niu.c 175 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "0.5"
  32. #define DRV_MODULE_RELDATE "October 5, 2007"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return (((u64)readl(reg + 0x4UL) << 32) |
  46. (u64)readl(reg));
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  359. {
  360. int err;
  361. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  362. if (err >= 0) {
  363. *val = (err & 0xffff);
  364. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  365. ESR_RXTX_CTRL_H(chan));
  366. if (err >= 0)
  367. *val |= ((err & 0xffff) << 16);
  368. err = 0;
  369. }
  370. return err;
  371. }
  372. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  373. {
  374. int err;
  375. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  376. ESR_GLUE_CTRL0_L(chan));
  377. if (err >= 0) {
  378. *val = (err & 0xffff);
  379. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  380. ESR_GLUE_CTRL0_H(chan));
  381. if (err >= 0) {
  382. *val |= ((err & 0xffff) << 16);
  383. err = 0;
  384. }
  385. }
  386. return err;
  387. }
  388. static int esr_read_reset(struct niu *np, u32 *val)
  389. {
  390. int err;
  391. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  392. ESR_RXTX_RESET_CTRL_L);
  393. if (err >= 0) {
  394. *val = (err & 0xffff);
  395. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  396. ESR_RXTX_RESET_CTRL_H);
  397. if (err >= 0) {
  398. *val |= ((err & 0xffff) << 16);
  399. err = 0;
  400. }
  401. }
  402. return err;
  403. }
  404. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  405. {
  406. int err;
  407. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  408. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  409. if (!err)
  410. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  411. ESR_RXTX_CTRL_H(chan), (val >> 16));
  412. return err;
  413. }
  414. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  415. {
  416. int err;
  417. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  418. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  419. if (!err)
  420. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  421. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  422. return err;
  423. }
  424. static int esr_reset(struct niu *np)
  425. {
  426. u32 reset;
  427. int err;
  428. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  429. ESR_RXTX_RESET_CTRL_L, 0x0000);
  430. if (err)
  431. return err;
  432. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  433. ESR_RXTX_RESET_CTRL_H, 0xffff);
  434. if (err)
  435. return err;
  436. udelay(200);
  437. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  438. ESR_RXTX_RESET_CTRL_L, 0xffff);
  439. if (err)
  440. return err;
  441. udelay(200);
  442. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  443. ESR_RXTX_RESET_CTRL_H, 0x0000);
  444. if (err)
  445. return err;
  446. udelay(200);
  447. err = esr_read_reset(np, &reset);
  448. if (err)
  449. return err;
  450. if (reset != 0) {
  451. dev_err(np->device, PFX "Port %u ESR_RESET "
  452. "did not clear [%08x]\n",
  453. np->port, reset);
  454. return -ENODEV;
  455. }
  456. return 0;
  457. }
  458. static int serdes_init_10g(struct niu *np)
  459. {
  460. struct niu_link_config *lp = &np->link_config;
  461. unsigned long ctrl_reg, test_cfg_reg, i;
  462. u64 ctrl_val, test_cfg_val, sig, mask, val;
  463. int err;
  464. switch (np->port) {
  465. case 0:
  466. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  467. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  468. break;
  469. case 1:
  470. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  471. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  472. break;
  473. default:
  474. return -EINVAL;
  475. }
  476. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  477. ENET_SERDES_CTRL_SDET_1 |
  478. ENET_SERDES_CTRL_SDET_2 |
  479. ENET_SERDES_CTRL_SDET_3 |
  480. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  481. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  482. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  483. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  484. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  485. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  486. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  487. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  488. test_cfg_val = 0;
  489. if (lp->loopback_mode == LOOPBACK_PHY) {
  490. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  491. ENET_SERDES_TEST_MD_0_SHIFT) |
  492. (ENET_TEST_MD_PAD_LOOPBACK <<
  493. ENET_SERDES_TEST_MD_1_SHIFT) |
  494. (ENET_TEST_MD_PAD_LOOPBACK <<
  495. ENET_SERDES_TEST_MD_2_SHIFT) |
  496. (ENET_TEST_MD_PAD_LOOPBACK <<
  497. ENET_SERDES_TEST_MD_3_SHIFT));
  498. }
  499. nw64(ctrl_reg, ctrl_val);
  500. nw64(test_cfg_reg, test_cfg_val);
  501. /* Initialize all 4 lanes of the SERDES. */
  502. for (i = 0; i < 4; i++) {
  503. u32 rxtx_ctrl, glue0;
  504. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  505. if (err)
  506. return err;
  507. err = esr_read_glue0(np, i, &glue0);
  508. if (err)
  509. return err;
  510. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  511. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  512. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  513. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  514. ESR_GLUE_CTRL0_THCNT |
  515. ESR_GLUE_CTRL0_BLTIME);
  516. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  517. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  518. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  519. (BLTIME_300_CYCLES <<
  520. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  521. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  522. if (err)
  523. return err;
  524. err = esr_write_glue0(np, i, glue0);
  525. if (err)
  526. return err;
  527. }
  528. err = esr_reset(np);
  529. if (err)
  530. return err;
  531. sig = nr64(ESR_INT_SIGNALS);
  532. switch (np->port) {
  533. case 0:
  534. mask = ESR_INT_SIGNALS_P0_BITS;
  535. val = (ESR_INT_SRDY0_P0 |
  536. ESR_INT_DET0_P0 |
  537. ESR_INT_XSRDY_P0 |
  538. ESR_INT_XDP_P0_CH3 |
  539. ESR_INT_XDP_P0_CH2 |
  540. ESR_INT_XDP_P0_CH1 |
  541. ESR_INT_XDP_P0_CH0);
  542. break;
  543. case 1:
  544. mask = ESR_INT_SIGNALS_P1_BITS;
  545. val = (ESR_INT_SRDY0_P1 |
  546. ESR_INT_DET0_P1 |
  547. ESR_INT_XSRDY_P1 |
  548. ESR_INT_XDP_P1_CH3 |
  549. ESR_INT_XDP_P1_CH2 |
  550. ESR_INT_XDP_P1_CH1 |
  551. ESR_INT_XDP_P1_CH0);
  552. break;
  553. default:
  554. return -EINVAL;
  555. }
  556. if ((sig & mask) != val) {
  557. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  558. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  559. return -ENODEV;
  560. }
  561. return 0;
  562. }
  563. static int serdes_init_1g(struct niu *np)
  564. {
  565. u64 val;
  566. val = nr64(ENET_SERDES_1_PLL_CFG);
  567. val &= ~ENET_SERDES_PLL_FBDIV2;
  568. switch (np->port) {
  569. case 0:
  570. val |= ENET_SERDES_PLL_HRATE0;
  571. break;
  572. case 1:
  573. val |= ENET_SERDES_PLL_HRATE1;
  574. break;
  575. case 2:
  576. val |= ENET_SERDES_PLL_HRATE2;
  577. break;
  578. case 3:
  579. val |= ENET_SERDES_PLL_HRATE3;
  580. break;
  581. default:
  582. return -EINVAL;
  583. }
  584. nw64(ENET_SERDES_1_PLL_CFG, val);
  585. return 0;
  586. }
  587. static int bcm8704_reset(struct niu *np)
  588. {
  589. int err, limit;
  590. err = mdio_read(np, np->phy_addr,
  591. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  592. if (err < 0)
  593. return err;
  594. err |= BMCR_RESET;
  595. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  596. MII_BMCR, err);
  597. if (err)
  598. return err;
  599. limit = 1000;
  600. while (--limit >= 0) {
  601. err = mdio_read(np, np->phy_addr,
  602. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  603. if (err < 0)
  604. return err;
  605. if (!(err & BMCR_RESET))
  606. break;
  607. }
  608. if (limit < 0) {
  609. dev_err(np->device, PFX "Port %u PHY will not reset "
  610. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  611. return -ENODEV;
  612. }
  613. return 0;
  614. }
  615. /* When written, certain PHY registers need to be read back twice
  616. * in order for the bits to settle properly.
  617. */
  618. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  619. {
  620. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  621. if (err < 0)
  622. return err;
  623. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  624. if (err < 0)
  625. return err;
  626. return 0;
  627. }
  628. static int bcm8704_init_user_dev3(struct niu *np)
  629. {
  630. int err;
  631. err = mdio_write(np, np->phy_addr,
  632. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  633. (USER_CONTROL_OPTXRST_LVL |
  634. USER_CONTROL_OPBIASFLT_LVL |
  635. USER_CONTROL_OBTMPFLT_LVL |
  636. USER_CONTROL_OPPRFLT_LVL |
  637. USER_CONTROL_OPTXFLT_LVL |
  638. USER_CONTROL_OPRXLOS_LVL |
  639. USER_CONTROL_OPRXFLT_LVL |
  640. USER_CONTROL_OPTXON_LVL |
  641. (0x3f << USER_CONTROL_RES1_SHIFT)));
  642. if (err)
  643. return err;
  644. err = mdio_write(np, np->phy_addr,
  645. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  646. (USER_PMD_TX_CTL_XFP_CLKEN |
  647. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  648. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  649. USER_PMD_TX_CTL_TSCK_LPWREN));
  650. if (err)
  651. return err;
  652. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  653. if (err)
  654. return err;
  655. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  656. if (err)
  657. return err;
  658. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  659. BCM8704_USER_OPT_DIGITAL_CTRL);
  660. if (err < 0)
  661. return err;
  662. err &= ~USER_ODIG_CTRL_GPIOS;
  663. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  664. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  665. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  666. if (err)
  667. return err;
  668. mdelay(1000);
  669. return 0;
  670. }
  671. static int xcvr_init_10g(struct niu *np)
  672. {
  673. struct niu_link_config *lp = &np->link_config;
  674. u16 analog_stat0, tx_alarm_status;
  675. int err;
  676. u64 val;
  677. val = nr64_mac(XMAC_CONFIG);
  678. val &= ~XMAC_CONFIG_LED_POLARITY;
  679. val |= XMAC_CONFIG_FORCE_LED_ON;
  680. nw64_mac(XMAC_CONFIG, val);
  681. /* XXX shared resource, lock parent XXX */
  682. val = nr64(MIF_CONFIG);
  683. val |= MIF_CONFIG_INDIRECT_MODE;
  684. nw64(MIF_CONFIG, val);
  685. err = bcm8704_reset(np);
  686. if (err)
  687. return err;
  688. err = bcm8704_init_user_dev3(np);
  689. if (err)
  690. return err;
  691. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  692. MII_BMCR);
  693. if (err < 0)
  694. return err;
  695. err &= ~BMCR_LOOPBACK;
  696. if (lp->loopback_mode == LOOPBACK_MAC)
  697. err |= BMCR_LOOPBACK;
  698. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  699. MII_BMCR, err);
  700. if (err)
  701. return err;
  702. #if 1
  703. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  704. MII_STAT1000);
  705. if (err < 0)
  706. return err;
  707. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  708. np->port, err);
  709. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  710. if (err < 0)
  711. return err;
  712. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  713. np->port, err);
  714. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  715. MII_NWAYTEST);
  716. if (err < 0)
  717. return err;
  718. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  719. np->port, err);
  720. #endif
  721. /* XXX dig this out it might not be so useful XXX */
  722. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  723. BCM8704_USER_ANALOG_STATUS0);
  724. if (err < 0)
  725. return err;
  726. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  727. BCM8704_USER_ANALOG_STATUS0);
  728. if (err < 0)
  729. return err;
  730. analog_stat0 = err;
  731. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  732. BCM8704_USER_TX_ALARM_STATUS);
  733. if (err < 0)
  734. return err;
  735. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  736. BCM8704_USER_TX_ALARM_STATUS);
  737. if (err < 0)
  738. return err;
  739. tx_alarm_status = err;
  740. if (analog_stat0 != 0x03fc) {
  741. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  742. pr_info(PFX "Port %u cable not connected "
  743. "or bad cable.\n", np->port);
  744. } else if (analog_stat0 == 0x639c) {
  745. pr_info(PFX "Port %u optical module is bad "
  746. "or missing.\n", np->port);
  747. }
  748. }
  749. return 0;
  750. }
  751. static int mii_reset(struct niu *np)
  752. {
  753. int limit, err;
  754. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  755. if (err)
  756. return err;
  757. limit = 1000;
  758. while (--limit >= 0) {
  759. udelay(500);
  760. err = mii_read(np, np->phy_addr, MII_BMCR);
  761. if (err < 0)
  762. return err;
  763. if (!(err & BMCR_RESET))
  764. break;
  765. }
  766. if (limit < 0) {
  767. dev_err(np->device, PFX "Port %u MII would not reset, "
  768. "bmcr[%04x]\n", np->port, err);
  769. return -ENODEV;
  770. }
  771. return 0;
  772. }
  773. static int mii_init_common(struct niu *np)
  774. {
  775. struct niu_link_config *lp = &np->link_config;
  776. u16 bmcr, bmsr, adv, estat;
  777. int err;
  778. err = mii_reset(np);
  779. if (err)
  780. return err;
  781. err = mii_read(np, np->phy_addr, MII_BMSR);
  782. if (err < 0)
  783. return err;
  784. bmsr = err;
  785. estat = 0;
  786. if (bmsr & BMSR_ESTATEN) {
  787. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  788. if (err < 0)
  789. return err;
  790. estat = err;
  791. }
  792. bmcr = 0;
  793. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  794. if (err)
  795. return err;
  796. if (lp->loopback_mode == LOOPBACK_MAC) {
  797. bmcr |= BMCR_LOOPBACK;
  798. if (lp->active_speed == SPEED_1000)
  799. bmcr |= BMCR_SPEED1000;
  800. if (lp->active_duplex == DUPLEX_FULL)
  801. bmcr |= BMCR_FULLDPLX;
  802. }
  803. if (lp->loopback_mode == LOOPBACK_PHY) {
  804. u16 aux;
  805. aux = (BCM5464R_AUX_CTL_EXT_LB |
  806. BCM5464R_AUX_CTL_WRITE_1);
  807. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  808. if (err)
  809. return err;
  810. }
  811. /* XXX configurable XXX */
  812. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  813. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  814. if (bmsr & BMSR_10FULL)
  815. adv |= ADVERTISE_10FULL;
  816. if (bmsr & BMSR_100FULL)
  817. adv |= ADVERTISE_100FULL;
  818. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  819. if (err)
  820. return err;
  821. if (bmsr & BMSR_ESTATEN) {
  822. u16 ctrl1000 = 0;
  823. if (estat & ESTATUS_1000_TFULL)
  824. ctrl1000 |= ADVERTISE_1000FULL;
  825. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  826. if (err)
  827. return err;
  828. }
  829. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  830. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  831. if (err)
  832. return err;
  833. err = mii_read(np, np->phy_addr, MII_BMCR);
  834. if (err < 0)
  835. return err;
  836. err = mii_read(np, np->phy_addr, MII_BMSR);
  837. if (err < 0)
  838. return err;
  839. #if 0
  840. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  841. np->port, bmcr, bmsr);
  842. #endif
  843. return 0;
  844. }
  845. static int xcvr_init_1g(struct niu *np)
  846. {
  847. u64 val;
  848. /* XXX shared resource, lock parent XXX */
  849. val = nr64(MIF_CONFIG);
  850. val &= ~MIF_CONFIG_INDIRECT_MODE;
  851. nw64(MIF_CONFIG, val);
  852. return mii_init_common(np);
  853. }
  854. static int niu_xcvr_init(struct niu *np)
  855. {
  856. const struct niu_phy_ops *ops = np->phy_ops;
  857. int err;
  858. err = 0;
  859. if (ops->xcvr_init)
  860. err = ops->xcvr_init(np);
  861. return err;
  862. }
  863. static int niu_serdes_init(struct niu *np)
  864. {
  865. const struct niu_phy_ops *ops = np->phy_ops;
  866. int err;
  867. err = 0;
  868. if (ops->serdes_init)
  869. err = ops->serdes_init(np);
  870. return err;
  871. }
  872. static void niu_init_xif(struct niu *);
  873. static void niu_handle_led(struct niu *, int status);
  874. static int niu_link_status_common(struct niu *np, int link_up)
  875. {
  876. struct niu_link_config *lp = &np->link_config;
  877. struct net_device *dev = np->dev;
  878. unsigned long flags;
  879. if (!netif_carrier_ok(dev) && link_up) {
  880. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  881. dev->name,
  882. (lp->active_speed == SPEED_10000 ?
  883. "10Gb/sec" :
  884. (lp->active_speed == SPEED_1000 ?
  885. "1Gb/sec" :
  886. (lp->active_speed == SPEED_100 ?
  887. "100Mbit/sec" : "10Mbit/sec"))),
  888. (lp->active_duplex == DUPLEX_FULL ?
