db8500-prcmu.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/mfd/abx500/ab8500.h>
  32. #include <linux/regulator/db8500-prcmu.h>
  33. #include <linux/regulator/machine.h>
  34. #include <asm/hardware/gic.h>
  35. #include <mach/hardware.h>
  36. #include <mach/irqs.h>
  37. #include <mach/db8500-regs.h>
  38. #include <mach/id.h>
  39. #include "dbx500-prcmu-regs.h"
  40. /* Offset for the firmware version within the TCPM */
  41. #define PRCMU_FW_VERSION_OFFSET 0xA4
  42. /* Index of different voltages to be used when accessing AVSData */
  43. #define PRCM_AVS_BASE 0x2FC
  44. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  45. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  46. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  47. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  48. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  49. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  50. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  51. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  52. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  53. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  54. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  55. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  56. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  57. #define PRCM_AVS_VOLTAGE 0
  58. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  59. #define PRCM_AVS_ISSLOWSTARTUP 6
  60. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  61. #define PRCM_AVS_ISMODEENABLE 7
  62. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  63. #define PRCM_BOOT_STATUS 0xFFF
  64. #define PRCM_ROMCODE_A2P 0xFFE
  65. #define PRCM_ROMCODE_P2A 0xFFD
  66. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  67. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  68. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  69. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  70. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  71. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  72. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  73. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  74. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  75. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  76. /* Req Mailboxes */
  77. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  78. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  79. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  80. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  81. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  82. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  83. /* Ack Mailboxes */
  84. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  85. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  86. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  87. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  88. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  89. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  90. /* Mailbox 0 headers */
  91. #define MB0H_POWER_STATE_TRANS 0
  92. #define MB0H_CONFIG_WAKEUPS_EXE 1
  93. #define MB0H_READ_WAKEUP_ACK 3
  94. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  95. #define MB0H_WAKEUP_EXE 2
  96. #define MB0H_WAKEUP_SLEEP 5
  97. /* Mailbox 0 REQs */
  98. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  99. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  100. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  101. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  102. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  103. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  104. /* Mailbox 0 ACKs */
  105. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  106. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  107. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  108. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  109. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  110. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  111. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  112. /* Mailbox 1 headers */
  113. #define MB1H_ARM_APE_OPP 0x0
  114. #define MB1H_RESET_MODEM 0x2
  115. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  116. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  117. #define MB1H_RELEASE_USB_WAKEUP 0x5
  118. #define MB1H_PLL_ON_OFF 0x6
  119. /* Mailbox 1 Requests */
  120. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  121. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  122. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  123. #define PLL_SOC0_OFF 0x1
  124. #define PLL_SOC0_ON 0x2
  125. #define PLL_SOC1_OFF 0x4
  126. #define PLL_SOC1_ON 0x8
  127. /* Mailbox 1 ACKs */
  128. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  129. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  130. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  131. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  132. /* Mailbox 2 headers */
  133. #define MB2H_DPS 0x0
  134. #define MB2H_AUTO_PWR 0x1
  135. /* Mailbox 2 REQs */
  136. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  137. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  138. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  139. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  140. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  141. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  142. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  143. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  144. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  145. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  146. /* Mailbox 2 ACKs */
  147. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  148. #define HWACC_PWR_ST_OK 0xFE
  149. /* Mailbox 3 headers */
  150. #define MB3H_ANC 0x0
  151. #define MB3H_SIDETONE 0x1
  152. #define MB3H_SYSCLK 0xE
  153. /* Mailbox 3 Requests */
  154. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  155. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  156. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  157. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  158. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  159. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  160. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  161. /* Mailbox 4 headers */
  162. #define MB4H_DDR_INIT 0x0
  163. #define MB4H_MEM_ST 0x1
  164. #define MB4H_HOTDOG 0x12
  165. #define MB4H_HOTMON 0x13
  166. #define MB4H_HOT_PERIOD 0x14
  167. #define MB4H_A9WDOG_CONF 0x16
  168. #define MB4H_A9WDOG_EN 0x17
  169. #define MB4H_A9WDOG_DIS 0x18
  170. #define MB4H_A9WDOG_LOAD 0x19
  171. #define MB4H_A9WDOG_KICK 0x20
  172. /* Mailbox 4 Requests */
  173. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  175. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  176. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  177. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  178. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  179. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  180. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  181. #define HOTMON_CONFIG_LOW BIT(0)
  182. #define HOTMON_CONFIG_HIGH BIT(1)
  183. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  184. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  185. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  186. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  187. #define A9WDOG_AUTO_OFF_EN BIT(7)
  188. #define A9WDOG_AUTO_OFF_DIS 0
  189. #define A9WDOG_ID_MASK 0xf
  190. /* Mailbox 5 Requests */
  191. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  192. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  193. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  194. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  195. #define PRCMU_I2C_WRITE(slave) \
  196. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  197. #define PRCMU_I2C_READ(slave) \
  198. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  199. #define PRCMU_I2C_STOP_EN BIT(3)
  200. /* Mailbox 5 ACKs */
  201. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  202. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  203. #define I2C_WR_OK 0x1
  204. #define I2C_RD_OK 0x2
  205. #define NUM_MB 8
  206. #define MBOX_BIT BIT
  207. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  208. /*
  209. * Wakeups/IRQs
  210. */
  211. #define WAKEUP_BIT_RTC BIT(0)
  212. #define WAKEUP_BIT_RTT0 BIT(1)
  213. #define WAKEUP_BIT_RTT1 BIT(2)
  214. #define WAKEUP_BIT_HSI0 BIT(3)
  215. #define WAKEUP_BIT_HSI1 BIT(4)
  216. #define WAKEUP_BIT_CA_WAKE BIT(5)
  217. #define WAKEUP_BIT_USB BIT(6)
  218. #define WAKEUP_BIT_ABB BIT(7)
  219. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  220. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  221. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  222. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  223. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  224. #define WAKEUP_BIT_ANC_OK BIT(13)
  225. #define WAKEUP_BIT_SW_ERROR BIT(14)
  226. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  227. #define WAKEUP_BIT_ARM BIT(17)
  228. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  229. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  230. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  231. #define WAKEUP_BIT_GPIO0 BIT(23)
  232. #define WAKEUP_BIT_GPIO1 BIT(24)
  233. #define WAKEUP_BIT_GPIO2 BIT(25)
  234. #define WAKEUP_BIT_GPIO3 BIT(26)
  235. #define WAKEUP_BIT_GPIO4 BIT(27)
  236. #define WAKEUP_BIT_GPIO5 BIT(28)
  237. #define WAKEUP_BIT_GPIO6 BIT(29)
  238. #define WAKEUP_BIT_GPIO7 BIT(30)
  239. #define WAKEUP_BIT_GPIO8 BIT(31)
  240. static struct {
  241. bool valid;
  242. struct prcmu_fw_version version;
  243. } fw_info;
  244. static struct irq_domain *db8500_irq_domain;
  245. /*
  246. * This vector maps irq numbers to the bits in the bit field used in
  247. * communication with the PRCMU firmware.
  248. *
  249. * The reason for having this is to keep the irq numbers contiguous even though
  250. * the bits in the bit field are not. (The bits also have a tendency to move
  251. * around, to further complicate matters.)
  252. */
  253. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  254. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  255. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  256. IRQ_ENTRY(RTC),
  257. IRQ_ENTRY(RTT0),
  258. IRQ_ENTRY(RTT1),
  259. IRQ_ENTRY(HSI0),
  260. IRQ_ENTRY(HSI1),
  261. IRQ_ENTRY(CA_WAKE),
  262. IRQ_ENTRY(USB),
  263. IRQ_ENTRY(ABB),
  264. IRQ_ENTRY(ABB_FIFO),
  265. IRQ_ENTRY(CA_SLEEP),
  266. IRQ_ENTRY(ARM),
  267. IRQ_ENTRY(HOTMON_LOW),
  268. IRQ_ENTRY(HOTMON_HIGH),
  269. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  270. IRQ_ENTRY(GPIO0),
  271. IRQ_ENTRY(GPIO1),
  272. IRQ_ENTRY(GPIO2),
  273. IRQ_ENTRY(GPIO3),
  274. IRQ_ENTRY(GPIO4),
  275. IRQ_ENTRY(GPIO5),
  276. IRQ_ENTRY(GPIO6),
  277. IRQ_ENTRY(GPIO7),
  278. IRQ_ENTRY(GPIO8)
  279. };
  280. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  281. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  282. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  283. WAKEUP_ENTRY(RTC),
  284. WAKEUP_ENTRY(RTT0),
  285. WAKEUP_ENTRY(RTT1),
  286. WAKEUP_ENTRY(HSI0),
  287. WAKEUP_ENTRY(HSI1),
  288. WAKEUP_ENTRY(USB),
  289. WAKEUP_ENTRY(ABB),
  290. WAKEUP_ENTRY(ABB_FIFO),
  291. WAKEUP_ENTRY(ARM)
  292. };
  293. /*
  294. * mb0_transfer - state needed for mailbox 0 communication.
  295. * @lock: The transaction lock.
  296. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  297. * the request data.
  298. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  299. * @req: Request data that need to persist between requests.
  300. */
  301. static struct {
  302. spinlock_t lock;
  303. spinlock_t dbb_irqs_lock;
  304. struct work_struct mask_work;
  305. struct mutex ac_wake_lock;
  306. struct completion ac_wake_work;
  307. struct {
  308. u32 dbb_irqs;
  309. u32 dbb_wakeups;
  310. u32 abb_events;
  311. } req;
  312. } mb0_transfer;
  313. /*
  314. * mb1_transfer - state needed for mailbox 1 communication.
