rx.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/jiffies.h>
  12. #include <linux/kernel.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/rcupdate.h>
  17. #include <net/mac80211.h>
  18. #include <net/ieee80211_radiotap.h>
  19. #include "ieee80211_i.h"
  20. #include "driver-ops.h"
  21. #include "led.h"
  22. #include "mesh.h"
  23. #include "wep.h"
  24. #include "wpa.h"
  25. #include "tkip.h"
  26. #include "wme.h"
  27. static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
  28. struct tid_ampdu_rx *tid_agg_rx,
  29. struct sk_buff *skb,
  30. struct ieee80211_rx_status *status,
  31. u16 mpdu_seq_num,
  32. int bar_req);
  33. /*
  34. * monitor mode reception
  35. *
  36. * This function cleans up the SKB, i.e. it removes all the stuff
  37. * only useful for monitoring.
  38. */
  39. static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
  40. struct sk_buff *skb,
  41. int rtap_len)
  42. {
  43. skb_pull(skb, rtap_len);
  44. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
  45. if (likely(skb->len > FCS_LEN))
  46. skb_trim(skb, skb->len - FCS_LEN);
  47. else {
  48. /* driver bug */
  49. WARN_ON(1);
  50. dev_kfree_skb(skb);
  51. skb = NULL;
  52. }
  53. }
  54. return skb;
  55. }
  56. static inline int should_drop_frame(struct ieee80211_rx_status *status,
  57. struct sk_buff *skb,
  58. int present_fcs_len,
  59. int radiotap_len)
  60. {
  61. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  62. if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  63. return 1;
  64. if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
  65. return 1;
  66. if (ieee80211_is_ctl(hdr->frame_control) &&
  67. !ieee80211_is_pspoll(hdr->frame_control) &&
  68. !ieee80211_is_back_req(hdr->frame_control))
  69. return 1;
  70. return 0;
  71. }
  72. static int
  73. ieee80211_rx_radiotap_len(struct ieee80211_local *local,
  74. struct ieee80211_rx_status *status)
  75. {
  76. int len;
  77. /* always present fields */
  78. len = sizeof(struct ieee80211_radiotap_header) + 9;
  79. if (status->flag & RX_FLAG_TSFT)
  80. len += 8;
  81. if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
  82. len += 1;
  83. if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
  84. len += 1;
  85. if (len & 1) /* padding for RX_FLAGS if necessary */
  86. len++;
  87. /* make sure radiotap starts at a naturally aligned address */
  88. if (len % 8)
  89. len = roundup(len, 8);
  90. return len;
  91. }
  92. /*
  93. * ieee80211_add_rx_radiotap_header - add radiotap header
  94. *
  95. * add a radiotap header containing all the fields which the hardware provided.
  96. */
  97. static void
  98. ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
  99. struct sk_buff *skb,
  100. struct ieee80211_rx_status *status,
  101. struct ieee80211_rate *rate,
  102. int rtap_len)
  103. {
  104. struct ieee80211_radiotap_header *rthdr;
  105. unsigned char *pos;
  106. rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
  107. memset(rthdr, 0, rtap_len);
  108. /* radiotap header, set always present flags */
  109. rthdr->it_present =
  110. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  111. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  112. (1 << IEEE80211_RADIOTAP_ANTENNA) |
  113. (1 << IEEE80211_RADIOTAP_RX_FLAGS));
  114. rthdr->it_len = cpu_to_le16(rtap_len);
  115. pos = (unsigned char *)(rthdr+1);
  116. /* the order of the following fields is important */
  117. /* IEEE80211_RADIOTAP_TSFT */
  118. if (status->flag & RX_FLAG_TSFT) {
  119. *(__le64 *)pos = cpu_to_le64(status->mactime);
  120. rthdr->it_present |=
  121. cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
  122. pos += 8;
  123. }
  124. /* IEEE80211_RADIOTAP_FLAGS */
  125. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
  126. *pos |= IEEE80211_RADIOTAP_F_FCS;
  127. if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  128. *pos |= IEEE80211_RADIOTAP_F_BADFCS;
  129. if (status->flag & RX_FLAG_SHORTPRE)
  130. *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
  131. pos++;
  132. /* IEEE80211_RADIOTAP_RATE */
  133. if (status->flag & RX_FLAG_HT) {
  134. /*
  135. * TODO: add following information into radiotap header once
  136. * suitable fields are defined for it:
  137. * - MCS index (status->rate_idx)
  138. * - HT40 (status->flag & RX_FLAG_40MHZ)
  139. * - short-GI (status->flag & RX_FLAG_SHORT_GI)
  140. */
  141. *pos = 0;
  142. } else {
  143. rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
  144. *pos = rate->bitrate / 5;
  145. }
  146. pos++;
  147. /* IEEE80211_RADIOTAP_CHANNEL */
  148. *(__le16 *)pos = cpu_to_le16(status->freq);
  149. pos += 2;
  150. if (status->band == IEEE80211_BAND_5GHZ)
  151. *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
  152. IEEE80211_CHAN_5GHZ);
  153. else if (rate->flags & IEEE80211_RATE_ERP_G)
  154. *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
  155. IEEE80211_CHAN_2GHZ);
  156. else
  157. *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_CCK |
  158. IEEE80211_CHAN_2GHZ);
  159. pos += 2;
  160. /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
  161. if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
  162. *pos = status->signal;
  163. rthdr->it_present |=
  164. cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
  165. pos++;
  166. }
  167. /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
  168. if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
  169. *pos = status->noise;
  170. rthdr->it_present |=
  171. cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
  172. pos++;
  173. }
  174. /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
  175. /* IEEE80211_RADIOTAP_ANTENNA */
  176. *pos = status->antenna;
  177. pos++;
  178. /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
  179. /* IEEE80211_RADIOTAP_RX_FLAGS */
  180. /* ensure 2 byte alignment for the 2 byte field as required */
  181. if ((pos - (unsigned char *)rthdr) & 1)
  182. pos++;
  183. if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
  184. *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADPLCP);
  185. pos += 2;
  186. }
  187. /*
  188. * This function copies a received frame to all monitor interfaces and
  189. * returns a cleaned-up SKB that no longer includes the FCS nor the
  190. * radiotap header the driver might have added.
  191. */
  192. static struct sk_buff *
  193. ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
  194. struct ieee80211_rx_status *status,
  195. struct ieee80211_rate *rate)
  196. {
  197. struct ieee80211_sub_if_data *sdata;
  198. int needed_headroom = 0;
  199. struct sk_buff *skb, *skb2;
  200. struct net_device *prev_dev = NULL;
  201. int present_fcs_len = 0;
  202. int rtap_len = 0;
  203. /*
  204. * First, we may need to make a copy of the skb because
  205. * (1) we need to modify it for radiotap (if not present), and
  206. * (2) the other RX handlers will modify the skb we got.
  207. *
  208. * We don't need to, of course, if we aren't going to return
  209. * the SKB because it has a bad FCS/PLCP checksum.
  210. */
  211. if (status->flag & RX_FLAG_RADIOTAP)
  212. rtap_len = ieee80211_get_radiotap_len(origskb->data);
  213. else
  214. /* room for the radiotap header based on driver features */
  215. needed_headroom = ieee80211_rx_radiotap_len(local, status);
  216. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
  217. present_fcs_len = FCS_LEN;
  218. if (!local->monitors) {
  219. if (should_drop_frame(status, origskb, present_fcs_len,
  220. rtap_len)) {
  221. dev_kfree_skb(origskb);
  222. return NULL;
  223. }
  224. return remove_monitor_info(local, origskb, rtap_len);
  225. }
  226. if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
  227. /* only need to expand headroom if necessary */
  228. skb = origskb;
  229. origskb = NULL;
  230. /*
  231. * This shouldn't trigger often because most devices have an
  232. * RX header they pull before we get here, and that should
  233. * be big enough for our radiotap information. We should
  234. * probably export the length to drivers so that we can have
  235. * them allocate enough headroom to start with.
  236. */
  237. if (skb_headroom(skb) < needed_headroom &&
  238. pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
  239. dev_kfree_skb(skb);
  240. return NULL;
  241. }
  242. } else {
  243. /*
  244. * Need to make a copy and possibly remove radiotap header
  245. * and FCS from the original.
  246. */
  247. skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
  248. origskb = remove_monitor_info(local, origskb, rtap_len);
  249. if (!skb)
  250. return origskb;
  251. }
  252. /* if necessary, prepend radiotap information */
  253. if (!(status->flag & RX_FLAG_RADIOTAP))
  254. ieee80211_add_rx_radiotap_header(local, skb, status, rate,
  255. needed_headroom);
  256. skb_reset_mac_header(skb);
  257. skb->ip_summed = CHECKSUM_UNNECESSARY;
  258. skb->pkt_type = PACKET_OTHERHOST;
  259. skb->protocol = htons(ETH_P_802_2);
  260. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  261. if (!netif_running(sdata->dev))
  262. continue;
  263. if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
  264. continue;
  265. if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
  266. continue;
  267. if (prev_dev) {
  268. skb2 = skb_clone(skb, GFP_ATOMIC);
  269. if (skb2) {
  270. skb2->dev = prev_dev;
  271. netif_rx(skb2);
  272. }
  273. }
  274. prev_dev = sdata->dev;
  275. sdata->dev->stats.rx_packets++;
  276. sdata->dev->stats.rx_bytes += skb->len;
  277. }
  278. if (prev_dev) {
  279. skb->dev = prev_dev;
  280. netif_rx(skb);
  281. } else
  282. dev_kfree_skb(skb);
  283. return origskb;
  284. }
  285. static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
  286. {
  287. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  288. int tid;
  289. /* does the frame have a qos control field? */
  290. if (ieee80211_is_data_qos(hdr->frame_control)) {
  291. u8 *qc = ieee80211_get_qos_ctl(hdr);
  292. /* frame has qos control */
  293. tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
  294. if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
  295. rx->flags |= IEEE80211_RX_AMSDU;
  296. else
  297. rx->flags &= ~IEEE80211_RX_AMSDU;
  298. } else {
  299. /*
  300. * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
  301. *
  302. * Sequence numbers for management frames, QoS data
  303. * frames with a broadcast/multicast address in the
  304. * Address 1 field, and all non-QoS data frames sent
  305. * by QoS STAs are assigned using an additional single
  306. * modulo-4096 counter, [...]
  307. *
  308. * We also use that counter for non-QoS STAs.
  309. */
  310. tid = NUM_RX_DATA_QUEUES - 1;
  311. }
  312. rx->queue = tid;
  313. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  314. * For now, set skb->priority to 0 for other cases. */
  315. rx->skb->priority = (tid > 7) ? 0 : tid;
  316. }
  317. /**
  318. * DOC: Packet alignment
  319. *
  320. * Drivers always need to pass packets that are aligned to two-byte boundaries
  321. * to the stack.