  889. "full" : "half"));
  890. spin_lock_irqsave(&np->lock, flags);
  891. niu_init_xif(np);
  892. niu_handle_led(np, 1);
  893. spin_unlock_irqrestore(&np->lock, flags);
  894. netif_carrier_on(dev);
  895. } else if (netif_carrier_ok(dev) && !link_up) {
  896. niuwarn(LINK, "%s: Link is down\n", dev->name);
  897. spin_lock_irqsave(&np->lock, flags);
  898. niu_handle_led(np, 0);
  899. spin_unlock_irqrestore(&np->lock, flags);
  900. netif_carrier_off(dev);
  901. }
  902. return 0;
  903. }
  904. static int link_status_10g(struct niu *np, int *link_up_p)
  905. {
  906. unsigned long flags;
  907. int err, link_up;
  908. link_up = 0;
  909. spin_lock_irqsave(&np->lock, flags);
  910. err = -EINVAL;
  911. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  912. goto out;
  913. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  914. BCM8704_PMD_RCV_SIGDET);
  915. if (err < 0)
  916. goto out;
  917. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  918. err = 0;
  919. goto out;
  920. }
  921. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  922. BCM8704_PCS_10G_R_STATUS);
  923. if (err < 0)
  924. goto out;
  925. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  926. err = 0;
  927. goto out;
  928. }
  929. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  930. BCM8704_PHYXS_XGXS_LANE_STAT);
  931. if (err < 0)
  932. goto out;
  933. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  934. PHYXS_XGXS_LANE_STAT_MAGIC |
  935. PHYXS_XGXS_LANE_STAT_LANE3 |
  936. PHYXS_XGXS_LANE_STAT_LANE2 |
  937. PHYXS_XGXS_LANE_STAT_LANE1 |
  938. PHYXS_XGXS_LANE_STAT_LANE0)) {
  939. err = 0;
  940. goto out;
  941. }
  942. link_up = 1;
  943. np->link_config.active_speed = SPEED_10000;
  944. np->link_config.active_duplex = DUPLEX_FULL;
  945. err = 0;
  946. out:
  947. spin_unlock_irqrestore(&np->lock, flags);
  948. *link_up_p = link_up;
  949. return err;
  950. }
  951. static int link_status_1g(struct niu *np, int *link_up_p)
  952. {
  953. u16 current_speed, bmsr;
  954. unsigned long flags;
  955. u8 current_duplex;
  956. int err, link_up;
  957. link_up = 0;
  958. current_speed = SPEED_INVALID;
  959. current_duplex = DUPLEX_INVALID;
  960. spin_lock_irqsave(&np->lock, flags);
  961. err = -EINVAL;
  962. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  963. goto out;
  964. err = mii_read(np, np->phy_addr, MII_BMSR);
  965. if (err < 0)
  966. goto out;
  967. bmsr = err;
  968. if (bmsr & BMSR_LSTATUS) {
  969. u16 adv, lpa, common, estat;
  970. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  971. if (err < 0)
  972. goto out;
  973. adv = err;
  974. err = mii_read(np, np->phy_addr, MII_LPA);
  975. if (err < 0)
  976. goto out;
  977. lpa = err;
  978. common = adv & lpa;
  979. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  980. if (err < 0)
  981. goto out;
  982. estat = err;
  983. link_up = 1;
  984. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  985. current_speed = SPEED_1000;
  986. if (estat & ESTATUS_1000_TFULL)
  987. current_duplex = DUPLEX_FULL;
  988. else
  989. current_duplex = DUPLEX_HALF;
  990. } else {
  991. if (common & ADVERTISE_100BASE4) {
  992. current_speed = SPEED_100;
  993. current_duplex = DUPLEX_HALF;
  994. } else if (common & ADVERTISE_100FULL) {
  995. current_speed = SPEED_100;
  996. current_duplex = DUPLEX_FULL;
  997. } else if (common & ADVERTISE_100HALF) {
  998. current_speed = SPEED_100;
  999. current_duplex = DUPLEX_HALF;
  1000. } else if (common & ADVERTISE_10FULL) {
  1001. current_speed = SPEED_10;
  1002. current_duplex = DUPLEX_FULL;
  1003. } else if (common & ADVERTISE_10HALF) {
  1004. current_speed = SPEED_10;
  1005. current_duplex = DUPLEX_HALF;
  1006. } else
  1007. link_up = 0;
  1008. }
  1009. }
  1010. err = 0;
  1011. out:
  1012. spin_unlock_irqrestore(&np->lock, flags);
  1013. *link_up_p = link_up;
  1014. return err;
  1015. }
  1016. static int niu_link_status(struct niu *np, int *link_up_p)
  1017. {
  1018. const struct niu_phy_ops *ops = np->phy_ops;
  1019. int err;
  1020. err = 0;
  1021. if (ops->link_status)
  1022. err = ops->link_status(np, link_up_p);
  1023. return err;
  1024. }
  1025. static void niu_timer(unsigned long __opaque)
  1026. {
  1027. struct niu *np = (struct niu *) __opaque;
  1028. unsigned long off;
  1029. int err, link_up;
  1030. err = niu_link_status(np, &link_up);
  1031. if (!err)
  1032. niu_link_status_common(np, link_up);
  1033. if (netif_carrier_ok(np->dev))
  1034. off = 5 * HZ;
  1035. else
  1036. off = 1 * HZ;
  1037. np->timer.expires = jiffies + off;
  1038. add_timer(&np->timer);
  1039. }
  1040. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1041. .serdes_init = serdes_init_niu,
  1042. .xcvr_init = xcvr_init_10g,
  1043. .link_status = link_status_10g,
  1044. };
  1045. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1046. .serdes_init = serdes_init_10g,
  1047. .xcvr_init = xcvr_init_10g,
  1048. .link_status = link_status_10g,
  1049. };
  1050. static const struct niu_phy_ops phy_ops_10g_copper = {
  1051. .serdes_init = serdes_init_10g,
  1052. .link_status = link_status_10g, /* XXX */
  1053. };
  1054. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1055. .serdes_init = serdes_init_1g,
  1056. .xcvr_init = xcvr_init_1g,
  1057. .link_status = link_status_1g,
  1058. };
  1059. static const struct niu_phy_ops phy_ops_1g_copper = {
  1060. .xcvr_init = xcvr_init_1g,
  1061. .link_status = link_status_1g,
  1062. };
  1063. struct niu_phy_template {
  1064. const struct niu_phy_ops *ops;
  1065. u32 phy_addr_base;
  1066. };
  1067. static const struct niu_phy_template phy_template_niu = {
  1068. .ops = &phy_ops_10g_fiber_niu,
  1069. .phy_addr_base = 16,
  1070. };
  1071. static const struct niu_phy_template phy_template_10g_fiber = {
  1072. .ops = &phy_ops_10g_fiber,
  1073. .phy_addr_base = 8,
  1074. };
  1075. static const struct niu_phy_template phy_template_10g_copper = {
  1076. .ops = &phy_ops_10g_copper,
  1077. .phy_addr_base = 10,
  1078. };
  1079. static const struct niu_phy_template phy_template_1g_fiber = {
  1080. .ops = &phy_ops_1g_fiber,
  1081. .phy_addr_base = 0,
  1082. };
  1083. static const struct niu_phy_template phy_template_1g_copper = {
  1084. .ops = &phy_ops_1g_copper,
  1085. .phy_addr_base = 0,
  1086. };
  1087. static int niu_determine_phy_disposition(struct niu *np)
  1088. {
  1089. struct niu_parent *parent = np->parent;
  1090. u8 plat_type = parent->plat_type;
  1091. const struct niu_phy_template *tp;
  1092. u32 phy_addr_off = 0;
  1093. if (plat_type == PLAT_TYPE_NIU) {
  1094. tp = &phy_template_niu;
  1095. phy_addr_off += np->port;
  1096. } else {
  1097. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  1098. case 0:
  1099. /* 1G copper */
  1100. tp = &phy_template_1g_copper;
  1101. if (plat_type == PLAT_TYPE_VF_P0)
  1102. phy_addr_off = 10;
  1103. else if (plat_type == PLAT_TYPE_VF_P1)
  1104. phy_addr_off = 26;
  1105. phy_addr_off += (np->port ^ 0x3);
  1106. break;
  1107. case NIU_FLAGS_10G:
  1108. /* 10G copper */
  1109. tp = &phy_template_1g_copper;
  1110. break;
  1111. case NIU_FLAGS_FIBER:
  1112. /* 1G fiber */
  1113. tp = &phy_template_1g_fiber;
  1114. break;
  1115. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  1116. /* 10G fiber */
  1117. tp = &phy_template_10g_fiber;
  1118. if (plat_type == PLAT_TYPE_VF_P0 ||
  1119. plat_type == PLAT_TYPE_VF_P1)
  1120. phy_addr_off = 8;
  1121. phy_addr_off += np->port;
  1122. break;
  1123. default:
  1124. return -EINVAL;
  1125. }
  1126. }
  1127. np->phy_ops = tp->ops;
  1128. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  1129. return 0;
  1130. }
  1131. static int niu_init_link(struct niu *np)
  1132. {
  1133. struct niu_parent *parent = np->parent;
  1134. int err, ignore;
  1135. if (parent->plat_type == PLAT_TYPE_NIU) {
  1136. err = niu_xcvr_init(np);
  1137. if (err)
  1138. return err;
  1139. msleep(200);
  1140. }
  1141. err = niu_serdes_init(np);
  1142. if (err)
  1143. return err;
  1144. msleep(200);
  1145. err = niu_xcvr_init(np);
  1146. if (!err)
  1147. niu_link_status(np, &ignore);
  1148. return 0;
  1149. }
  1150. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  1151. {
  1152. u16 reg0 = addr[4] << 8 | addr[5];
  1153. u16 reg1 = addr[2] << 8 | addr[3];
  1154. u16 reg2 = addr[0] << 8 | addr[1];
  1155. if (np->flags & NIU_FLAGS_XMAC) {
  1156. nw64_mac(XMAC_ADDR0, reg0);
  1157. nw64_mac(XMAC_ADDR1, reg1);
  1158. nw64_mac(XMAC_ADDR2, reg2);
  1159. } else {
  1160. nw64_mac(BMAC_ADDR0, reg0);
  1161. nw64_mac(BMAC_ADDR1, reg1);
  1162. nw64_mac(BMAC_ADDR2, reg2);
  1163. }
  1164. }
  1165. static int niu_num_alt_addr(struct niu *np)
  1166. {
  1167. if (np->flags & NIU_FLAGS_XMAC)
  1168. return XMAC_NUM_ALT_ADDR;
  1169. else
  1170. return BMAC_NUM_ALT_ADDR;
  1171. }
  1172. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  1173. {
  1174. u16 reg0 = addr[4] << 8 | addr[5];
  1175. u16 reg1 = addr[2] << 8 | addr[3];
  1176. u16 reg2 = addr[0] << 8 | addr[1];
  1177. if (index >= niu_num_alt_addr(np))
  1178. return -EINVAL;
  1179. if (np->flags & NIU_FLAGS_XMAC) {
  1180. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  1181. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  1182. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  1183. } else {
  1184. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  1185. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  1186. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  1187. }
  1188. return 0;
  1189. }
  1190. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  1191. {
  1192. unsigned long reg;
  1193. u64 val, mask;
  1194. if (index >= niu_num_alt_addr(np))
  1195. return -EINVAL;
  1196. if (np->flags & NIU_FLAGS_XMAC)
  1197. reg = XMAC_ADDR_CMPEN;
  1198. else
  1199. reg = BMAC_ADDR_CMPEN;
  1200. mask = 1 << index;
  1201. val = nr64_mac(reg);
  1202. if (on)
  1203. val |= mask;
  1204. else
  1205. val &= ~mask;
  1206. nw64_mac(reg, val);
  1207. return 0;
  1208. }
  1209. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  1210. int num, int mac_pref)
  1211. {
  1212. u64 val = nr64_mac(reg);
  1213. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  1214. val |= num;
  1215. if (mac_pref)
  1216. val |= HOST_INFO_MPR;
  1217. nw64_mac(reg, val);
  1218. }
  1219. static int __set_rdc_table_num(struct niu *np,
  1220. int xmac_index, int bmac_index,
  1221. int rdc_table_num, int mac_pref)
  1222. {
  1223. unsigned long reg;
  1224. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  1225. return -EINVAL;
  1226. if (np->flags & NIU_FLAGS_XMAC)
  1227. reg = XMAC_HOST_INFO(xmac_index);
  1228. else
  1229. reg = BMAC_HOST_INFO(bmac_index);
  1230. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  1231. return 0;
  1232. }
  1233. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  1234. int mac_pref)
  1235. {
  1236. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  1237. }
  1238. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  1239. int mac_pref)
  1240. {
  1241. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  1242. }
  1243. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  1244. int table_num, int mac_pref)
  1245. {
  1246. if (idx >= niu_num_alt_addr(np))
  1247. return -EINVAL;
  1248. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  1249. }
  1250. static u64 vlan_entry_set_parity(u64 reg_val)
  1251. {
  1252. u64 port01_mask;
  1253. u64 port23_mask;
  1254. port01_mask = 0x00ff;
  1255. port23_mask = 0xff00;
  1256. if (hweight64(reg_val & port01_mask) & 1)
  1257. reg_val |= ENET_VLAN_TBL_PARITY0;
  1258. else
  1259. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  1260. if (hweight64(reg_val & port23_mask) & 1)
  1261. reg_val |= ENET_VLAN_TBL_PARITY1;
  1262. else
  1263. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  1264. return reg_val;
  1265. }
  1266. static void vlan_tbl_write(struct niu *np, unsigned long index,
  1267. int port, int vpr, int rdc_table)
  1268. {
  1269. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  1270. reg_val &= ~((ENET_VLAN_TBL_VPR |
  1271. ENET_VLAN_TBL_VLANRDCTBLN) <<
  1272. ENET_VLAN_TBL_SHIFT(port));
  1273. if (vpr)
  1274. reg_val |= (ENET_VLAN_TBL_VPR <<
  1275. ENET_VLAN_TBL_SHIFT(port));
  1276. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  1277. reg_val = vlan_entry_set_parity(reg_val);
  1278. nw64(ENET_VLAN_TBL(index), reg_val);
  1279. }
  1280. static void vlan_tbl_clear(struct niu *np)
  1281. {
  1282. int i;
  1283. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  1284. nw64(ENET_VLAN_TBL(i), 0);
  1285. }
  1286. static int tcam_wait_bit(struct niu *np, u64 bit)
  1287. {
  1288. int limit = 1000;
  1289. while (--limit > 0) {
  1290. if (nr64(TCAM_CTL) & bit)
  1291. break;
  1292. udelay(1);
  1293. }
  1294. if (limit < 0)
  1295. return -ENODEV;
  1296. return 0;
  1297. }
  1298. static int tcam_flush(struct niu *np, int index)
  1299. {
  1300. nw64(TCAM_KEY_0, 0x00);
  1301. nw64(TCAM_KEY_MASK_0, 0xff);
  1302. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1303. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1304. }
  1305. #if 0
  1306. static int tcam_read(struct niu *np, int index,
  1307. u64 *key, u64 *mask)
  1308. {
  1309. int err;
  1310. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  1311. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1312. if (!err) {
  1313. key[0] = nr64(TCAM_KEY_0);
  1314. key[1] = nr64(TCAM_KEY_1);
  1315. key[2] = nr64(TCAM_KEY_2);
  1316. key[3] = nr64(TCAM_KEY_3);
  1317. mask[0] = nr64(TCAM_KEY_MASK_0);
  1318. mask[1] = nr64(TCAM_KEY_MASK_1);
  1319. mask[2] = nr64(TCAM_KEY_MASK_2);
  1320. mask[3] = nr64(TCAM_KEY_MASK_3);
  1321. }
  1322. return err;
  1323. }
  1324. #endif
  1325. static int tcam_write(struct niu *np, int index,
  1326. u64 *key, u64 *mask)
  1327. {
  1328. nw64(TCAM_KEY_0, key[0]);
  1329. nw64(TCAM_KEY_1, key[1]);
  1330. nw64(TCAM_KEY_2, key[2]);
  1331. nw64(TCAM_KEY_3, key[3]);
  1332. nw64(TCAM_KEY_MASK_0, mask[0]);
  1333. nw64(TCAM_KEY_MASK_1, mask[1]);
  1334. nw64(TCAM_KEY_MASK_2, mask[2]);
  1335. nw64(TCAM_KEY_MASK_3, mask[3]);
  1336. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1337. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1338. }
  1339. #if 0
  1340. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  1341. {
  1342. int err;
  1343. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  1344. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1345. if (!err)
  1346. *data = nr64(TCAM_KEY_1);
  1347. return err;
  1348. }
  1349. #endif
  1350. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  1351. {
  1352. nw64(TCAM_KEY_1, assoc_data);
  1353. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  1354. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1355. }
  1356. static void tcam_enable(struct niu *np, int on)
  1357. {
  1358. u64 val = nr64(FFLP_CFG_1);
  1359. if (on)
  1360. val &= ~FFLP_CFG_1_TCAM_DIS;
  1361. else
  1362. val |= FFLP_CFG_1_TCAM_DIS;
  1363. nw64(FFLP_CFG_1, val);
  1364. }
  1365. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  1366. {
  1367. u64 val = nr64(FFLP_CFG_1);
  1368. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  1369. FFLP_CFG_1_CAMLAT |
  1370. FFLP_CFG_1_CAMRATIO);
  1371. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  1372. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  1373. nw64(FFLP_CFG_1, val);
  1374. val = nr64(FFLP_CFG_1);
  1375. val |= FFLP_CFG_1_FFLPINITDONE;
  1376. nw64(FFLP_CFG_1, val);
  1377. }
  1378. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  1379. int on)
  1380. {
  1381. unsigned long reg;
  1382. u64 val;
  1383. if (class < CLASS_CODE_ETHERTYPE1 ||
  1384. class > CLASS_CODE_ETHERTYPE2)
  1385. return -EINVAL;
  1386. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1387. val = nr64(reg);
  1388. if (on)
  1389. val |= L2_CLS_VLD;
  1390. else
  1391. val &= ~L2_CLS_VLD;
  1392. nw64(reg, val);
  1393. return 0;
  1394. }
  1395. #if 0
  1396. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  1397. u64 ether_type)
  1398. {
  1399. unsigned long reg;
  1400. u64 val;
  1401. if (class < CLASS_CODE_ETHERTYPE1 ||
  1402. class > CLASS_CODE_ETHERTYPE2 ||
  1403. (ether_type & ~(u64)0xffff) != 0)
  1404. return -EINVAL;
  1405. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1406. val = nr64(reg);
  1407. val &= ~L2_CLS_ETYPE;
  1408. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  1409. nw64(reg, val);
  1410. return 0;
  1411. }
  1412. #endif
  1413. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  1414. int on)
  1415. {
  1416. unsigned long reg;
  1417. u64 val;
  1418. if (class < CLASS_CODE_USER_PROG1 ||
  1419. class > CLASS_CODE_USER_PROG4)
  1420. return -EINVAL;
  1421. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1422. val = nr64(reg);
  1423. if (on)
  1424. val |= L3_CLS_VALID;
  1425. else
  1426. val &= ~L3_CLS_VALID;
  1427. nw64(reg, val);
  1428. return 0;
  1429. }
  1430. #if 0
  1431. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  1432. int ipv6, u64 protocol_id,
  1433. u64 tos_mask, u64 tos_val)
  1434. {
  1435. unsigned long reg;
  1436. u64 val;
  1437. if (class < CLASS_CODE_USER_PROG1 ||
  1438. class > CLASS_CODE_USER_PROG4 ||
  1439. (protocol_id & ~(u64)0xff) != 0 ||
  1440. (tos_mask & ~(u64)0xff) != 0 ||
  1441. (tos_val & ~(u64)0xff) != 0)
  1442. return -EINVAL;
  1443. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1444. val = nr64(reg);
  1445. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  1446. L3_CLS_TOSMASK | L3_CLS_TOS);
  1447. if (ipv6)
  1448. val |= L3_CLS_IPVER;
  1449. val |= (protocol_id << L3_CLS_PID_SHIFT);
  1450. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  1451. val |= (tos_val << L3_CLS_TOS_SHIFT);
  1452. nw64(reg, val);
  1453. return 0;
  1454. }
  1455. #endif
  1456. static int tcam_early_init(struct niu *np)
  1457. {
  1458. unsigned long i;
  1459. int err;
  1460. tcam_enable(np, 0);
  1461. tcam_set_lat_and_ratio(np,
  1462. DEFAULT_TCAM_LATENCY,
  1463. DEFAULT_TCAM_ACCESS_RATIO);
  1464. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  1465. err = tcam_user_eth_class_enable(np, i, 0);
  1466. if (err)
  1467. return err;
  1468. }
  1469. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  1470. err = tcam_user_ip_class_enable(np, i, 0);
  1471. if (err)
  1472. return err;
  1473. }
  1474. return 0;
  1475. }
  1476. static int tcam_flush_all(struct niu *np)
  1477. {
  1478. unsigned long i;
  1479. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  1480. int err = tcam_flush(np, i);
  1481. if (err)
  1482. return err;
  1483. }
  1484. return 0;
  1485. }
  1486. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  1487. {
  1488. return ((u64)index | (num_entries == 1 ?
