAULT_ERROR;
  2246. goto out;
  2247. }
  2248. /* No need to invalidate - it was non-present before */
  2249. update_mmu_cache(vma, address, pte);
  2250. unlock:
  2251. pte_unmap_unlock(page_table, ptl);
  2252. out:
  2253. return ret;
  2254. out_nomap:
  2255. mem_cgroup_cancel_charge_swapin(ptr);
  2256. pte_unmap_unlock(page_table, ptl);
  2257. unlock_page(page);
  2258. page_cache_release(page);
  2259. return ret;
  2260. }
  2261. /*
  2262. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2263. * but allow concurrent faults), and pte mapped but not yet locked.
  2264. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2265. */
  2266. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2267. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2268. int write_access)
  2269. {
  2270. struct page *page;
  2271. spinlock_t *ptl;
  2272. pte_t entry;
  2273. /* Allocate our own private page. */
  2274. pte_unmap(page_table);
  2275. if (unlikely(anon_vma_prepare(vma)))
  2276. goto oom;
  2277. page = alloc_zeroed_user_highpage_movable(vma, address);
  2278. if (!page)
  2279. goto oom;
  2280. __SetPageUptodate(page);
  2281. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2282. goto oom_free_page;
  2283. entry = mk_pte(page, vma->vm_page_prot);
  2284. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2285. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2286. if (!pte_none(*page_table))
  2287. goto release;
  2288. inc_mm_counter(mm, anon_rss);
  2289. page_add_new_anon_rmap(page, vma, address);
  2290. set_pte_at(mm, address, page_table, entry);
  2291. /* No need to invalidate - it was non-present before */
  2292. update_mmu_cache(vma, address, entry);
  2293. unlock:
  2294. pte_unmap_unlock(page_table, ptl);
  2295. return 0;
  2296. release:
  2297. mem_cgroup_uncharge_page(page);
  2298. page_cache_release(page);
  2299. goto unlock;
  2300. oom_free_page:
  2301. page_cache_release(page);
  2302. oom:
  2303. return VM_FAULT_OOM;
  2304. }
  2305. /*
  2306. * __do_fault() tries to create a new page mapping. It aggressively
  2307. * tries to share with existing pages, but makes a separate copy if
  2308. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2309. * the next page fault.
  2310. *
  2311. * As this is called only for pages that do not currently exist, we
  2312. * do not need to flush old virtual caches or the TLB.
  2313. *
  2314. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2315. * but allow concurrent faults), and pte neither mapped nor locked.
  2316. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2317. */
  2318. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2319. unsigned long address, pmd_t *pmd,
  2320. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2321. {
  2322. pte_t *page_table;
  2323. spinlock_t *ptl;
  2324. struct page *page;
  2325. pte_t entry;
  2326. int anon = 0;
  2327. int charged = 0;
  2328. struct page *dirty_page = NULL;
  2329. struct vm_fault vmf;
  2330. int ret;
  2331. int page_mkwrite = 0;
  2332. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2333. vmf.pgoff = pgoff;
  2334. vmf.flags = flags;
  2335. vmf.page = NULL;
  2336. ret = vma->vm_ops->fault(vma, &vmf);
  2337. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2338. return ret;
  2339. /*
  2340. * For consistency in subsequent calls, make the faulted page always
  2341. * locked.
  2342. */
  2343. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2344. lock_page(vmf.page);
  2345. else
  2346. VM_BUG_ON(!PageLocked(vmf.page));
  2347. /*
  2348. * Should we do an early C-O-W break?
  2349. */
  2350. page = vmf.page;
  2351. if (flags & FAULT_FLAG_WRITE) {
  2352. if (!(vma->vm_flags & VM_SHARED)) {
  2353. anon = 1;
  2354. if (unlikely(anon_vma_prepare(vma))) {
  2355. ret = VM_FAULT_OOM;
  2356. goto out;
  2357. }
  2358. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2359. vma, address);
  2360. if (!page) {
  2361. ret = VM_FAULT_OOM;
  2362. goto out;
  2363. }
  2364. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2365. ret = VM_FAULT_OOM;
  2366. page_cache_release(page);
  2367. goto out;
  2368. }
  2369. charged = 1;
  2370. /*
  2371. * Don't let another task, with possibly unlocked vma,
  2372. * keep the mlocked page.