  322. *
  323. * Additionally, should, if possible, align the payload data in a way that
  324. * guarantees that the contained IP header is aligned to a four-byte
  325. * boundary. In the case of regular frames, this simply means aligning the
  326. * payload to a four-byte boundary (because either the IP header is directly
  327. * contained, or IV/RFC1042 headers that have a length divisible by four are
  328. * in front of it).
  329. *
  330. * With A-MSDU frames, however, the payload data address must yield two modulo
  331. * four because there are 14-byte 802.3 headers within the A-MSDU frames that
  332. * push the IP header further back to a multiple of four again. Thankfully, the
  333. * specs were sane enough this time around to require padding each A-MSDU
  334. * subframe to a length that is a multiple of four.
  335. *
  336. * Padding like Atheros hardware adds which is inbetween the 802.11 header and
  337. * the payload is not supported, the driver is required to move the 802.11
  338. * header to be directly in front of the payload in that case.
  339. */
  340. static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
  341. {
  342. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  343. int hdrlen;
  344. #ifndef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
  345. return;
  346. #endif
  347. if (WARN_ONCE((unsigned long)rx->skb->data & 1,
  348. "unaligned packet at 0x%p\n", rx->skb->data))
  349. return;
  350. if (!ieee80211_is_data_present(hdr->frame_control))
  351. return;
  352. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  353. if (rx->flags & IEEE80211_RX_AMSDU)
  354. hdrlen += ETH_HLEN;
  355. WARN_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3,
  356. "unaligned IP payload at 0x%p\n", rx->skb->data + hdrlen);
  357. }
  358. /* rx handlers */
  359. static ieee80211_rx_result debug_noinline
  360. ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
  361. {
  362. struct ieee80211_local *local = rx->local;
  363. struct sk_buff *skb = rx->skb;
  364. if (unlikely(local->hw_scanning))
  365. return ieee80211_scan_rx(rx->sdata, skb, rx->status);
  366. if (unlikely(local->sw_scanning)) {
  367. /* drop all the other packets during a software scan anyway */
  368. if (ieee80211_scan_rx(rx->sdata, skb, rx->status)
  369. != RX_QUEUED)
  370. dev_kfree_skb(skb);
  371. return RX_QUEUED;
  372. }
  373. if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
  374. /* scanning finished during invoking of handlers */
  375. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  376. return RX_DROP_UNUSABLE;
  377. }
  378. return RX_CONTINUE;
  379. }
  380. static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
  381. {
  382. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  383. if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
  384. return 0;
  385. return ieee80211_is_robust_mgmt_frame(hdr);
  386. }
  387. static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
  388. {
  389. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  390. if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
  391. return 0;
  392. return ieee80211_is_robust_mgmt_frame(hdr);
  393. }
  394. /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
  395. static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
  396. {
  397. struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
  398. struct ieee80211_mmie *mmie;
  399. if (skb->len < 24 + sizeof(*mmie) ||
  400. !is_multicast_ether_addr(hdr->da))
  401. return -1;
  402. if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
  403. return -1; /* not a robust management frame */
  404. mmie = (struct ieee80211_mmie *)
  405. (skb->data + skb->len - sizeof(*mmie));
  406. if (mmie->element_id != WLAN_EID_MMIE ||
  407. mmie->length != sizeof(*mmie) - 2)
  408. return -1;
  409. return le16_to_cpu(mmie->key_id);
  410. }
  411. static ieee80211_rx_result
  412. ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
  413. {
  414. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  415. unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
  416. if (ieee80211_is_data(hdr->frame_control)) {
  417. if (!ieee80211_has_a4(hdr->frame_control))
  418. return RX_DROP_MONITOR;
  419. if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
  420. return RX_DROP_MONITOR;
  421. }
  422. /* If there is not an established peer link and this is not a peer link
  423. * establisment frame, beacon or probe, drop the frame.
  424. */
  425. if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
  426. struct ieee80211_mgmt *mgmt;
  427. if (!ieee80211_is_mgmt(hdr->frame_control))
  428. return RX_DROP_MONITOR;
  429. if (ieee80211_is_action(hdr->frame_control)) {
  430. mgmt = (struct ieee80211_mgmt *)hdr;
  431. if (mgmt->u.action.category != PLINK_CATEGORY)
  432. return RX_DROP_MONITOR;
  433. return RX_CONTINUE;
  434. }
  435. if (ieee80211_is_probe_req(hdr->frame_control) ||
  436. ieee80211_is_probe_resp(hdr->frame_control) ||
  437. ieee80211_is_beacon(hdr->frame_control))
  438. return RX_CONTINUE;
  439. return RX_DROP_MONITOR;
  440. }
  441. #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
  442. if (ieee80211_is_data(hdr->frame_control) &&
  443. is_multicast_ether_addr(hdr->addr1) &&
  444. mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->sdata))
  445. return RX_DROP_MONITOR;
  446. #undef msh_h_get
  447. return RX_CONTINUE;
  448. }
  449. static ieee80211_rx_result debug_noinline
  450. ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
  451. {
  452. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  453. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  454. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  455. if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
  456. rx->sta->last_seq_ctrl[rx->queue] ==
  457. hdr->seq_ctrl)) {
  458. if (rx->flags & IEEE80211_RX_RA_MATCH) {
  459. rx->local->dot11FrameDuplicateCount++;
  460. rx->sta->num_duplicates++;
  461. }
  462. return RX_DROP_MONITOR;
  463. } else
  464. rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
  465. }
  466. if (unlikely(rx->skb->len < 16)) {
  467. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  468. return RX_DROP_MONITOR;
  469. }
  470. /* Drop disallowed frame classes based on STA auth/assoc state;
  471. * IEEE 802.11, Chap 5.5.
  472. *
  473. * mac80211 filters only based on association state, i.e. it drops
  474. * Class 3 frames from not associated stations. hostapd sends
  475. * deauth/disassoc frames when needed. In addition, hostapd is
  476. * responsible for filtering on both auth and assoc states.
  477. */
  478. if (ieee80211_vif_is_mesh(&rx->sdata->vif))
  479. return ieee80211_rx_mesh_check(rx);
  480. if (unlikely((ieee80211_is_data(hdr->frame_control) ||
  481. ieee80211_is_pspoll(hdr->frame_control)) &&
  482. rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
  483. (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
  484. if ((!ieee80211_has_fromds(hdr->frame_control) &&
  485. !ieee80211_has_tods(hdr->frame_control) &&
  486. ieee80211_is_data(hdr->frame_control)) ||
  487. !(rx->flags & IEEE80211_RX_RA_MATCH)) {
  488. /* Drop IBSS frames and frames for other hosts
  489. * silently. */
  490. return RX_DROP_MONITOR;
  491. }
  492. return RX_DROP_MONITOR;
  493. }
  494. return RX_CONTINUE;
  495. }
  496. static ieee80211_rx_result debug_noinline
  497. ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
  498. {
  499. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  500. int keyidx;
  501. int hdrlen;
  502. ieee80211_rx_result result = RX_DROP_UNUSABLE;
  503. struct ieee80211_key *stakey = NULL;
  504. int mmie_keyidx = -1;
  505. /*
  506. * Key selection 101
  507. *
  508. * There are four types of keys:
  509. * - GTK (group keys)
  510. * - IGTK (group keys for management frames)
  511. * - PTK (pairwise keys)
  512. * - STK (station-to-station pairwise keys)
  513. *
  514. * When selecting a key, we have to distinguish between multicast
  515. * (including broadcast) and unicast frames, the latter can only
  516. * use PTKs and STKs while the former always use GTKs and IGTKs.
  517. * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
  518. * unicast frames can also use key indices like GTKs. Hence, if we
  519. * don't have a PTK/STK we check the key index for a WEP key.
  520. *
  521. * Note that in a regular BSS, multicast frames are sent by the
  522. * AP only, associated stations unicast the frame to the AP first
  523. * which then multicasts it on their behalf.
  524. *
  525. * There is also a slight problem in IBSS mode: GTKs are negotiated
  526. * with each station, that is something we don't currently handle.
  527. * The spec seems to expect that one negotiates the same key with
  528. * every station but there's no such requirement; VLANs could be
  529. * possible.
  530. */
  531. /*
  532. * No point in finding a key and decrypting if the frame is neither
  533. * addressed to us nor a multicast frame.
  534. */
  535. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  536. return RX_CONTINUE;
  537. if (rx->sta)
  538. stakey = rcu_dereference(rx->sta->key);
  539. if (!ieee80211_has_protected(hdr->frame_control))
  540. mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
  541. if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
  542. rx->key = stakey;
  543. /* Skip decryption if the frame is not protected. */
  544. if (!ieee80211_has_protected(hdr->frame_control))
  545. return RX_CONTINUE;
  546. } else if (mmie_keyidx >= 0) {
  547. /* Broadcast/multicast robust management frame / BIP */
  548. if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
  549. (rx->status->flag & RX_FLAG_IV_STRIPPED))
  550. return RX_CONTINUE;
  551. if (mmie_keyidx < NUM_DEFAULT_KEYS ||
  552. mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
  553. return RX_DROP_MONITOR; /* unexpected BIP keyidx */
  554. rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
  555. } else if (!ieee80211_has_protected(hdr->frame_control)) {
  556. /*
  557. * The frame was not protected, so skip decryption. However, we
  558. * need to set rx->key if there is a key that could have been
  559. * used so that the frame may be dropped if encryption would
  560. * have been expected.
  561. */
  562. struct ieee80211_key *key = NULL;
  563. if (ieee80211_is_mgmt(hdr->frame_control) &&
  564. is_multicast_ether_addr(hdr->addr1) &&
  565. (key = rcu_dereference(rx->sdata->default_mgmt_key)))
  566. rx->key = key;
  567. else if ((key = rcu_dereference(rx->sdata->default_key)))
  568. rx->key = key;
  569. return RX_CONTINUE;
  570. } else {
  571. /*
  572. * The device doesn't give us the IV so we won't be
  573. * able to look up the key. That's ok though, we
  574. * don't need to decrypt the frame, we just won't
  575. * be able to keep statistics accurate.
  576. * Except for key threshold notifications, should
  577. * we somehow allow the driver to tell us which key
  578. * the hardware used if this flag is set?
  579. */
  580. if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
  581. (rx->status->flag & RX_FLAG_IV_STRIPPED))
  582. return RX_CONTINUE;
  583. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  584. if (rx->skb->len < 8 + hdrlen)
  585. return RX_DROP_UNUSABLE; /* TODO: count this? */
  586. /*
  587. * no need to call ieee80211_wep_get_keyidx,
  588. * it verifies a bunch of things we've done already
  589. */
  590. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  591. rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
  592. /*
  593. * RSNA-protected unicast frames should always be sent with
  594. * pairwise or station-to-station keys, but for WEP we allow
  595. * using a key index as well.