  1489. HASH_TBL_ADDR_AUTOINC : 0));
  1490. }
  1491. #if 0
  1492. static int hash_read(struct niu *np, unsigned long partition,
  1493. unsigned long index, unsigned long num_entries,
  1494. u64 *data)
  1495. {
  1496. u64 val = hash_addr_regval(index, num_entries);
  1497. unsigned long i;
  1498. if (partition >= FCRAM_NUM_PARTITIONS ||
  1499. index + num_entries > FCRAM_SIZE)
  1500. return -EINVAL;
  1501. nw64(HASH_TBL_ADDR(partition), val);
  1502. for (i = 0; i < num_entries; i++)
  1503. data[i] = nr64(HASH_TBL_DATA(partition));
  1504. return 0;
  1505. }
  1506. #endif
  1507. static int hash_write(struct niu *np, unsigned long partition,
  1508. unsigned long index, unsigned long num_entries,
  1509. u64 *data)
  1510. {
  1511. u64 val = hash_addr_regval(index, num_entries);
  1512. unsigned long i;
  1513. if (partition >= FCRAM_NUM_PARTITIONS ||
  1514. index + (num_entries * 8) > FCRAM_SIZE)
  1515. return -EINVAL;
  1516. nw64(HASH_TBL_ADDR(partition), val);
  1517. for (i = 0; i < num_entries; i++)
  1518. nw64(HASH_TBL_DATA(partition), data[i]);
  1519. return 0;
  1520. }
  1521. static void fflp_reset(struct niu *np)
  1522. {
  1523. u64 val;
  1524. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  1525. udelay(10);
  1526. nw64(FFLP_CFG_1, 0);
  1527. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  1528. nw64(FFLP_CFG_1, val);
  1529. }
  1530. static void fflp_set_timings(struct niu *np)
  1531. {
  1532. u64 val = nr64(FFLP_CFG_1);
  1533. val &= ~FFLP_CFG_1_FFLPINITDONE;
  1534. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  1535. nw64(FFLP_CFG_1, val);
  1536. val = nr64(FFLP_CFG_1);
  1537. val |= FFLP_CFG_1_FFLPINITDONE;
  1538. nw64(FFLP_CFG_1, val);
  1539. val = nr64(FCRAM_REF_TMR);
  1540. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  1541. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  1542. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  1543. nw64(FCRAM_REF_TMR, val);
  1544. }
  1545. static int fflp_set_partition(struct niu *np, u64 partition,
  1546. u64 mask, u64 base, int enable)
  1547. {
  1548. unsigned long reg;
  1549. u64 val;
  1550. if (partition >= FCRAM_NUM_PARTITIONS ||
  1551. (mask & ~(u64)0x1f) != 0 ||
  1552. (base & ~(u64)0x1f) != 0)
  1553. return -EINVAL;
  1554. reg = FLW_PRT_SEL(partition);
  1555. val = nr64(reg);
  1556. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  1557. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  1558. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  1559. if (enable)
  1560. val |= FLW_PRT_SEL_EXT;
  1561. nw64(reg, val);
  1562. return 0;
  1563. }
  1564. static int fflp_disable_all_partitions(struct niu *np)
  1565. {
  1566. unsigned long i;
  1567. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  1568. int err = fflp_set_partition(np, 0, 0, 0, 0);
  1569. if (err)
  1570. return err;
  1571. }
  1572. return 0;
  1573. }
  1574. static void fflp_llcsnap_enable(struct niu *np, int on)
  1575. {
  1576. u64 val = nr64(FFLP_CFG_1);
  1577. if (on)
  1578. val |= FFLP_CFG_1_LLCSNAP;
  1579. else
  1580. val &= ~FFLP_CFG_1_LLCSNAP;
  1581. nw64(FFLP_CFG_1, val);
  1582. }
  1583. static void fflp_errors_enable(struct niu *np, int on)
  1584. {
  1585. u64 val = nr64(FFLP_CFG_1);
  1586. if (on)
  1587. val &= ~FFLP_CFG_1_ERRORDIS;
  1588. else
  1589. val |= FFLP_CFG_1_ERRORDIS;
  1590. nw64(FFLP_CFG_1, val);
  1591. }
  1592. static int fflp_hash_clear(struct niu *np)
  1593. {
  1594. struct fcram_hash_ipv4 ent;
  1595. unsigned long i;
  1596. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  1597. memset(&ent, 0, sizeof(ent));
  1598. ent.header = HASH_HEADER_EXT;
  1599. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  1600. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  1601. if (err)
  1602. return err;
  1603. }
  1604. return 0;
  1605. }
  1606. static int fflp_early_init(struct niu *np)
  1607. {
  1608. struct niu_parent *parent;
  1609. unsigned long flags;
  1610. int err;
  1611. niu_lock_parent(np, flags);
  1612. parent = np->parent;
  1613. err = 0;
  1614. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  1615. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  1616. np->port);
  1617. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1618. fflp_reset(np);
  1619. fflp_set_timings(np);
  1620. err = fflp_disable_all_partitions(np);
  1621. if (err) {
  1622. niudbg(PROBE, "fflp_disable_all_partitions "
  1623. "failed, err=%d\n", err);
  1624. goto out;
  1625. }
  1626. }
  1627. err = tcam_early_init(np);
  1628. if (err) {
  1629. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  1630. err);
  1631. goto out;
  1632. }
  1633. fflp_llcsnap_enable(np, 1);
  1634. fflp_errors_enable(np, 0);
  1635. nw64(H1POLY, 0);
  1636. nw64(H2POLY, 0);
  1637. err = tcam_flush_all(np);
  1638. if (err) {
  1639. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  1640. err);
  1641. goto out;
  1642. }
  1643. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1644. err = fflp_hash_clear(np);
  1645. if (err) {
  1646. niudbg(PROBE, "fflp_hash_clear failed, "
  1647. "err=%d\n", err);
  1648. goto out;
  1649. }
  1650. }
  1651. vlan_tbl_clear(np);
  1652. niudbg(PROBE, "fflp_early_init: Success\n");
  1653. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  1654. }
  1655. out:
  1656. niu_unlock_parent(np, flags);
  1657. return err;
  1658. }
  1659. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  1660. {
  1661. if (class_code < CLASS_CODE_USER_PROG1 ||
  1662. class_code > CLASS_CODE_SCTP_IPV6)
  1663. return -EINVAL;
  1664. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1665. return 0;
  1666. }
  1667. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  1668. {
  1669. if (class_code < CLASS_CODE_USER_PROG1 ||
  1670. class_code > CLASS_CODE_SCTP_IPV6)
  1671. return -EINVAL;
  1672. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1673. return 0;
  1674. }
  1675. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  1676. u32 offset, u32 size)
  1677. {
  1678. int i = skb_shinfo(skb)->nr_frags;
  1679. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1680. frag->page = page;
  1681. frag->page_offset = offset;
  1682. frag->size = size;
  1683. skb->len += size;
  1684. skb->data_len += size;
  1685. skb->truesize += size;
  1686. skb_shinfo(skb)->nr_frags = i + 1;
  1687. }
  1688. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  1689. {
  1690. a >>= PAGE_SHIFT;
  1691. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  1692. return (a & (MAX_RBR_RING_SIZE - 1));
  1693. }
  1694. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  1695. struct page ***link)
  1696. {
  1697. unsigned int h = niu_hash_rxaddr(rp, addr);
  1698. struct page *p, **pp;
  1699. addr &= PAGE_MASK;
  1700. pp = &rp->rxhash[h];
  1701. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  1702. if (p->index == addr) {
  1703. *link = pp;
  1704. break;
  1705. }
  1706. }
  1707. return p;
  1708. }
  1709. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  1710. {
  1711. unsigned int h = niu_hash_rxaddr(rp, base);
  1712. page->index = base;
  1713. page->mapping = (struct address_space *) rp->rxhash[h];
  1714. rp->rxhash[h] = page;
  1715. }
  1716. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  1717. gfp_t mask, int start_index)
  1718. {
  1719. struct page *page;
  1720. u64 addr;
  1721. int i;
  1722. page = alloc_page(mask);
  1723. if (!page)
  1724. return -ENOMEM;
  1725. addr = np->ops->map_page(np->device, page, 0,
  1726. PAGE_SIZE, DMA_FROM_DEVICE);
  1727. niu_hash_page(rp, page, addr);
  1728. if (rp->rbr_blocks_per_page > 1)
  1729. atomic_add(rp->rbr_blocks_per_page - 1,
  1730. &compound_head(page)->_count);
  1731. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  1732. __le32 *rbr = &rp->rbr[start_index + i];
  1733. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  1734. addr += rp->rbr_block_size;
  1735. }
  1736. return 0;
  1737. }
  1738. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1739. {
  1740. int index = rp->rbr_index;
  1741. rp->rbr_pending++;
  1742. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  1743. int err = niu_rbr_add_page(np, rp, mask, index);
  1744. if (unlikely(err)) {
  1745. rp->rbr_pending--;
  1746. return;
  1747. }
  1748. rp->rbr_index += rp->rbr_blocks_per_page;
  1749. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  1750. if (rp->rbr_index == rp->rbr_table_size)
  1751. rp->rbr_index = 0;
  1752. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  1753. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  1754. rp->rbr_pending = 0;
  1755. }
  1756. }
  1757. }
  1758. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  1759. {
  1760. unsigned int index = rp->rcr_index;
  1761. int num_rcr = 0;
  1762. rp->rx_dropped++;
  1763. while (1) {
  1764. struct page *page, **link;
  1765. u64 addr, val;
  1766. u32 rcr_size;
  1767. num_rcr++;
  1768. val = le64_to_cpup(&rp->rcr[index]);
  1769. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1770. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1771. page = niu_find_rxpage(rp, addr, &link);
  1772. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1773. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1774. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  1775. *link = (struct page *) page->mapping;
  1776. np->ops->unmap_page(np->device, page->index,
  1777. PAGE_SIZE, DMA_FROM_DEVICE);
  1778. page->index = 0;
  1779. page->mapping = NULL;
  1780. __free_page(page);
  1781. rp->rbr_refill_pending++;
  1782. }
  1783. index = NEXT_RCR(rp, index);
  1784. if (!(val & RCR_ENTRY_MULTI))
  1785. break;
  1786. }
  1787. rp->rcr_index = index;
  1788. return num_rcr;
  1789. }
  1790. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  1791. {
  1792. unsigned int index = rp->rcr_index;
  1793. struct sk_buff *skb;
  1794. int len, num_rcr;
  1795. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  1796. if (unlikely(!skb))
  1797. return niu_rx_pkt_ignore(np, rp);
  1798. num_rcr = 0;
  1799. while (1) {
  1800. struct page *page, **link;
  1801. u32 rcr_size, append_size;
  1802. u64 addr, val, off;
  1803. num_rcr++;
  1804. val = le64_to_cpup(&rp->rcr[index]);
  1805. len = (val & RCR_ENTRY_L2_LEN) >>
  1806. RCR_ENTRY_L2_LEN_SHIFT;
  1807. len -= ETH_FCS_LEN;
  1808. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1809. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1810. page = niu_find_rxpage(rp, addr, &link);
  1811. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1812. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1813. off = addr & ~PAGE_MASK;
  1814. append_size = rcr_size;
  1815. if (num_rcr == 1) {
  1816. int ptype;
  1817. off += 2;
  1818. append_size -= 2;
  1819. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  1820. if ((ptype == RCR_PKT_TYPE_TCP ||
  1821. ptype == RCR_PKT_TYPE_UDP) &&
  1822. !(val & (RCR_ENTRY_NOPORT |
  1823. RCR_ENTRY_ERROR)))
  1824. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1825. else
  1826. skb->ip_summed = CHECKSUM_NONE;
  1827. }
  1828. if (!(val & RCR_ENTRY_MULTI))
  1829. append_size = len - skb->len;
  1830. niu_rx_skb_append(skb, page, off, append_size);
  1831. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  1832. *link = (struct page *) page->mapping;
  1833. np->ops->unmap_page(np->device, page->index,
  1834. PAGE_SIZE, DMA_FROM_DEVICE);
  1835. page->index = 0;
  1836. page->mapping = NULL;
  1837. rp->rbr_refill_pending++;
  1838. } else
  1839. get_page(page);
  1840. index = NEXT_RCR(rp, index);
  1841. if (!(val & RCR_ENTRY_MULTI))
  1842. break;
  1843. }
  1844. rp->rcr_index = index;
  1845. skb_reserve(skb, NET_IP_ALIGN);
  1846. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  1847. rp->rx_packets++;
  1848. rp->rx_bytes += skb->len;
  1849. skb->protocol = eth_type_trans(skb, np->dev);
  1850. netif_receive_skb(skb);
  1851. return num_rcr;
  1852. }
  1853. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1854. {
  1855. int blocks_per_page = rp->rbr_blocks_per_page;
  1856. int err, index = rp->rbr_index;
  1857. err = 0;
  1858. while (index < (rp->rbr_table_size - blocks_per_page)) {
  1859. err = niu_rbr_add_page(np, rp, mask, index);
  1860. if (err)
  1861. break;
  1862. index += blocks_per_page;
  1863. }
  1864. rp->rbr_index = index;
  1865. return err;
  1866. }
  1867. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  1868. {
  1869. int i;
  1870. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  1871. struct page *page;
  1872. page = rp->rxhash[i];
  1873. while (page) {
  1874. struct page *next = (struct page *) page->mapping;
  1875. u64 base = page->index;
  1876. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  1877. DMA_FROM_DEVICE);
  1878. page->index = 0;
  1879. page->mapping = NULL;
  1880. __free_page(page);
  1881. page = next;
  1882. }
  1883. }
  1884. for (i = 0; i < rp->rbr_table_size; i++)
  1885. rp->rbr[i] = cpu_to_le32(0);
  1886. rp->rbr_index = 0;
  1887. }
  1888. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  1889. {
  1890. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  1891. struct sk_buff *skb = tb->skb;
  1892. struct tx_pkt_hdr *tp;
  1893. u64 tx_flags;
  1894. int i, len;
  1895. tp = (struct tx_pkt_hdr *) skb->data;
  1896. tx_flags = le64_to_cpup(&tp->flags);
  1897. rp->tx_packets++;
  1898. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  1899. ((tx_flags & TXHDR_PAD) / 2));
  1900. len = skb_headlen(skb);
  1901. np->ops->unmap_single(np->device, tb->mapping,
  1902. len, DMA_TO_DEVICE);
  1903. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  1904. rp->mark_pending--;
  1905. tb->skb = NULL;
  1906. do {
  1907. idx = NEXT_TX(rp, idx);
  1908. len -= MAX_TX_DESC_LEN;
  1909. } while (len > 0);
  1910. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1911. tb = &rp->tx_buffs[idx];
  1912. BUG_ON(tb->skb != NULL);
  1913. np->ops->unmap_page(np->device, tb->mapping,
  1914. skb_shinfo(skb)->frags[i].size,
  1915. DMA_TO_DEVICE);
  1916. idx = NEXT_TX(rp, idx);
  1917. }
  1918. dev_kfree_skb(skb);
  1919. return idx;
  1920. }
  1921. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  1922. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  1923. {
  1924. u16 pkt_cnt, tmp;
  1925. int cons;
  1926. u64 cs;
  1927. cs = rp->tx_cs;
  1928. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  1929. goto out;
  1930. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  1931. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  1932. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  1933. rp->last_pkt_cnt = tmp;
  1934. cons = rp->cons;
  1935. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  1936. np->dev->name, pkt_cnt, cons);
  1937. while (pkt_cnt--)
  1938. cons = release_tx_packet(np, rp, cons);
  1939. rp->cons = cons;
  1940. smp_mb();
  1941. out:
  1942. if (unlikely(netif_queue_stopped(np->dev) &&
  1943. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  1944. netif_tx_lock(np->dev);
  1945. if (netif_queue_stopped(np->dev) &&
  1946. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  1947. netif_wake_queue(np->dev);
  1948. netif_tx_unlock(np->dev);
  1949. }
  1950. }
  1951. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  1952. {
  1953. int qlen, rcr_done = 0, work_done = 0;
  1954. struct rxdma_mailbox *mbox = rp->mbox;
  1955. u64 stat;
  1956. #if 1
  1957. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  1958. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  1959. #else
  1960. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  1961. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  1962. #endif
  1963. mbox->rx_dma_ctl_stat = 0;
  1964. mbox->rcrstat_a = 0;
  1965. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  1966. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  1967. rcr_done = work_done = 0;
  1968. qlen = min(qlen, budget);
  1969. while (work_done < qlen) {
  1970. rcr_done += niu_process_rx_pkt(np, rp);
  1971. work_done++;
  1972. }
  1973. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  1974. unsigned int i;
  1975. for (i = 0; i < rp->rbr_refill_pending; i++)
  1976. niu_rbr_refill(np, rp, GFP_ATOMIC);
  1977. rp->rbr_refill_pending = 0;
  1978. }
  1979. stat = (RX_DMA_CTL_STAT_MEX |
  1980. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  1981. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  1982. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  1983. return work_done;
  1984. }
  1985. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  1986. {
  1987. u64 v0 = lp->v0;
  1988. u32 tx_vec = (v0 >> 32);
  1989. u32 rx_vec = (v0 & 0xffffffff);
  1990. int i, work_done = 0;
  1991. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  1992. np->dev->name, (unsigned long long) v0);
  1993. for (i = 0; i < np->num_tx_rings; i++) {
  1994. struct tx_ring_info *rp = &np->tx_rings[i];
  1995. if (tx_vec & (1 << rp->tx_channel))
  1996. niu_tx_work(np, rp);
  1997. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  1998. }
  1999. for (i = 0; i < np->num_rx_rings; i++) {
  2000. struct rx_ring_info *rp = &np->rx_rings[i];
  2001. if (rx_vec & (1 << rp->rx_channel)) {
  2002. int this_work_done;
  2003. this_work_done = niu_rx_work(np, rp,
  2004. budget);
  2005. budget -= this_work_done;
  2006. work_done += this_work_done;
  2007. }
  2008. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  2009. }
  2010. return work_done;
  2011. }
  2012. static int niu_poll(struct napi_struct *napi, int budget)
  2013. {
  2014. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  2015. struct niu *np = lp->np;
  2016. int work_done;
  2017. work_done = niu_poll_core(np, lp, budget);
  2018. if (work_done < budget) {
  2019. netif_rx_complete(np->dev, napi);
  2020. niu_ldg_rearm(np, lp, 1);
  2021. }
  2022. return work_done;
  2023. }
  2024. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  2025. u64 stat)
  2026. {
  2027. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  2028. np->dev->name, rp->rx_channel);
  2029. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  2030. printk("RBR_TMOUT ");
  2031. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  2032. printk("RSP_CNT ");
  2033. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  2034. printk("BYTE_EN_BUS ");
  2035. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  2036. printk("RSP_DAT ");
  2037. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  2038. printk("RCR_ACK ");
  2039. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  2040. printk("RCR_SHA_PAR ");
  2041. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  2042. printk("RBR_PRE_PAR ");
  2043. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  2044. printk("CONFIG ");
  2045. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  2046. printk("RCRINCON ");
  2047. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  2048. printk("RCRFULL ");
  2049. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  2050. printk("RBRFULL ");
  2051. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  2052. printk("RBRLOGPAGE ");
  2053. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  2054. printk("CFIGLOGPAGE ");
  2055. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  2056. printk("DC_FIDO ");
  2057. printk(")\n");
  2058. }
  2059. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  2060. {
  2061. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2062. int err = 0;
  2063. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  2064. np->dev->name, rp->rx_channel, (unsigned long long) stat);
  2065. niu_log_rxchan_errors(np, rp, stat);
  2066. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  2067. RX_DMA_CTL_STAT_PORT_FATAL))
  2068. err = -EINVAL;
  2069. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2070. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  2071. return err;
  2072. }
  2073. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  2074. u64 cs)
  2075. {
  2076. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  2077. np->dev->name, rp->tx_channel);
  2078. if (cs & TX_CS_MBOX_ERR)
  2079. printk("MBOX ");
  2080. if (cs & TX_CS_PKT_SIZE_ERR)
  2081. printk("PKT_SIZE ");
  2082. if (cs & TX_CS_TX_RING_OFLOW)
  2083. printk("TX_RING_OFLOW ");
  2084. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  2085. printk("PREF_BUF_PAR ");
  2086. if (cs & TX_CS_NACK_PREF)
  2087. printk("NACK_PREF ");
  2088. if (cs & TX_CS_NACK_PKT_RD)
  2089. printk("NACK_PKT_RD ");
  2090. if (cs & TX_CS_CONF_PART_ERR)
  2091. printk("CONF_PART ");
  2092. if (cs & TX_CS_PKT_PRT_ERR)
  2093. printk("PKT_PTR ");
  2094. printk(")\n");
  2095. }
  2096. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  2097. {
  2098. u64 cs, logh, logl;
  2099. cs = nr64(TX_CS(rp->tx_channel));
  2100. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  2101. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  2102. dev_err(np->device, PFX "%s: TX channel %u error, "
  2103. "cs[%llx] logh[%llx] logl[%llx]\n",
  2104. np->dev->name, rp->tx_channel,
  2105. (unsigned long long) cs,
  2106. (unsigned long long) logh,
  2107. (unsigned long long) logl);
  2108. niu_log_txchan_errors(np, rp, cs);
  2109. return -ENODEV;
  2110. }
  2111. static int niu_mif_interrupt(struct niu *np)
  2112. {
  2113. u64 mif_status = nr64(MIF_STATUS);
  2114. int phy_mdint = 0;
  2115. if (np->flags & NIU_FLAGS_XMAC) {
  2116. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  2117. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  2118. phy_mdint = 1;
  2119. }
  2120. dev_err(np->device, PFX "%s: MIF interrupt, "
  2121. "stat[%llx] phy_mdint(%d)\n",
  2122. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  2123. return -ENODEV;
  2124. }
  2125. static void niu_xmac_interrupt(struct niu *np)
  2126. {
  2127. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  2128. u64 val;
  2129. val = nr64_mac(XTXMAC_STATUS);
  2130. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  2131. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  2132. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  2133. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  2134. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  2135. mp->tx_fifo_errors++;