  2373. */
  2374. if (vma->vm_flags & VM_LOCKED)
  2375. clear_page_mlock(vmf.page);
  2376. copy_user_highpage(page, vmf.page, address, vma);
  2377. __SetPageUptodate(page);
  2378. } else {
  2379. /*
  2380. * If the page will be shareable, see if the backing
  2381. * address space wants to know that the page is about
  2382. * to become writable
  2383. */
  2384. if (vma->vm_ops->page_mkwrite) {
  2385. unlock_page(page);
  2386. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2387. ret = VM_FAULT_SIGBUS;
  2388. anon = 1; /* no anon but release vmf.page */
  2389. goto out_unlocked;
  2390. }
  2391. lock_page(page);
  2392. /*
  2393. * XXX: this is not quite right (racy vs
  2394. * invalidate) to unlock and relock the page
  2395. * like this, however a better fix requires
  2396. * reworking page_mkwrite locking API, which
  2397. * is better done later.
  2398. */
  2399. if (!page->mapping) {
  2400. ret = 0;
  2401. anon = 1; /* no anon but release vmf.page */
  2402. goto out;
  2403. }
  2404. page_mkwrite = 1;
  2405. }
  2406. }
  2407. }
  2408. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2409. /*
  2410. * This silly early PAGE_DIRTY setting removes a race
  2411. * due to the bad i386 page protection. But it's valid
  2412. * for other architectures too.
  2413. *
  2414. * Note that if write_access is true, we either now have
  2415. * an exclusive copy of the page, or this is a shared mapping,
  2416. * so we can make it writable and dirty to avoid having to
  2417. * handle that later.
  2418. */
  2419. /* Only go through if we didn't race with anybody else... */
  2420. if (likely(pte_same(*page_table, orig_pte))) {
  2421. flush_icache_page(vma, page);
  2422. entry = mk_pte(page, vma->vm_page_prot);
  2423. if (flags & FAULT_FLAG_WRITE)
  2424. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2425. if (anon) {
  2426. inc_mm_counter(mm, anon_rss);
  2427. page_add_new_anon_rmap(page, vma, address);
  2428. } else {
  2429. inc_mm_counter(mm, file_rss);
  2430. page_add_file_rmap(page);
  2431. if (flags & FAULT_FLAG_WRITE) {
  2432. dirty_page = page;
  2433. get_page(dirty_page);
  2434. }
  2435. }
  2436. set_pte_at(mm, address, page_table, entry);
  2437. /* no need to invalidate: a not-present page won't be cached */
  2438. update_mmu_cache(vma, address, entry);
  2439. } else {
  2440. if (charged)
  2441. mem_cgroup_uncharge_page(page);
  2442. if (anon)
  2443. page_cache_release(page);
  2444. else
  2445. anon = 1; /* no anon but release faulted_page */
  2446. }
  2447. pte_unmap_unlock(page_table, ptl);
  2448. out:
  2449. unlock_page(vmf.page);
  2450. out_unlocked:
  2451. if (anon)
  2452. page_cache_release(vmf.page);
  2453. else if (dirty_page) {
  2454. if (vma->vm_file)
  2455. file_update_time(vma->vm_file);
  2456. set_page_dirty_balance(dirty_page, page_mkwrite);
  2457. put_page(dirty_page);
  2458. }
  2459. return ret;
  2460. }
  2461. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2462. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2463. int write_access, pte_t orig_pte)
  2464. {
  2465. pgoff_t pgoff = (((address & PAGE_MASK)
  2466. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2467. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2468. pte_unmap(page_table);
  2469. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2470. }
  2471. /*
  2472. * Fault of a previously existing named mapping. Repopulate the pte
  2473. * from the encoded file_pte if possible. This enables swappable
  2474. * nonlinear vmas.
  2475. *
  2476. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2477. * but allow concurrent faults), and pte mapped but not yet locked.
  2478. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2479. */
  2480. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2481. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2482. int write_access, pte_t orig_pte)
  2483. {
  2484. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2485. (write_access ? FAULT_FLAG_WRITE : 0);
  2486. pgoff_t pgoff;
  2487. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2488. return 0;
  2489. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2490. /*
  2491. * Page table corrupted: show pte and kill process.
  2492. */
  2493. print_bad_pte(vma, address, orig_pte, NULL);
  2494. return VM_FAULT_OOM;
  2495. }
  2496. pgoff = pte_to_pgoff(orig_pte);
  2497. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2498. }
  2499. /*
  2500. * These routines also need to handle stuff like marking pages dirty
  2501. * and/or accessed for architectures that don't do it in hardware (most
  2502. * RISC architectures). The early dirtying is also good on the i386.