  315. * @lock: The transaction lock.
  316. * @work: The transaction completion structure.
  317. * @ape_opp: The current APE OPP.
  318. * @ack: Reply ("acknowledge") data.
  319. */
  320. static struct {
  321. struct mutex lock;
  322. struct completion work;
  323. u8 ape_opp;
  324. struct {
  325. u8 header;
  326. u8 arm_opp;
  327. u8 ape_opp;
  328. u8 ape_voltage_status;
  329. } ack;
  330. } mb1_transfer;
  331. /*
  332. * mb2_transfer - state needed for mailbox 2 communication.
  333. * @lock: The transaction lock.
  334. * @work: The transaction completion structure.
  335. * @auto_pm_lock: The autonomous power management configuration lock.
  336. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  337. * @req: Request data that need to persist between requests.
  338. * @ack: Reply ("acknowledge") data.
  339. */
  340. static struct {
  341. struct mutex lock;
  342. struct completion work;
  343. spinlock_t auto_pm_lock;
  344. bool auto_pm_enabled;
  345. struct {
  346. u8 status;
  347. } ack;
  348. } mb2_transfer;
  349. /*
  350. * mb3_transfer - state needed for mailbox 3 communication.
  351. * @lock: The request lock.
  352. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  353. * @sysclk_work: Work structure used for sysclk requests.
  354. */
  355. static struct {
  356. spinlock_t lock;
  357. struct mutex sysclk_lock;
  358. struct completion sysclk_work;
  359. } mb3_transfer;
  360. /*
  361. * mb4_transfer - state needed for mailbox 4 communication.
  362. * @lock: The transaction lock.
  363. * @work: The transaction completion structure.
  364. */
  365. static struct {
  366. struct mutex lock;
  367. struct completion work;
  368. } mb4_transfer;
  369. /*
  370. * mb5_transfer - state needed for mailbox 5 communication.
  371. * @lock: The transaction lock.
  372. * @work: The transaction completion structure.
  373. * @ack: Reply ("acknowledge") data.
  374. */
  375. static struct {
  376. struct mutex lock;
  377. struct completion work;
  378. struct {
  379. u8 status;
  380. u8 value;
  381. } ack;
  382. } mb5_transfer;
  383. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  384. /* Functions definition */
  385. static void compute_armss_rate(void);
  386. /* Spinlocks */
  387. static DEFINE_SPINLOCK(prcmu_lock);
  388. static DEFINE_SPINLOCK(clkout_lock);
  389. /* Global var to runtime determine TCDM base for v2 or v1 */
  390. static __iomem void *tcdm_base;
  391. struct clk_mgt {
  392. void __iomem *reg;
  393. u32 pllsw;
  394. int branch;
  395. bool clk38div;
  396. };
  397. enum {
  398. PLL_RAW,
  399. PLL_FIX,
  400. PLL_DIV
  401. };
  402. static DEFINE_SPINLOCK(clk_mgt_lock);
  403. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  404. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  405. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  406. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  407. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  410. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  411. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  413. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  419. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  420. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  423. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  424. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  427. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  429. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  430. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  431. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  432. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  433. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  434. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  435. };
  436. struct dsiclk {
  437. u32 divsel_mask;
  438. u32 divsel_shift;
  439. u32 divsel;
  440. };
  441. static struct dsiclk dsiclk[2] = {
  442. {
  443. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  444. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  445. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  446. },
  447. {
  448. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  449. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  450. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  451. }
  452. };
  453. struct dsiescclk {
  454. u32 en;
  455. u32 div_mask;
  456. u32 div_shift;
  457. };
  458. static struct dsiescclk dsiescclk[3] = {
  459. {
  460. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  461. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  462. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  463. },
  464. {
  465. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  466. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  467. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  468. },
  469. {
  470. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  471. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  472. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  473. }
  474. };
  475. /*
  476. * Used by MCDE to setup all necessary PRCMU registers
  477. */
  478. #define PRCMU_RESET_DSIPLL 0x00004000
  479. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  480. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  481. #define PRCMU_CLK_PLL_SW_SHIFT 5
  482. #define PRCMU_CLK_38 (1 << 9)
  483. #define PRCMU_CLK_38_SRC (1 << 10)
  484. #define PRCMU_CLK_38_DIV (1 << 11)
  485. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  486. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  487. /* DPI 50000000 Hz */
  488. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  489. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  490. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  491. /* D=101, N=1, R=4, SELDIV2=0 */
  492. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  493. #define PRCMU_ENABLE_PLLDSI 0x00000001
  494. #define PRCMU_DISABLE_PLLDSI 0x00000000
  495. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  496. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  497. /* ESC clk, div0=1, div1=1, div2=3 */
  498. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  499. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  500. #define PRCMU_DSI_RESET_SW 0x00000007
  501. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  502. int db8500_prcmu_enable_dsipll(void)
  503. {
  504. int i;
  505. /* Clear DSIPLL_RESETN */
  506. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  507. /* Unclamp DSIPLL in/out */
  508. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  509. /* Set DSI PLL FREQ */
  510. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  511. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  512. /* Enable Escape clocks */
  513. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  514. /* Start DSI PLL */
  515. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  516. /* Reset DSI PLL */
  517. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  518. for (i = 0; i < 10; i++) {
  519. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  520. == PRCMU_PLLDSI_LOCKP_LOCKED)
  521. break;
  522. udelay(100);
  523. }
  524. /* Set DSIPLL_RESETN */
  525. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  526. return 0;
  527. }
  528. int db8500_prcmu_disable_dsipll(void)
  529. {
  530. /* Disable dsi pll */
  531. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  532. /* Disable escapeclock */
  533. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  534. return 0;
  535. }
  536. int db8500_prcmu_set_display_clocks(void)
  537. {
  538. unsigned long flags;
  539. spin_lock_irqsave(&clk_mgt_lock, flags);
  540. /* Grab the HW semaphore. */
  541. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  542. cpu_relax();
  543. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  544. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  545. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  546. /* Release the HW semaphore. */
  547. writel(0, PRCM_SEM);
  548. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  549. return 0;
  550. }
  551. u32 db8500_prcmu_read(unsigned int reg)
  552. {
  553. return readl(_PRCMU_BASE + reg);
  554. }
  555. void db8500_prcmu_write(unsigned int reg, u32 value)
  556. {
  557. unsigned long flags;
  558. spin_lock_irqsave(&prcmu_lock, flags);
  559. writel(value, (_PRCMU_BASE + reg));
  560. spin_unlock_irqrestore(&prcmu_lock, flags);
  561. }
  562. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  563. {
  564. u32 val;
  565. unsigned long flags;
  566. spin_lock_irqsave(&prcmu_lock, flags);
  567. val = readl(_PRCMU_BASE + reg);
  568. val = ((val & ~mask) | (value & mask));
  569. writel(val, (_PRCMU_BASE + reg));
  570. spin_unlock_irqrestore(&prcmu_lock, flags);
  571. }
  572. struct prcmu_fw_version *prcmu_get_fw_version(void)
  573. {
  574. return fw_info.valid ? &fw_info.version : NULL;
  575. }
  576. bool prcmu_has_arm_maxopp(void)
  577. {
  578. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  579. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  580. }
  581. /**
  582. * prcmu_get_boot_status - PRCMU boot status checking
  583. * Returns: the current PRCMU boot status
  584. */
  585. int prcmu_get_boot_status(void)
  586. {
  587. return readb(tcdm_base + PRCM_BOOT_STATUS);
  588. }
  589. /**
  590. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  591. * @val: Value to be set, i.e. transition requested
  592. * Returns: 0 on success, -EINVAL on invalid argument
  593. *
  594. * This function is used to run the following power state sequences -
  595. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  596. */
  597. int prcmu_set_rc_a2p(enum romcode_write val)
  598. {
  599. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  600. return -EINVAL;
  601. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  602. return 0;
  603. }
  604. /**
  605. * prcmu_get_rc_p2a - This function is used to get power state sequences
  606. * Returns: the power transition that has last happened
  607. *
  608. * This function can return the following transitions-
  609. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  610. */
  611. enum romcode_read prcmu_get_rc_p2a(void)
  612. {
  613. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  614. }
  615. /**
  616. * prcmu_get_current_mode - Return the current XP70 power mode
  617. * Returns: Returns the current AP(ARM) power mode: init,
  618. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  619. */
  620. enum ap_pwrst prcmu_get_xp70_current_state(void)
  621. {
  622. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  623. }
  624. /**
  625. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  626. * @clkout: The CLKOUT number (0 or 1).
  627. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  628. * @div: The divider to be applied.
  629. *
  630. * Configures one of the programmable clock outputs (CLKOUTs).
  631. * @div should be in the range [1,63] to request a configuration, or 0 to
  632. * inform that the configuration is no longer requested.