  2136. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  2137. mp->tx_overflow_errors++;
  2138. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  2139. mp->tx_max_pkt_size_errors++;
  2140. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  2141. mp->tx_underflow_errors++;
  2142. val = nr64_mac(XRXMAC_STATUS);
  2143. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  2144. mp->rx_local_faults++;
  2145. if (val & XRXMAC_STATUS_RFLT_DET)
  2146. mp->rx_remote_faults++;
  2147. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  2148. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  2149. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  2150. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  2151. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  2152. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  2153. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  2154. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  2155. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2156. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2157. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2158. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2159. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  2160. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  2161. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  2162. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  2163. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  2164. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  2165. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  2166. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  2167. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  2168. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  2169. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  2170. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  2171. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  2172. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  2173. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  2174. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  2175. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  2176. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  2177. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  2178. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  2179. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  2180. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  2181. if (val & XRXMAC_STATUS_RXUFLOW)
  2182. mp->rx_underflows++;
  2183. if (val & XRXMAC_STATUS_RXOFLOW)
  2184. mp->rx_overflows++;
  2185. val = nr64_mac(XMAC_FC_STAT);
  2186. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  2187. mp->pause_off_state++;
  2188. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  2189. mp->pause_on_state++;
  2190. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  2191. mp->pause_received++;
  2192. }
  2193. static void niu_bmac_interrupt(struct niu *np)
  2194. {
  2195. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  2196. u64 val;
  2197. val = nr64_mac(BTXMAC_STATUS);
  2198. if (val & BTXMAC_STATUS_UNDERRUN)
  2199. mp->tx_underflow_errors++;
  2200. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  2201. mp->tx_max_pkt_size_errors++;
  2202. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  2203. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  2204. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  2205. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  2206. val = nr64_mac(BRXMAC_STATUS);
  2207. if (val & BRXMAC_STATUS_OVERFLOW)
  2208. mp->rx_overflows++;
  2209. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  2210. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  2211. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  2212. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2213. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  2214. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2215. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  2216. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  2217. val = nr64_mac(BMAC_CTRL_STATUS);
  2218. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  2219. mp->pause_off_state++;
  2220. if (val & BMAC_CTRL_STATUS_PAUSE)
  2221. mp->pause_on_state++;
  2222. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  2223. mp->pause_received++;
  2224. }
  2225. static int niu_mac_interrupt(struct niu *np)
  2226. {
  2227. if (np->flags & NIU_FLAGS_XMAC)
  2228. niu_xmac_interrupt(np);
  2229. else
  2230. niu_bmac_interrupt(np);
  2231. return 0;
  2232. }
  2233. static void niu_log_device_error(struct niu *np, u64 stat)
  2234. {
  2235. dev_err(np->device, PFX "%s: Core device errors ( ",
  2236. np->dev->name);
  2237. if (stat & SYS_ERR_MASK_META2)
  2238. printk("META2 ");
  2239. if (stat & SYS_ERR_MASK_META1)
  2240. printk("META1 ");
  2241. if (stat & SYS_ERR_MASK_PEU)
  2242. printk("PEU ");
  2243. if (stat & SYS_ERR_MASK_TXC)
  2244. printk("TXC ");
  2245. if (stat & SYS_ERR_MASK_RDMC)
  2246. printk("RDMC ");
  2247. if (stat & SYS_ERR_MASK_TDMC)
  2248. printk("TDMC ");
  2249. if (stat & SYS_ERR_MASK_ZCP)
  2250. printk("ZCP ");
  2251. if (stat & SYS_ERR_MASK_FFLP)
  2252. printk("FFLP ");
  2253. if (stat & SYS_ERR_MASK_IPP)
  2254. printk("IPP ");
  2255. if (stat & SYS_ERR_MASK_MAC)
  2256. printk("MAC ");
  2257. if (stat & SYS_ERR_MASK_SMX)
  2258. printk("SMX ");
  2259. printk(")\n");
  2260. }
  2261. static int niu_device_error(struct niu *np)
  2262. {
  2263. u64 stat = nr64(SYS_ERR_STAT);
  2264. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  2265. np->dev->name, (unsigned long long) stat);
  2266. niu_log_device_error(np, stat);
  2267. return -ENODEV;
  2268. }
  2269. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp)
  2270. {
  2271. u64 v0 = lp->v0;
  2272. u64 v1 = lp->v1;
  2273. u64 v2 = lp->v2;
  2274. int i, err = 0;
  2275. if (v1 & 0x00000000ffffffffULL) {
  2276. u32 rx_vec = (v1 & 0xffffffff);
  2277. for (i = 0; i < np->num_rx_rings; i++) {
  2278. struct rx_ring_info *rp = &np->rx_rings[i];
  2279. if (rx_vec & (1 << rp->rx_channel)) {
  2280. int r = niu_rx_error(np, rp);
  2281. if (r)
  2282. err = r;
  2283. }
  2284. }
  2285. }
  2286. if (v1 & 0x7fffffff00000000ULL) {
  2287. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  2288. for (i = 0; i < np->num_tx_rings; i++) {
  2289. struct tx_ring_info *rp = &np->tx_rings[i];
  2290. if (tx_vec & (1 << rp->tx_channel)) {
  2291. int r = niu_tx_error(np, rp);
  2292. if (r)
  2293. err = r;
  2294. }
  2295. }
  2296. }
  2297. if ((v0 | v1) & 0x8000000000000000ULL) {
  2298. int r = niu_mif_interrupt(np);
  2299. if (r)
  2300. err = r;
  2301. }
  2302. if (v2) {
  2303. if (v2 & 0x01ef) {
  2304. int r = niu_mac_interrupt(np);
  2305. if (r)
  2306. err = r;
  2307. }
  2308. if (v2 & 0x0210) {
  2309. int r = niu_device_error(np);
  2310. if (r)
  2311. err = r;
  2312. }
  2313. }
  2314. if (err)
  2315. niu_enable_interrupts(np, 0);
  2316. return -EINVAL;
  2317. }
  2318. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  2319. int ldn)
  2320. {
  2321. struct rxdma_mailbox *mbox = rp->mbox;
  2322. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2323. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  2324. RX_DMA_CTL_STAT_RCRTO);
  2325. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  2326. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  2327. np->dev->name, (unsigned long long) stat);
  2328. }
  2329. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  2330. int ldn)
  2331. {
  2332. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  2333. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  2334. np->dev->name, (unsigned long long) rp->tx_cs);
  2335. }
  2336. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  2337. {
  2338. struct niu_parent *parent = np->parent;
  2339. u32 rx_vec, tx_vec;
  2340. int i;
  2341. tx_vec = (v0 >> 32);
  2342. rx_vec = (v0 & 0xffffffff);
  2343. for (i = 0; i < np->num_rx_rings; i++) {
  2344. struct rx_ring_info *rp = &np->rx_rings[i];
  2345. int ldn = LDN_RXDMA(rp->rx_channel);
  2346. if (parent->ldg_map[ldn] != ldg)
  2347. continue;
  2348. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2349. if (rx_vec & (1 << rp->rx_channel))
  2350. niu_rxchan_intr(np, rp, ldn);
  2351. }
  2352. for (i = 0; i < np->num_tx_rings; i++) {
  2353. struct tx_ring_info *rp = &np->tx_rings[i];
  2354. int ldn = LDN_TXDMA(rp->tx_channel);
  2355. if (parent->ldg_map[ldn] != ldg)
  2356. continue;
  2357. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2358. if (tx_vec & (1 << rp->tx_channel))
  2359. niu_txchan_intr(np, rp, ldn);
  2360. }
  2361. }
  2362. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  2363. u64 v0, u64 v1, u64 v2)
  2364. {
  2365. if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
  2366. lp->v0 = v0;
  2367. lp->v1 = v1;
  2368. lp->v2 = v2;
  2369. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  2370. __netif_rx_schedule(np->dev, &lp->napi);
  2371. }
  2372. }
  2373. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  2374. {
  2375. struct niu_ldg *lp = dev_id;
  2376. struct niu *np = lp->np;
  2377. int ldg = lp->ldg_num;
  2378. unsigned long flags;
  2379. u64 v0, v1, v2;
  2380. if (netif_msg_intr(np))
  2381. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  2382. lp, ldg);
  2383. spin_lock_irqsave(&np->lock, flags);
  2384. v0 = nr64(LDSV0(ldg));
  2385. v1 = nr64(LDSV1(ldg));
  2386. v2 = nr64(LDSV2(ldg));
  2387. if (netif_msg_intr(np))
  2388. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  2389. (unsigned long long) v0,
  2390. (unsigned long long) v1,
  2391. (unsigned long long) v2);
  2392. if (unlikely(!v0 && !v1 && !v2)) {
  2393. spin_unlock_irqrestore(&np->lock, flags);
  2394. return IRQ_NONE;
  2395. }
  2396. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  2397. int err = niu_slowpath_interrupt(np, lp);
  2398. if (err)
  2399. goto out;
  2400. }
  2401. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  2402. niu_schedule_napi(np, lp, v0, v1, v2);
  2403. else
  2404. niu_ldg_rearm(np, lp, 1);
  2405. out:
  2406. spin_unlock_irqrestore(&np->lock, flags);
  2407. return IRQ_HANDLED;
  2408. }
  2409. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  2410. {
  2411. if (rp->mbox) {
  2412. np->ops->free_coherent(np->device,
  2413. sizeof(struct rxdma_mailbox),
  2414. rp->mbox, rp->mbox_dma);
  2415. rp->mbox = NULL;
  2416. }
  2417. if (rp->rcr) {
  2418. np->ops->free_coherent(np->device,
  2419. MAX_RCR_RING_SIZE * sizeof(__le64),
  2420. rp->rcr, rp->rcr_dma);
  2421. rp->rcr = NULL;
  2422. rp->rcr_table_size = 0;
  2423. rp->rcr_index = 0;
  2424. }
  2425. if (rp->rbr) {
  2426. niu_rbr_free(np, rp);
  2427. np->ops->free_coherent(np->device,
  2428. MAX_RBR_RING_SIZE * sizeof(__le32),
  2429. rp->rbr, rp->rbr_dma);
  2430. rp->rbr = NULL;
  2431. rp->rbr_table_size = 0;
  2432. rp->rbr_index = 0;
  2433. }
  2434. kfree(rp->rxhash);
  2435. rp->rxhash = NULL;
  2436. }
  2437. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  2438. {
  2439. if (rp->mbox) {
  2440. np->ops->free_coherent(np->device,
  2441. sizeof(struct txdma_mailbox),
  2442. rp->mbox, rp->mbox_dma);
  2443. rp->mbox = NULL;
  2444. }
  2445. if (rp->descr) {
  2446. int i;
  2447. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  2448. if (rp->tx_buffs[i].skb)
  2449. (void) release_tx_packet(np, rp, i);
  2450. }
  2451. np->ops->free_coherent(np->device,
  2452. MAX_TX_RING_SIZE * sizeof(__le64),
  2453. rp->descr, rp->descr_dma);
  2454. rp->descr = NULL;
  2455. rp->pending = 0;
  2456. rp->prod = 0;
  2457. rp->cons = 0;
  2458. rp->wrap_bit = 0;
  2459. }
  2460. }
  2461. static void niu_free_channels(struct niu *np)
  2462. {
  2463. int i;
  2464. if (np->rx_rings) {
  2465. for (i = 0; i < np->num_rx_rings; i++) {
  2466. struct rx_ring_info *rp = &np->rx_rings[i];
  2467. niu_free_rx_ring_info(np, rp);
  2468. }
  2469. kfree(np->rx_rings);
  2470. np->rx_rings = NULL;
  2471. np->num_rx_rings = 0;
  2472. }
  2473. if (np->tx_rings) {
  2474. for (i = 0; i < np->num_tx_rings; i++) {
  2475. struct tx_ring_info *rp = &np->tx_rings[i];
  2476. niu_free_tx_ring_info(np, rp);
  2477. }
  2478. kfree(np->tx_rings);
  2479. np->tx_rings = NULL;
  2480. np->num_tx_rings = 0;
  2481. }
  2482. }
  2483. static int niu_alloc_rx_ring_info(struct niu *np,
  2484. struct rx_ring_info *rp)
  2485. {
  2486. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  2487. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  2488. GFP_KERNEL);
  2489. if (!rp->rxhash)
  2490. return -ENOMEM;
  2491. rp->mbox = np->ops->alloc_coherent(np->device,
  2492. sizeof(struct rxdma_mailbox),
  2493. &rp->mbox_dma, GFP_KERNEL);
  2494. if (!rp->mbox)
  2495. return -ENOMEM;
  2496. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2497. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2498. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2499. return -EINVAL;
  2500. }
  2501. rp->rcr = np->ops->alloc_coherent(np->device,
  2502. MAX_RCR_RING_SIZE * sizeof(__le64),
  2503. &rp->rcr_dma, GFP_KERNEL);
  2504. if (!rp->rcr)
  2505. return -ENOMEM;
  2506. if ((unsigned long)rp->rcr & (64UL - 1)) {
  2507. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2508. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  2509. return -EINVAL;
  2510. }
  2511. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  2512. rp->rcr_index = 0;
  2513. rp->rbr = np->ops->alloc_coherent(np->device,
  2514. MAX_RBR_RING_SIZE * sizeof(__le32),
  2515. &rp->rbr_dma, GFP_KERNEL);
  2516. if (!rp->rbr)
  2517. return -ENOMEM;
  2518. if ((unsigned long)rp->rbr & (64UL - 1)) {
  2519. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2520. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  2521. return -EINVAL;
  2522. }
  2523. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  2524. rp->rbr_index = 0;
  2525. rp->rbr_pending = 0;
  2526. return 0;
  2527. }
  2528. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  2529. {
  2530. int mtu = np->dev->mtu;
  2531. /* These values are recommended by the HW designers for fair
  2532. * utilization of DRR amongst the rings.
  2533. */
  2534. rp->max_burst = mtu + 32;
  2535. if (rp->max_burst > 4096)
  2536. rp->max_burst = 4096;
  2537. }
  2538. static int niu_alloc_tx_ring_info(struct niu *np,
  2539. struct tx_ring_info *rp)
  2540. {
  2541. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  2542. rp->mbox = np->ops->alloc_coherent(np->device,
  2543. sizeof(struct txdma_mailbox),
  2544. &rp->mbox_dma, GFP_KERNEL);
  2545. if (!rp->mbox)
  2546. return -ENOMEM;
  2547. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2548. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2549. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2550. return -EINVAL;
  2551. }
  2552. rp->descr = np->ops->alloc_coherent(np->device,
  2553. MAX_TX_RING_SIZE * sizeof(__le64),
  2554. &rp->descr_dma, GFP_KERNEL);
  2555. if (!rp->descr)
  2556. return -ENOMEM;
  2557. if ((unsigned long)rp->descr & (64UL - 1)) {
  2558. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2559. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  2560. return -EINVAL;
  2561. }
  2562. rp->pending = MAX_TX_RING_SIZE;
  2563. rp->prod = 0;
  2564. rp->cons = 0;
  2565. rp->wrap_bit = 0;
  2566. /* XXX make these configurable... XXX */
  2567. rp->mark_freq = rp->pending / 4;
  2568. niu_set_max_burst(np, rp);
  2569. return 0;
  2570. }
  2571. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  2572. {
  2573. u16 bss;
  2574. bss = min(PAGE_SHIFT, 15);
  2575. rp->rbr_block_size = 1 << bss;
  2576. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  2577. rp->rbr_sizes[0] = 256;
  2578. rp->rbr_sizes[1] = 1024;
  2579. if (np->dev->mtu > ETH_DATA_LEN) {
  2580. switch (PAGE_SIZE) {
  2581. case 4 * 1024:
  2582. rp->rbr_sizes[2] = 4096;
  2583. break;
  2584. default:
  2585. rp->rbr_sizes[2] = 8192;
  2586. break;
  2587. }
  2588. } else {
  2589. rp->rbr_sizes[2] = 2048;
  2590. }
  2591. rp->rbr_sizes[3] = rp->rbr_block_size;
  2592. }
  2593. static int niu_alloc_channels(struct niu *np)
  2594. {
  2595. struct niu_parent *parent = np->parent;
  2596. int first_rx_channel, first_tx_channel;
  2597. int i, port, err;
  2598. port = np->port;
  2599. first_rx_channel = first_tx_channel = 0;
  2600. for (i = 0; i < port; i++) {
  2601. first_rx_channel += parent->rxchan_per_port[i];
  2602. first_tx_channel += parent->txchan_per_port[i];
  2603. }
  2604. np->num_rx_rings = parent->rxchan_per_port[port];
  2605. np->num_tx_rings = parent->txchan_per_port[port];
  2606. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  2607. GFP_KERNEL);
  2608. err = -ENOMEM;
  2609. if (!np->rx_rings)
  2610. goto out_err;
  2611. for (i = 0; i < np->num_rx_rings; i++) {
  2612. struct rx_ring_info *rp = &np->rx_rings[i];
  2613. rp->np = np;
  2614. rp->rx_channel = first_rx_channel + i;
  2615. err = niu_alloc_rx_ring_info(np, rp);
  2616. if (err)
  2617. goto out_err;
  2618. niu_size_rbr(np, rp);
  2619. /* XXX better defaults, configurable, etc... XXX */
  2620. rp->nonsyn_window = 64;
  2621. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  2622. rp->syn_window = 64;
  2623. rp->syn_threshold = rp->rcr_table_size - 64;
  2624. rp->rcr_pkt_threshold = 16;
  2625. rp->rcr_timeout = 8;
  2626. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  2627. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  2628. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  2629. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  2630. if (err)
  2631. return err;
  2632. }
  2633. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  2634. GFP_KERNEL);
  2635. err = -ENOMEM;
  2636. if (!np->tx_rings)
  2637. goto out_err;
  2638. for (i = 0; i < np->num_tx_rings; i++) {
  2639. struct tx_ring_info *rp = &np->tx_rings[i];
  2640. rp->np = np;
  2641. rp->tx_channel = first_tx_channel + i;
  2642. err = niu_alloc_tx_ring_info(np, rp);
  2643. if (err)
  2644. goto out_err;
  2645. }
  2646. return 0;
  2647. out_err:
  2648. niu_free_channels(np);
  2649. return err;
  2650. }
  2651. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  2652. {
  2653. int limit = 1000;
  2654. while (--limit > 0) {
  2655. u64 val = nr64(TX_CS(channel));
  2656. if (val & TX_CS_SNG_STATE)
  2657. return 0;
  2658. }
  2659. return -ENODEV;
  2660. }
  2661. static int niu_tx_channel_stop(struct niu *np, int channel)
  2662. {
  2663. u64 val = nr64(TX_CS(channel));
  2664. val |= TX_CS_STOP_N_GO;
  2665. nw64(TX_CS(channel), val);
  2666. return niu_tx_cs_sng_poll(np, channel);
  2667. }
  2668. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  2669. {
  2670. int limit = 1000;
  2671. while (--limit > 0) {
  2672. u64 val = nr64(TX_CS(channel));
  2673. if (!(val & TX_CS_RST))
  2674. return 0;
  2675. }
  2676. return -ENODEV;
  2677. }
  2678. static int niu_tx_channel_reset(struct niu *np, int channel)
  2679. {
  2680. u64 val = nr64(TX_CS(channel));
  2681. int err;
  2682. val |= TX_CS_RST;
  2683. nw64(TX_CS(channel), val);
  2684. err = niu_tx_cs_reset_poll(np, channel);
  2685. if (!err)
  2686. nw64(TX_RING_KICK(channel), 0);
  2687. return err;
  2688. }
  2689. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  2690. {
  2691. u64 val;
  2692. nw64(TX_LOG_MASK1(channel), 0);
  2693. nw64(TX_LOG_VAL1(channel), 0);
  2694. nw64(TX_LOG_MASK2(channel), 0);
  2695. nw64(TX_LOG_VAL2(channel), 0);
  2696. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  2697. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  2698. nw64(TX_LOG_PAGE_HDL(channel), 0);
  2699. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  2700. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  2701. nw64(TX_LOG_PAGE_VLD(channel), val);
  2702. /* XXX TXDMA 32bit mode? XXX */
  2703. return 0;
  2704. }
  2705. static void niu_txc_enable_port(struct niu *np, int on)
  2706. {
  2707. unsigned long flags;
  2708. u64 val, mask;
  2709. niu_lock_parent(np, flags);
  2710. val = nr64(TXC_CONTROL);
  2711. mask = (u64)1 << np->port;
  2712. if (on) {
  2713. val |= TXC_CONTROL_ENABLE | mask;
  2714. } else {
  2715. val &= ~mask;
  2716. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  2717. val &= ~TXC_CONTROL_ENABLE;
  2718. }
  2719. nw64(TXC_CONTROL, val);
  2720. niu_unlock_parent(np, flags);
  2721. }
  2722. static void niu_txc_set_imask(struct niu *np, u64 imask)
  2723. {
  2724. unsigned long flags;
  2725. u64 val;
  2726. niu_lock_parent(np, flags);
  2727. val = nr64(TXC_INT_MASK);
  2728. val &= ~TXC_INT_MASK_VAL(np->port);
  2729. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  2730. niu_unlock_parent(np, flags);
  2731. }
  2732. static void niu_txc_port_dma_enable(struct niu *np, int on)
  2733. {
  2734. u64 val = 0;
  2735. if (on) {
  2736. int i;
  2737. for (i = 0; i < np->num_tx_rings; i++)
  2738. val |= (1 << np->tx_rings[i].tx_channel);
  2739. }
  2740. nw64(TXC_PORT_DMA(np->port), val);
  2741. }
  2742. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  2743. {
  2744. int err, channel = rp->tx_channel;
  2745. u64 val, ring_len;
  2746. err = niu_tx_channel_stop(np, channel);
  2747. if (err)
  2748. return err;
  2749. err = niu_tx_channel_reset(np, channel);
  2750. if (err)
  2751. return err;
  2752. err = niu_tx_channel_lpage_init(np, channel);
  2753. if (err)
  2754. return err;
  2755. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  2756. nw64(TX_ENT_MSK(channel), 0);
  2757. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  2758. TX_RNG_CFIG_STADDR)) {
  2759. dev_err(np->device, PFX "%s: TX ring channel %d "
  2760. "DMA addr (%llx) is not aligned.\n",
  2761. np->dev->name, channel,
  2762. (unsigned long long) rp->descr_dma);
  2763. return -EINVAL;
  2764. }
  2765. /* The length field in TX_RNG_CFIG is measured in 64-byte
  2766. * blocks. rp->pending is the number of TX descriptors in
  2767. * our ring, 8 bytes each, thus we divide by 8 bytes more
  2768. * to get the proper value the chip wants.