  2503. *
  2504. * There is also a hook called "update_mmu_cache()" that architectures
  2505. * with external mmu caches can use to update those (ie the Sparc or
  2506. * PowerPC hashed page tables that act as extended TLBs).
  2507. *
  2508. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2509. * but allow concurrent faults), and pte mapped but not yet locked.
  2510. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2511. */
  2512. static inline int handle_pte_fault(struct mm_struct *mm,
  2513. struct vm_area_struct *vma, unsigned long address,
  2514. pte_t *pte, pmd_t *pmd, int write_access)
  2515. {
  2516. pte_t entry;
  2517. spinlock_t *ptl;
  2518. entry = *pte;
  2519. if (!pte_present(entry)) {
  2520. if (pte_none(entry)) {
  2521. if (vma->vm_ops) {
  2522. if (likely(vma->vm_ops->fault))
  2523. return do_linear_fault(mm, vma, address,
  2524. pte, pmd, write_access, entry);
  2525. }
  2526. return do_anonymous_page(mm, vma, address,
  2527. pte, pmd, write_access);
  2528. }
  2529. if (pte_file(entry))
  2530. return do_nonlinear_fault(mm, vma, address,
  2531. pte, pmd, write_access, entry);
  2532. return do_swap_page(mm, vma, address,
  2533. pte, pmd, write_access, entry);
  2534. }
  2535. ptl = pte_lockptr(mm, pmd);
  2536. spin_lock(ptl);
  2537. if (unlikely(!pte_same(*pte, entry)))
  2538. goto unlock;
  2539. if (write_access) {
  2540. if (!pte_write(entry))
  2541. return do_wp_page(mm, vma, address,
  2542. pte, pmd, ptl, entry);
  2543. entry = pte_mkdirty(entry);
  2544. }
  2545. entry = pte_mkyoung(entry);
  2546. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2547. update_mmu_cache(vma, address, entry);
  2548. } else {
  2549. /*
  2550. * This is needed only for protection faults but the arch code
  2551. * is not yet telling us if this is a protection fault or not.
  2552. * This still avoids useless tlb flushes for .text page faults
  2553. * with threads.
  2554. */
  2555. if (write_access)
  2556. flush_tlb_page(vma, address);
  2557. }
  2558. unlock:
  2559. pte_unmap_unlock(pte, ptl);
  2560. return 0;
  2561. }
  2562. /*
  2563. * By the time we get here, we already hold the mm semaphore
  2564. */
  2565. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2566. unsigned long address, int write_access)
  2567. {
  2568. pgd_t *pgd;
  2569. pud_t *pud;
  2570. pmd_t *pmd;
  2571. pte_t *pte;
  2572. __set_current_state(TASK_RUNNING);
  2573. count_vm_event(PGFAULT);
  2574. if (unlikely(is_vm_hugetlb_page(vma)))
  2575. return hugetlb_fault(mm, vma, address, write_access);
  2576. pgd = pgd_offset(mm, address);
  2577. pud = pud_alloc(mm, pgd, address);
  2578. if (!pud)
  2579. return VM_FAULT_OOM;
  2580. pmd = pmd_alloc(mm, pud, address);
  2581. if (!pmd)
  2582. return VM_FAULT_OOM;
  2583. pte = pte_alloc_map(mm, pmd, address);
  2584. if (!pte)
  2585. return VM_FAULT_OOM;
  2586. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2587. }
  2588. #ifndef __PAGETABLE_PUD_FOLDED
  2589. /*
  2590. * Allocate page upper directory.
  2591. * We've already handled the fast-path in-line.
  2592. */
  2593. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2594. {
  2595. pud_t *new = pud_alloc_one(mm, address);
  2596. if (!new)
  2597. return -ENOMEM;
  2598. smp_wmb(); /* See comment in __pte_alloc */
  2599. spin_lock(&mm->page_table_lock);
  2600. if (pgd_present(*pgd)) /* Another has populated it */
  2601. pud_free(mm, new);
  2602. else
  2603. pgd_populate(mm, pgd, new);
  2604. spin_unlock(&mm->page_table_lock);
  2605. return 0;
  2606. }
  2607. #endif /* __PAGETABLE_PUD_FOLDED */
  2608. #ifndef __PAGETABLE_PMD_FOLDED
  2609. /*
  2610. * Allocate page middle directory.
  2611. * We've already handled the fast-path in-line.