  633. */
  634. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  635. {
  636. static int requests[2];
  637. int r = 0;
  638. unsigned long flags;
  639. u32 val;
  640. u32 bits;
  641. u32 mask;
  642. u32 div_mask;
  643. BUG_ON(clkout > 1);
  644. BUG_ON(div > 63);
  645. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  646. if (!div && !requests[clkout])
  647. return -EINVAL;
  648. switch (clkout) {
  649. case 0:
  650. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  651. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  652. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  653. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  654. break;
  655. case 1:
  656. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  657. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  658. PRCM_CLKOCR_CLK1TYPE);
  659. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  660. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  661. break;
  662. }
  663. bits &= mask;
  664. spin_lock_irqsave(&clkout_lock, flags);
  665. val = readl(PRCM_CLKOCR);
  666. if (val & div_mask) {
  667. if (div) {
  668. if ((val & mask) != bits) {
  669. r = -EBUSY;
  670. goto unlock_and_return;
  671. }
  672. } else {
  673. if ((val & mask & ~div_mask) != bits) {
  674. r = -EINVAL;
  675. goto unlock_and_return;
  676. }
  677. }
  678. }
  679. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  680. requests[clkout] += (div ? 1 : -1);
  681. unlock_and_return:
  682. spin_unlock_irqrestore(&clkout_lock, flags);
  683. return r;
  684. }
  685. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  686. {
  687. unsigned long flags;
  688. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  689. spin_lock_irqsave(&mb0_transfer.lock, flags);
  690. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  691. cpu_relax();
  692. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  693. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  694. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  695. writeb((keep_ulp_clk ? 1 : 0),
  696. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  697. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  698. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  699. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  700. return 0;
  701. }
  702. u8 db8500_prcmu_get_power_state_result(void)
  703. {
  704. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  705. }
  706. /* This function decouple the gic from the prcmu */
  707. int db8500_prcmu_gic_decouple(void)
  708. {
  709. u32 val = readl(PRCM_A9_MASK_REQ);
  710. /* Set bit 0 register value to 1 */
  711. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  712. PRCM_A9_MASK_REQ);
  713. /* Make sure the register is updated */
  714. readl(PRCM_A9_MASK_REQ);
  715. /* Wait a few cycles for the gic mask completion */
  716. udelay(1);
  717. return 0;
  718. }
  719. /* This function recouple the gic with the prcmu */
  720. int db8500_prcmu_gic_recouple(void)
  721. {
  722. u32 val = readl(PRCM_A9_MASK_REQ);
  723. /* Set bit 0 register value to 0 */
  724. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  725. return 0;
  726. }
  727. #define PRCMU_GIC_NUMBER_REGS 5
  728. /*
  729. * This function checks if there are pending irq on the gic. It only
  730. * makes sense if the gic has been decoupled before with the
  731. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  732. * disables the forwarding of the interrupt to any CPU interface. It
  733. * does not prevent the interrupt from changing state, for example
  734. * becoming pending, or active and pending if it is already
  735. * active. Hence, we have to check the interrupt is pending *and* is
  736. * active.
  737. */
  738. bool db8500_prcmu_gic_pending_irq(void)
  739. {
  740. u32 pr; /* Pending register */
  741. u32 er; /* Enable register */
  742. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  743. int i;
  744. /* 5 registers. STI & PPI not skipped */
  745. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  746. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  747. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  748. if (pr & er)
  749. return true; /* There is a pending interrupt */
  750. }
  751. return false;
  752. }
  753. /*
  754. * This function checks if there are pending interrupt on the
  755. * prcmu which has been delegated to monitor the irqs with the
  756. * db8500_prcmu_copy_gic_settings function.
  757. */
  758. bool db8500_prcmu_pending_irq(void)
  759. {
  760. u32 it, im;
  761. int i;
  762. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  763. it = readl(PRCM_ARMITVAL31TO0 + i * 4);
  764. im = readl(PRCM_ARMITMSK31TO0 + i * 4);
  765. if (it & im)
  766. return true; /* There is a pending interrupt */
  767. }
  768. return false;
  769. }
  770. /*
  771. * This function checks if the specified cpu is in in WFI. It's usage
  772. * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
  773. * function. Of course passing smp_processor_id() to this function will
  774. * always return false...
  775. */
  776. bool db8500_prcmu_is_cpu_in_wfi(int cpu)
  777. {
  778. return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
  779. PRCM_ARM_WFI_STANDBY_WFI0;
  780. }
  781. /*
  782. * This function copies the gic SPI settings to the prcmu in order to
  783. * monitor them and abort/finish the retention/off sequence or state.
  784. */
  785. int db8500_prcmu_copy_gic_settings(void)
  786. {
  787. u32 er; /* Enable register */
  788. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  789. int i;
  790. /* We skip the STI and PPI */
  791. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  792. er = readl_relaxed(dist_base +
  793. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  794. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  795. }
  796. return 0;
  797. }
  798. /* This function should only be called while mb0_transfer.lock is held. */
  799. static void config_wakeups(void)
  800. {
  801. const u8 header[2] = {
  802. MB0H_CONFIG_WAKEUPS_EXE,
  803. MB0H_CONFIG_WAKEUPS_SLEEP
  804. };
  805. static u32 last_dbb_events;
  806. static u32 last_abb_events;
  807. u32 dbb_events;
  808. u32 abb_events;
  809. unsigned int i;
  810. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  811. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  812. abb_events = mb0_transfer.req.abb_events;
  813. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  814. return;
  815. for (i = 0; i < 2; i++) {
  816. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  817. cpu_relax();
  818. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  819. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  820. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  821. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  822. }
  823. last_dbb_events = dbb_events;
  824. last_abb_events = abb_events;
  825. }
  826. void db8500_prcmu_enable_wakeups(u32 wakeups)
  827. {
  828. unsigned long flags;
  829. u32 bits;
  830. int i;
  831. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  832. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  833. if (wakeups & BIT(i))
  834. bits |= prcmu_wakeup_bit[i];
  835. }
  836. spin_lock_irqsave(&mb0_transfer.lock, flags);
  837. mb0_transfer.req.dbb_wakeups = bits;
  838. config_wakeups();
  839. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  840. }
  841. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  842. {
  843. unsigned long flags;
  844. spin_lock_irqsave(&mb0_transfer.lock, flags);
  845. mb0_transfer.req.abb_events = abb_events;
  846. config_wakeups();
  847. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  848. }
  849. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  850. {
  851. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  852. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  853. else
  854. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  855. }
  856. /**
  857. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  858. * @opp: The new ARM operating point to which transition is to be made
  859. * Returns: 0 on success, non-zero on failure
  860. *
  861. * This function sets the the operating point of the ARM.
  862. */
  863. int db8500_prcmu_set_arm_opp(u8 opp)
  864. {
  865. int r;
  866. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  867. return -EINVAL;
  868. r = 0;
  869. mutex_lock(&mb1_transfer.lock);
  870. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  871. cpu_relax();
  872. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  873. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  874. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  875. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  876. wait_for_completion(&mb1_transfer.work);
  877. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  878. (mb1_transfer.ack.arm_opp != opp))
  879. r = -EIO;
  880. compute_armss_rate();
  881. mutex_unlock(&mb1_transfer.lock);
  882. return r;
  883. }
  884. /**
  885. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  886. *
  887. * Returns: the current ARM OPP
  888. */
  889. int db8500_prcmu_get_arm_opp(void)
  890. {
  891. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  892. }
  893. /**
  894. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  895. *
  896. * Returns: the current DDR OPP
  897. */
  898. int db8500_prcmu_get_ddr_opp(void)
  899. {
  900. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  901. }
  902. /**
  903. * db8500_set_ddr_opp - set the appropriate DDR OPP
  904. * @opp: The new DDR operating point to which transition is to be made
  905. * Returns: 0 on success, non-zero on failure
  906. *
  907. * This function sets the operating point of the DDR.
  908. */
  909. int db8500_prcmu_set_ddr_opp(u8 opp)
  910. {
  911. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  912. return -EINVAL;
  913. /* Changing the DDR OPP can hang the hardware pre-v21 */
  914. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  915. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  916. return 0;
  917. }
  918. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  919. static void request_even_slower_clocks(bool enable)
  920. {
  921. void __iomem *clock_reg[] = {
  922. PRCM_ACLK_MGT,
  923. PRCM_DMACLK_MGT
  924. };
  925. unsigned long flags;
  926. unsigned int i;
  927. spin_lock_irqsave(&clk_mgt_lock, flags);
  928. /* Grab the HW semaphore. */
  929. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  930. cpu_relax();
  931. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  932. u32 val;
  933. u32 div;
  934. val = readl(clock_reg[i]);
  935. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  936. if (enable) {
  937. if ((div <= 1) || (div > 15)) {
  938. pr_err("prcmu: Bad clock divider %d in %s\n",
  939. div, __func__);
  940. goto unlock_and_return;
  941. }
  942. div <<= 1;
  943. } else {
  944. if (div <= 2)
  945. goto unlock_and_return;
  946. div >>= 1;
  947. }
  948. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  949. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  950. writel(val, clock_reg[i]);
  951. }
  952. unlock_and_return:
  953. /* Release the HW semaphore. */
  954. writel(0, PRCM_SEM);
  955. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  956. }
  957. /**
  958. * db8500_set_ape_opp - set the appropriate APE OPP
  959. * @opp: The new APE operating point to which transition is to be made
  960. * Returns: 0 on success, non-zero on failure
  961. *
  962. * This function sets the operating point of the APE.
  963. */
  964. int db8500_prcmu_set_ape_opp(u8 opp)
  965. {
  966. int r = 0;
  967. if (opp == mb1_transfer.ape_opp)
  968. return 0;
  969. mutex_lock(&mb1_transfer.lock);
  970. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  971. request_even_slower_clocks(false);
  972. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  973. goto skip_message;
  974. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  975. cpu_relax();
  976. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  977. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  978. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  979. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  980. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  981. wait_for_completion(&mb1_transfer.work);
  982. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  983. (mb1_transfer.ack.ape_opp != opp))
  984. r = -EIO;
  985. skip_message:
  986. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  987. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  988. request_even_slower_clocks(true);
  989. if (!r)
  990. mb1_transfer.ape_opp = opp;
  991. mutex_unlock(&mb1_transfer.lock);
  992. return r;
  993. }
  994. /**
  995. * db8500_prcmu_get_ape_opp - get the current APE OPP
  996. *
  997. * Returns: the current APE OPP
  998. */
  999. int db8500_prcmu_get_ape_opp(void)
  1000. {
  1001. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  1002. }
  1003. /**
  1004. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  1005. * @enable: true to request the higher voltage, false to drop a request.