  2769. */
  2770. ring_len = (rp->pending / 8);
  2771. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  2772. rp->descr_dma);
  2773. nw64(TX_RNG_CFIG(channel), val);
  2774. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  2775. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  2776. dev_err(np->device, PFX "%s: TX ring channel %d "
  2777. "MBOX addr (%llx) is has illegal bits.\n",
  2778. np->dev->name, channel,
  2779. (unsigned long long) rp->mbox_dma);
  2780. return -EINVAL;
  2781. }
  2782. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  2783. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  2784. nw64(TX_CS(channel), 0);
  2785. rp->last_pkt_cnt = 0;
  2786. return 0;
  2787. }
  2788. static void niu_init_rdc_groups(struct niu *np)
  2789. {
  2790. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  2791. int i, first_table_num = tp->first_table_num;
  2792. for (i = 0; i < tp->num_tables; i++) {
  2793. struct rdc_table *tbl = &tp->tables[i];
  2794. int this_table = first_table_num + i;
  2795. int slot;
  2796. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  2797. nw64(RDC_TBL(this_table, slot),
  2798. tbl->rxdma_channel[slot]);
  2799. }
  2800. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  2801. }
  2802. static void niu_init_drr_weight(struct niu *np)
  2803. {
  2804. int type = phy_decode(np->parent->port_phy, np->port);
  2805. u64 val;
  2806. switch (type) {
  2807. case PORT_TYPE_10G:
  2808. val = PT_DRR_WEIGHT_DEFAULT_10G;
  2809. break;
  2810. case PORT_TYPE_1G:
  2811. default:
  2812. val = PT_DRR_WEIGHT_DEFAULT_1G;
  2813. break;
  2814. }
  2815. nw64(PT_DRR_WT(np->port), val);
  2816. }
  2817. static int niu_init_hostinfo(struct niu *np)
  2818. {
  2819. struct niu_parent *parent = np->parent;
  2820. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  2821. int i, err, num_alt = niu_num_alt_addr(np);
  2822. int first_rdc_table = tp->first_table_num;
  2823. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  2824. if (err)
  2825. return err;
  2826. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  2827. if (err)
  2828. return err;
  2829. for (i = 0; i < num_alt; i++) {
  2830. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  2831. if (err)
  2832. return err;
  2833. }
  2834. return 0;
  2835. }
  2836. static int niu_rx_channel_reset(struct niu *np, int channel)
  2837. {
  2838. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  2839. RXDMA_CFIG1_RST, 1000, 10,
  2840. "RXDMA_CFIG1");
  2841. }
  2842. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  2843. {
  2844. u64 val;
  2845. nw64(RX_LOG_MASK1(channel), 0);
  2846. nw64(RX_LOG_VAL1(channel), 0);
  2847. nw64(RX_LOG_MASK2(channel), 0);
  2848. nw64(RX_LOG_VAL2(channel), 0);
  2849. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  2850. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  2851. nw64(RX_LOG_PAGE_HDL(channel), 0);
  2852. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  2853. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  2854. nw64(RX_LOG_PAGE_VLD(channel), val);
  2855. return 0;
  2856. }
  2857. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  2858. {
  2859. u64 val;
  2860. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  2861. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  2862. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  2863. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  2864. nw64(RDC_RED_PARA(rp->rx_channel), val);
  2865. }
  2866. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  2867. {
  2868. u64 val = 0;
  2869. switch (rp->rbr_block_size) {
  2870. case 4 * 1024:
  2871. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2872. break;
  2873. case 8 * 1024:
  2874. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2875. break;
  2876. case 16 * 1024:
  2877. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2878. break;
  2879. case 32 * 1024:
  2880. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2881. break;
  2882. default:
  2883. return -EINVAL;
  2884. }
  2885. val |= RBR_CFIG_B_VLD2;
  2886. switch (rp->rbr_sizes[2]) {
  2887. case 2 * 1024:
  2888. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2889. break;
  2890. case 4 * 1024:
  2891. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2892. break;
  2893. case 8 * 1024:
  2894. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2895. break;
  2896. case 16 * 1024:
  2897. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2898. break;
  2899. default:
  2900. return -EINVAL;
  2901. }
  2902. val |= RBR_CFIG_B_VLD1;
  2903. switch (rp->rbr_sizes[1]) {
  2904. case 1 * 1024:
  2905. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2906. break;
  2907. case 2 * 1024:
  2908. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2909. break;
  2910. case 4 * 1024:
  2911. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2912. break;
  2913. case 8 * 1024:
  2914. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2915. break;
  2916. default:
  2917. return -EINVAL;
  2918. }
  2919. val |= RBR_CFIG_B_VLD0;
  2920. switch (rp->rbr_sizes[0]) {
  2921. case 256:
  2922. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2923. break;
  2924. case 512:
  2925. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2926. break;
  2927. case 1 * 1024:
  2928. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2929. break;
  2930. case 2 * 1024:
  2931. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2932. break;
  2933. default:
  2934. return -EINVAL;
  2935. }
  2936. *ret = val;
  2937. return 0;
  2938. }
  2939. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  2940. {
  2941. u64 val = nr64(RXDMA_CFIG1(channel));
  2942. int limit;
  2943. if (on)
  2944. val |= RXDMA_CFIG1_EN;
  2945. else
  2946. val &= ~RXDMA_CFIG1_EN;
  2947. nw64(RXDMA_CFIG1(channel), val);
  2948. limit = 1000;
  2949. while (--limit > 0) {
  2950. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  2951. break;
  2952. udelay(10);
  2953. }
  2954. if (limit <= 0)
  2955. return -ENODEV;
  2956. return 0;
  2957. }
  2958. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  2959. {
  2960. int err, channel = rp->rx_channel;
  2961. u64 val;
  2962. err = niu_rx_channel_reset(np, channel);
  2963. if (err)
  2964. return err;
  2965. err = niu_rx_channel_lpage_init(np, channel);
  2966. if (err)
  2967. return err;
  2968. niu_rx_channel_wred_init(np, rp);
  2969. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  2970. nw64(RX_DMA_CTL_STAT(channel),
  2971. (RX_DMA_CTL_STAT_MEX |
  2972. RX_DMA_CTL_STAT_RCRTHRES |
  2973. RX_DMA_CTL_STAT_RCRTO |
  2974. RX_DMA_CTL_STAT_RBR_EMPTY));
  2975. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  2976. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  2977. nw64(RBR_CFIG_A(channel),
  2978. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  2979. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  2980. err = niu_compute_rbr_cfig_b(rp, &val);
  2981. if (err)
  2982. return err;
  2983. nw64(RBR_CFIG_B(channel), val);
  2984. nw64(RCRCFIG_A(channel),
  2985. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  2986. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  2987. nw64(RCRCFIG_B(channel),
  2988. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  2989. RCRCFIG_B_ENTOUT |
  2990. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  2991. err = niu_enable_rx_channel(np, channel, 1);
  2992. if (err)
  2993. return err;
  2994. nw64(RBR_KICK(channel), rp->rbr_index);
  2995. val = nr64(RX_DMA_CTL_STAT(channel));
  2996. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  2997. nw64(RX_DMA_CTL_STAT(channel), val);
  2998. return 0;
  2999. }
  3000. static int niu_init_rx_channels(struct niu *np)
  3001. {
  3002. unsigned long flags;
  3003. u64 seed = jiffies_64;
  3004. int err, i;
  3005. niu_lock_parent(np, flags);
  3006. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  3007. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  3008. niu_unlock_parent(np, flags);
  3009. /* XXX RXDMA 32bit mode? XXX */
  3010. niu_init_rdc_groups(np);
  3011. niu_init_drr_weight(np);
  3012. err = niu_init_hostinfo(np);
  3013. if (err)
  3014. return err;
  3015. for (i = 0; i < np->num_rx_rings; i++) {
  3016. struct rx_ring_info *rp = &np->rx_rings[i];
  3017. err = niu_init_one_rx_channel(np, rp);
  3018. if (err)
  3019. return err;
  3020. }
  3021. return 0;
  3022. }
  3023. static int niu_set_ip_frag_rule(struct niu *np)
  3024. {
  3025. struct niu_parent *parent = np->parent;
  3026. struct niu_classifier *cp = &np->clas;
  3027. struct niu_tcam_entry *tp;
  3028. int index, err;
  3029. /* XXX fix this allocation scheme XXX */
  3030. index = cp->tcam_index;
  3031. tp = &parent->tcam[index];
  3032. /* Note that the noport bit is the same in both ipv4 and
  3033. * ipv6 format TCAM entries.
  3034. */
  3035. memset(tp, 0, sizeof(*tp));
  3036. tp->key[1] = TCAM_V4KEY1_NOPORT;
  3037. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  3038. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  3039. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  3040. err = tcam_write(np, index, tp->key, tp->key_mask);
  3041. if (err)
  3042. return err;
  3043. err = tcam_assoc_write(np, index, tp->assoc_data);
  3044. if (err)
  3045. return err;
  3046. return 0;
  3047. }
  3048. static int niu_init_classifier_hw(struct niu *np)
  3049. {
  3050. struct niu_parent *parent = np->parent;
  3051. struct niu_classifier *cp = &np->clas;
  3052. int i, err;
  3053. nw64(H1POLY, cp->h1_init);
  3054. nw64(H2POLY, cp->h2_init);
  3055. err = niu_init_hostinfo(np);
  3056. if (err)
  3057. return err;
  3058. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  3059. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  3060. vlan_tbl_write(np, i, np->port,
  3061. vp->vlan_pref, vp->rdc_num);
  3062. }
  3063. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  3064. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  3065. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  3066. ap->rdc_num, ap->mac_pref);
  3067. if (err)
  3068. return err;
  3069. }
  3070. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  3071. int index = i - CLASS_CODE_USER_PROG1;
  3072. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  3073. if (err)
  3074. return err;
  3075. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  3076. if (err)
  3077. return err;
  3078. }
  3079. err = niu_set_ip_frag_rule(np);
  3080. if (err)
  3081. return err;
  3082. tcam_enable(np, 1);
  3083. return 0;
  3084. }
  3085. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  3086. {
  3087. nw64(ZCP_RAM_DATA0, data[0]);
  3088. nw64(ZCP_RAM_DATA1, data[1]);
  3089. nw64(ZCP_RAM_DATA2, data[2]);
  3090. nw64(ZCP_RAM_DATA3, data[3]);
  3091. nw64(ZCP_RAM_DATA4, data[4]);
  3092. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  3093. nw64(ZCP_RAM_ACC,
  3094. (ZCP_RAM_ACC_WRITE |
  3095. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3096. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3097. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3098. 1000, 100);
  3099. }
  3100. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  3101. {
  3102. int err;
  3103. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3104. 1000, 100);
  3105. if (err) {
  3106. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  3107. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3108. (unsigned long long) nr64(ZCP_RAM_ACC));
  3109. return err;
  3110. }
  3111. nw64(ZCP_RAM_ACC,
  3112. (ZCP_RAM_ACC_READ |
  3113. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3114. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3115. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3116. 1000, 100);
  3117. if (err) {
  3118. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  3119. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3120. (unsigned long long) nr64(ZCP_RAM_ACC));
  3121. return err;
  3122. }
  3123. data[0] = nr64(ZCP_RAM_DATA0);
  3124. data[1] = nr64(ZCP_RAM_DATA1);
  3125. data[2] = nr64(ZCP_RAM_DATA2);
  3126. data[3] = nr64(ZCP_RAM_DATA3);
  3127. data[4] = nr64(ZCP_RAM_DATA4);
  3128. return 0;
  3129. }
  3130. static void niu_zcp_cfifo_reset(struct niu *np)
  3131. {
  3132. u64 val = nr64(RESET_CFIFO);
  3133. val |= RESET_CFIFO_RST(np->port);
  3134. nw64(RESET_CFIFO, val);
  3135. udelay(10);
  3136. val &= ~RESET_CFIFO_RST(np->port);
  3137. nw64(RESET_CFIFO, val);
  3138. }
  3139. static int niu_init_zcp(struct niu *np)
  3140. {
  3141. u64 data[5], rbuf[5];
  3142. int i, max, err;
  3143. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3144. if (np->port == 0 || np->port == 1)
  3145. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  3146. else
  3147. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  3148. } else
  3149. max = NIU_CFIFO_ENTRIES;
  3150. data[0] = 0;
  3151. data[1] = 0;
  3152. data[2] = 0;
  3153. data[3] = 0;
  3154. data[4] = 0;
  3155. for (i = 0; i < max; i++) {
  3156. err = niu_zcp_write(np, i, data);
  3157. if (err)
  3158. return err;
  3159. err = niu_zcp_read(np, i, rbuf);
  3160. if (err)
  3161. return err;
  3162. }
  3163. niu_zcp_cfifo_reset(np);
  3164. nw64(CFIFO_ECC(np->port), 0);
  3165. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  3166. (void) nr64(ZCP_INT_STAT);
  3167. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  3168. return 0;
  3169. }
  3170. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  3171. {
  3172. u64 val = nr64_ipp(IPP_CFIG);
  3173. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  3174. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  3175. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  3176. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  3177. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  3178. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  3179. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  3180. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  3181. }
  3182. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  3183. {
  3184. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  3185. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  3186. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  3187. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  3188. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  3189. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  3190. }
  3191. static int niu_ipp_reset(struct niu *np)
  3192. {
  3193. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  3194. 1000, 100, "IPP_CFIG");
  3195. }
  3196. static int niu_init_ipp(struct niu *np)
  3197. {
  3198. u64 data[5], rbuf[5], val;
  3199. int i, max, err;
  3200. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3201. if (np->port == 0 || np->port == 1)
  3202. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  3203. else
  3204. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  3205. } else
  3206. max = NIU_DFIFO_ENTRIES;
  3207. data[0] = 0;
  3208. data[1] = 0;
  3209. data[2] = 0;
  3210. data[3] = 0;
  3211. data[4] = 0;
  3212. for (i = 0; i < max; i++) {
  3213. niu_ipp_write(np, i, data);
  3214. niu_ipp_read(np, i, rbuf);
  3215. }
  3216. (void) nr64_ipp(IPP_INT_STAT);
  3217. (void) nr64_ipp(IPP_INT_STAT);
  3218. err = niu_ipp_reset(np);
  3219. if (err)
  3220. return err;
  3221. (void) nr64_ipp(IPP_PKT_DIS);
  3222. (void) nr64_ipp(IPP_BAD_CS_CNT);
  3223. (void) nr64_ipp(IPP_ECC);
  3224. (void) nr64_ipp(IPP_INT_STAT);
  3225. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  3226. val = nr64_ipp(IPP_CFIG);
  3227. val &= ~IPP_CFIG_IP_MAX_PKT;
  3228. val |= (IPP_CFIG_IPP_ENABLE |