  596. */
  597. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  598. !is_multicast_ether_addr(hdr->addr1))
  599. rx->key = NULL;
  600. }
  601. if (rx->key) {
  602. rx->key->tx_rx_count++;
  603. /* TODO: add threshold stuff again */
  604. } else {
  605. return RX_DROP_MONITOR;
  606. }
  607. /* Check for weak IVs if possible */
  608. if (rx->sta && rx->key->conf.alg == ALG_WEP &&
  609. ieee80211_is_data(hdr->frame_control) &&
  610. (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
  611. !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
  612. ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  613. rx->sta->wep_weak_iv_count++;
  614. switch (rx->key->conf.alg) {
  615. case ALG_WEP:
  616. result = ieee80211_crypto_wep_decrypt(rx);
  617. break;
  618. case ALG_TKIP:
  619. result = ieee80211_crypto_tkip_decrypt(rx);
  620. break;
  621. case ALG_CCMP:
  622. result = ieee80211_crypto_ccmp_decrypt(rx);
  623. break;
  624. case ALG_AES_CMAC:
  625. result = ieee80211_crypto_aes_cmac_decrypt(rx);
  626. break;
  627. }
  628. /* either the frame has been decrypted or will be dropped */
  629. rx->status->flag |= RX_FLAG_DECRYPTED;
  630. return result;
  631. }
  632. static ieee80211_rx_result debug_noinline
  633. ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
  634. {
  635. struct ieee80211_local *local;
  636. struct ieee80211_hdr *hdr;
  637. struct sk_buff *skb;
  638. local = rx->local;
  639. skb = rx->skb;
  640. hdr = (struct ieee80211_hdr *) skb->data;
  641. if (!local->pspolling)
  642. return RX_CONTINUE;
  643. if (!ieee80211_has_fromds(hdr->frame_control))
  644. /* this is not from AP */
  645. return RX_CONTINUE;
  646. if (!ieee80211_is_data(hdr->frame_control))
  647. return RX_CONTINUE;
  648. if (!ieee80211_has_moredata(hdr->frame_control)) {
  649. /* AP has no more frames buffered for us */
  650. local->pspolling = false;
  651. return RX_CONTINUE;
  652. }
  653. /* more data bit is set, let's request a new frame from the AP */
  654. ieee80211_send_pspoll(local, rx->sdata);
  655. return RX_CONTINUE;
  656. }
  657. static void ap_sta_ps_start(struct sta_info *sta)
  658. {
  659. struct ieee80211_sub_if_data *sdata = sta->sdata;
  660. struct ieee80211_local *local = sdata->local;
  661. atomic_inc(&sdata->bss->num_sta_ps);
  662. set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
  663. drv_sta_notify(local, &sdata->vif, STA_NOTIFY_SLEEP, &sta->sta);
  664. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  665. printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
  666. sdata->dev->name, sta->sta.addr, sta->sta.aid);
  667. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  668. }
  669. static int ap_sta_ps_end(struct sta_info *sta)
  670. {
  671. struct ieee80211_sub_if_data *sdata = sta->sdata;
  672. struct ieee80211_local *local = sdata->local;
  673. struct sk_buff *skb;
  674. int sent = 0;
  675. atomic_dec(&sdata->bss->num_sta_ps);
  676. clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
  677. drv_sta_notify(local, &sdata->vif, STA_NOTIFY_AWAKE, &sta->sta);
  678. if (!skb_queue_empty(&sta->ps_tx_buf))
  679. sta_info_clear_tim_bit(sta);
  680. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  681. printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
  682. sdata->dev->name, sta->sta.addr, sta->sta.aid);
  683. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  684. /* Send all buffered frames to the station */
  685. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  686. sent++;
  687. skb->requeue = 1;
  688. dev_queue_xmit(skb);
  689. }
  690. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  691. local->total_ps_buffered--;
  692. sent++;
  693. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  694. printk(KERN_DEBUG "%s: STA %pM aid %d send PS frame "
  695. "since STA not sleeping anymore\n", sdata->dev->name,
  696. sta->sta.addr, sta->sta.aid);
  697. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  698. skb->requeue = 1;
  699. dev_queue_xmit(skb);
  700. }
  701. return sent;
  702. }
  703. static ieee80211_rx_result debug_noinline
  704. ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
  705. {
  706. struct sta_info *sta = rx->sta;
  707. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  708. if (!sta)
  709. return RX_CONTINUE;
  710. /* Update last_rx only for IBSS packets which are for the current
  711. * BSSID to avoid keeping the current IBSS network alive in cases where
  712. * other STAs are using different BSSID. */
  713. if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
  714. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
  715. NL80211_IFTYPE_ADHOC);
  716. if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
  717. sta->last_rx = jiffies;
  718. } else
  719. if (!is_multicast_ether_addr(hdr->addr1) ||
  720. rx->sdata->vif.type == NL80211_IFTYPE_STATION) {
  721. /* Update last_rx only for unicast frames in order to prevent
  722. * the Probe Request frames (the only broadcast frames from a
  723. * STA in infrastructure mode) from keeping a connection alive.
  724. * Mesh beacons will update last_rx when if they are found to
  725. * match the current local configuration when processed.
  726. */
  727. if (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
  728. ieee80211_is_beacon(hdr->frame_control)) {
  729. rx->sdata->u.mgd.last_beacon = jiffies;
  730. } else
  731. sta->last_rx = jiffies;
  732. }
  733. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  734. return RX_CONTINUE;
  735. if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
  736. ieee80211_sta_rx_notify(rx->sdata, hdr);
  737. sta->rx_fragments++;
  738. sta->rx_bytes += rx->skb->len;
  739. sta->last_signal = rx->status->signal;
  740. sta->last_qual = rx->status->qual;
  741. sta->last_noise = rx->status->noise;
  742. /*
  743. * Change STA power saving mode only at the end of a frame
  744. * exchange sequence.
  745. */
  746. if (!ieee80211_has_morefrags(hdr->frame_control) &&
  747. (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
  748. rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
  749. if (test_sta_flags(sta, WLAN_STA_PS)) {
  750. /*
  751. * Ignore doze->wake transitions that are
  752. * indicated by non-data frames, the standard
  753. * is unclear here, but for example going to
  754. * PS mode and then scanning would cause a
  755. * doze->wake transition for the probe request,
  756. * and that is clearly undesirable.
  757. */
  758. if (ieee80211_is_data(hdr->frame_control) &&
  759. !ieee80211_has_pm(hdr->frame_control))
  760. rx->sent_ps_buffered += ap_sta_ps_end(sta);
  761. } else {
  762. if (ieee80211_has_pm(hdr->frame_control))
  763. ap_sta_ps_start(sta);
  764. }
  765. }
  766. /* Drop data::nullfunc frames silently, since they are used only to
  767. * control station power saving mode. */
  768. if (ieee80211_is_nullfunc(hdr->frame_control)) {
  769. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  770. /* Update counter and free packet here to avoid counting this
  771. * as a dropped packed. */
  772. sta->rx_packets++;
  773. dev_kfree_skb(rx->skb);
  774. return RX_QUEUED;
  775. }
  776. return RX_CONTINUE;
  777. } /* ieee80211_rx_h_sta_process */
  778. static inline struct ieee80211_fragment_entry *
  779. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  780. unsigned int frag, unsigned int seq, int rx_queue,
  781. struct sk_buff **skb)
  782. {
  783. struct ieee80211_fragment_entry *entry;
  784. int idx;
  785. idx = sdata->fragment_next;
  786. entry = &sdata->fragments[sdata->fragment_next++];
  787. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  788. sdata->fragment_next = 0;
  789. if (!skb_queue_empty(&entry->skb_list)) {
  790. #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
  791. struct ieee80211_hdr *hdr =
  792. (struct ieee80211_hdr *) entry->skb_list.next->data;
  793. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  794. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  795. "addr1=%pM addr2=%pM\n",
  796. sdata->dev->name, idx,
  797. jiffies - entry->first_frag_time, entry->seq,
  798. entry->last_frag, hdr->addr1, hdr->addr2);
  799. #endif
  800. __skb_queue_purge(&entry->skb_list);
  801. }
  802. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  803. *skb = NULL;
  804. entry->first_frag_time = jiffies;
  805. entry->seq = seq;
  806. entry->rx_queue = rx_queue;
  807. entry->last_frag = frag;
  808. entry->ccmp = 0;
  809. entry->extra_len = 0;
  810. return entry;
  811. }
  812. static inline struct ieee80211_fragment_entry *
  813. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  814. unsigned int frag, unsigned int seq,
  815. int rx_queue, struct ieee80211_hdr *hdr)
  816. {
  817. struct ieee80211_fragment_entry *entry;
  818. int i, idx;
  819. idx = sdata->fragment_next;
  820. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  821. struct ieee80211_hdr *f_hdr;
  822. idx--;
  823. if (idx < 0)
  824. idx = IEEE80211_FRAGMENT_MAX - 1;
  825. entry = &sdata->fragments[idx];
  826. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  827. entry->rx_queue != rx_queue ||
  828. entry->last_frag + 1 != frag)
  829. continue;
  830. f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
  831. /*
  832. * Check ftype and addresses are equal, else check next fragment
  833. */
  834. if (((hdr->frame_control ^ f_hdr->frame_control) &
  835. cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
  836. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  837. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  838. continue;
  839. if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
  840. __skb_queue_purge(&entry->skb_list);
  841. continue;
  842. }
  843. return entry;
  844. }
  845. return NULL;
  846. }
  847. static ieee80211_rx_result debug_noinline
  848. ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
  849. {
  850. struct ieee80211_hdr *hdr;
  851. u16 sc;
  852. __le16 fc;
  853. unsigned int frag, seq;
  854. struct ieee80211_fragment_entry *entry;
  855. struct sk_buff *skb;
  856. hdr = (struct ieee80211_hdr *)rx->skb->data;
  857. fc = hdr->frame_control;
  858. sc = le16_to_cpu(hdr->seq_ctrl);
  859. frag = sc & IEEE80211_SCTL_FRAG;
  860. if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
  861. (rx->skb)->len < 24 ||
  862. is_multicast_ether_addr(hdr->addr1))) {
  863. /* not fragmented */
  864. goto out;
  865. }
  866. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  867. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  868. if (frag == 0) {
  869. /* This is the first fragment of a new frame. */
  870. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  871. rx->queue, &(rx->skb));
  872. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  873. ieee80211_has_protected(fc)) {
  874. /* Store CCMP PN so that we can verify that the next
  875. * fragment has a sequential PN value. */
  876. entry->ccmp = 1;
  877. memcpy(entry->last_pn,
  878. rx->key->u.ccmp.rx_pn[rx->queue],
  879. CCMP_PN_LEN);
  880. }
  881. return RX_QUEUED;
  882. }
  883. /* This is a fragment for a frame that should already be pending in
  884. * fragment cache. Add this fragment to the end of the pending entry.