  1006. *
  1007. * Calls to this function to enable and disable requests must be balanced.
  1008. */
  1009. int prcmu_request_ape_opp_100_voltage(bool enable)
  1010. {
  1011. int r = 0;
  1012. u8 header;
  1013. static unsigned int requests;
  1014. mutex_lock(&mb1_transfer.lock);
  1015. if (enable) {
  1016. if (0 != requests++)
  1017. goto unlock_and_return;
  1018. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1019. } else {
  1020. if (requests == 0) {
  1021. r = -EIO;
  1022. goto unlock_and_return;
  1023. } else if (1 != requests--) {
  1024. goto unlock_and_return;
  1025. }
  1026. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1027. }
  1028. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1029. cpu_relax();
  1030. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1031. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1032. wait_for_completion(&mb1_transfer.work);
  1033. if ((mb1_transfer.ack.header != header) ||
  1034. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1035. r = -EIO;
  1036. unlock_and_return:
  1037. mutex_unlock(&mb1_transfer.lock);
  1038. return r;
  1039. }
  1040. /**
  1041. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1042. *
  1043. * This function releases the power state requirements of a USB wakeup.
  1044. */
  1045. int prcmu_release_usb_wakeup_state(void)
  1046. {
  1047. int r = 0;
  1048. mutex_lock(&mb1_transfer.lock);
  1049. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1050. cpu_relax();
  1051. writeb(MB1H_RELEASE_USB_WAKEUP,
  1052. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1053. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1054. wait_for_completion(&mb1_transfer.work);
  1055. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1056. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1057. r = -EIO;
  1058. mutex_unlock(&mb1_transfer.lock);
  1059. return r;
  1060. }
  1061. static int request_pll(u8 clock, bool enable)
  1062. {
  1063. int r = 0;
  1064. if (clock == PRCMU_PLLSOC0)
  1065. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1066. else if (clock == PRCMU_PLLSOC1)
  1067. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1068. else
  1069. return -EINVAL;
  1070. mutex_lock(&mb1_transfer.lock);
  1071. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1072. cpu_relax();
  1073. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1074. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1075. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1076. wait_for_completion(&mb1_transfer.work);
  1077. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1078. r = -EIO;
  1079. mutex_unlock(&mb1_transfer.lock);
  1080. return r;
  1081. }
  1082. /**
  1083. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1084. * @epod_id: The EPOD to set
  1085. * @epod_state: The new EPOD state
  1086. *
  1087. * This function sets the state of a EPOD (power domain). It may not be called
  1088. * from interrupt context.
  1089. */
  1090. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1091. {
  1092. int r = 0;
  1093. bool ram_retention = false;
  1094. int i;
  1095. /* check argument */
  1096. BUG_ON(epod_id >= NUM_EPOD_ID);
  1097. /* set flag if retention is possible */
  1098. switch (epod_id) {
  1099. case EPOD_ID_SVAMMDSP:
  1100. case EPOD_ID_SIAMMDSP:
  1101. case EPOD_ID_ESRAM12:
  1102. case EPOD_ID_ESRAM34:
  1103. ram_retention = true;
  1104. break;
  1105. }
  1106. /* check argument */
  1107. BUG_ON(epod_state > EPOD_STATE_ON);
  1108. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1109. /* get lock */
  1110. mutex_lock(&mb2_transfer.lock);
  1111. /* wait for mailbox */
  1112. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1113. cpu_relax();
  1114. /* fill in mailbox */
  1115. for (i = 0; i < NUM_EPOD_ID; i++)
  1116. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1117. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1118. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1119. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1120. /*
  1121. * The current firmware version does not handle errors correctly,
  1122. * and we cannot recover if there is an error.
  1123. * This is expected to change when the firmware is updated.
  1124. */
  1125. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1126. msecs_to_jiffies(20000))) {
  1127. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1128. __func__);
  1129. r = -EIO;
  1130. goto unlock_and_return;
  1131. }
  1132. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1133. r = -EIO;
  1134. unlock_and_return:
  1135. mutex_unlock(&mb2_transfer.lock);
  1136. return r;
  1137. }
  1138. /**
  1139. * prcmu_configure_auto_pm - Configure autonomous power management.
  1140. * @sleep: Configuration for ApSleep.
  1141. * @idle: Configuration for ApIdle.
  1142. */
  1143. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1144. struct prcmu_auto_pm_config *idle)
  1145. {
  1146. u32 sleep_cfg;
  1147. u32 idle_cfg;
  1148. unsigned long flags;
  1149. BUG_ON((sleep == NULL) || (idle == NULL));
  1150. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1151. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1152. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1153. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1154. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1155. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1156. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1157. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1158. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1159. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1160. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1161. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1162. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1163. /*
  1164. * The autonomous power management configuration is done through
  1165. * fields in mailbox 2, but these fields are only used as shared
  1166. * variables - i.e. there is no need to send a message.
  1167. */
  1168. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1169. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1170. mb2_transfer.auto_pm_enabled =
  1171. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1172. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1173. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1174. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1175. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1176. }
  1177. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1178. bool prcmu_is_auto_pm_enabled(void)
  1179. {
  1180. return mb2_transfer.auto_pm_enabled;
  1181. }
  1182. static int request_sysclk(bool enable)
  1183. {
  1184. int r;
  1185. unsigned long flags;
  1186. r = 0;
  1187. mutex_lock(&mb3_transfer.sysclk_lock);
  1188. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1189. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1190. cpu_relax();
  1191. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1192. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1193. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1194. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1195. /*
  1196. * The firmware only sends an ACK if we want to enable the
  1197. * SysClk, and it succeeds.
  1198. */
  1199. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1200. msecs_to_jiffies(20000))) {
  1201. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1202. __func__);
  1203. r = -EIO;
  1204. }
  1205. mutex_unlock(&mb3_transfer.sysclk_lock);
  1206. return r;
  1207. }
  1208. static int request_timclk(bool enable)
  1209. {
  1210. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1211. if (!enable)
  1212. val |= PRCM_TCR_STOP_TIMERS;
  1213. writel(val, PRCM_TCR);
  1214. return 0;
  1215. }
  1216. static int request_clock(u8 clock, bool enable)
  1217. {
  1218. u32 val;
  1219. unsigned long flags;
  1220. spin_lock_irqsave(&clk_mgt_lock, flags);
  1221. /* Grab the HW semaphore. */
  1222. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1223. cpu_relax();
  1224. val = readl(clk_mgt[clock].reg);
  1225. if (enable) {
  1226. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1227. } else {
  1228. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1229. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1230. }
  1231. writel(val, clk_mgt[clock].reg);
  1232. /* Release the HW semaphore. */
  1233. writel(0, PRCM_SEM);
  1234. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1235. return 0;
  1236. }
  1237. static int request_sga_clock(u8 clock, bool enable)
  1238. {
  1239. u32 val;
  1240. int ret;
  1241. if (enable) {
  1242. val = readl(PRCM_CGATING_BYPASS);
  1243. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1244. }
  1245. ret = request_clock(clock, enable);
  1246. if (!ret && !enable) {
  1247. val = readl(PRCM_CGATING_BYPASS);
  1248. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1249. }
  1250. return ret;
  1251. }
  1252. static inline bool plldsi_locked(void)
  1253. {
  1254. return (readl(PRCM_PLLDSI_LOCKP) &
  1255. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1256. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1257. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1258. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1259. }
  1260. static int request_plldsi(bool enable)
  1261. {
  1262. int r = 0;
  1263. u32 val;
  1264. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1265. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1266. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1267. val = readl(PRCM_PLLDSI_ENABLE);
  1268. if (enable)
  1269. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1270. else
  1271. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1272. writel(val, PRCM_PLLDSI_ENABLE);
  1273. if (enable) {
  1274. unsigned int i;
  1275. bool locked = plldsi_locked();
  1276. for (i = 10; !locked && (i > 0); --i) {
  1277. udelay(100);
  1278. locked = plldsi_locked();
  1279. }
  1280. if (locked) {
  1281. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1282. PRCM_APE_RESETN_SET);
  1283. } else {
  1284. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1285. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1286. PRCM_MMIP_LS_CLAMP_SET);
  1287. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1288. writel(val, PRCM_PLLDSI_ENABLE);
  1289. r = -EAGAIN;
  1290. }
  1291. } else {
  1292. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1293. }
  1294. return r;
  1295. }
  1296. static int request_dsiclk(u8 n, bool enable)
  1297. {
  1298. u32 val;
  1299. val = readl(PRCM_DSI_PLLOUT_SEL);
  1300. val &= ~dsiclk[n].divsel_mask;
  1301. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1302. dsiclk[n].divsel_shift);
  1303. writel(val, PRCM_DSI_PLLOUT_SEL);
  1304. return 0;
  1305. }
  1306. static int request_dsiescclk(u8 n, bool enable)
  1307. {
  1308. u32 val;
  1309. val = readl(PRCM_DSITVCLK_DIV);
  1310. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1311. writel(val, PRCM_DSITVCLK_DIV);
  1312. return 0;
  1313. }
  1314. /**
  1315. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1316. * @clock: The clock for which the request is made.
  1317. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1318. *
  1319. * This function should only be used by the clock implementation.
  1320. * Do not use it from any other place!