  3229. IPP_CFIG_DFIFO_ECC_EN |
  3230. IPP_CFIG_DROP_BAD_CRC |
  3231. IPP_CFIG_CKSUM_EN |
  3232. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  3233. nw64_ipp(IPP_CFIG, val);
  3234. return 0;
  3235. }
  3236. static void niu_handle_led(struct niu *np, int status)
  3237. {
  3238. u64 val;
  3239. val = nr64_mac(XMAC_CONFIG);
  3240. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  3241. (np->flags & NIU_FLAGS_FIBER) != 0) {
  3242. if (status) {
  3243. val |= XMAC_CONFIG_LED_POLARITY;
  3244. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  3245. } else {
  3246. val |= XMAC_CONFIG_FORCE_LED_ON;
  3247. val &= ~XMAC_CONFIG_LED_POLARITY;
  3248. }
  3249. }
  3250. nw64_mac(XMAC_CONFIG, val);
  3251. }
  3252. static void niu_init_xif_xmac(struct niu *np)
  3253. {
  3254. struct niu_link_config *lp = &np->link_config;
  3255. u64 val;
  3256. val = nr64_mac(XMAC_CONFIG);
  3257. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3258. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  3259. if (lp->loopback_mode == LOOPBACK_MAC) {
  3260. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3261. val |= XMAC_CONFIG_LOOPBACK;
  3262. } else {
  3263. val &= ~XMAC_CONFIG_LOOPBACK;
  3264. }
  3265. if (np->flags & NIU_FLAGS_10G) {
  3266. val &= ~XMAC_CONFIG_LFS_DISABLE;
  3267. } else {
  3268. val |= XMAC_CONFIG_LFS_DISABLE;
  3269. if (!(np->flags & NIU_FLAGS_FIBER))
  3270. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  3271. else
  3272. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  3273. }
  3274. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3275. if (lp->active_speed == SPEED_100)
  3276. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  3277. else
  3278. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  3279. nw64_mac(XMAC_CONFIG, val);
  3280. val = nr64_mac(XMAC_CONFIG);
  3281. val &= ~XMAC_CONFIG_MODE_MASK;
  3282. if (np->flags & NIU_FLAGS_10G) {
  3283. val |= XMAC_CONFIG_MODE_XGMII;
  3284. } else {
  3285. if (lp->active_speed == SPEED_100)
  3286. val |= XMAC_CONFIG_MODE_MII;
  3287. else
  3288. val |= XMAC_CONFIG_MODE_GMII;
  3289. }
  3290. nw64_mac(XMAC_CONFIG, val);
  3291. }
  3292. static void niu_init_xif_bmac(struct niu *np)
  3293. {
  3294. struct niu_link_config *lp = &np->link_config;
  3295. u64 val;
  3296. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  3297. if (lp->loopback_mode == LOOPBACK_MAC)
  3298. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  3299. else
  3300. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  3301. if (lp->active_speed == SPEED_1000)
  3302. val |= BMAC_XIF_CONFIG_GMII_MODE;
  3303. else
  3304. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  3305. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  3306. BMAC_XIF_CONFIG_LED_POLARITY);
  3307. if (!(np->flags & NIU_FLAGS_10G) &&
  3308. !(np->flags & NIU_FLAGS_FIBER) &&
  3309. lp->active_speed == SPEED_100)
  3310. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3311. else
  3312. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3313. nw64_mac(BMAC_XIF_CONFIG, val);
  3314. }
  3315. static void niu_init_xif(struct niu *np)
  3316. {
  3317. if (np->flags & NIU_FLAGS_XMAC)
  3318. niu_init_xif_xmac(np);
  3319. else
  3320. niu_init_xif_bmac(np);
  3321. }
  3322. static void niu_pcs_mii_reset(struct niu *np)
  3323. {
  3324. u64 val = nr64_pcs(PCS_MII_CTL);
  3325. val |= PCS_MII_CTL_RST;
  3326. nw64_pcs(PCS_MII_CTL, val);
  3327. }
  3328. static void niu_xpcs_reset(struct niu *np)
  3329. {
  3330. u64 val = nr64_xpcs(XPCS_CONTROL1);
  3331. val |= XPCS_CONTROL1_RESET;
  3332. nw64_xpcs(XPCS_CONTROL1, val);
  3333. }
  3334. static int niu_init_pcs(struct niu *np)
  3335. {
  3336. struct niu_link_config *lp = &np->link_config;
  3337. u64 val;
  3338. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  3339. case NIU_FLAGS_FIBER:
  3340. /* 1G fiber */
  3341. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3342. nw64_pcs(PCS_DPATH_MODE, 0);
  3343. niu_pcs_mii_reset(np);
  3344. break;
  3345. case NIU_FLAGS_10G:
  3346. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  3347. if (!(np->flags & NIU_FLAGS_XMAC))
  3348. return -EINVAL;
  3349. /* 10G copper or fiber */
  3350. val = nr64_mac(XMAC_CONFIG);
  3351. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3352. nw64_mac(XMAC_CONFIG, val);
  3353. niu_xpcs_reset(np);
  3354. val = nr64_xpcs(XPCS_CONTROL1);
  3355. if (lp->loopback_mode == LOOPBACK_PHY)
  3356. val |= XPCS_CONTROL1_LOOPBACK;
  3357. else
  3358. val &= ~XPCS_CONTROL1_LOOPBACK;
  3359. nw64_xpcs(XPCS_CONTROL1, val);
  3360. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  3361. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  3362. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  3363. break;
  3364. case 0:
  3365. /* 1G copper */
  3366. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  3367. niu_pcs_mii_reset(np);
  3368. break;
  3369. default:
  3370. return -EINVAL;
  3371. }
  3372. return 0;
  3373. }
  3374. static int niu_reset_tx_xmac(struct niu *np)
  3375. {
  3376. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  3377. (XTXMAC_SW_RST_REG_RS |
  3378. XTXMAC_SW_RST_SOFT_RST),
  3379. 1000, 100, "XTXMAC_SW_RST");
  3380. }
  3381. static int niu_reset_tx_bmac(struct niu *np)
  3382. {
  3383. int limit;
  3384. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  3385. limit = 1000;
  3386. while (--limit >= 0) {
  3387. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  3388. break;
  3389. udelay(100);
  3390. }
  3391. if (limit < 0) {
  3392. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  3393. "BTXMAC_SW_RST[%llx]\n",
  3394. np->port,
  3395. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  3396. return -ENODEV;
  3397. }
  3398. return 0;
  3399. }
  3400. static int niu_reset_tx_mac(struct niu *np)
  3401. {
  3402. if (np->flags & NIU_FLAGS_XMAC)
  3403. return niu_reset_tx_xmac(np);
  3404. else
  3405. return niu_reset_tx_bmac(np);
  3406. }
  3407. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  3408. {
  3409. u64 val;
  3410. val = nr64_mac(XMAC_MIN);
  3411. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  3412. XMAC_MIN_RX_MIN_PKT_SIZE);
  3413. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  3414. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  3415. nw64_mac(XMAC_MIN, val);
  3416. nw64_mac(XMAC_MAX, max);
  3417. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  3418. val = nr64_mac(XMAC_IPG);
  3419. if (np->flags & NIU_FLAGS_10G) {
  3420. val &= ~XMAC_IPG_IPG_XGMII;
  3421. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  3422. } else {
  3423. val &= ~XMAC_IPG_IPG_MII_GMII;
  3424. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  3425. }
  3426. nw64_mac(XMAC_IPG, val);
  3427. val = nr64_mac(XMAC_CONFIG);
  3428. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  3429. XMAC_CONFIG_STRETCH_MODE |
  3430. XMAC_CONFIG_VAR_MIN_IPG_EN |
  3431. XMAC_CONFIG_TX_ENABLE);
  3432. nw64_mac(XMAC_CONFIG, val);
  3433. nw64_mac(TXMAC_FRM_CNT, 0);
  3434. nw64_mac(TXMAC_BYTE_CNT, 0);
  3435. }
  3436. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  3437. {
  3438. u64 val;
  3439. nw64_mac(BMAC_MIN_FRAME, min);
  3440. nw64_mac(BMAC_MAX_FRAME, max);
  3441. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  3442. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  3443. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  3444. val = nr64_mac(BTXMAC_CONFIG);
  3445. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  3446. BTXMAC_CONFIG_ENABLE);
  3447. nw64_mac(BTXMAC_CONFIG, val);
  3448. }
  3449. static void niu_init_tx_mac(struct niu *np)
  3450. {
  3451. u64 min, max;
  3452. min = 64;
  3453. if (np->dev->mtu > ETH_DATA_LEN)
  3454. max = 9216;
  3455. else
  3456. max = 1522;
  3457. /* The XMAC_MIN register only accepts values for TX min which
  3458. * have the low 3 bits cleared.
  3459. */
  3460. BUILD_BUG_ON(min & 0x7);
  3461. if (np->flags & NIU_FLAGS_XMAC)
  3462. niu_init_tx_xmac(np, min, max);
  3463. else
  3464. niu_init_tx_bmac(np, min, max);
  3465. }
  3466. static int niu_reset_rx_xmac(struct niu *np)
  3467. {
  3468. int limit;
  3469. nw64_mac(XRXMAC_SW_RST,
  3470. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  3471. limit = 1000;
  3472. while (--limit >= 0) {
  3473. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  3474. XRXMAC_SW_RST_SOFT_RST)))
  3475. break;
  3476. udelay(100);
  3477. }
  3478. if (limit < 0) {
  3479. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  3480. "XRXMAC_SW_RST[%llx]\n",
  3481. np->port,
  3482. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  3483. return -ENODEV;
  3484. }
  3485. return 0;
  3486. }
  3487. static int niu_reset_rx_bmac(struct niu *np)
  3488. {
  3489. int limit;
  3490. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  3491. limit = 1000;
  3492. while (--limit >= 0) {
  3493. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  3494. break;
  3495. udelay(100);
  3496. }
  3497. if (limit < 0) {
  3498. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  3499. "BRXMAC_SW_RST[%llx]\n",
  3500. np->port,
  3501. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  3502. return -ENODEV;
  3503. }
  3504. return 0;
  3505. }
  3506. static int niu_reset_rx_mac(struct niu *np)
  3507. {
  3508. if (np->flags & NIU_FLAGS_XMAC)
  3509. return niu_reset_rx_xmac(np);
  3510. else
  3511. return niu_reset_rx_bmac(np);
  3512. }
  3513. static void niu_init_rx_xmac(struct niu *np)
  3514. {
  3515. struct niu_parent *parent = np->parent;
  3516. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3517. int first_rdc_table = tp->first_table_num;
  3518. unsigned long i;
  3519. u64 val;
  3520. nw64_mac(XMAC_ADD_FILT0, 0);
  3521. nw64_mac(XMAC_ADD_FILT1, 0);
  3522. nw64_mac(XMAC_ADD_FILT2, 0);
  3523. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  3524. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  3525. for (i = 0; i < MAC_NUM_HASH; i++)
  3526. nw64_mac(XMAC_HASH_TBL(i), 0);
  3527. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  3528. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3529. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3530. val = nr64_mac(XMAC_CONFIG);
  3531. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  3532. XMAC_CONFIG_PROMISCUOUS |
  3533. XMAC_CONFIG_PROMISC_GROUP |
  3534. XMAC_CONFIG_ERR_CHK_DIS |
  3535. XMAC_CONFIG_RX_CRC_CHK_DIS |
  3536. XMAC_CONFIG_RESERVED_MULTICAST |
  3537. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  3538. XMAC_CONFIG_ADDR_FILTER_EN |
  3539. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  3540. XMAC_CONFIG_STRIP_CRC |
  3541. XMAC_CONFIG_PASS_FLOW_CTRL |
  3542. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  3543. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  3544. nw64_mac(XMAC_CONFIG, val);
  3545. nw64_mac(RXMAC_BT_CNT, 0);
  3546. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  3547. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  3548. nw64_mac(RXMAC_FRAG_CNT, 0);
  3549. nw64_mac(RXMAC_HIST_CNT1, 0);
  3550. nw64_mac(RXMAC_HIST_CNT2, 0);
  3551. nw64_mac(RXMAC_HIST_CNT3, 0);
  3552. nw64_mac(RXMAC_HIST_CNT4, 0);
  3553. nw64_mac(RXMAC_HIST_CNT5, 0);
  3554. nw64_mac(RXMAC_HIST_CNT6, 0);
  3555. nw64_mac(RXMAC_HIST_CNT7, 0);
  3556. nw64_mac(RXMAC_MPSZER_CNT, 0);
  3557. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  3558. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  3559. nw64_mac(LINK_FAULT_CNT, 0);
  3560. }
  3561. static void niu_init_rx_bmac(struct niu *np)
  3562. {
  3563. struct niu_parent *parent = np->parent;
  3564. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3565. int first_rdc_table = tp->first_table_num;
  3566. unsigned long i;
  3567. u64 val;
  3568. nw64_mac(BMAC_ADD_FILT0, 0);
  3569. nw64_mac(BMAC_ADD_FILT1, 0);
  3570. nw64_mac(BMAC_ADD_FILT2, 0);
  3571. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  3572. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  3573. for (i = 0; i < MAC_NUM_HASH; i++)
  3574. nw64_mac(BMAC_HASH_TBL(i), 0);
  3575. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3576. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3577. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  3578. val = nr64_mac(BRXMAC_CONFIG);
  3579. val &= ~(BRXMAC_CONFIG_ENABLE |
  3580. BRXMAC_CONFIG_STRIP_PAD |
  3581. BRXMAC_CONFIG_STRIP_FCS |
  3582. BRXMAC_CONFIG_PROMISC |
  3583. BRXMAC_CONFIG_PROMISC_GRP |
  3584. BRXMAC_CONFIG_ADDR_FILT_EN |
  3585. BRXMAC_CONFIG_DISCARD_DIS);
  3586. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  3587. nw64_mac(BRXMAC_CONFIG, val);
  3588. val = nr64_mac(BMAC_ADDR_CMPEN);
  3589. val |= BMAC_ADDR_CMPEN_EN0;
  3590. nw64_mac(BMAC_ADDR_CMPEN, val);
  3591. }
  3592. static void niu_init_rx_mac(struct niu *np)
  3593. {
  3594. niu_set_primary_mac(np, np->dev->dev_addr);
  3595. if (np->flags & NIU_FLAGS_XMAC)
  3596. niu_init_rx_xmac(np);
  3597. else
  3598. niu_init_rx_bmac(np);
  3599. }
  3600. static void niu_enable_tx_xmac(struct niu *np, int on)
  3601. {
  3602. u64 val = nr64_mac(XMAC_CONFIG);
  3603. if (on)
  3604. val |= XMAC_CONFIG_TX_ENABLE;
  3605. else
  3606. val &= ~XMAC_CONFIG_TX_ENABLE;
  3607. nw64_mac(XMAC_CONFIG, val);
  3608. }
  3609. static void niu_enable_tx_bmac(struct niu *np, int on)
  3610. {
  3611. u64 val = nr64_mac(BTXMAC_CONFIG);
  3612. if (on)
  3613. val |= BTXMAC_CONFIG_ENABLE;
  3614. else
  3615. val &= ~BTXMAC_CONFIG_ENABLE;
  3616. nw64_mac(BTXMAC_CONFIG, val);
  3617. }
  3618. static void niu_enable_tx_mac(struct niu *np, int on)
  3619. {
  3620. if (np->flags & NIU_FLAGS_XMAC)
  3621. niu_enable_tx_xmac(np, on);
  3622. else
  3623. niu_enable_tx_bmac(np, on);
  3624. }
  3625. static void niu_enable_rx_xmac(struct niu *np, int on)
  3626. {
  3627. u64 val = nr64_mac(XMAC_CONFIG);
  3628. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  3629. XMAC_CONFIG_PROMISCUOUS);
  3630. if (np->flags & NIU_FLAGS_MCAST)
  3631. val |= XMAC_CONFIG_HASH_FILTER_EN;
  3632. if (np->flags & NIU_FLAGS_PROMISC)
  3633. val |= XMAC_CONFIG_PROMISCUOUS;
  3634. if (on)
  3635. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  3636. else
  3637. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  3638. nw64_mac(XMAC_CONFIG, val);
  3639. }
  3640. static void niu_enable_rx_bmac(struct niu *np, int on)
  3641. {
  3642. u64 val = nr64_mac(BRXMAC_CONFIG);
  3643. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  3644. BRXMAC_CONFIG_PROMISC);
  3645. if (np->flags & NIU_FLAGS_MCAST)
  3646. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  3647. if (np->flags & NIU_FLAGS_PROMISC)
  3648. val |= BRXMAC_CONFIG_PROMISC;
  3649. if (on)
  3650. val |= BRXMAC_CONFIG_ENABLE;
  3651. else
  3652. val &= ~BRXMAC_CONFIG_ENABLE;
  3653. nw64_mac(BRXMAC_CONFIG, val);
  3654. }
  3655. static void niu_enable_rx_mac(struct niu *np, int on)
  3656. {
  3657. if (np->flags & NIU_FLAGS_XMAC)
  3658. niu_enable_rx_xmac(np, on);
  3659. else
  3660. niu_enable_rx_bmac(np, on);
  3661. }
  3662. static int niu_init_mac(struct niu *np)
  3663. {
  3664. int err;
  3665. niu_init_xif(np);
  3666. err = niu_init_pcs(np);
  3667. if (err)
  3668. return err;
  3669. err = niu_reset_tx_mac(np);
  3670. if (err)
  3671. return err;
  3672. niu_init_tx_mac(np);
  3673. err = niu_reset_rx_mac(np);
  3674. if (err)
  3675. return err;
  3676. niu_init_rx_mac(np);
  3677. /* This looks hookey but the RX MAC reset we just did will
  3678. * undo some of the state we setup in niu_init_tx_mac() so we
  3679. * have to call it again. In particular, the RX MAC reset will
  3680. * set the XMAC_MAX register back to it's default value.