  885. */
  886. entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
  887. if (!entry) {
  888. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  889. return RX_DROP_MONITOR;
  890. }
  891. /* Verify that MPDUs within one MSDU have sequential PN values.
  892. * (IEEE 802.11i, 8.3.3.4.5) */
  893. if (entry->ccmp) {
  894. int i;
  895. u8 pn[CCMP_PN_LEN], *rpn;
  896. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  897. return RX_DROP_UNUSABLE;
  898. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  899. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  900. pn[i]++;
  901. if (pn[i])
  902. break;
  903. }
  904. rpn = rx->key->u.ccmp.rx_pn[rx->queue];
  905. if (memcmp(pn, rpn, CCMP_PN_LEN))
  906. return RX_DROP_UNUSABLE;
  907. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  908. }
  909. skb_pull(rx->skb, ieee80211_hdrlen(fc));
  910. __skb_queue_tail(&entry->skb_list, rx->skb);
  911. entry->last_frag = frag;
  912. entry->extra_len += rx->skb->len;
  913. if (ieee80211_has_morefrags(fc)) {
  914. rx->skb = NULL;
  915. return RX_QUEUED;
  916. }
  917. rx->skb = __skb_dequeue(&entry->skb_list);
  918. if (skb_tailroom(rx->skb) < entry->extra_len) {
  919. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  920. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  921. GFP_ATOMIC))) {
  922. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  923. __skb_queue_purge(&entry->skb_list);
  924. return RX_DROP_UNUSABLE;
  925. }
  926. }
  927. while ((skb = __skb_dequeue(&entry->skb_list))) {
  928. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  929. dev_kfree_skb(skb);
  930. }
  931. /* Complete frame has been reassembled - process it now */
  932. rx->flags |= IEEE80211_RX_FRAGMENTED;
  933. out:
  934. if (rx->sta)
  935. rx->sta->rx_packets++;
  936. if (is_multicast_ether_addr(hdr->addr1))
  937. rx->local->dot11MulticastReceivedFrameCount++;
  938. else
  939. ieee80211_led_rx(rx->local);
  940. return RX_CONTINUE;
  941. }
  942. static ieee80211_rx_result debug_noinline
  943. ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
  944. {
  945. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  946. struct sk_buff *skb;
  947. int no_pending_pkts;
  948. __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
  949. if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
  950. !(rx->flags & IEEE80211_RX_RA_MATCH)))
  951. return RX_CONTINUE;
  952. if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
  953. (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
  954. return RX_DROP_UNUSABLE;
  955. skb = skb_dequeue(&rx->sta->tx_filtered);
  956. if (!skb) {
  957. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  958. if (skb)
  959. rx->local->total_ps_buffered--;
  960. }
  961. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  962. skb_queue_empty(&rx->sta->ps_tx_buf);
  963. if (skb) {
  964. struct ieee80211_hdr *hdr =
  965. (struct ieee80211_hdr *) skb->data;
  966. /*
  967. * Tell TX path to send one frame even though the STA may
  968. * still remain is PS mode after this frame exchange.
  969. */
  970. set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
  971. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  972. printk(KERN_DEBUG "STA %pM aid %d: PS Poll (entries after %d)\n",
  973. rx->sta->sta.addr, rx->sta->sta.aid,
  974. skb_queue_len(&rx->sta->ps_tx_buf));
  975. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  976. /* Use MoreData flag to indicate whether there are more
  977. * buffered frames for this STA */
  978. if (no_pending_pkts)
  979. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  980. else
  981. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  982. dev_queue_xmit(skb);
  983. if (no_pending_pkts)
  984. sta_info_clear_tim_bit(rx->sta);
  985. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  986. } else if (!rx->sent_ps_buffered) {
  987. /*
  988. * FIXME: This can be the result of a race condition between
  989. * us expiring a frame and the station polling for it.
  990. * Should we send it a null-func frame indicating we
  991. * have nothing buffered for it?
  992. */
  993. printk(KERN_DEBUG "%s: STA %pM sent PS Poll even "
  994. "though there are no buffered frames for it\n",
  995. rx->dev->name, rx->sta->sta.addr);
  996. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  997. }
  998. /* Free PS Poll skb here instead of returning RX_DROP that would
  999. * count as an dropped frame. */
  1000. dev_kfree_skb(rx->skb);
  1001. return RX_QUEUED;
  1002. }
  1003. static ieee80211_rx_result debug_noinline
  1004. ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
  1005. {
  1006. u8 *data = rx->skb->data;
  1007. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
  1008. if (!ieee80211_is_data_qos(hdr->frame_control))
  1009. return RX_CONTINUE;
  1010. /* remove the qos control field, update frame type and meta-data */
  1011. memmove(data + IEEE80211_QOS_CTL_LEN, data,
  1012. ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
  1013. hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
  1014. /* change frame type to non QOS */
  1015. hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  1016. return RX_CONTINUE;
  1017. }
  1018. static int
  1019. ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
  1020. {
  1021. if (unlikely(!rx->sta ||
  1022. !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
  1023. return -EACCES;
  1024. return 0;
  1025. }
  1026. static int
  1027. ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
  1028. {
  1029. /*
  1030. * Pass through unencrypted frames if the hardware has
  1031. * decrypted them already.
  1032. */
  1033. if (rx->status->flag & RX_FLAG_DECRYPTED)
  1034. return 0;
  1035. /* Drop unencrypted frames if key is set. */
  1036. if (unlikely(!ieee80211_has_protected(fc) &&
  1037. !ieee80211_is_nullfunc(fc) &&
  1038. (!ieee80211_is_mgmt(fc) ||
  1039. (ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
  1040. rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP))) &&
  1041. (rx->key || rx->sdata->drop_unencrypted)))
  1042. return -EACCES;
  1043. /* BIP does not use Protected field, so need to check MMIE */
  1044. if (unlikely(rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP) &&
  1045. ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
  1046. ieee80211_get_mmie_keyidx(rx->skb) < 0 &&
  1047. (rx->key || rx->sdata->drop_unencrypted)))
  1048. return -EACCES;
  1049. return 0;
  1050. }
  1051. static int
  1052. ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
  1053. {
  1054. struct net_device *dev = rx->dev;
  1055. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  1056. u16 hdrlen, ethertype;
  1057. u8 *payload;
  1058. u8 dst[ETH_ALEN];
  1059. u8 src[ETH_ALEN] __aligned(2);
  1060. struct sk_buff *skb = rx->skb;
  1061. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1062. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  1063. return -1;
  1064. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  1065. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  1066. * header
  1067. * IEEE 802.11 address fields:
  1068. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  1069. * 0 0 DA SA BSSID n/a
  1070. * 0 1 DA BSSID SA n/a
  1071. * 1 0 BSSID SA DA n/a
  1072. * 1 1 RA TA DA SA
  1073. */
  1074. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  1075. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  1076. switch (hdr->frame_control &
  1077. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  1078. case cpu_to_le16(IEEE80211_FCTL_TODS):
  1079. if (unlikely(sdata->vif.type != NL80211_IFTYPE_AP &&
  1080. sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
  1081. return -1;
  1082. break;
  1083. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  1084. if (unlikely(sdata->vif.type != NL80211_IFTYPE_WDS &&
  1085. sdata->vif.type != NL80211_IFTYPE_MESH_POINT))
  1086. return -1;
  1087. if (ieee80211_vif_is_mesh(&sdata->vif)) {
  1088. struct ieee80211s_hdr *meshdr = (struct ieee80211s_hdr *)
  1089. (skb->data + hdrlen);
  1090. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  1091. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  1092. memcpy(dst, meshdr->eaddr1, ETH_ALEN);
  1093. memcpy(src, meshdr->eaddr2, ETH_ALEN);
  1094. }
  1095. }
  1096. break;
  1097. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  1098. if (sdata->vif.type != NL80211_IFTYPE_STATION ||
  1099. (is_multicast_ether_addr(dst) &&
  1100. !compare_ether_addr(src, dev->dev_addr)))
  1101. return -1;
  1102. break;
  1103. case cpu_to_le16(0):
  1104. if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
  1105. return -1;
  1106. break;
  1107. }
  1108. if (unlikely(skb->len - hdrlen < 8))
  1109. return -1;
  1110. payload = skb->data + hdrlen;
  1111. ethertype = (payload[6] << 8) | payload[7];
  1112. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  1113. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  1114. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  1115. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  1116. * replace EtherType */
  1117. skb_pull(skb, hdrlen + 6);
  1118. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  1119. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  1120. } else {
  1121. struct ethhdr *ehdr;
  1122. __be16 len;
  1123. skb_pull(skb, hdrlen);
  1124. len = htons(skb->len);
  1125. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  1126. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  1127. memcpy(ehdr->h_source, src, ETH_ALEN);
  1128. ehdr->h_proto = len;
  1129. }
  1130. return 0;
  1131. }
  1132. /*
  1133. * requires that rx->skb is a frame with ethernet header
  1134. */
  1135. static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
  1136. {
  1137. static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
  1138. = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
  1139. struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
  1140. /*
  1141. * Allow EAPOL frames to us/the PAE group address regardless
  1142. * of whether the frame was encrypted or not.
  1143. */
  1144. if (ehdr->h_proto == htons(ETH_P_PAE) &&
  1145. (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
  1146. compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
  1147. return true;
  1148. if (ieee80211_802_1x_port_control(rx) ||
  1149. ieee80211_drop_unencrypted(rx, fc))
  1150. return false;
  1151. return true;
  1152. }
  1153. /*
  1154. * requires that rx->skb is a frame with ethernet header
  1155. */
  1156. static void
  1157. ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
  1158. {
  1159. struct net_device *dev = rx->dev;
  1160. struct ieee80211_local *local = rx->local;
  1161. struct sk_buff *skb, *xmit_skb;
  1162. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1163. struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
  1164. struct sta_info *dsta;
  1165. skb = rx->skb;
  1166. xmit_skb = NULL;
  1167. if ((sdata->vif.type == NL80211_IFTYPE_AP ||
  1168. sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
  1169. !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
  1170. (rx->flags & IEEE80211_RX_RA_MATCH)) {
  1171. if (is_multicast_ether_addr(ehdr->h_dest)) {
  1172. /*
  1173. * send multicast frames both to higher layers in
  1174. * local net stack and back to the wireless medium
  1175. */
  1176. xmit_skb = skb_copy(skb, GFP_ATOMIC);
  1177. if (!xmit_skb && net_ratelimit())
  1178. printk(KERN_DEBUG "%s: failed to clone "
  1179. "multicast frame\n", dev->name);
  1180. } else {
  1181. dsta = sta_info_get(local, skb->data);
  1182. if (dsta && dsta->sdata->dev == dev) {
  1183. /*
  1184. * The destination station is associated to
  1185. * this AP (in this VLAN), so send the frame
  1186. * directly to it and do not pass it to local
  1187. * net stack.