  1321. */
  1322. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1323. {
  1324. if (clock == PRCMU_SGACLK)
  1325. return request_sga_clock(clock, enable);
  1326. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1327. return request_clock(clock, enable);
  1328. else if (clock == PRCMU_TIMCLK)
  1329. return request_timclk(enable);
  1330. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1331. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1332. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1333. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1334. else if (clock == PRCMU_PLLDSI)
  1335. return request_plldsi(enable);
  1336. else if (clock == PRCMU_SYSCLK)
  1337. return request_sysclk(enable);
  1338. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1339. return request_pll(clock, enable);
  1340. else
  1341. return -EINVAL;
  1342. }
  1343. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1344. int branch)
  1345. {
  1346. u64 rate;
  1347. u32 val;
  1348. u32 d;
  1349. u32 div = 1;
  1350. val = readl(reg);
  1351. rate = src_rate;
  1352. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1353. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1354. if (d > 1)
  1355. div *= d;
  1356. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1357. if (d > 1)
  1358. div *= d;
  1359. if (val & PRCM_PLL_FREQ_SELDIV2)
  1360. div *= 2;
  1361. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1362. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1363. ((reg == PRCM_PLLSOC0_FREQ) ||
  1364. (reg == PRCM_PLLARM_FREQ) ||
  1365. (reg == PRCM_PLLDDR_FREQ))))
  1366. div *= 2;
  1367. (void)do_div(rate, div);
  1368. return (unsigned long)rate;
  1369. }
  1370. #define ROOT_CLOCK_RATE 38400000
  1371. static unsigned long clock_rate(u8 clock)
  1372. {
  1373. u32 val;
  1374. u32 pllsw;
  1375. unsigned long rate = ROOT_CLOCK_RATE;
  1376. val = readl(clk_mgt[clock].reg);
  1377. if (val & PRCM_CLK_MGT_CLK38) {
  1378. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1379. rate /= 2;
  1380. return rate;
  1381. }
  1382. val |= clk_mgt[clock].pllsw;
  1383. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1384. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1385. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1386. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1387. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1388. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1389. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1390. else
  1391. return 0;
  1392. if ((clock == PRCMU_SGACLK) &&
  1393. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1394. u64 r = (rate * 10);
  1395. (void)do_div(r, 25);
  1396. return (unsigned long)r;
  1397. }
  1398. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1399. if (val)
  1400. return rate / val;
  1401. else
  1402. return 0;
  1403. }
  1404. static unsigned long latest_armss_rate;
  1405. static unsigned long armss_rate(void)
  1406. {
  1407. return latest_armss_rate;
  1408. }
  1409. static void compute_armss_rate(void)
  1410. {
  1411. u32 r;
  1412. unsigned long rate;
  1413. r = readl(PRCM_ARM_CHGCLKREQ);
  1414. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1415. /* External ARMCLKFIX clock */
  1416. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1417. /* Check PRCM_ARM_CHGCLKREQ divider */
  1418. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1419. rate /= 2;
  1420. /* Check PRCM_ARMCLKFIX_MGT divider */
  1421. r = readl(PRCM_ARMCLKFIX_MGT);
  1422. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1423. rate /= r;
  1424. } else {/* ARM PLL */
  1425. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1426. }
  1427. latest_armss_rate = rate;
  1428. }
  1429. static unsigned long dsiclk_rate(u8 n)
  1430. {
  1431. u32 divsel;
  1432. u32 div = 1;
  1433. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1434. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1435. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1436. divsel = dsiclk[n].divsel;
  1437. switch (divsel) {
  1438. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1439. div *= 2;
  1440. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1441. div *= 2;
  1442. case PRCM_DSI_PLLOUT_SEL_PHI:
  1443. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1444. PLL_RAW) / div;
  1445. default:
  1446. return 0;
  1447. }
  1448. }
  1449. static unsigned long dsiescclk_rate(u8 n)
  1450. {
  1451. u32 div;
  1452. div = readl(PRCM_DSITVCLK_DIV);
  1453. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1454. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1455. }
  1456. unsigned long prcmu_clock_rate(u8 clock)
  1457. {
  1458. if (clock < PRCMU_NUM_REG_CLOCKS)
  1459. return clock_rate(clock);
  1460. else if (clock == PRCMU_TIMCLK)
  1461. return ROOT_CLOCK_RATE / 16;
  1462. else if (clock == PRCMU_SYSCLK)
  1463. return ROOT_CLOCK_RATE;
  1464. else if (clock == PRCMU_PLLSOC0)
  1465. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1466. else if (clock == PRCMU_PLLSOC1)
  1467. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1468. else if (clock == PRCMU_ARMSS)
  1469. return armss_rate();
  1470. else if (clock == PRCMU_PLLDDR)
  1471. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1472. else if (clock == PRCMU_PLLDSI)
  1473. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1474. PLL_RAW);
  1475. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1476. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1477. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1478. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1479. else
  1480. return 0;
  1481. }
  1482. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1483. {
  1484. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1485. return ROOT_CLOCK_RATE;
  1486. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1487. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1488. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1489. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1490. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1491. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1492. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1493. else
  1494. return 0;
  1495. }
  1496. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1497. {
  1498. u32 div;
  1499. div = (src_rate / rate);
  1500. if (div == 0)
  1501. return 1;
  1502. if (rate < (src_rate / div))
  1503. div++;
  1504. return div;
  1505. }
  1506. static long round_clock_rate(u8 clock, unsigned long rate)
  1507. {
  1508. u32 val;
  1509. u32 div;
  1510. unsigned long src_rate;
  1511. long rounded_rate;
  1512. val = readl(clk_mgt[clock].reg);
  1513. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1514. clk_mgt[clock].branch);
  1515. div = clock_divider(src_rate, rate);
  1516. if (val & PRCM_CLK_MGT_CLK38) {
  1517. if (clk_mgt[clock].clk38div) {
  1518. if (div > 2)
  1519. div = 2;
  1520. } else {
  1521. div = 1;
  1522. }
  1523. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1524. u64 r = (src_rate * 10);
  1525. (void)do_div(r, 25);
  1526. if (r <= rate)
  1527. return (unsigned long)r;
  1528. }
  1529. rounded_rate = (src_rate / min(div, (u32)31));
  1530. return rounded_rate;
  1531. }
  1532. #define MIN_PLL_VCO_RATE 600000000ULL
  1533. #define MAX_PLL_VCO_RATE 1680640000ULL
  1534. static long round_plldsi_rate(unsigned long rate)
  1535. {
  1536. long rounded_rate = 0;
  1537. unsigned long src_rate;
  1538. unsigned long rem;
  1539. u32 r;
  1540. src_rate = clock_rate(PRCMU_HDMICLK);
  1541. rem = rate;
  1542. for (r = 7; (rem > 0) && (r > 0); r--) {
  1543. u64 d;
  1544. d = (r * rate);
  1545. (void)do_div(d, src_rate);
  1546. if (d < 6)
  1547. d = 6;
  1548. else if (d > 255)
  1549. d = 255;
  1550. d *= src_rate;
  1551. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1552. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1553. continue;
  1554. (void)do_div(d, r);
  1555. if (rate < d) {
  1556. if (rounded_rate == 0)
  1557. rounded_rate = (long)d;
  1558. break;
  1559. }
  1560. if ((rate - d) < rem) {
  1561. rem = (rate - d);
  1562. rounded_rate = (long)d;
  1563. }
  1564. }
  1565. return rounded_rate;
  1566. }
  1567. static long round_dsiclk_rate(unsigned long rate)
  1568. {
  1569. u32 div;
  1570. unsigned long src_rate;
  1571. long rounded_rate;
  1572. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1573. PLL_RAW);
  1574. div = clock_divider(src_rate, rate);
  1575. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1576. return rounded_rate;
  1577. }
  1578. static long round_dsiescclk_rate(unsigned long rate)
  1579. {
  1580. u32 div;
  1581. unsigned long src_rate;
  1582. long rounded_rate;
  1583. src_rate = clock_rate(PRCMU_TVCLK);
  1584. div = clock_divider(src_rate, rate);
  1585. rounded_rate = (src_rate / min(div, (u32)255));
  1586. return rounded_rate;
  1587. }
  1588. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1589. {
  1590. if (clock < PRCMU_NUM_REG_CLOCKS)
  1591. return round_clock_rate(clock, rate);
  1592. else if (clock == PRCMU_PLLDSI)
  1593. return round_plldsi_rate(rate);
  1594. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1595. return round_dsiclk_rate(rate);
  1596. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1597. return round_dsiescclk_rate(rate);
  1598. else
  1599. return (long)prcmu_clock_rate(clock);
  1600. }
  1601. static void set_clock_rate(u8 clock, unsigned long rate)
  1602. {
  1603. u32 val;
  1604. u32 div;
  1605. unsigned long src_rate;
  1606. unsigned long flags;
  1607. spin_lock_irqsave(&clk_mgt_lock, flags);
  1608. /* Grab the HW semaphore. */
  1609. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1610. cpu_relax();
  1611. val = readl(clk_mgt[clock].reg);
  1612. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1613. clk_mgt[clock].branch);
  1614. div = clock_divider(src_rate, rate);
  1615. if (val & PRCM_CLK_MGT_CLK38) {
  1616. if (clk_mgt[clock].clk38div) {
  1617. if (div > 1)
  1618. val |= PRCM_CLK_MGT_CLK38DIV;
  1619. else
  1620. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1621. }
  1622. } else if (clock == PRCMU_SGACLK) {
  1623. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1624. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1625. if (div == 3) {
  1626. u64 r = (src_rate * 10);
  1627. (void)do_div(r, 25);
  1628. if (r <= rate) {
  1629. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1630. div = 0;
  1631. }
  1632. }
  1633. val |= min(div, (u32)31);
  1634. } else {
  1635. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1636. val |= min(div, (u32)31);
  1637. }
  1638. writel(val, clk_mgt[clock].reg);
  1639. /* Release the HW semaphore. */
  1640. writel(0, PRCM_SEM);
  1641. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1642. }
  1643. static int set_plldsi_rate(unsigned long rate)
  1644. {
  1645. unsigned long src_rate;
  1646. unsigned long rem;
  1647. u32 pll_freq = 0;
  1648. u32 r;
  1649. src_rate = clock_rate(PRCMU_HDMICLK);
  1650. rem = rate;
  1651. for (r = 7; (rem > 0) && (r > 0); r--) {
  1652. u64 d;
  1653. u64 hwrate;
  1654. d = (r * rate);
  1655. (void)do_div(d, src_rate);
  1656. if (d < 6)
  1657. d = 6;
  1658. else if (d > 255)
  1659. d = 255;
  1660. hwrate = (d * src_rate);
  1661. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1662. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1663. continue;
  1664. (void)do_div(hwrate, r);
  1665. if (rate < hwrate) {
  1666. if (pll_freq == 0)
  1667. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1668. (r << PRCM_PLL_FREQ_R_SHIFT));
  1669. break;
  1670. }
  1671. if ((rate - hwrate) < rem) {
  1672. rem = (rate - hwrate);
  1673. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1674. (r << PRCM_PLL_FREQ_R_SHIFT));
  1675. }
  1676. }
  1677. if (pll_freq == 0)
  1678. return -EINVAL;