  3681. */
  3682. niu_init_tx_mac(np);
  3683. niu_enable_tx_mac(np, 1);
  3684. niu_enable_rx_mac(np, 1);
  3685. return 0;
  3686. }
  3687. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3688. {
  3689. (void) niu_tx_channel_stop(np, rp->tx_channel);
  3690. }
  3691. static void niu_stop_tx_channels(struct niu *np)
  3692. {
  3693. int i;
  3694. for (i = 0; i < np->num_tx_rings; i++) {
  3695. struct tx_ring_info *rp = &np->tx_rings[i];
  3696. niu_stop_one_tx_channel(np, rp);
  3697. }
  3698. }
  3699. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3700. {
  3701. (void) niu_tx_channel_reset(np, rp->tx_channel);
  3702. }
  3703. static void niu_reset_tx_channels(struct niu *np)
  3704. {
  3705. int i;
  3706. for (i = 0; i < np->num_tx_rings; i++) {
  3707. struct tx_ring_info *rp = &np->tx_rings[i];
  3708. niu_reset_one_tx_channel(np, rp);
  3709. }
  3710. }
  3711. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3712. {
  3713. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  3714. }
  3715. static void niu_stop_rx_channels(struct niu *np)
  3716. {
  3717. int i;
  3718. for (i = 0; i < np->num_rx_rings; i++) {
  3719. struct rx_ring_info *rp = &np->rx_rings[i];
  3720. niu_stop_one_rx_channel(np, rp);
  3721. }
  3722. }
  3723. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3724. {
  3725. int channel = rp->rx_channel;
  3726. (void) niu_rx_channel_reset(np, channel);
  3727. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  3728. nw64(RX_DMA_CTL_STAT(channel), 0);
  3729. (void) niu_enable_rx_channel(np, channel, 0);
  3730. }
  3731. static void niu_reset_rx_channels(struct niu *np)
  3732. {
  3733. int i;
  3734. for (i = 0; i < np->num_rx_rings; i++) {
  3735. struct rx_ring_info *rp = &np->rx_rings[i];
  3736. niu_reset_one_rx_channel(np, rp);
  3737. }
  3738. }
  3739. static void niu_disable_ipp(struct niu *np)
  3740. {
  3741. u64 rd, wr, val;
  3742. int limit;
  3743. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3744. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3745. limit = 100;
  3746. while (--limit >= 0 && (rd != wr)) {
  3747. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3748. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3749. }
  3750. if (limit < 0 &&
  3751. (rd != 0 && wr != 1)) {
  3752. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  3753. "rd_ptr[%llx] wr_ptr[%llx]\n",
  3754. np->dev->name,
  3755. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  3756. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  3757. }
  3758. val = nr64_ipp(IPP_CFIG);
  3759. val &= ~(IPP_CFIG_IPP_ENABLE |
  3760. IPP_CFIG_DFIFO_ECC_EN |
  3761. IPP_CFIG_DROP_BAD_CRC |
  3762. IPP_CFIG_CKSUM_EN);
  3763. nw64_ipp(IPP_CFIG, val);
  3764. (void) niu_ipp_reset(np);
  3765. }
  3766. static int niu_init_hw(struct niu *np)
  3767. {
  3768. int i, err;
  3769. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  3770. niu_txc_enable_port(np, 1);
  3771. niu_txc_port_dma_enable(np, 1);
  3772. niu_txc_set_imask(np, 0);
  3773. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  3774. for (i = 0; i < np->num_tx_rings; i++) {
  3775. struct tx_ring_info *rp = &np->tx_rings[i];
  3776. err = niu_init_one_tx_channel(np, rp);
  3777. if (err)
  3778. return err;
  3779. }
  3780. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  3781. err = niu_init_rx_channels(np);
  3782. if (err)
  3783. goto out_uninit_tx_channels;
  3784. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  3785. err = niu_init_classifier_hw(np);
  3786. if (err)
  3787. goto out_uninit_rx_channels;
  3788. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  3789. err = niu_init_zcp(np);
  3790. if (err)
  3791. goto out_uninit_rx_channels;
  3792. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  3793. err = niu_init_ipp(np);
  3794. if (err)
  3795. goto out_uninit_rx_channels;
  3796. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  3797. err = niu_init_mac(np);
  3798. if (err)
  3799. goto out_uninit_ipp;
  3800. return 0;
  3801. out_uninit_ipp:
  3802. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  3803. niu_disable_ipp(np);
  3804. out_uninit_rx_channels:
  3805. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  3806. niu_stop_rx_channels(np);
  3807. niu_reset_rx_channels(np);
  3808. out_uninit_tx_channels:
  3809. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  3810. niu_stop_tx_channels(np);
  3811. niu_reset_tx_channels(np);
  3812. return err;
  3813. }
  3814. static void niu_stop_hw(struct niu *np)
  3815. {
  3816. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  3817. niu_enable_interrupts(np, 0);
  3818. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  3819. niu_enable_rx_mac(np, 0);
  3820. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  3821. niu_disable_ipp(np);
  3822. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  3823. niu_stop_tx_channels(np);
  3824. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  3825. niu_stop_rx_channels(np);
  3826. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  3827. niu_reset_tx_channels(np);
  3828. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  3829. niu_reset_rx_channels(np);
  3830. }
  3831. static int niu_request_irq(struct niu *np)
  3832. {
  3833. int i, j, err;
  3834. err = 0;
  3835. for (i = 0; i < np->num_ldg; i++) {
  3836. struct niu_ldg *lp = &np->ldg[i];
  3837. err = request_irq(lp->irq, niu_interrupt,
  3838. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  3839. np->dev->name, lp);
  3840. if (err)
  3841. goto out_free_irqs;
  3842. }
  3843. return 0;
  3844. out_free_irqs:
  3845. for (j = 0; j < i; j++) {
  3846. struct niu_ldg *lp = &np->ldg[j];
  3847. free_irq(lp->irq, lp);
  3848. }
  3849. return err;
  3850. }
  3851. static void niu_free_irq(struct niu *np)
  3852. {
  3853. int i;
  3854. for (i = 0; i < np->num_ldg; i++) {
  3855. struct niu_ldg *lp = &np->ldg[i];
  3856. free_irq(lp->irq, lp);
  3857. }
  3858. }
  3859. static void niu_enable_napi(struct niu *np)
  3860. {
  3861. int i;
  3862. for (i = 0; i < np->num_ldg; i++)
  3863. napi_enable(&np->ldg[i].napi);
  3864. }
  3865. static void niu_disable_napi(struct niu *np)
  3866. {
  3867. int i;
  3868. for (i = 0; i < np->num_ldg; i++)
  3869. napi_disable(&np->ldg[i].napi);
  3870. }
  3871. static int niu_open(struct net_device *dev)
  3872. {
  3873. struct niu *np = netdev_priv(dev);
  3874. int err;
  3875. netif_carrier_off(dev);
  3876. err = niu_alloc_channels(np);
  3877. if (err)
  3878. goto out_err;
  3879. err = niu_enable_interrupts(np, 0);
  3880. if (err)
  3881. goto out_free_channels;
  3882. err = niu_request_irq(np);
  3883. if (err)
  3884. goto out_free_channels;
  3885. niu_enable_napi(np);
  3886. spin_lock_irq(&np->lock);
  3887. err = niu_init_hw(np);
  3888. if (!err) {
  3889. init_timer(&np->timer);
  3890. np->timer.expires = jiffies + HZ;
  3891. np->timer.data = (unsigned long) np;
  3892. np->timer.function = niu_timer;
  3893. err = niu_enable_interrupts(np, 1);
  3894. if (err)
  3895. niu_stop_hw(np);
  3896. }
  3897. spin_unlock_irq(&np->lock);
  3898. if (err) {
  3899. niu_disable_napi(np);
  3900. goto out_free_irq;
  3901. }
  3902. netif_start_queue(dev);
  3903. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  3904. netif_carrier_on(dev);
  3905. add_timer(&np->timer);
  3906. return 0;
  3907. out_free_irq:
  3908. niu_free_irq(np);
  3909. out_free_channels:
  3910. niu_free_channels(np);
  3911. out_err:
  3912. return err;
  3913. }
  3914. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  3915. {
  3916. cancel_work_sync(&np->reset_task);
  3917. niu_disable_napi(np);
  3918. netif_stop_queue(dev);
  3919. del_timer_sync(&np->timer);
  3920. spin_lock_irq(&np->lock);
  3921. niu_stop_hw(np);
  3922. spin_unlock_irq(&np->lock);
  3923. }
  3924. static int niu_close(struct net_device *dev)
  3925. {
  3926. struct niu *np = netdev_priv(dev);
  3927. niu_full_shutdown(np, dev);
  3928. niu_free_irq(np);
  3929. niu_free_channels(np);
  3930. niu_handle_led(np, 0);
  3931. return 0;
  3932. }
  3933. static void niu_sync_xmac_stats(struct niu *np)
  3934. {
  3935. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3936. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  3937. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  3938. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  3939. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  3940. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  3941. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  3942. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  3943. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  3944. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  3945. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  3946. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  3947. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  3948. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  3949. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  3950. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  3951. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  3952. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  3953. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  3954. }
  3955. static void niu_sync_bmac_stats(struct niu *np)
  3956. {
  3957. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3958. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  3959. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  3960. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  3961. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3962. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3963. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  3964. }
  3965. static void niu_sync_mac_stats(struct niu *np)
  3966. {
  3967. if (np->flags & NIU_FLAGS_XMAC)
  3968. niu_sync_xmac_stats(np);
  3969. else
  3970. niu_sync_bmac_stats(np);
  3971. }
  3972. static void niu_get_rx_stats(struct niu *np)
  3973. {
  3974. unsigned long pkts, dropped, errors, bytes;
  3975. int i;
  3976. pkts = dropped = errors = bytes = 0;
  3977. for (i = 0; i < np->num_rx_rings; i++) {
  3978. struct rx_ring_info *rp = &np->rx_rings[i];
  3979. pkts += rp->rx_packets;
  3980. bytes += rp->rx_bytes;
  3981. dropped += rp->rx_dropped;
  3982. errors += rp->rx_errors;
  3983. }
  3984. np->net_stats.rx_packets = pkts;
  3985. np->net_stats.rx_bytes = bytes;
  3986. np->net_stats.rx_dropped = dropped;
  3987. np->net_stats.rx_errors = errors;
  3988. }
  3989. static void niu_get_tx_stats(struct niu *np)
  3990. {
  3991. unsigned long pkts, errors, bytes;
  3992. int i;
  3993. pkts = errors = bytes = 0;
  3994. for (i = 0; i < np->num_tx_rings; i++) {
  3995. struct tx_ring_info *rp = &np->tx_rings[i];
  3996. pkts += rp->tx_packets;
  3997. bytes += rp->tx_bytes;
  3998. errors += rp->tx_errors;
  3999. }
  4000. np->net_stats.tx_packets = pkts;
  4001. np->net_stats.tx_bytes = bytes;
  4002. np->net_stats.tx_errors = errors;
  4003. }
  4004. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  4005. {
  4006. struct niu *np = netdev_priv(dev);
  4007. niu_get_rx_stats(np);
  4008. niu_get_tx_stats(np);
  4009. return &np->net_stats;
  4010. }
  4011. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  4012. {
  4013. int i;
  4014. for (i = 0; i < 16; i++)
  4015. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  4016. }
  4017. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  4018. {
  4019. int i;
  4020. for (i = 0; i < 16; i++)
  4021. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  4022. }
  4023. static void niu_load_hash(struct niu *np, u16 *hash)
  4024. {
  4025. if (np->flags & NIU_FLAGS_XMAC)
  4026. niu_load_hash_xmac(np, hash);
  4027. else
  4028. niu_load_hash_bmac(np, hash);
  4029. }
  4030. static void niu_set_rx_mode(struct net_device *dev)
  4031. {
  4032. struct niu *np = netdev_priv(dev);
  4033. int i, alt_cnt, err;
  4034. struct dev_addr_list *addr;
  4035. unsigned long flags;
  4036. u16 hash[16] = { 0, };
  4037. spin_lock_irqsave(&np->lock, flags);
  4038. niu_enable_rx_mac(np, 0);
  4039. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  4040. if (dev->flags & IFF_PROMISC)
  4041. np->flags |= NIU_FLAGS_PROMISC;
  4042. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  4043. np->flags |= NIU_FLAGS_MCAST;
  4044. alt_cnt = dev->uc_count;
  4045. if (alt_cnt > niu_num_alt_addr(np)) {
  4046. alt_cnt = 0;
  4047. np->flags |= NIU_FLAGS_PROMISC;
  4048. }
  4049. if (alt_cnt) {
  4050. int index = 0;
  4051. for (addr = dev->uc_list; addr; addr = addr->next) {
  4052. err = niu_set_alt_mac(np, index,
  4053. addr->da_addr);
  4054. if (err)
  4055. printk(KERN_WARNING PFX "%s: Error %d "
  4056. "adding alt mac %d\n",
  4057. dev->name, err, index);
  4058. err = niu_enable_alt_mac(np, index, 1);
  4059. if (err)
  4060. printk(KERN_WARNING PFX "%s: Error %d "
  4061. "enabling alt mac %d\n",
  4062. dev->name, err, index);
  4063. index++;
  4064. }
  4065. } else {
  4066. for (i = 0; i < niu_num_alt_addr(np); i++) {
  4067. err = niu_enable_alt_mac(np, i, 0);
  4068. if (err)
  4069. printk(KERN_WARNING PFX "%s: Error %d "
  4070. "disabling alt mac %d\n",
  4071. dev->name, err, i);
  4072. }
  4073. }
  4074. if (dev->flags & IFF_ALLMULTI) {
  4075. for (i = 0; i < 16; i++)
  4076. hash[i] = 0xffff;
  4077. } else if (dev->mc_count > 0) {
  4078. for (addr = dev->mc_list; addr; addr = addr->next) {
  4079. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  4080. crc >>= 24;
  4081. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  4082. }
  4083. }
  4084. if (np->flags & NIU_FLAGS_MCAST)
  4085. niu_load_hash(np, hash);
  4086. niu_enable_rx_mac(np, 1);
  4087. spin_unlock_irqrestore(&np->lock, flags);
  4088. }
  4089. static int niu_set_mac_addr(struct net_device *dev, void *p)
  4090. {
  4091. struct niu *np = netdev_priv(dev);
  4092. struct sockaddr *addr = p;
  4093. unsigned long flags;
  4094. if (!is_valid_ether_addr(addr->sa_data))
  4095. return -EINVAL;
  4096. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  4097. if (!netif_running(dev))
  4098. return 0;
  4099. spin_lock_irqsave(&np->lock, flags);
  4100. niu_enable_rx_mac(np, 0);
  4101. niu_set_primary_mac(np, dev->dev_addr);
  4102. niu_enable_rx_mac(np, 1);
  4103. spin_unlock_irqrestore(&np->lock, flags);
  4104. return 0;
  4105. }
  4106. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4107. {
  4108. return -EOPNOTSUPP;
  4109. }
  4110. static void niu_netif_stop(struct niu *np)
  4111. {
  4112. np->dev->trans_start = jiffies; /* prevent tx timeout */
  4113. niu_disable_napi(np);
  4114. netif_tx_disable(np->dev);
  4115. }
  4116. static void niu_netif_start(struct niu *np)
  4117. {
  4118. /* NOTE: unconditional netif_wake_queue is only appropriate
  4119. * so long as all callers are assured to have free tx slots
  4120. * (such as after niu_init_hw).
  4121. */
  4122. netif_wake_queue(np->dev);
  4123. niu_enable_napi(np);
  4124. niu_enable_interrupts(np, 1);
  4125. }
  4126. static void niu_reset_task(struct work_struct *work)
  4127. {
  4128. struct niu *np = container_of(work, struct niu, reset_task);
  4129. unsigned long flags;
  4130. int err;
  4131. spin_lock_irqsave(&np->lock, flags);
  4132. if (!netif_running(np->dev)) {
  4133. spin_unlock_irqrestore(&np->lock, flags);
  4134. return;
  4135. }
  4136. spin_unlock_irqrestore(&np->lock, flags);
  4137. del_timer_sync(&np->timer);
  4138. niu_netif_stop(np);
  4139. spin_lock_irqsave(&np->lock, flags);
  4140. niu_stop_hw(np);
  4141. err = niu_init_hw(np);
  4142. if (!err) {
  4143. np->timer.expires = jiffies + HZ;
  4144. add_timer(&np->timer);
  4145. niu_netif_start(np);
  4146. }
  4147. spin_unlock_irqrestore(&np->lock, flags);
  4148. }
  4149. static void niu_tx_timeout(struct net_device *dev)
  4150. {
  4151. struct niu *np = netdev_priv(dev);
  4152. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  4153. dev->name);
  4154. schedule_work(&np->reset_task);
  4155. }
  4156. static void niu_set_txd(struct tx_ring_info *rp, int index,
  4157. u64 mapping, u64 len, u64 mark,
  4158. u64 n_frags)
  4159. {
  4160. __le64 *desc = &rp->descr[index];
  4161. *desc = cpu_to_le64(mark |
  4162. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  4163. (len << TX_DESC_TR_LEN_SHIFT) |
  4164. (mapping & TX_DESC_SAD));
  4165. }
  4166. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  4167. u64 pad_bytes, u64 len)
  4168. {
  4169. u16 eth_proto, eth_proto_inner;
  4170. u64 csum_bits, l3off, ihl, ret;
  4171. u8 ip_proto;
  4172. int ipv6;
  4173. eth_proto = be16_to_cpu(ehdr->h_proto);
  4174. eth_proto_inner = eth_proto;
  4175. if (eth_proto == ETH_P_8021Q) {
  4176. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  4177. __be16 val = vp->h_vlan_encapsulated_proto;
  4178. eth_proto_inner = be16_to_cpu(val);
  4179. }
  4180. ipv6 = ihl = 0;
  4181. switch (skb->protocol) {
  4182. case __constant_htons(ETH_P_IP):
  4183. ip_proto = ip_hdr(skb)->protocol;
  4184. ihl = ip_hdr(skb)->ihl;
  4185. break;
  4186. case __constant_htons(ETH_P_IPV6):
  4187. ip_proto = ipv6_hdr(skb)->nexthdr;
  4188. ihl = (40 >> 2);
  4189. ipv6 = 1;
  4190. break;
  4191. default:
  4192. ip_proto = ihl = 0;
  4193. break;
  4194. }
  4195. csum_bits = TXHDR_CSUM_NONE;
  4196. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4197. u64 start, stuff;
  4198. csum_bits = (ip_proto == IPPROTO_TCP ?
  4199. TXHDR_CSUM_TCP :
  4200. (ip_proto == IPPROTO_UDP ?