  2612. */
  2613. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2614. {
  2615. pmd_t *new = pmd_alloc_one(mm, address);
  2616. if (!new)
  2617. return -ENOMEM;
  2618. smp_wmb(); /* See comment in __pte_alloc */
  2619. spin_lock(&mm->page_table_lock);
  2620. #ifndef __ARCH_HAS_4LEVEL_HACK
  2621. if (pud_present(*pud)) /* Another has populated it */
  2622. pmd_free(mm, new);
  2623. else
  2624. pud_populate(mm, pud, new);
  2625. #else
  2626. if (pgd_present(*pud)) /* Another has populated it */
  2627. pmd_free(mm, new);
  2628. else
  2629. pgd_populate(mm, pud, new);
  2630. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2631. spin_unlock(&mm->page_table_lock);
  2632. return 0;
  2633. }
  2634. #endif /* __PAGETABLE_PMD_FOLDED */
  2635. int make_pages_present(unsigned long addr, unsigned long end)
  2636. {
  2637. int ret, len, write;
  2638. struct vm_area_struct * vma;
  2639. vma = find_vma(current->mm, addr);
  2640. if (!vma)
  2641. return -ENOMEM;
  2642. write = (vma->vm_flags & VM_WRITE) != 0;
  2643. BUG_ON(addr >= end);
  2644. BUG_ON(end > vma->vm_end);
  2645. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2646. ret = get_user_pages(current, current->mm, addr,
  2647. len, write, 0, NULL, NULL);
  2648. if (ret < 0)
  2649. return ret;
  2650. return ret == len ? 0 : -EFAULT;
  2651. }
  2652. #if !defined(__HAVE_ARCH_GATE_AREA)
  2653. #if defined(AT_SYSINFO_EHDR)
  2654. static struct vm_area_struct gate_vma;
  2655. static int __init gate_vma_init(void)
  2656. {
  2657. gate_vma.vm_mm = NULL;
  2658. gate_vma.vm_start = FIXADDR_USER_START;
  2659. gate_vma.vm_end = FIXADDR_USER_END;
  2660. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2661. gate_vma.vm_page_prot = __P101;
  2662. /*
  2663. * Make sure the vDSO gets into every core dump.
  2664. * Dumping its contents makes post-mortem fully interpretable later
  2665. * without matching up the same kernel and hardware config to see
  2666. * what PC values meant.
  2667. */
  2668. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2669. return 0;
  2670. }
  2671. __initcall(gate_vma_init);
  2672. #endif
  2673. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2674. {
  2675. #ifdef AT_SYSINFO_EHDR
  2676. return &gate_vma;
  2677. #else
  2678. return NULL;
  2679. #endif
  2680. }
  2681. int in_gate_area_no_task(unsigned long addr)
  2682. {
  2683. #ifdef AT_SYSINFO_EHDR
  2684. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2685. return 1;
  2686. #endif
  2687. return 0;
  2688. }
  2689. #endif /* __HAVE_ARCH_GATE_AREA */
  2690. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2691. int follow_phys(struct vm_area_struct *vma,
  2692. unsigned long address, unsigned int flags,
  2693. unsigned long *prot, resource_size_t *phys)
  2694. {
  2695. pgd_t *pgd;
  2696. pud_t *pud;
  2697. pmd_t *pmd;
  2698. pte_t *ptep, pte;
  2699. spinlock_t *ptl;
  2700. resource_size_t phys_addr = 0;
  2701. struct mm_struct *mm = vma->vm_mm;
  2702. int ret = -EINVAL;
  2703. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2704. goto out;
  2705. pgd = pgd_offset(mm, address);
  2706. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2707. goto out;
  2708. pud = pud_offset(pgd, address);
  2709. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2710. goto out;
  2711. pmd = pmd_offset(pud, address);
  2712. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2713. goto out;
  2714. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2715. if (pmd_huge(*pmd))
  2716. goto out;
  2717. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  2718. if (!ptep)
  2719. goto out;
  2720. pte = *ptep;
  2721. if (!pte_present(pte))
  2722. goto unlock;
  2723. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2724. goto unlock;
  2725. phys_addr = pte_pfn(pte);
  2726. phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
  2727. *prot = pgprot_val(pte_pgprot(pte));
  2728. *phys = phys_addr;
  2729. ret = 0;
  2730. unlock:
  2731. pte_unmap_unlock(ptep, ptl);
  2732. out:
  2733. return ret;
  2734. }
  2735. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2736. void *buf, int len, int write)
  2737. {
  2738. resource_size_t phys_addr;
  2739. unsigned long prot = 0;
  2740. void __iomem *maddr;
  2741. int offset = addr & (PAGE_SIZE-1);
  2742. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2743. return -EINVAL;
  2744. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2745. if (write)
  2746. memcpy_toio(maddr + offset, buf, len);
  2747. else
  2748. memcpy_fromio(buf, maddr + offset, len);
  2749. iounmap(maddr);
  2750. return len;
  2751. }
  2752. #endif
  2753. /*
  2754. * Access another process' address space.