  1679. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1680. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1681. return 0;
  1682. }
  1683. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1684. {
  1685. u32 val;
  1686. u32 div;
  1687. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1688. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1689. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1690. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1691. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1692. val = readl(PRCM_DSI_PLLOUT_SEL);
  1693. val &= ~dsiclk[n].divsel_mask;
  1694. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1695. writel(val, PRCM_DSI_PLLOUT_SEL);
  1696. }
  1697. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1698. {
  1699. u32 val;
  1700. u32 div;
  1701. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1702. val = readl(PRCM_DSITVCLK_DIV);
  1703. val &= ~dsiescclk[n].div_mask;
  1704. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1705. writel(val, PRCM_DSITVCLK_DIV);
  1706. }
  1707. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1708. {
  1709. if (clock < PRCMU_NUM_REG_CLOCKS)
  1710. set_clock_rate(clock, rate);
  1711. else if (clock == PRCMU_PLLDSI)
  1712. return set_plldsi_rate(rate);
  1713. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1714. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1715. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1716. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1717. return 0;
  1718. }
  1719. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1720. {
  1721. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1722. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1723. return -EINVAL;
  1724. mutex_lock(&mb4_transfer.lock);
  1725. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1726. cpu_relax();
  1727. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1728. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1729. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1730. writeb(DDR_PWR_STATE_ON,
  1731. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1732. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1733. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1734. wait_for_completion(&mb4_transfer.work);
  1735. mutex_unlock(&mb4_transfer.lock);
  1736. return 0;
  1737. }
  1738. int db8500_prcmu_config_hotdog(u8 threshold)
  1739. {
  1740. mutex_lock(&mb4_transfer.lock);
  1741. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1742. cpu_relax();
  1743. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1744. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1745. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1746. wait_for_completion(&mb4_transfer.work);
  1747. mutex_unlock(&mb4_transfer.lock);
  1748. return 0;
  1749. }
  1750. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1751. {
  1752. mutex_lock(&mb4_transfer.lock);
  1753. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1754. cpu_relax();
  1755. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1756. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1757. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1758. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1759. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1760. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1761. wait_for_completion(&mb4_transfer.work);
  1762. mutex_unlock(&mb4_transfer.lock);
  1763. return 0;
  1764. }
  1765. static int config_hot_period(u16 val)
  1766. {
  1767. mutex_lock(&mb4_transfer.lock);
  1768. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1769. cpu_relax();
  1770. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1771. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1772. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1773. wait_for_completion(&mb4_transfer.work);
  1774. mutex_unlock(&mb4_transfer.lock);
  1775. return 0;
  1776. }
  1777. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1778. {
  1779. if (cycles32k == 0xFFFF)
  1780. return -EINVAL;
  1781. return config_hot_period(cycles32k);
  1782. }
  1783. int db8500_prcmu_stop_temp_sense(void)
  1784. {
  1785. return config_hot_period(0xFFFF);
  1786. }
  1787. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1788. {
  1789. mutex_lock(&mb4_transfer.lock);
  1790. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1791. cpu_relax();
  1792. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1793. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1794. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1795. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1796. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1797. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1798. wait_for_completion(&mb4_transfer.work);
  1799. mutex_unlock(&mb4_transfer.lock);
  1800. return 0;
  1801. }
  1802. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1803. {
  1804. BUG_ON(num == 0 || num > 0xf);
  1805. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1806. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1807. A9WDOG_AUTO_OFF_DIS);
  1808. }
  1809. int db8500_prcmu_enable_a9wdog(u8 id)
  1810. {
  1811. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1812. }
  1813. int db8500_prcmu_disable_a9wdog(u8 id)
  1814. {
  1815. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1816. }
  1817. int db8500_prcmu_kick_a9wdog(u8 id)
  1818. {
  1819. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1820. }
  1821. /*
  1822. * timeout is 28 bit, in ms.
  1823. */
  1824. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1825. {
  1826. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1827. (id & A9WDOG_ID_MASK) |
  1828. /*
  1829. * Put the lowest 28 bits of timeout at
  1830. * offset 4. Four first bits are used for id.
  1831. */
  1832. (u8)((timeout << 4) & 0xf0),
  1833. (u8)((timeout >> 4) & 0xff),
  1834. (u8)((timeout >> 12) & 0xff),
  1835. (u8)((timeout >> 20) & 0xff));
  1836. }
  1837. /**
  1838. * prcmu_abb_read() - Read register value(s) from the ABB.
  1839. * @slave: The I2C slave address.
  1840. * @reg: The (start) register address.
  1841. * @value: The read out value(s).
  1842. * @size: The number of registers to read.
  1843. *
  1844. * Reads register value(s) from the ABB.
  1845. * @size has to be 1 for the current firmware version.
  1846. */
  1847. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1848. {
  1849. int r;
  1850. if (size != 1)
  1851. return -EINVAL;
  1852. mutex_lock(&mb5_transfer.lock);
  1853. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1854. cpu_relax();
  1855. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1856. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1857. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1858. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1859. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1860. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1861. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1862. msecs_to_jiffies(20000))) {
  1863. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1864. __func__);
  1865. r = -EIO;
  1866. } else {
  1867. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1868. }
  1869. if (!r)
  1870. *value = mb5_transfer.ack.value;
  1871. mutex_unlock(&mb5_transfer.lock);
  1872. return r;
  1873. }
  1874. /**
  1875. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1876. * @slave: The I2C slave address.
  1877. * @reg: The (start) register address.
  1878. * @value: The value(s) to write.
  1879. * @mask: The mask(s) to use.
  1880. * @size: The number of registers to write.
  1881. *
  1882. * Writes masked register value(s) to the ABB.
  1883. * For each @value, only the bits set to 1 in the corresponding @mask
  1884. * will be written. The other bits are not changed.
  1885. * @size has to be 1 for the current firmware version.
  1886. */
  1887. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1888. {
  1889. int r;
  1890. if (size != 1)
  1891. return -EINVAL;
  1892. mutex_lock(&mb5_transfer.lock);
  1893. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1894. cpu_relax();
  1895. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1896. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1897. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1898. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1899. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1900. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1901. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1902. msecs_to_jiffies(20000))) {
  1903. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1904. __func__);
  1905. r = -EIO;
  1906. } else {
  1907. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1908. }
  1909. mutex_unlock(&mb5_transfer.lock);
  1910. return r;
  1911. }
  1912. /**
  1913. * prcmu_abb_write() - Write register value(s) to the ABB.
  1914. * @slave: The I2C slave address.
  1915. * @reg: The (start) register address.
  1916. * @value: The value(s) to write.
  1917. * @size: The number of registers to write.
  1918. *
  1919. * Writes register value(s) to the ABB.
  1920. * @size has to be 1 for the current firmware version.
  1921. */
  1922. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1923. {
  1924. u8 mask = ~0;
  1925. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1926. }
  1927. /**
  1928. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1929. */
  1930. int prcmu_ac_wake_req(void)
  1931. {
  1932. u32 val;
  1933. int ret = 0;
  1934. mutex_lock(&mb0_transfer.ac_wake_lock);
  1935. val = readl(PRCM_HOSTACCESS_REQ);
  1936. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1937. goto unlock_and_return;
  1938. atomic_set(&ac_wake_req_state, 1);
  1939. /*
  1940. * Force Modem Wake-up before hostaccess_req ping-pong.
  1941. * It prevents Modem to enter in Sleep while acking the hostaccess
  1942. * request. The 31us delay has been calculated by HWI.
  1943. */
  1944. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1945. writel(val, PRCM_HOSTACCESS_REQ);
  1946. udelay(31);
  1947. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1948. writel(val, PRCM_HOSTACCESS_REQ);
  1949. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1950. msecs_to_jiffies(5000))) {
  1951. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1952. db8500_prcmu_debug_dump(__func__, true, true);
  1953. #endif
  1954. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1955. __func__);
  1956. ret = -EFAULT;
  1957. }
  1958. unlock_and_return:
  1959. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1960. return ret;
  1961. }
  1962. /**
  1963. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1964. */
  1965. void prcmu_ac_sleep_req()
  1966. {
  1967. u32 val;
  1968. mutex_lock(&mb0_transfer.ac_wake_lock);
  1969. val = readl(PRCM_HOSTACCESS_REQ);
  1970. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1971. goto unlock_and_return;
  1972. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1973. PRCM_HOSTACCESS_REQ);
  1974. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1975. msecs_to_jiffies(5000))) {
  1976. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1977. __func__);
  1978. }
  1979. atomic_set(&ac_wake_req_state, 0);
  1980. unlock_and_return:
  1981. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1982. }
  1983. bool db8500_prcmu_is_ac_wake_requested(void)
  1984. {
  1985. return (atomic_read(&ac_wake_req_state) != 0);
  1986. }
  1987. /**
  1988. * db8500_prcmu_system_reset - System reset
  1989. *
  1990. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1991. * fires interrupt to fw
  1992. */
  1993. void db8500_prcmu_system_reset(u16 reset_code)
  1994. {
  1995. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1996. writel(1, PRCM_APE_SOFTRST);
  1997. }
  1998. /**
  1999. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2000. *
  2001. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2002. * last restart.