  1188. */
  1189. xmit_skb = skb;
  1190. skb = NULL;
  1191. }
  1192. }
  1193. }
  1194. if (skb) {
  1195. int align __maybe_unused;
  1196. #if defined(CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT) || !defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
  1197. /*
  1198. * 'align' will only take the values 0 or 2 here
  1199. * since all frames are required to be aligned
  1200. * to 2-byte boundaries when being passed to
  1201. * mac80211. That also explains the __skb_push()
  1202. * below.
  1203. */
  1204. align = (unsigned long)skb->data & 3;
  1205. if (align) {
  1206. if (WARN_ON(skb_headroom(skb) < 3)) {
  1207. dev_kfree_skb(skb);
  1208. skb = NULL;
  1209. } else {
  1210. u8 *data = skb->data;
  1211. size_t len = skb->len;
  1212. u8 *new = __skb_push(skb, align);
  1213. memmove(new, data, len);
  1214. __skb_trim(skb, len);
  1215. }
  1216. }
  1217. #endif
  1218. if (skb) {
  1219. /* deliver to local stack */
  1220. skb->protocol = eth_type_trans(skb, dev);
  1221. memset(skb->cb, 0, sizeof(skb->cb));
  1222. netif_rx(skb);
  1223. }
  1224. }
  1225. if (xmit_skb) {
  1226. /* send to wireless media */
  1227. xmit_skb->protocol = htons(ETH_P_802_3);
  1228. skb_reset_network_header(xmit_skb);
  1229. skb_reset_mac_header(xmit_skb);
  1230. dev_queue_xmit(xmit_skb);
  1231. }
  1232. }
  1233. static ieee80211_rx_result debug_noinline
  1234. ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
  1235. {
  1236. struct net_device *dev = rx->dev;
  1237. struct ieee80211_local *local = rx->local;
  1238. u16 ethertype;
  1239. u8 *payload;
  1240. struct sk_buff *skb = rx->skb, *frame = NULL;
  1241. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1242. __le16 fc = hdr->frame_control;
  1243. const struct ethhdr *eth;
  1244. int remaining, err;
  1245. u8 dst[ETH_ALEN];
  1246. u8 src[ETH_ALEN];
  1247. if (unlikely(!ieee80211_is_data(fc)))
  1248. return RX_CONTINUE;
  1249. if (unlikely(!ieee80211_is_data_present(fc)))
  1250. return RX_DROP_MONITOR;
  1251. if (!(rx->flags & IEEE80211_RX_AMSDU))
  1252. return RX_CONTINUE;
  1253. err = ieee80211_data_to_8023(rx);
  1254. if (unlikely(err))
  1255. return RX_DROP_UNUSABLE;
  1256. skb->dev = dev;
  1257. dev->stats.rx_packets++;
  1258. dev->stats.rx_bytes += skb->len;
  1259. /* skip the wrapping header */
  1260. eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
  1261. if (!eth)
  1262. return RX_DROP_UNUSABLE;
  1263. while (skb != frame) {
  1264. u8 padding;
  1265. __be16 len = eth->h_proto;
  1266. unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
  1267. remaining = skb->len;
  1268. memcpy(dst, eth->h_dest, ETH_ALEN);
  1269. memcpy(src, eth->h_source, ETH_ALEN);
  1270. padding = ((4 - subframe_len) & 0x3);
  1271. /* the last MSDU has no padding */
  1272. if (subframe_len > remaining)
  1273. return RX_DROP_UNUSABLE;
  1274. skb_pull(skb, sizeof(struct ethhdr));
  1275. /* if last subframe reuse skb */
  1276. if (remaining <= subframe_len + padding)
  1277. frame = skb;
  1278. else {
  1279. /*
  1280. * Allocate and reserve two bytes more for payload
  1281. * alignment since sizeof(struct ethhdr) is 14.
  1282. */
  1283. frame = dev_alloc_skb(
  1284. ALIGN(local->hw.extra_tx_headroom, 4) +
  1285. subframe_len + 2);
  1286. if (frame == NULL)
  1287. return RX_DROP_UNUSABLE;
  1288. skb_reserve(frame,
  1289. ALIGN(local->hw.extra_tx_headroom, 4) +
  1290. sizeof(struct ethhdr) + 2);
  1291. memcpy(skb_put(frame, ntohs(len)), skb->data,
  1292. ntohs(len));
  1293. eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
  1294. padding);
  1295. if (!eth) {
  1296. dev_kfree_skb(frame);
  1297. return RX_DROP_UNUSABLE;
  1298. }
  1299. }
  1300. skb_reset_network_header(frame);
  1301. frame->dev = dev;
  1302. frame->priority = skb->priority;
  1303. rx->skb = frame;
  1304. payload = frame->data;
  1305. ethertype = (payload[6] << 8) | payload[7];
  1306. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  1307. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  1308. compare_ether_addr(payload,
  1309. bridge_tunnel_header) == 0)) {
  1310. /* remove RFC1042 or Bridge-Tunnel
  1311. * encapsulation and replace EtherType */
  1312. skb_pull(frame, 6);
  1313. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  1314. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  1315. } else {
  1316. memcpy(skb_push(frame, sizeof(__be16)),
  1317. &len, sizeof(__be16));
  1318. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  1319. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  1320. }
  1321. if (!ieee80211_frame_allowed(rx, fc)) {
  1322. if (skb == frame) /* last frame */
  1323. return RX_DROP_UNUSABLE;
  1324. dev_kfree_skb(frame);
  1325. continue;
  1326. }
  1327. ieee80211_deliver_skb(rx);
  1328. }
  1329. return RX_QUEUED;
  1330. }
  1331. #ifdef CONFIG_MAC80211_MESH
  1332. static ieee80211_rx_result
  1333. ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
  1334. {
  1335. struct ieee80211_hdr *hdr;
  1336. struct ieee80211s_hdr *mesh_hdr;
  1337. unsigned int hdrlen;
  1338. struct sk_buff *skb = rx->skb, *fwd_skb;
  1339. hdr = (struct ieee80211_hdr *) skb->data;
  1340. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  1341. mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
  1342. if (!ieee80211_is_data(hdr->frame_control))
  1343. return RX_CONTINUE;
  1344. if (!mesh_hdr->ttl)
  1345. /* illegal frame */
  1346. return RX_DROP_MONITOR;
  1347. if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6){
  1348. struct ieee80211_sub_if_data *sdata;
  1349. struct mesh_path *mppath;
  1350. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  1351. rcu_read_lock();
  1352. mppath = mpp_path_lookup(mesh_hdr->eaddr2, sdata);
  1353. if (!mppath) {
  1354. mpp_path_add(mesh_hdr->eaddr2, hdr->addr4, sdata);
  1355. } else {
  1356. spin_lock_bh(&mppath->state_lock);
  1357. mppath->exp_time = jiffies;
  1358. if (compare_ether_addr(mppath->mpp, hdr->addr4) != 0)
  1359. memcpy(mppath->mpp, hdr->addr4, ETH_ALEN);
  1360. spin_unlock_bh(&mppath->state_lock);
  1361. }
  1362. rcu_read_unlock();
  1363. }
  1364. if (compare_ether_addr(rx->dev->dev_addr, hdr->addr3) == 0)
  1365. return RX_CONTINUE;
  1366. mesh_hdr->ttl--;
  1367. if (rx->flags & IEEE80211_RX_RA_MATCH) {
  1368. if (!mesh_hdr->ttl)
  1369. IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
  1370. dropped_frames_ttl);
  1371. else {
  1372. struct ieee80211_hdr *fwd_hdr;
  1373. fwd_skb = skb_copy(skb, GFP_ATOMIC);
  1374. if (!fwd_skb && net_ratelimit())
  1375. printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
  1376. rx->dev->name);
  1377. fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
  1378. /*
  1379. * Save TA to addr1 to send TA a path error if a
  1380. * suitable next hop is not found
  1381. */
  1382. memcpy(fwd_hdr->addr1, fwd_hdr->addr2, ETH_ALEN);
  1383. memcpy(fwd_hdr->addr2, rx->dev->dev_addr, ETH_ALEN);
  1384. fwd_skb->dev = rx->local->mdev;
  1385. fwd_skb->iif = rx->dev->ifindex;
  1386. dev_queue_xmit(fwd_skb);
  1387. }
  1388. }
  1389. if (is_multicast_ether_addr(hdr->addr3) ||
  1390. rx->dev->flags & IFF_PROMISC)
  1391. return RX_CONTINUE;
  1392. else
  1393. return RX_DROP_MONITOR;
  1394. }
  1395. #endif
  1396. static ieee80211_rx_result debug_noinline
  1397. ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
  1398. {
  1399. struct net_device *dev = rx->dev;
  1400. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  1401. __le16 fc = hdr->frame_control;
  1402. int err;
  1403. if (unlikely(!ieee80211_is_data(hdr->frame_control)))
  1404. return RX_CONTINUE;
  1405. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  1406. return RX_DROP_MONITOR;
  1407. err = ieee80211_data_to_8023(rx);
  1408. if (unlikely(err))
  1409. return RX_DROP_UNUSABLE;
  1410. if (!ieee80211_frame_allowed(rx, fc))
  1411. return RX_DROP_MONITOR;
  1412. rx->skb->dev = dev;
  1413. dev->stats.rx_packets++;
  1414. dev->stats.rx_bytes += rx->skb->len;
  1415. ieee80211_deliver_skb(rx);
  1416. return RX_QUEUED;
  1417. }
  1418. static ieee80211_rx_result debug_noinline
  1419. ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
  1420. {
  1421. struct ieee80211_local *local = rx->local;
  1422. struct ieee80211_hw *hw = &local->hw;
  1423. struct sk_buff *skb = rx->skb;
  1424. struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
  1425. struct tid_ampdu_rx *tid_agg_rx;
  1426. u16 start_seq_num;
  1427. u16 tid;
  1428. if (likely(!ieee80211_is_ctl(bar->frame_control)))
  1429. return RX_CONTINUE;
  1430. if (ieee80211_is_back_req(bar->frame_control)) {
  1431. if (!rx->sta)
  1432. return RX_CONTINUE;
  1433. tid = le16_to_cpu(bar->control) >> 12;
  1434. if (rx->sta->ampdu_mlme.tid_state_rx[tid]
  1435. != HT_AGG_STATE_OPERATIONAL)
  1436. return RX_CONTINUE;
  1437. tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
  1438. start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
  1439. /* reset session timer */
  1440. if (tid_agg_rx->timeout)
  1441. mod_timer(&tid_agg_rx->session_timer,
  1442. TU_TO_EXP_TIME(tid_agg_rx->timeout));
  1443. /* manage reordering buffer according to requested */
  1444. /* sequence number */
  1445. rcu_read_lock();
  1446. ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL, NULL,
  1447. start_seq_num, 1);
  1448. rcu_read_unlock();
  1449. return RX_DROP_UNUSABLE;
  1450. }
  1451. return RX_CONTINUE;
  1452. }
  1453. static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
  1454. struct ieee80211_mgmt *mgmt,
  1455. size_t len)
  1456. {
  1457. struct ieee80211_local *local = sdata->local;
  1458. struct sk_buff *skb;
  1459. struct ieee80211_mgmt *resp;
  1460. if (compare_ether_addr(mgmt->da, sdata->dev->dev_addr) != 0) {
  1461. /* Not to own unicast address */
  1462. return;
  1463. }
  1464. if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
  1465. compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
  1466. /* Not from the current AP. */
  1467. return;
  1468. }
  1469. if (sdata->u.mgd.state == IEEE80211_STA_MLME_ASSOCIATE) {
  1470. /* Association in progress; ignore SA Query */
  1471. return;
  1472. }
  1473. if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
  1474. /* Too short SA Query request frame */
  1475. return;
  1476. }
  1477. skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
  1478. if (skb == NULL)
  1479. return;
  1480. skb_reserve(skb, local->hw.extra_tx_headroom);
  1481. resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1482. memset(resp, 0, 24);
  1483. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  1484. memcpy(resp->sa, sdata->dev->dev_addr, ETH_ALEN);
  1485. memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
  1486. resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
  1487. IEEE80211_STYPE_ACTION);
  1488. skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
  1489. resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
  1490. resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
  1491. memcpy(resp->u.action.u.sa_query.trans_id,
  1492. mgmt->u.action.u.sa_query.trans_id,
  1493. WLAN_SA_QUERY_TR_ID_LEN);
  1494. ieee80211_tx_skb(sdata, skb, 1);
  1495. }
  1496. static ieee80211_rx_result debug_noinline
  1497. ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
  1498. {
  1499. struct ieee80211_local *local = rx->local;
  1500. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  1501. struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
  1502. struct ieee80211_bss *bss;
  1503. int len = rx->skb->len;
  1504. if (!ieee80211_is_action(mgmt->frame_control))
  1505. return RX_CONTINUE;
  1506. if (!rx->sta)
  1507. return RX_DROP_MONITOR;
  1508. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  1509. return RX_DROP_MONITOR;
  1510. if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
  1511. return RX_DROP_MONITOR;
  1512. /* all categories we currently handle have action_code */
  1513. if (len < IEEE80211_MIN_ACTION_SIZE + 1)
  1514. return RX_DROP_MONITOR;
  1515. switch (mgmt->u.action.category) {
  1516. case WLAN_CATEGORY_BACK:
  1517. /*
  1518. * The aggregation code is not prepared to handle
  1519. * anything but STA/AP due to the BSSID handling;
  1520. * IBSS could work in the code but isn't supported
  1521. * by drivers or the standard.