  2755. * Source/target buffer must be kernel space,
  2756. * Do not walk the page table directly, use get_user_pages
  2757. */
  2758. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2759. {
  2760. struct mm_struct *mm;
  2761. struct vm_area_struct *vma;
  2762. void *old_buf = buf;
  2763. mm = get_task_mm(tsk);
  2764. if (!mm)
  2765. return 0;
  2766. down_read(&mm->mmap_sem);
  2767. /* ignore errors, just check how much was successfully transferred */
  2768. while (len) {
  2769. int bytes, ret, offset;
  2770. void *maddr;
  2771. struct page *page = NULL;
  2772. ret = get_user_pages(tsk, mm, addr, 1,
  2773. write, 1, &page, &vma);
  2774. if (ret <= 0) {
  2775. /*
  2776. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2777. * we can access using slightly different code.
  2778. */
  2779. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2780. vma = find_vma(mm, addr);
  2781. if (!vma)
  2782. break;
  2783. if (vma->vm_ops && vma->vm_ops->access)
  2784. ret = vma->vm_ops->access(vma, addr, buf,
  2785. len, write);
  2786. if (ret <= 0)
  2787. #endif
  2788. break;
  2789. bytes = ret;
  2790. } else {
  2791. bytes = len;
  2792. offset = addr & (PAGE_SIZE-1);
  2793. if (bytes > PAGE_SIZE-offset)
  2794. bytes = PAGE_SIZE-offset;
  2795. maddr = kmap(page);
  2796. if (write) {
  2797. copy_to_user_page(vma, page, addr,
  2798. maddr + offset, buf, bytes);
  2799. set_page_dirty_lock(page);
  2800. } else {
  2801. copy_from_user_page(vma, page, addr,
  2802. buf, maddr + offset, bytes);
  2803. }
  2804. kunmap(page);
  2805. page_cache_release(page);
  2806. }
  2807. len -= bytes;
  2808. buf += bytes;
  2809. addr += bytes;
  2810. }
  2811. up_read(&mm->mmap_sem);
  2812. mmput(mm);
  2813. return buf - old_buf;
  2814. }
  2815. /*
  2816. * Print the name of a VMA.
  2817. */
  2818. void print_vma_addr(char *prefix, unsigned long ip)
  2819. {
  2820. struct mm_struct *mm = current->mm;
  2821. struct vm_area_struct *vma;
  2822. /*
  2823. * Do not print if we are in atomic
  2824. * contexts (in exception stacks, etc.):
  2825. */
  2826. if (preempt_count())
  2827. return;
  2828. down_read(&mm->mmap_sem);
  2829. vma = find_vma(mm, ip);
  2830. if (vma && vma->vm_file) {
  2831. struct file *f = vma->vm_file;
  2832. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2833. if (buf) {
  2834. char *p, *s;
  2835. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2836. if (IS_ERR(p))
  2837. p = "?";
  2838. s = strrchr(p, '/');
  2839. if (s)
  2840. p = s+1;
  2841. printk("%s%s[%lx+%lx]", prefix, p,
  2842. vma->vm_start,
  2843. vma->vm_end - vma->vm_start);
  2844. free_page((unsigned long)buf);
  2845. }
  2846. }
  2847. up_read(&current->mm->mmap_sem);
  2848. }
  2849. #ifdef CONFIG_PROVE_LOCKING
  2850. void might_fault(void)
  2851. {
  2852. /*
  2853. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  2854. * holding the mmap_sem, this is safe because kernel memory doesn't
  2855. * get paged out, therefore we'll never actually fault, and the
  2856. * below annotations will generate false positives.
  2857. */
  2858. if (segment_eq(get_fs(), KERNEL_DS))
  2859. return;
  2860. might_sleep();
  2861. /*
  2862. * it would be nicer only to annotate paths which are not under
  2863. * pagefault_disable, however that requires a larger audit and
  2864. * providing helpers like get_user_atomic.
  2865. */
  2866. if (!in_atomic() && current->mm)
  2867. might_lock_read(&current->mm->mmap_sem);
  2868. }
  2869. EXPORT_SYMBOL(might_fault);
  2870. #endif