  2003. */
  2004. u16 db8500_prcmu_get_reset_code(void)
  2005. {
  2006. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2007. }
  2008. /**
  2009. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2010. */
  2011. void db8500_prcmu_modem_reset(void)
  2012. {
  2013. mutex_lock(&mb1_transfer.lock);
  2014. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2015. cpu_relax();
  2016. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2017. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2018. wait_for_completion(&mb1_transfer.work);
  2019. /*
  2020. * No need to check return from PRCMU as modem should go in reset state
  2021. * This state is already managed by upper layer
  2022. */
  2023. mutex_unlock(&mb1_transfer.lock);
  2024. }
  2025. static void ack_dbb_wakeup(void)
  2026. {
  2027. unsigned long flags;
  2028. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2029. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2030. cpu_relax();
  2031. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2032. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2033. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2034. }
  2035. static inline void print_unknown_header_warning(u8 n, u8 header)
  2036. {
  2037. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2038. header, n);
  2039. }
  2040. static bool read_mailbox_0(void)
  2041. {
  2042. bool r;
  2043. u32 ev;
  2044. unsigned int n;
  2045. u8 header;
  2046. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2047. switch (header) {
  2048. case MB0H_WAKEUP_EXE:
  2049. case MB0H_WAKEUP_SLEEP:
  2050. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2051. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2052. else
  2053. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2054. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2055. complete(&mb0_transfer.ac_wake_work);
  2056. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2057. complete(&mb3_transfer.sysclk_work);
  2058. ev &= mb0_transfer.req.dbb_irqs;
  2059. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2060. if (ev & prcmu_irq_bit[n])
  2061. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2062. }
  2063. r = true;
  2064. break;
  2065. default:
  2066. print_unknown_header_warning(0, header);
  2067. r = false;
  2068. break;
  2069. }
  2070. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2071. return r;
  2072. }
  2073. static bool read_mailbox_1(void)
  2074. {
  2075. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2076. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2077. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2078. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2079. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2080. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2081. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2082. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2083. complete(&mb1_transfer.work);
  2084. return false;
  2085. }
  2086. static bool read_mailbox_2(void)
  2087. {
  2088. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2089. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2090. complete(&mb2_transfer.work);
  2091. return false;
  2092. }
  2093. static bool read_mailbox_3(void)
  2094. {
  2095. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2096. return false;
  2097. }
  2098. static bool read_mailbox_4(void)
  2099. {
  2100. u8 header;
  2101. bool do_complete = true;
  2102. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2103. switch (header) {
  2104. case MB4H_MEM_ST:
  2105. case MB4H_HOTDOG:
  2106. case MB4H_HOTMON:
  2107. case MB4H_HOT_PERIOD:
  2108. case MB4H_A9WDOG_CONF:
  2109. case MB4H_A9WDOG_EN:
  2110. case MB4H_A9WDOG_DIS:
  2111. case MB4H_A9WDOG_LOAD:
  2112. case MB4H_A9WDOG_KICK:
  2113. break;
  2114. default:
  2115. print_unknown_header_warning(4, header);
  2116. do_complete = false;
  2117. break;
  2118. }
  2119. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2120. if (do_complete)
  2121. complete(&mb4_transfer.work);
  2122. return false;
  2123. }
  2124. static bool read_mailbox_5(void)
  2125. {
  2126. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2127. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2128. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2129. complete(&mb5_transfer.work);
  2130. return false;
  2131. }
  2132. static bool read_mailbox_6(void)
  2133. {
  2134. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2135. return false;
  2136. }
  2137. static bool read_mailbox_7(void)
  2138. {
  2139. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2140. return false;
  2141. }
  2142. static bool (* const read_mailbox[NUM_MB])(void) = {
  2143. read_mailbox_0,
  2144. read_mailbox_1,
  2145. read_mailbox_2,
  2146. read_mailbox_3,
  2147. read_mailbox_4,
  2148. read_mailbox_5,
  2149. read_mailbox_6,
  2150. read_mailbox_7
  2151. };
  2152. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2153. {
  2154. u32 bits;
  2155. u8 n;
  2156. irqreturn_t r;
  2157. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2158. if (unlikely(!bits))
  2159. return IRQ_NONE;
  2160. r = IRQ_HANDLED;
  2161. for (n = 0; bits; n++) {
  2162. if (bits & MBOX_BIT(n)) {
  2163. bits -= MBOX_BIT(n);
  2164. if (read_mailbox[n]())
  2165. r = IRQ_WAKE_THREAD;
  2166. }
  2167. }
  2168. return r;
  2169. }
  2170. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2171. {
  2172. ack_dbb_wakeup();
  2173. return IRQ_HANDLED;
  2174. }
  2175. static void prcmu_mask_work(struct work_struct *work)
  2176. {
  2177. unsigned long flags;
  2178. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2179. config_wakeups();
  2180. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2181. }
  2182. static void prcmu_irq_mask(struct irq_data *d)
  2183. {
  2184. unsigned long flags;
  2185. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2186. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2187. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2188. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2189. schedule_work(&mb0_transfer.mask_work);
  2190. }
  2191. static void prcmu_irq_unmask(struct irq_data *d)
  2192. {
  2193. unsigned long flags;
  2194. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2195. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2196. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2197. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2198. schedule_work(&mb0_transfer.mask_work);
  2199. }
  2200. static void noop(struct irq_data *d)
  2201. {
  2202. }
  2203. static struct irq_chip prcmu_irq_chip = {
  2204. .name = "prcmu",
  2205. .irq_disable = prcmu_irq_mask,
  2206. .irq_ack = noop,
  2207. .irq_mask = prcmu_irq_mask,
  2208. .irq_unmask = prcmu_irq_unmask,
  2209. };
  2210. static char *fw_project_name(u8 project)
  2211. {
  2212. switch (project) {
  2213. case PRCMU_FW_PROJECT_U8500:
  2214. return "U8500";
  2215. case PRCMU_FW_PROJECT_U8500_C2:
  2216. return "U8500 C2";
  2217. case PRCMU_FW_PROJECT_U9500:
  2218. return "U9500";
  2219. case PRCMU_FW_PROJECT_U9500_C2:
  2220. return "U9500 C2";
  2221. case PRCMU_FW_PROJECT_U8520:
  2222. return "U8520";
  2223. case PRCMU_FW_PROJECT_U8420:
  2224. return "U8420";
  2225. default:
  2226. return "Unknown";
  2227. }
  2228. }
  2229. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2230. irq_hw_number_t hwirq)
  2231. {
  2232. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2233. handle_simple_irq);
  2234. set_irq_flags(virq, IRQF_VALID);
  2235. return 0;
  2236. }
  2237. static struct irq_domain_ops db8500_irq_ops = {
  2238. .map = db8500_irq_map,
  2239. .xlate = irq_domain_xlate_twocell,
  2240. };
  2241. static int db8500_irq_init(struct device_node *np)
  2242. {
  2243. db8500_irq_domain = irq_domain_add_legacy(
  2244. np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
  2245. 0, &db8500_irq_ops, NULL);
  2246. if (!db8500_irq_domain) {
  2247. pr_err("Failed to create irqdomain\n");
  2248. return -ENOSYS;
  2249. }
  2250. return 0;
  2251. }
  2252. void __init db8500_prcmu_early_init(void)
  2253. {
  2254. if (cpu_is_u8500v2() || cpu_is_u9540()) {
  2255. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2256. if (tcpm_base != NULL) {
  2257. u32 version;
  2258. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2259. fw_info.version.project = version & 0xFF;
  2260. fw_info.version.api_version = (version >> 8) & 0xFF;
  2261. fw_info.version.func_version = (version >> 16) & 0xFF;
  2262. fw_info.version.errata = (version >> 24) & 0xFF;
  2263. fw_info.valid = true;
  2264. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2265. fw_project_name(fw_info.version.project),
  2266. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2267. (version >> 24) & 0xFF);
  2268. iounmap(tcpm_base);
  2269. }
  2270. if (cpu_is_u9540())
  2271. tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
  2272. SZ_4K + SZ_8K) + SZ_8K;
  2273. else
  2274. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2275. } else {
  2276. pr_err("prcmu: Unsupported chip version\n");
  2277. BUG();
  2278. }
  2279. spin_lock_init(&mb0_transfer.lock);
  2280. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2281. mutex_init(&mb0_transfer.ac_wake_lock);
  2282. init_completion(&mb0_transfer.ac_wake_work);
  2283. mutex_init(&mb1_transfer.lock);
  2284. init_completion(&mb1_transfer.work);
  2285. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2286. mutex_init(&mb2_transfer.lock);
  2287. init_completion(&mb2_transfer.work);
  2288. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2289. spin_lock_init(&mb3_transfer.lock);
  2290. mutex_init(&mb3_transfer.sysclk_lock);
  2291. init_completion(&mb3_transfer.sysclk_work);
  2292. mutex_init(&mb4_transfer.lock);
  2293. init_completion(&mb4_transfer.work);
  2294. mutex_init(&mb5_transfer.lock);
  2295. init_completion(&mb5_transfer.work);
  2296. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2297. compute_armss_rate();
  2298. }
  2299. static void __init init_prcm_registers(void)
  2300. {
  2301. u32 val;
  2302. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2303. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2304. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2305. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2306. }
  2307. /*
  2308. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2309. */
  2310. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2311. REGULATOR_SUPPLY("v-ape", NULL),
  2312. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2313. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2314. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2315. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2316. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2317. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2318. REGULATOR_SUPPLY("vcore", "sdi0"),
  2319. REGULATOR_SUPPLY("vcore", "sdi1"),