  1522. */
  1523. if (sdata->vif.type != NL80211_IFTYPE_STATION &&
  1524. sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
  1525. sdata->vif.type != NL80211_IFTYPE_AP)
  1526. return RX_DROP_MONITOR;
  1527. switch (mgmt->u.action.u.addba_req.action_code) {
  1528. case WLAN_ACTION_ADDBA_REQ:
  1529. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1530. sizeof(mgmt->u.action.u.addba_req)))
  1531. return RX_DROP_MONITOR;
  1532. ieee80211_process_addba_request(local, rx->sta, mgmt, len);
  1533. break;
  1534. case WLAN_ACTION_ADDBA_RESP:
  1535. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1536. sizeof(mgmt->u.action.u.addba_resp)))
  1537. return RX_DROP_MONITOR;
  1538. ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
  1539. break;
  1540. case WLAN_ACTION_DELBA:
  1541. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1542. sizeof(mgmt->u.action.u.delba)))
  1543. return RX_DROP_MONITOR;
  1544. ieee80211_process_delba(sdata, rx->sta, mgmt, len);
  1545. break;
  1546. }
  1547. break;
  1548. case WLAN_CATEGORY_SPECTRUM_MGMT:
  1549. if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
  1550. return RX_DROP_MONITOR;
  1551. if (sdata->vif.type != NL80211_IFTYPE_STATION)
  1552. return RX_DROP_MONITOR;
  1553. switch (mgmt->u.action.u.measurement.action_code) {
  1554. case WLAN_ACTION_SPCT_MSR_REQ:
  1555. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1556. sizeof(mgmt->u.action.u.measurement)))
  1557. return RX_DROP_MONITOR;
  1558. ieee80211_process_measurement_req(sdata, mgmt, len);
  1559. break;
  1560. case WLAN_ACTION_SPCT_CHL_SWITCH:
  1561. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1562. sizeof(mgmt->u.action.u.chan_switch)))
  1563. return RX_DROP_MONITOR;
  1564. if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
  1565. return RX_DROP_MONITOR;
  1566. bss = ieee80211_rx_bss_get(local, sdata->u.mgd.bssid,
  1567. local->hw.conf.channel->center_freq,
  1568. sdata->u.mgd.ssid,
  1569. sdata->u.mgd.ssid_len);
  1570. if (!bss)
  1571. return RX_DROP_MONITOR;
  1572. ieee80211_process_chanswitch(sdata,
  1573. &mgmt->u.action.u.chan_switch.sw_elem, bss);
  1574. ieee80211_rx_bss_put(local, bss);
  1575. break;
  1576. }
  1577. break;
  1578. case WLAN_CATEGORY_SA_QUERY:
  1579. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1580. sizeof(mgmt->u.action.u.sa_query)))
  1581. return RX_DROP_MONITOR;
  1582. switch (mgmt->u.action.u.sa_query.action) {
  1583. case WLAN_ACTION_SA_QUERY_REQUEST:
  1584. if (sdata->vif.type != NL80211_IFTYPE_STATION)
  1585. return RX_DROP_MONITOR;
  1586. ieee80211_process_sa_query_req(sdata, mgmt, len);
  1587. break;
  1588. case WLAN_ACTION_SA_QUERY_RESPONSE:
  1589. /*
  1590. * SA Query response is currently only used in AP mode
  1591. * and it is processed in user space.
  1592. */
  1593. return RX_CONTINUE;
  1594. }
  1595. break;
  1596. default:
  1597. return RX_CONTINUE;
  1598. }
  1599. rx->sta->rx_packets++;
  1600. dev_kfree_skb(rx->skb);
  1601. return RX_QUEUED;
  1602. }
  1603. static ieee80211_rx_result debug_noinline
  1604. ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
  1605. {
  1606. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  1607. struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
  1608. if (!(rx->flags & IEEE80211_RX_RA_MATCH))
  1609. return RX_DROP_MONITOR;
  1610. if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
  1611. return RX_DROP_MONITOR;
  1612. if (ieee80211_vif_is_mesh(&sdata->vif))
  1613. return ieee80211_mesh_rx_mgmt(sdata, rx->skb, rx->status);
  1614. if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
  1615. return ieee80211_ibss_rx_mgmt(sdata, rx->skb, rx->status);
  1616. if (sdata->vif.type == NL80211_IFTYPE_STATION)
  1617. return ieee80211_sta_rx_mgmt(sdata, rx->skb, rx->status);
  1618. return RX_DROP_MONITOR;
  1619. }
  1620. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1621. struct ieee80211_hdr *hdr,
  1622. struct ieee80211_rx_data *rx)
  1623. {
  1624. int keyidx;
  1625. unsigned int hdrlen;
  1626. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  1627. if (rx->skb->len >= hdrlen + 4)
  1628. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1629. else
  1630. keyidx = -1;
  1631. if (!rx->sta) {
  1632. /*
  1633. * Some hardware seem to generate incorrect Michael MIC
  1634. * reports; ignore them to avoid triggering countermeasures.
  1635. */
  1636. goto ignore;
  1637. }
  1638. if (!ieee80211_has_protected(hdr->frame_control))
  1639. goto ignore;
  1640. if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
  1641. /*
  1642. * APs with pairwise keys should never receive Michael MIC
  1643. * errors for non-zero keyidx because these are reserved for
  1644. * group keys and only the AP is sending real multicast
  1645. * frames in the BSS.