  2320. REGULATOR_SUPPLY("vcore", "sdi2"),
  2321. REGULATOR_SUPPLY("vcore", "sdi3"),
  2322. REGULATOR_SUPPLY("vcore", "sdi4"),
  2323. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2324. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2325. /* "v-uart" changed to "vcore" in the mainline kernel */
  2326. REGULATOR_SUPPLY("vcore", "uart0"),
  2327. REGULATOR_SUPPLY("vcore", "uart1"),
  2328. REGULATOR_SUPPLY("vcore", "uart2"),
  2329. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2330. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2331. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2332. };
  2333. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2334. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2335. /* AV8100 regulator */
  2336. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2337. };
  2338. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2339. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2340. REGULATOR_SUPPLY("vsupply", "mcde"),
  2341. };
  2342. /* SVA MMDSP regulator switch */
  2343. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2344. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2345. };
  2346. /* SVA pipe regulator switch */
  2347. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2348. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2349. };
  2350. /* SIA MMDSP regulator switch */
  2351. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2352. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2353. };
  2354. /* SIA pipe regulator switch */
  2355. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2356. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2357. };
  2358. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2359. REGULATOR_SUPPLY("v-mali", NULL),
  2360. };
  2361. /* ESRAM1 and 2 regulator switch */
  2362. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2363. REGULATOR_SUPPLY("esram12", "cm_control"),
  2364. };
  2365. /* ESRAM3 and 4 regulator switch */
  2366. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2367. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2368. REGULATOR_SUPPLY("esram34", "cm_control"),
  2369. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2370. };
  2371. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2372. [DB8500_REGULATOR_VAPE] = {
  2373. .constraints = {
  2374. .name = "db8500-vape",
  2375. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2376. .always_on = true,
  2377. },
  2378. .consumer_supplies = db8500_vape_consumers,
  2379. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2380. },
  2381. [DB8500_REGULATOR_VARM] = {
  2382. .constraints = {
  2383. .name = "db8500-varm",
  2384. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2385. },
  2386. },
  2387. [DB8500_REGULATOR_VMODEM] = {
  2388. .constraints = {
  2389. .name = "db8500-vmodem",
  2390. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2391. },
  2392. },
  2393. [DB8500_REGULATOR_VPLL] = {
  2394. .constraints = {
  2395. .name = "db8500-vpll",
  2396. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2397. },
  2398. },
  2399. [DB8500_REGULATOR_VSMPS1] = {
  2400. .constraints = {
  2401. .name = "db8500-vsmps1",
  2402. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2403. },
  2404. },
  2405. [DB8500_REGULATOR_VSMPS2] = {
  2406. .constraints = {
  2407. .name = "db8500-vsmps2",
  2408. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2409. },
  2410. .consumer_supplies = db8500_vsmps2_consumers,
  2411. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2412. },
  2413. [DB8500_REGULATOR_VSMPS3] = {
  2414. .constraints = {
  2415. .name = "db8500-vsmps3",
  2416. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2417. },
  2418. },
  2419. [DB8500_REGULATOR_VRF1] = {
  2420. .constraints = {
  2421. .name = "db8500-vrf1",
  2422. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2423. },
  2424. },
  2425. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2426. /* dependency to u8500-vape is handled outside regulator framework */
  2427. .constraints = {
  2428. .name = "db8500-sva-mmdsp",
  2429. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2430. },
  2431. .consumer_supplies = db8500_svammdsp_consumers,
  2432. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2433. },
  2434. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2435. .constraints = {
  2436. /* "ret" means "retention" */
  2437. .name = "db8500-sva-mmdsp-ret",
  2438. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2439. },
  2440. },
  2441. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2442. /* dependency to u8500-vape is handled outside regulator framework */
  2443. .constraints = {
  2444. .name = "db8500-sva-pipe",
  2445. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2446. },
  2447. .consumer_supplies = db8500_svapipe_consumers,
  2448. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2449. },
  2450. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2451. /* dependency to u8500-vape is handled outside regulator framework */
  2452. .constraints = {
  2453. .name = "db8500-sia-mmdsp",
  2454. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2455. },
  2456. .consumer_supplies = db8500_siammdsp_consumers,
  2457. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2458. },
  2459. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2460. .constraints = {
  2461. .name = "db8500-sia-mmdsp-ret",
  2462. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2463. },
  2464. },
  2465. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2466. /* dependency to u8500-vape is handled outside regulator framework */
  2467. .constraints = {
  2468. .name = "db8500-sia-pipe",
  2469. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2470. },
  2471. .consumer_supplies = db8500_siapipe_consumers,
  2472. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2473. },
  2474. [DB8500_REGULATOR_SWITCH_SGA] = {
  2475. .supply_regulator = "db8500-vape",
  2476. .constraints = {
  2477. .name = "db8500-sga",
  2478. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2479. },
  2480. .consumer_supplies = db8500_sga_consumers,
  2481. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2482. },
  2483. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2484. .supply_regulator = "db8500-vape",
  2485. .constraints = {
  2486. .name = "db8500-b2r2-mcde",
  2487. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2488. },
  2489. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2490. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2491. },
  2492. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2493. /*
  2494. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2495. * no need to hold Vape
  2496. */
  2497. .constraints = {
  2498. .name = "db8500-esram12",
  2499. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2500. },
  2501. .consumer_supplies = db8500_esram12_consumers,
  2502. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2503. },
  2504. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2505. .constraints = {
  2506. .name = "db8500-esram12-ret",
  2507. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2508. },
  2509. },
  2510. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2511. /*
  2512. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2513. * no need to hold Vape
  2514. */
  2515. .constraints = {
  2516. .name = "db8500-esram34",
  2517. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2518. },
  2519. .consumer_supplies = db8500_esram34_consumers,
  2520. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2521. },
  2522. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2523. .constraints = {
  2524. .name = "db8500-esram34-ret",
  2525. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2526. },
  2527. },
  2528. };
  2529. static struct resource ab8500_resources[] = {
  2530. [0] = {
  2531. .start = IRQ_DB8500_AB8500,
  2532. .end = IRQ_DB8500_AB8500,
  2533. .flags = IORESOURCE_IRQ
  2534. }
  2535. };
  2536. static struct mfd_cell db8500_prcmu_devs[] = {
  2537. {
  2538. .name = "db8500-prcmu-regulators",
  2539. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2540. .platform_data = &db8500_regulators,
  2541. .pdata_size = sizeof(db8500_regulators),
  2542. },
  2543. {
  2544. .name = "cpufreq-u8500",
  2545. .of_compatible = "stericsson,cpufreq-u8500",
  2546. },
  2547. {
  2548. .name = "ab8500-core",
  2549. .of_compatible = "stericsson,ab8500",
  2550. .num_resources = ARRAY_SIZE(ab8500_resources),
  2551. .resources = ab8500_resources,
  2552. .id = AB8500_VERSION_AB8500,
  2553. },
  2554. };
  2555. /**
  2556. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2557. *
  2558. */
  2559. static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
  2560. {
  2561. struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
  2562. struct device_node *np = pdev->dev.of_node;
  2563. int irq = 0, err = 0, i;
  2564. if (ux500_is_svp())
  2565. return -ENODEV;
  2566. init_prcm_registers();
  2567. /* Clean up the mailbox interrupts after pre-kernel code. */
  2568. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2569. if (np)
  2570. irq = platform_get_irq(pdev, 0);
  2571. if (!np || irq <= 0)
  2572. irq = IRQ_DB8500_PRCMU1;
  2573. err = request_threaded_irq(irq, prcmu_irq_handler,
  2574. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2575. if (err < 0) {
  2576. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2577. err = -EBUSY;
  2578. goto no_irq_return;
  2579. }
  2580. db8500_irq_init(np);
  2581. for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
  2582. if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
  2583. db8500_prcmu_devs[i].platform_data = ab8500_platdata;
  2584. db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
  2585. }
  2586. }
  2587. if (cpu_is_u8500v20_or_later())
  2588. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2589. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2590. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
  2591. if (err) {
  2592. pr_err("prcmu: Failed to add subdevices\n");
  2593. return err;
  2594. }
  2595. pr_info("DB8500 PRCMU initialized\n");
  2596. no_irq_return:
  2597. return err;
  2598. }
  2599. static const struct of_device_id db8500_prcmu_match[] = {
  2600. { .compatible = "stericsson,db8500-prcmu"},
  2601. { },
  2602. };
  2603. static struct platform_driver db8500_prcmu_driver = {
  2604. .driver = {
  2605. .name = "db8500-prcmu",
  2606. .owner = THIS_MODULE,
  2607. .of_match_table = db8500_prcmu_match,
  2608. },
  2609. .probe = db8500_prcmu_probe,
  2610. };
  2611. static int __init db8500_prcmu_init(void)
  2612. {
  2613. return platform_driver_register(&db8500_prcmu_driver);
  2614. }
  2615. core_initcall(db8500_prcmu_init);
  2616. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2617. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2618. MODULE_LICENSE("GPL v2");