  1646. */
  1647. goto ignore;
  1648. }
  1649. if (!ieee80211_is_data(hdr->frame_control) &&
  1650. !ieee80211_is_auth(hdr->frame_control))
  1651. goto ignore;
  1652. mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL);
  1653. ignore:
  1654. dev_kfree_skb(rx->skb);
  1655. rx->skb = NULL;
  1656. }
  1657. /* TODO: use IEEE80211_RX_FRAGMENTED */
  1658. static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
  1659. {
  1660. struct ieee80211_sub_if_data *sdata;
  1661. struct ieee80211_local *local = rx->local;
  1662. struct ieee80211_rtap_hdr {
  1663. struct ieee80211_radiotap_header hdr;
  1664. u8 flags;
  1665. u8 rate;
  1666. __le16 chan_freq;
  1667. __le16 chan_flags;
  1668. } __attribute__ ((packed)) *rthdr;
  1669. struct sk_buff *skb = rx->skb, *skb2;
  1670. struct net_device *prev_dev = NULL;
  1671. struct ieee80211_rx_status *status = rx->status;
  1672. if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
  1673. goto out_free_skb;
  1674. if (skb_headroom(skb) < sizeof(*rthdr) &&
  1675. pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
  1676. goto out_free_skb;
  1677. rthdr = (void *)skb_push(skb, sizeof(*rthdr));
  1678. memset(rthdr, 0, sizeof(*rthdr));
  1679. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  1680. rthdr->hdr.it_present =
  1681. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  1682. (1 << IEEE80211_RADIOTAP_RATE) |
  1683. (1 << IEEE80211_RADIOTAP_CHANNEL));
  1684. rthdr->rate = rx->rate->bitrate / 5;
  1685. rthdr->chan_freq = cpu_to_le16(status->freq);
  1686. if (status->band == IEEE80211_BAND_5GHZ)
  1687. rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
  1688. IEEE80211_CHAN_5GHZ);
  1689. else
  1690. rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
  1691. IEEE80211_CHAN_2GHZ);
  1692. skb_set_mac_header(skb, 0);
  1693. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1694. skb->pkt_type = PACKET_OTHERHOST;
  1695. skb->protocol = htons(ETH_P_802_2);
  1696. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  1697. if (!netif_running(sdata->dev))
  1698. continue;
  1699. if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
  1700. !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
  1701. continue;
  1702. if (prev_dev) {
  1703. skb2 = skb_clone(skb, GFP_ATOMIC);
  1704. if (skb2) {
  1705. skb2->dev = prev_dev;
  1706. netif_rx(skb2);
  1707. }
  1708. }
  1709. prev_dev = sdata->dev;
  1710. sdata->dev->stats.rx_packets++;
  1711. sdata->dev->stats.rx_bytes += skb->len;
  1712. }
  1713. if (prev_dev) {
  1714. skb->dev = prev_dev;
  1715. netif_rx(skb);
  1716. skb = NULL;
  1717. } else
  1718. goto out_free_skb;
  1719. rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
  1720. return;
  1721. out_free_skb:
  1722. dev_kfree_skb(skb);
  1723. }
  1724. static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
  1725. struct ieee80211_rx_data *rx,
  1726. struct sk_buff *skb)
  1727. {
  1728. ieee80211_rx_result res = RX_DROP_MONITOR;
  1729. rx->skb = skb;
  1730. rx->sdata = sdata;
  1731. rx->dev = sdata->dev;
  1732. #define CALL_RXH(rxh) \
  1733. do { \
  1734. res = rxh(rx); \
  1735. if (res != RX_CONTINUE) \
  1736. goto rxh_done; \
  1737. } while (0);
  1738. CALL_RXH(ieee80211_rx_h_passive_scan)
  1739. CALL_RXH(ieee80211_rx_h_check)
  1740. CALL_RXH(ieee80211_rx_h_decrypt)
  1741. CALL_RXH(ieee80211_rx_h_check_more_data)
  1742. CALL_RXH(ieee80211_rx_h_sta_process)
  1743. CALL_RXH(ieee80211_rx_h_defragment)
  1744. CALL_RXH(ieee80211_rx_h_ps_poll)
  1745. CALL_RXH(ieee80211_rx_h_michael_mic_verify)
  1746. /* must be after MMIC verify so header is counted in MPDU mic */
  1747. CALL_RXH(ieee80211_rx_h_remove_qos_control)
  1748. CALL_RXH(ieee80211_rx_h_amsdu)
  1749. #ifdef CONFIG_MAC80211_MESH
  1750. if (ieee80211_vif_is_mesh(&sdata->vif))
  1751. CALL_RXH(ieee80211_rx_h_mesh_fwding);
  1752. #endif
  1753. CALL_RXH(ieee80211_rx_h_data)
  1754. CALL_RXH(ieee80211_rx_h_ctrl)
  1755. CALL_RXH(ieee80211_rx_h_action)
  1756. CALL_RXH(ieee80211_rx_h_mgmt)
  1757. #undef CALL_RXH
  1758. rxh_done:
  1759. switch (res) {
  1760. case RX_DROP_MONITOR:
  1761. I802_DEBUG_INC(sdata->local->rx_handlers_drop);
  1762. if (rx->sta)
  1763. rx->sta->rx_dropped++;
  1764. /* fall through */
  1765. case RX_CONTINUE:
  1766. ieee80211_rx_cooked_monitor(rx);
  1767. break;
  1768. case RX_DROP_UNUSABLE:
  1769. I802_DEBUG_INC(sdata->local->rx_handlers_drop);
  1770. if (rx->sta)
  1771. rx->sta->rx_dropped++;
  1772. dev_kfree_skb(rx->skb);
  1773. break;
  1774. case RX_QUEUED:
  1775. I802_DEBUG_INC(sdata->local->rx_handlers_queued);
  1776. break;
  1777. }
  1778. }
  1779. /* main receive path */
  1780. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1781. struct ieee80211_rx_data *rx,
  1782. struct ieee80211_hdr *hdr)
  1783. {
  1784. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, sdata->vif.type);
  1785. int multicast = is_multicast_ether_addr(hdr->addr1);
  1786. switch (sdata->vif.type) {
  1787. case NL80211_IFTYPE_STATION:
  1788. if (!bssid)
  1789. return 0;
  1790. if (!ieee80211_bssid_match(bssid, sdata->u.mgd.bssid)) {
  1791. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1792. return 0;
  1793. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1794. } else if (!multicast &&
  1795. compare_ether_addr(sdata->dev->dev_addr,
  1796. hdr->addr1) != 0) {
  1797. if (!(sdata->dev->flags & IFF_PROMISC))
  1798. return 0;
  1799. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1800. }
  1801. break;
  1802. case NL80211_IFTYPE_ADHOC:
  1803. if (!bssid)
  1804. return 0;
  1805. if (ieee80211_is_beacon(hdr->frame_control)) {
  1806. return 1;
  1807. }
  1808. else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
  1809. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1810. return 0;
  1811. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1812. } else if (!multicast &&
  1813. compare_ether_addr(sdata->dev->dev_addr,
  1814. hdr->addr1) != 0) {
  1815. if (!(sdata->dev->flags & IFF_PROMISC))
  1816. return 0;
  1817. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1818. } else if (!rx->sta) {
  1819. int rate_idx;
  1820. if (rx->status->flag & RX_FLAG_HT)
  1821. rate_idx = 0; /* TODO: HT rates */
  1822. else
  1823. rate_idx = rx->status->rate_idx;
  1824. rx->sta = ieee80211_ibss_add_sta(sdata, bssid, hdr->addr2,
  1825. BIT(rate_idx));
  1826. }
  1827. break;
  1828. case NL80211_IFTYPE_MESH_POINT:
  1829. if (!multicast &&
  1830. compare_ether_addr(sdata->dev->dev_addr,
  1831. hdr->addr1) != 0) {
  1832. if (!(sdata->dev->flags & IFF_PROMISC))
  1833. return 0;
  1834. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1835. }
  1836. break;
  1837. case NL80211_IFTYPE_AP_VLAN:
  1838. case NL80211_IFTYPE_AP:
  1839. if (!bssid) {
  1840. if (compare_ether_addr(sdata->dev->dev_addr,
  1841. hdr->addr1))
  1842. return 0;
  1843. } else if (!ieee80211_bssid_match(bssid,
  1844. sdata->dev->dev_addr)) {
  1845. if (!(rx->flags & IEEE80211_RX_IN_SCAN))
  1846. return 0;
  1847. rx->flags &= ~IEEE80211_RX_RA_MATCH;
  1848. }
  1849. break;
  1850. case NL80211_IFTYPE_WDS:
  1851. if (bssid || !ieee80211_is_data(hdr->frame_control))
  1852. return 0;
  1853. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1854. return 0;
  1855. break;
  1856. case NL80211_IFTYPE_MONITOR:
  1857. /* take everything */
  1858. break;
  1859. case NL80211_IFTYPE_UNSPECIFIED:
  1860. case __NL80211_IFTYPE_AFTER_LAST:
  1861. /* should never get here */
  1862. WARN_ON(1);
  1863. break;
  1864. }
  1865. return 1;
  1866. }
  1867. /*
  1868. * This is the actual Rx frames handler. as it blongs to Rx path it must
  1869. * be called with rcu_read_lock protection.
  1870. */
  1871. static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
  1872. struct sk_buff *skb,
  1873. struct ieee80211_rx_status *status,
  1874. struct ieee80211_rate *rate)
  1875. {
  1876. struct ieee80211_local *local = hw_to_local(hw);
  1877. struct ieee80211_sub_if_data *sdata;
  1878. struct ieee80211_hdr *hdr;
  1879. struct ieee80211_rx_data rx;
  1880. int prepares;
  1881. struct ieee80211_sub_if_data *prev = NULL;
  1882. struct sk_buff *skb_new;
  1883. hdr = (struct ieee80211_hdr *)skb->data;
  1884. memset(&rx, 0, sizeof(rx));
  1885. rx.skb = skb;
  1886. rx.local = local;
  1887. rx.status = status;
  1888. rx.rate = rate;
  1889. if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control))
  1890. local->dot11ReceivedFragmentCount++;
  1891. rx.sta = sta_info_get(local, hdr->addr2);
  1892. if (rx.sta) {
  1893. rx.sdata = rx.sta->sdata;
  1894. rx.dev = rx.sta->sdata->dev;
  1895. }
  1896. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1897. ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
  1898. return;
  1899. }
  1900. if (unlikely(local->sw_scanning || local->hw_scanning))
  1901. rx.flags |= IEEE80211_RX_IN_SCAN;
  1902. ieee80211_parse_qos(&rx);
  1903. ieee80211_verify_alignment(&rx);
  1904. skb = rx.skb;
  1905. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  1906. if (!netif_running(sdata->dev))
  1907. continue;
  1908. if (sdata->vif.type == NL80211_IFTYPE_MONITOR)
  1909. continue;
  1910. rx.flags |= IEEE80211_RX_RA_MATCH;
  1911. prepares = prepare_for_handlers(sdata, &rx, hdr);
  1912. if (!prepares)
  1913. continue;
  1914. /*
  1915. * frame is destined for this interface, but if it's not
  1916. * also for the previous one we handle that after the
  1917. * loop to avoid copying the SKB once too much
  1918. */
  1919. if (!prev) {
  1920. prev = sdata;
  1921. continue;
  1922. }
  1923. /*
  1924. * frame was destined for the previous interface
  1925. * so invoke RX handlers for it
  1926. */
  1927. skb_new = skb_copy(skb, GFP_ATOMIC);
  1928. if (!skb_new) {
  1929. if (net_ratelimit())
  1930. printk(KERN_DEBUG "%s: failed to copy "
  1931. "multicast frame for %s\n",
  1932. wiphy_name(local->hw.wiphy),
  1933. prev->dev->name);
  1934. continue;
  1935. }
  1936. ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
  1937. prev = sdata;
  1938. }
  1939. if (prev)
  1940. ieee80211_invoke_rx_handlers(prev, &rx, skb);
  1941. else
  1942. dev_kfree_skb(skb);
  1943. }
  1944. #define SEQ_MODULO 0x1000
  1945. #define SEQ_MASK 0xfff
  1946. static inline int seq_less(u16 sq1, u16 sq2)
  1947. {
  1948. return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
  1949. }
  1950. static inline u16 seq_inc(u16 sq)
  1951. {
  1952. return (sq + 1) & SEQ_MASK;
  1953. }
  1954. static inline u16 seq_sub(u16 sq1, u16 sq2)
  1955. {
  1956. return (sq1 - sq2) & SEQ_MASK;
  1957. }
  1958. static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
  1959. struct tid_ampdu_rx *tid_agg_rx,
  1960. int index)
  1961. {
  1962. struct ieee80211_supported_band *sband;
  1963. struct ieee80211_rate *rate;
  1964. struct ieee80211_rx_status status;
  1965. if (!tid_agg_rx->reorder_buf[index])
  1966. goto no_frame;
  1967. /* release the reordered frames to stack */
  1968. memcpy(&status, tid_agg_rx->reorder_buf[index]->cb, sizeof(status));
  1969. sband = hw->wiphy->bands[status.band];
  1970. if (status.flag & RX_FLAG_HT)
  1971. rate = sband->bitrates; /* TODO: HT rates */
  1972. else
  1973. rate = &sband->bitrates[status.rate_idx];
  1974. __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
  1975. &status, rate);
  1976. tid_agg_rx->stored_mpdu_num--;
  1977. tid_agg_rx->reorder_buf[index] = NULL;
  1978. no_frame:
  1979. tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
  1980. }
  1981. /*
  1982. * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
  1983. * the skb was added to the buffer longer than this time ago, the earlier
  1984. * frames that have not yet been received are assumed to be lost and the skb
  1985. * can be released for processing. This may also release other skb's from the
  1986. * reorder buffer if there are no additional gaps between the frames.
  1987. */
  1988. #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
  1989. /*
  1990. * As it function blongs to Rx path it must be called with
  1991. * the proper rcu_read_lock protection for its flow.
  1992. */
  1993. static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
  1994. struct tid_ampdu_rx *tid_agg_rx,
  1995. struct sk_buff *skb,
  1996. struct ieee80211_rx_status *rxstatus,
  1997. u16 mpdu_seq_num,
  1998. int bar_req)
  1999. {
  2000. u16 head_seq_num, buf_size;
  2001. int index;
  2002. buf_size = tid_agg_rx->buf_size;
  2003. head_seq_num = tid_agg_rx->head_seq_num;
  2004. /* frame with out of date sequence number */
  2005. if (seq_less(mpdu_seq_num, head_seq_num)) {
  2006. dev_kfree_skb(skb);
  2007. return 1;
  2008. }
  2009. /* if frame sequence number exceeds our buffering window size or
  2010. * block Ack Request arrived - release stored frames */
  2011. if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
  2012. /* new head to the ordering buffer */
  2013. if (bar_req)
  2014. head_seq_num = mpdu_seq_num;
  2015. else
  2016. head_seq_num =
  2017. seq_inc(seq_sub(mpdu_seq_num, buf_size));
  2018. /* release stored frames up to new head to stack */
  2019. while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
  2020. index = seq_sub(tid_agg_rx->head_seq_num,
  2021. tid_agg_rx->ssn)
  2022. % tid_agg_rx->buf_size;
  2023. ieee80211_release_reorder_frame(hw, tid_agg_rx,
  2024. index);
  2025. }
  2026. if (bar_req)
  2027. return 1;
  2028. }
  2029. /* now the new frame is always in the range of the reordering */
  2030. /* buffer window */
  2031. index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
  2032. % tid_agg_rx->buf_size;
  2033. /* check if we already stored this frame */
  2034. if (tid_agg_rx->reorder_buf[index]) {
  2035. dev_kfree_skb(skb);
  2036. return 1;
  2037. }
  2038. /* if arrived mpdu is in the right order and nothing else stored */
  2039. /* release it immediately */
  2040. if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
  2041. tid_agg_rx->stored_mpdu_num == 0) {
  2042. tid_agg_rx->head_seq_num =
  2043. seq_inc(tid_agg_rx->head_seq_num);
  2044. return 0;
  2045. }
  2046. /* put the frame in the reordering buffer */
  2047. tid_agg_rx->reorder_buf[index] = skb;
  2048. tid_agg_rx->reorder_time[index] = jiffies;
  2049. memcpy(tid_agg_rx->reorder_buf[index]->cb, rxstatus,
  2050. sizeof(*rxstatus));
  2051. tid_agg_rx->stored_mpdu_num++;
  2052. /* release the buffer until next missing frame */
  2053. index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
  2054. % tid_agg_rx->buf_size;
  2055. if (!tid_agg_rx->reorder_buf[index] &&
  2056. tid_agg_rx->stored_mpdu_num > 1) {
  2057. /*
  2058. * No buffers ready to be released, but check whether any
  2059. * frames in the reorder buffer have timed out.
  2060. */
  2061. int j;
  2062. int skipped = 1;
  2063. for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
  2064. j = (j + 1) % tid_agg_rx->buf_size) {
  2065. if (tid_agg_rx->reorder_buf[j] == NULL) {
  2066. skipped++;
  2067. continue;
  2068. }
  2069. if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
  2070. HZ / 10))
  2071. break;
  2072. #ifdef CONFIG_MAC80211_HT_DEBUG
  2073. if (net_ratelimit())
  2074. printk(KERN_DEBUG "%s: release an RX reorder "
  2075. "frame due to timeout on earlier "
  2076. "frames\n",
  2077. wiphy_name(hw->wiphy));
  2078. #endif
  2079. ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
  2080. /*
  2081. * Increment the head seq# also for the skipped slots.
  2082. */
  2083. tid_agg_rx->head_seq_num =
  2084. (tid_agg_rx->head_seq_num + skipped) &
  2085. SEQ_MASK;
  2086. skipped = 0;
  2087. }
  2088. } else while (tid_agg_rx->reorder_buf[index]) {
  2089. ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
  2090. index = seq_sub(tid_agg_rx->head_seq_num,
  2091. tid_agg_rx->ssn) % tid_agg_rx->buf_size;
  2092. }
  2093. return 1;
  2094. }
  2095. static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
  2096. struct sk_buff *skb,
  2097. struct ieee80211_rx_status *status)
  2098. {
  2099. struct ieee80211_hw *hw = &local->hw;
  2100. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  2101. struct sta_info *sta;
  2102. struct tid_ampdu_rx *tid_agg_rx;
  2103. u16 sc;
  2104. u16 mpdu_seq_num;
  2105. u8 ret = 0;
  2106. int tid;
  2107. sta = sta_info_get(local, hdr->addr2);
  2108. if (!sta)
  2109. return ret;
  2110. /* filter the QoS data rx stream according to
  2111. * STA/TID and check if this STA/TID is on aggregation */
  2112. if (!ieee80211_is_data_qos(hdr->frame_control))
  2113. goto end_reorder;
  2114. tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
  2115. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
  2116. goto end_reorder;
  2117. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  2118. /* qos null data frames are excluded */
  2119. if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
  2120. goto end_reorder;
  2121. /* new un-ordered ampdu frame - process it */
  2122. /* reset session timer */
  2123. if (tid_agg_rx->timeout)
  2124. mod_timer(&tid_agg_rx->session_timer,
  2125. TU_TO_EXP_TIME(tid_agg_rx->timeout));
  2126. /* if this mpdu is fragmented - terminate rx aggregation session */
  2127. sc = le16_to_cpu(hdr->seq_ctrl);
  2128. if (sc & IEEE80211_SCTL_FRAG) {
  2129. ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr,
  2130. tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
  2131. ret = 1;
  2132. goto end_reorder;
  2133. }
  2134. /* according to mpdu sequence number deal with reordering buffer */
  2135. mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
  2136. ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, status,
  2137. mpdu_seq_num, 0);
  2138. end_reorder:
  2139. return ret;
  2140. }
  2141. /*
  2142. * This is the receive path handler. It is called by a low level driver when an
  2143. * 802.11 MPDU is received from the hardware.
  2144. */
  2145. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  2146. struct ieee80211_rx_status *status)
  2147. {
  2148. struct ieee80211_local *local = hw_to_local(hw);
  2149. struct ieee80211_rate *rate = NULL;
  2150. struct ieee80211_supported_band *sband;
  2151. if (status->band < 0 ||
  2152. status->band >= IEEE80211_NUM_BANDS) {
  2153. WARN_ON(1);
  2154. return;
  2155. }
  2156. sband = local->hw.wiphy->bands[status->band];
  2157. if (!sband) {
  2158. WARN_ON(1);
  2159. return;
  2160. }
  2161. if (status->flag & RX_FLAG_HT) {
  2162. /* rate_idx is MCS index */
  2163. if (WARN_ON(status->rate_idx < 0 ||
  2164. status->rate_idx >= 76))
  2165. return;
  2166. /* HT rates are not in the table - use the highest legacy rate
  2167. * for now since other parts of mac80211 may not yet be fully
  2168. * MCS aware. */
  2169. rate = &sband->bitrates[sband->n_bitrates - 1];
  2170. } else {
  2171. if (WARN_ON(status->rate_idx < 0 ||
  2172. status->rate_idx >= sband->n_bitrates))
  2173. return;
  2174. rate = &sband->bitrates[status->rate_idx];
  2175. }
  2176. /*
  2177. * key references and virtual interfaces are protected using RCU
  2178. * and this requires that we are in a read-side RCU section during
  2179. * receive processing
  2180. */
  2181. rcu_read_lock();
  2182. /*
  2183. * Frames with failed FCS/PLCP checksum are not returned,
  2184. * all other frames are returned without radiotap header
  2185. * if it was previously present.
  2186. * Also, frames with less than 16 bytes are dropped.
  2187. */
  2188. skb = ieee80211_rx_monitor(local, skb, status, rate);
  2189. if (!skb) {
  2190. rcu_read_unlock();
  2191. return;
  2192. }
  2193. /*
  2194. * In theory, the block ack reordering should happen after duplicate
  2195. * removal (ieee80211_rx_h_check(), which is an RX handler). As such,
  2196. * the call to ieee80211_rx_reorder_ampdu() should really be moved to
  2197. * happen as a new RX handler between ieee80211_rx_h_check and
  2198. * ieee80211_rx_h_decrypt. This cleanup may eventually happen, but for
  2199. * the time being, the call can be here since RX reorder buf processing
  2200. * will implicitly skip duplicates. We could, in theory at least,
  2201. * process frames that ieee80211_rx_h_passive_scan would drop (e.g.,
  2202. * frames from other than operational channel), but that should not
  2203. * happen in normal networks.
  2204. */
  2205. if (!ieee80211_rx_reorder_ampdu(local, skb, status))
  2206. __ieee80211_rx_handle_packet(hw, skb, status, rate);
  2207. rcu_read_unlock();
  2208. }
  2209. EXPORT_SYMBOL(__ieee80211_rx);
  2210. /* This is a version of the rx handler that can be called from hard irq
  2211. * context. Post the skb on the queue and schedule the tasklet */
  2212. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  2213. struct ieee80211_rx_status *status)
  2214. {
  2215. struct ieee80211_local *local = hw_to_local(hw);
  2216. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  2217. skb->dev = local->mdev;
  2218. /* copy status into skb->cb for use by tasklet */
  2219. memcpy(skb->cb, status, sizeof(*status));
  2220. skb->pkt_type = IEEE80211_RX_MSG;
  2221. skb_queue_tail(&local->skb_queue, skb);
  2222. tasklet_schedule(&local->tasklet);
  2223. }
  2224. EXPORT_SYMBOL(ieee80211_rx_irqsafe);