  4201. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  4202. start = skb_transport_offset(skb) -
  4203. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4204. stuff = start + skb->csum_offset;
  4205. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  4206. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  4207. }
  4208. l3off = skb_network_offset(skb) -
  4209. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4210. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  4211. (len << TXHDR_LEN_SHIFT) |
  4212. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  4213. (ihl << TXHDR_IHL_SHIFT) |
  4214. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  4215. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  4216. (ipv6 ? TXHDR_IP_VER : 0) |
  4217. csum_bits);
  4218. return ret;
  4219. }
  4220. static struct tx_ring_info *tx_ring_select(struct niu *np, struct sk_buff *skb)
  4221. {
  4222. return &np->tx_rings[0];
  4223. }
  4224. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4225. {
  4226. struct niu *np = netdev_priv(dev);
  4227. unsigned long align, headroom;
  4228. struct tx_ring_info *rp;
  4229. struct tx_pkt_hdr *tp;
  4230. unsigned int len, nfg;
  4231. struct ethhdr *ehdr;
  4232. int prod, i, tlen;
  4233. u64 mapping, mrk;
  4234. rp = tx_ring_select(np, skb);
  4235. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  4236. netif_stop_queue(dev);
  4237. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  4238. "queue awake!\n", dev->name);
  4239. rp->tx_errors++;
  4240. return NETDEV_TX_BUSY;
  4241. }
  4242. if (skb->len < ETH_ZLEN) {
  4243. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  4244. if (skb_pad(skb, pad_bytes))
  4245. goto out;
  4246. skb_put(skb, pad_bytes);
  4247. }
  4248. len = sizeof(struct tx_pkt_hdr) + 15;
  4249. if (skb_headroom(skb) < len) {
  4250. struct sk_buff *skb_new;
  4251. skb_new = skb_realloc_headroom(skb, len);
  4252. if (!skb_new) {
  4253. rp->tx_errors++;
  4254. goto out_drop;
  4255. }
  4256. kfree_skb(skb);
  4257. skb = skb_new;
  4258. }
  4259. align = ((unsigned long) skb->data & (16 - 1));
  4260. headroom = align + sizeof(struct tx_pkt_hdr);
  4261. ehdr = (struct ethhdr *) skb->data;
  4262. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  4263. len = skb->len - sizeof(struct tx_pkt_hdr);
  4264. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  4265. tp->resv = 0;
  4266. len = skb_headlen(skb);
  4267. mapping = np->ops->map_single(np->device, skb->data,
  4268. len, DMA_TO_DEVICE);
  4269. prod = rp->prod;
  4270. rp->tx_buffs[prod].skb = skb;
  4271. rp->tx_buffs[prod].mapping = mapping;
  4272. mrk = TX_DESC_SOP;
  4273. if (++rp->mark_counter == rp->mark_freq) {
  4274. rp->mark_counter = 0;
  4275. mrk |= TX_DESC_MARK;
  4276. rp->mark_pending++;
  4277. }
  4278. tlen = len;
  4279. nfg = skb_shinfo(skb)->nr_frags;
  4280. while (tlen > 0) {
  4281. tlen -= MAX_TX_DESC_LEN;
  4282. nfg++;
  4283. }
  4284. while (len > 0) {
  4285. unsigned int this_len = len;
  4286. if (this_len > MAX_TX_DESC_LEN)
  4287. this_len = MAX_TX_DESC_LEN;
  4288. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  4289. mrk = nfg = 0;
  4290. prod = NEXT_TX(rp, prod);
  4291. mapping += this_len;
  4292. len -= this_len;
  4293. }
  4294. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4295. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4296. len = frag->size;
  4297. mapping = np->ops->map_page(np->device, frag->page,
  4298. frag->page_offset, len,
  4299. DMA_TO_DEVICE);
  4300. rp->tx_buffs[prod].skb = NULL;
  4301. rp->tx_buffs[prod].mapping = mapping;
  4302. niu_set_txd(rp, prod, mapping, len, 0, 0);
  4303. prod = NEXT_TX(rp, prod);
  4304. }
  4305. if (prod < rp->prod)
  4306. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  4307. rp->prod = prod;
  4308. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  4309. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  4310. netif_stop_queue(dev);
  4311. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  4312. netif_wake_queue(dev);
  4313. }
  4314. dev->trans_start = jiffies;
  4315. out:
  4316. return NETDEV_TX_OK;
  4317. out_drop:
  4318. rp->tx_errors++;
  4319. kfree_skb(skb);
  4320. goto out;
  4321. }
  4322. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  4323. {
  4324. struct niu *np = netdev_priv(dev);
  4325. int err, orig_jumbo, new_jumbo;
  4326. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  4327. return -EINVAL;
  4328. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  4329. new_jumbo = (new_mtu > ETH_DATA_LEN);
  4330. dev->mtu = new_mtu;
  4331. if (!netif_running(dev) ||
  4332. (orig_jumbo == new_jumbo))
  4333. return 0;
  4334. niu_full_shutdown(np, dev);
  4335. niu_free_channels(np);
  4336. niu_enable_napi(np);
  4337. err = niu_alloc_channels(np);
  4338. if (err)
  4339. return err;
  4340. spin_lock_irq(&np->lock);
  4341. err = niu_init_hw(np);
  4342. if (!err) {
  4343. init_timer(&np->timer);
  4344. np->timer.expires = jiffies + HZ;
  4345. np->timer.data = (unsigned long) np;
  4346. np->timer.function = niu_timer;
  4347. err = niu_enable_interrupts(np, 1);
  4348. if (err)
  4349. niu_stop_hw(np);
  4350. }
  4351. spin_unlock_irq(&np->lock);
  4352. if (!err) {
  4353. netif_start_queue(dev);
  4354. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4355. netif_carrier_on(dev);
  4356. add_timer(&np->timer);
  4357. }
  4358. return err;
  4359. }
  4360. static void niu_get_drvinfo(struct net_device *dev,
  4361. struct ethtool_drvinfo *info)
  4362. {
  4363. struct niu *np = netdev_priv(dev);
  4364. struct niu_vpd *vpd = &np->vpd;
  4365. strcpy(info->driver, DRV_MODULE_NAME);
  4366. strcpy(info->version, DRV_MODULE_VERSION);
  4367. sprintf(info->fw_version, "%d.%d",
  4368. vpd->fcode_major, vpd->fcode_minor);
  4369. if (np->parent->plat_type != PLAT_TYPE_NIU)
  4370. strcpy(info->bus_info, pci_name(np->pdev));
  4371. }
  4372. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4373. {
  4374. struct niu *np = netdev_priv(dev);
  4375. struct niu_link_config *lp;
  4376. lp = &np->link_config;
  4377. memset(cmd, 0, sizeof(*cmd));
  4378. cmd->phy_address = np->phy_addr;
  4379. cmd->supported = lp->supported;
  4380. cmd->advertising = lp->advertising;
  4381. cmd->autoneg = lp->autoneg;
  4382. cmd->speed = lp->active_speed;
  4383. cmd->duplex = lp->active_duplex;
  4384. return 0;
  4385. }
  4386. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4387. {
  4388. return -EINVAL;
  4389. }
  4390. static u32 niu_get_msglevel(struct net_device *dev)
  4391. {
  4392. struct niu *np = netdev_priv(dev);
  4393. return np->msg_enable;
  4394. }
  4395. static void niu_set_msglevel(struct net_device *dev, u32 value)
  4396. {
  4397. struct niu *np = netdev_priv(dev);
  4398. np->msg_enable = value;
  4399. }
  4400. static int niu_get_eeprom_len(struct net_device *dev)
  4401. {
  4402. struct niu *np = netdev_priv(dev);
  4403. return np->eeprom_len;
  4404. }
  4405. static int niu_get_eeprom(struct net_device *dev,
  4406. struct ethtool_eeprom *eeprom, u8 *data)
  4407. {
  4408. struct niu *np = netdev_priv(dev);
  4409. u32 offset, len, val;
  4410. offset = eeprom->offset;
  4411. len = eeprom->len;
  4412. if (offset + len < offset)
  4413. return -EINVAL;
  4414. if (offset >= np->eeprom_len)
  4415. return -EINVAL;
  4416. if (offset + len > np->eeprom_len)
  4417. len = eeprom->len = np->eeprom_len - offset;
  4418. if (offset & 3) {
  4419. u32 b_offset, b_count;
  4420. b_offset = offset & 3;
  4421. b_count = 4 - b_offset;
  4422. if (b_count > len)
  4423. b_count = len;
  4424. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  4425. memcpy(data, ((char *)&val) + b_offset, b_count);
  4426. data += b_count;
  4427. len -= b_count;
  4428. offset += b_count;
  4429. }
  4430. while (len >= 4) {
  4431. val = nr64(ESPC_NCR(offset / 4));
  4432. memcpy(data, &val, 4);
  4433. data += 4;
  4434. len -= 4;
  4435. offset += 4;
  4436. }
  4437. if (len) {
  4438. val = nr64(ESPC_NCR(offset / 4));
  4439. memcpy(data, &val, len);
  4440. }
  4441. return 0;
  4442. }
  4443. static const struct {
  4444. const char string[ETH_GSTRING_LEN];
  4445. } niu_xmac_stat_keys[] = {
  4446. { "tx_frames" },
  4447. { "tx_bytes" },
  4448. { "tx_fifo_errors" },
  4449. { "tx_overflow_errors" },
  4450. { "tx_max_pkt_size_errors" },
  4451. { "tx_underflow_errors" },
  4452. { "rx_local_faults" },
  4453. { "rx_remote_faults" },
  4454. { "rx_link_faults" },
  4455. { "rx_align_errors" },
  4456. { "rx_frags" },
  4457. { "rx_mcasts" },
  4458. { "rx_bcasts" },
  4459. { "rx_hist_cnt1" },
  4460. { "rx_hist_cnt2" },
  4461. { "rx_hist_cnt3" },
  4462. { "rx_hist_cnt4" },
  4463. { "rx_hist_cnt5" },
  4464. { "rx_hist_cnt6" },
  4465. { "rx_hist_cnt7" },
  4466. { "rx_octets" },
  4467. { "rx_code_violations" },
  4468. { "rx_len_errors" },
  4469. { "rx_crc_errors" },
  4470. { "rx_underflows" },
  4471. { "rx_overflows" },
  4472. { "pause_off_state" },
  4473. { "pause_on_state" },
  4474. { "pause_received" },
  4475. };
  4476. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  4477. static const struct {
  4478. const char string[ETH_GSTRING_LEN];
  4479. } niu_bmac_stat_keys[] = {
  4480. { "tx_underflow_errors" },
  4481. { "tx_max_pkt_size_errors" },
  4482. { "tx_bytes" },
  4483. { "tx_frames" },
  4484. { "rx_overflows" },
  4485. { "rx_frames" },
  4486. { "rx_align_errors" },
  4487. { "rx_crc_errors" },
  4488. { "rx_len_errors" },
  4489. { "pause_off_state" },
  4490. { "pause_on_state" },
  4491. { "pause_received" },
  4492. };
  4493. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  4494. static const struct {
  4495. const char string[ETH_GSTRING_LEN];
  4496. } niu_rxchan_stat_keys[] = {
  4497. { "rx_channel" },
  4498. { "rx_packets" },
  4499. { "rx_bytes" },
  4500. { "rx_dropped" },
  4501. { "rx_errors" },
  4502. };
  4503. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  4504. static const struct {
  4505. const char string[ETH_GSTRING_LEN];
  4506. } niu_txchan_stat_keys[] = {
  4507. { "tx_channel" },
  4508. { "tx_packets" },
  4509. { "tx_bytes" },
  4510. { "tx_errors" },
  4511. };
  4512. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  4513. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  4514. {
  4515. struct niu *np = netdev_priv(dev);
  4516. int i;
  4517. if (stringset != ETH_SS_STATS)
  4518. return;
  4519. if (np->flags & NIU_FLAGS_XMAC) {
  4520. memcpy(data, niu_xmac_stat_keys,
  4521. sizeof(niu_xmac_stat_keys));
  4522. data += sizeof(niu_xmac_stat_keys);
  4523. } else {
  4524. memcpy(data, niu_bmac_stat_keys,
  4525. sizeof(niu_bmac_stat_keys));
  4526. data += sizeof(niu_bmac_stat_keys);
  4527. }
  4528. for (i = 0; i < np->num_rx_rings; i++) {
  4529. memcpy(data, niu_rxchan_stat_keys,
  4530. sizeof(niu_rxchan_stat_keys));
  4531. data += sizeof(niu_rxchan_stat_keys);
  4532. }
  4533. for (i = 0; i < np->num_tx_rings; i++) {
  4534. memcpy(data, niu_txchan_stat_keys,
  4535. sizeof(niu_txchan_stat_keys));
  4536. data += sizeof(niu_txchan_stat_keys);
  4537. }
  4538. }
  4539. static int niu_get_stats_count(struct net_device *dev)
  4540. {
  4541. struct niu *np = netdev_priv(dev);
  4542. return ((np->flags & NIU_FLAGS_XMAC ?
  4543. NUM_XMAC_STAT_KEYS :
  4544. NUM_BMAC_STAT_KEYS) +
  4545. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  4546. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  4547. }
  4548. static void niu_get_ethtool_stats(struct net_device *dev,
  4549. struct ethtool_stats *stats, u64 *data)
  4550. {
  4551. struct niu *np = netdev_priv(dev);
  4552. int i;
  4553. niu_sync_mac_stats(np);
  4554. if (np->flags & NIU_FLAGS_XMAC) {
  4555. memcpy(data, &np->mac_stats.xmac,
  4556. sizeof(struct niu_xmac_stats));
  4557. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  4558. } else {
  4559. memcpy(data, &np->mac_stats.bmac,
  4560. sizeof(struct niu_bmac_stats));
  4561. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  4562. }
  4563. for (i = 0; i < np->num_rx_rings; i++) {
  4564. struct rx_ring_info *rp = &np->rx_rings[i];
  4565. data[0] = rp->rx_channel;
  4566. data[1] = rp->rx_packets;
  4567. data[2] = rp->rx_bytes;
  4568. data[3] = rp->rx_dropped;
  4569. data[4] = rp->rx_errors;
  4570. data += 5;
  4571. }
  4572. for (i = 0; i < np->num_tx_rings; i++) {
  4573. struct tx_ring_info *rp = &np->tx_rings[i];
  4574. data[0] = rp->tx_channel;
  4575. data[1] = rp->tx_packets;
  4576. data[2] = rp->tx_bytes;
  4577. data[3] = rp->tx_errors;
  4578. data += 4;
  4579. }
  4580. }
  4581. static u64 niu_led_state_save(struct niu *np)
  4582. {
  4583. if (np->flags & NIU_FLAGS_XMAC)
  4584. return nr64_mac(XMAC_CONFIG);
  4585. else
  4586. return nr64_mac(BMAC_XIF_CONFIG);
  4587. }
  4588. static void niu_led_state_restore(struct niu *np, u64 val)
  4589. {
  4590. if (np->flags & NIU_FLAGS_XMAC)
  4591. nw64_mac(XMAC_CONFIG, val);
  4592. else
  4593. nw64_mac(BMAC_XIF_CONFIG, val);
  4594. }
  4595. static void niu_force_led(struct niu *np, int on)
  4596. {
  4597. u64 val, reg, bit;
  4598. if (np->flags & NIU_FLAGS_XMAC) {
  4599. reg = XMAC_CONFIG;
  4600. bit = XMAC_CONFIG_FORCE_LED_ON;
  4601. } else {
  4602. reg = BMAC_XIF_CONFIG;
  4603. bit = BMAC_XIF_CONFIG_LINK_LED;
  4604. }
  4605. val = nr64_mac(reg);
  4606. if (on)
  4607. val |= bit;
  4608. else
  4609. val &= ~bit;
  4610. nw64_mac(reg, val);
  4611. }
  4612. static int niu_phys_id(struct net_device *dev, u32 data)
  4613. {
  4614. struct niu *np = netdev_priv(dev);
  4615. u64 orig_led_state;
  4616. int i;
  4617. if (!netif_running(dev))
  4618. return -EAGAIN;
  4619. if (data == 0)
  4620. data = 2;
  4621. orig_led_state = niu_led_state_save(np);
  4622. for (i = 0; i < (data * 2); i++) {
  4623. int on = ((i % 2) == 0);
  4624. niu_force_led(np, on);
  4625. if (msleep_interruptible(500))
  4626. break;
  4627. }
  4628. niu_led_state_restore(np, orig_led_state);
  4629. return 0;
  4630. }
  4631. static const struct ethtool_ops niu_ethtool_ops = {
  4632. .get_drvinfo = niu_get_drvinfo,
  4633. .get_link = ethtool_op_get_link,
  4634. .get_msglevel = niu_get_msglevel,
  4635. .set_msglevel = niu_set_msglevel,
  4636. .get_eeprom_len = niu_get_eeprom_len,
  4637. .get_eeprom = niu_get_eeprom,
  4638. .get_settings = niu_get_settings,
  4639. .set_settings = niu_set_settings,
  4640. .get_strings = niu_get_strings,
  4641. .get_stats_count = niu_get_stats_count,
  4642. .get_ethtool_stats = niu_get_ethtool_stats,
  4643. .phys_id = niu_phys_id,
  4644. };
  4645. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  4646. int ldg, int ldn)
  4647. {
  4648. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  4649. return -EINVAL;
  4650. if (ldn < 0 || ldn > LDN_MAX)
  4651. return -EINVAL;
  4652. parent->ldg_map[ldn] = ldg;
  4653. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  4654. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  4655. * the firmware, and we're not supposed to change them.
  4656. * Validate the mapping, because if it's wrong we probably
  4657. * won't get any interrupts and that's painful to debug.
  4658. */
  4659. if (nr64(LDG_NUM(ldn)) != ldg) {
  4660. dev_err(np->device, PFX "Port %u, mis-matched "
  4661. "LDG assignment "
  4662. "for ldn %d, should be %d is %llu\n",
  4663. np->port, ldn, ldg,
  4664. (unsigned long long) nr64(LDG_NUM(ldn)));
  4665. return -EINVAL;
  4666. }
  4667. } else
  4668. nw64(LDG_NUM(ldn), ldg);
  4669. return 0;
  4670. }
  4671. static int niu_set_ldg_timer_res(struct niu *np, int res)
  4672. {
  4673. if (res < 0 || res > LDG_TIMER_RES_VAL)
  4674. return -EINVAL;
  4675. nw64(LDG_TIMER_RES, res);
  4676. return 0;
  4677. }
  4678. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  4679. {
  4680. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  4681. (func < 0 || func > 3) ||
  4682. (vector < 0 || vector > 0x1f))
  4683. return -EINVAL;
  4684. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  4685. return 0;
  4686. }
  4687. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  4688. {
  4689. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  4690. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  4691. int limit;
  4692. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  4693. return -EINVAL;
  4694. frame = frame_base;
  4695. nw64(ESPC_PIO_STAT, frame);
  4696. limit = 64;
  4697. do {
  4698. udelay(5);
  4699. frame = nr64(ESPC_PIO_STAT);
  4700. if (frame & ESPC_PIO_STAT_READ_END)
  4701. break;
  4702. } while (limit--);
  4703. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4704. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4705. (unsigned long long) frame);
  4706. return -ENODEV;
  4707. }
  4708. frame = frame_base;
  4709. nw64(ESPC_PIO_STAT, frame);
  4710. limit = 64;
  4711. do {
  4712. udelay(5);
  4713. frame = nr64(ESPC_PIO_STAT);
  4714. if (frame & ESPC_PIO_STAT_READ_END)
  4715. break;
  4716. } while (limit--);
  4717. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4718. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4719. (unsigned long long) frame);
  4720. return -ENODEV;
  4721. }
  4722. frame = nr64(ESPC_PIO_STAT);
  4723. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  4724. }
  4725. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  4726. {
  4727. int err = niu_pci_eeprom_read(np, off);
  4728. u16 val;
  4729. if (err < 0)
  4730. return err;
  4731. val = (err << 8);
  4732. err = niu_pci_eeprom_read(np, off + 1);
  4733. if (err < 0)
  4734. return err;
  4735. val |= (err & 0xff);
  4736. return val;
  4737. }
  4738. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  4739. {
  4740. int err = niu_pci_eeprom_read(np, off);
  4741. u16 val;
  4742. if (err < 0)
  4743. return err;
  4744. val = (err & 0xff);
  4745. err = niu_pci_eeprom_read(np, off + 1);
  4746. if (err < 0)
  4747. return err;
  4748. val |= (err & 0xff) << 8;
  4749. return val;
  4750. }
  4751. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  4752. u32 off,
  4753. char *namebuf,
  4754. int namebuf_len)
  4755. {
  4756. int i;
  4757. for (i = 0; i < namebuf_len; i++) {
  4758. int err = niu_pci_eeprom_read(np, off + i);
  4759. if (err < 0)
  4760. return err;
  4761. *namebuf++ = err;
  4762. if (!err)
  4763. break;
  4764. }
  4765. if (i >= namebuf_len)
  4766. return -EINVAL;
  4767. return i + 1;
  4768. }
  4769. static void __devinit niu_vpd_parse_version(struct niu *np)
  4770. {
  4771. struct niu_vpd *vpd = &np->vpd;
  4772. int len = strlen(vpd->version) + 1;
  4773. const char *s = vpd->version;
  4774. int i;
  4775. for (i = 0; i < len - 5; i++) {
  4776. if (!strncmp(s + i, "FCode ", 5))
  4777. break;
  4778. }
  4779. if (i >= len - 5)
  4780. return;
  4781. s += i + 5;
  4782. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  4783. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  4784. vpd->fcode_major, vpd->fcode_minor);
  4785. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  4786. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  4787. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  4788. np->flags |= NIU_FLAGS_VPD_VALID;
  4789. }
  4790. /* ESPC_PIO_EN_ENABLE must be set */
  4791. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  4792. u32 start, u32 end)
  4793. {
  4794. unsigned int found_mask = 0;
  4795. #define FOUND_MASK_MODEL 0x00000001
  4796. #define FOUND_MASK_BMODEL 0x00000002
  4797. #define FOUND_MASK_VERS 0x00000004
  4798. #define FOUND_MASK_MAC 0x00000008
  4799. #define FOUND_MASK_NMAC 0x00000010
  4800. #define FOUND_MASK_PHY 0x00000020
  4801. #define FOUND_MASK_ALL 0x0000003f
  4802. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  4803. start, end);
  4804. while (start < end) {
  4805. int len, err, instance, type, prop_len;
  4806. char namebuf[64];
  4807. u8 *prop_buf;
  4808. int max_len;
  4809. if (found_mask == FOUND_MASK_ALL) {
  4810. niu_vpd_parse_version(np);
  4811. return 1;
  4812. }
  4813. err = niu_pci_eeprom_read(np, start + 2);
  4814. if (err < 0)
  4815. return err;
  4816. len = err;
  4817. start += 3;
  4818. instance = niu_pci_eeprom_read(np, start);
  4819. type = niu_pci_eeprom_read(np, start + 3);
  4820. prop_len = niu_pci_eeprom_read(np, start + 4);
  4821. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  4822. if (err < 0)
  4823. return err;
  4824. prop_buf = NULL;
  4825. max_len = 0;
  4826. if (!strcmp(namebuf, "model")) {
  4827. prop_buf = np->vpd.model;
  4828. max_len = NIU_VPD_MODEL_MAX;
  4829. found_mask |= FOUND_MASK_MODEL;
  4830. } else if (!strcmp(namebuf, "board-model")) {
  4831. prop_buf = np->vpd.board_model;
  4832. max_len = NIU_VPD_BD_MODEL_MAX;
  4833. found_mask |= FOUND_MASK_BMODEL;
  4834. } else if (!strcmp(namebuf, "version")) {
  4835. prop_buf = np->vpd.version;
  4836. max_len = NIU_VPD_VERSION_MAX;
  4837. found_mask |= FOUND_MASK_VERS;
  4838. } else if (!strcmp(namebuf, "local-mac-address")) {
  4839. prop_buf = np->vpd.local_mac;
  4840. max_len = ETH_ALEN;
  4841. found_mask |= FOUND_MASK_MAC;
  4842. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  4843. prop_buf = &np->vpd.mac_num;
  4844. max_len = 1;
  4845. found_mask |= FOUND_MASK_NMAC;
  4846. } else if (!strcmp(namebuf, "phy-type")) {
  4847. prop_buf = np->vpd.phy_type;
  4848. max_len = NIU_VPD_PHY_TYPE_MAX;
  4849. found_mask |= FOUND_MASK_PHY;
  4850. }
  4851. if (max_len && prop_len > max_len) {
  4852. dev_err(np->device, PFX "Property '%s' length (%d) is "
  4853. "too long.\n", namebuf, prop_len);
  4854. return -EINVAL;
  4855. }
  4856. if (prop_buf) {
  4857. u32 off = start + 5 + err;
  4858. int i;
  4859. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  4860. "len[%d]\n", namebuf, prop_len);
  4861. for (i = 0; i < prop_len; i++)
  4862. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  4863. }
  4864. start += len;
  4865. }
  4866. return 0;
  4867. }
  4868. /* ESPC_PIO_EN_ENABLE must be set */
  4869. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  4870. {
  4871. u32 offset;
  4872. int err;
  4873. err = niu_pci_eeprom_read16_swp(np, start + 1);
  4874. if (err < 0)
  4875. return;
  4876. offset = err + 3;
  4877. while (start + offset < ESPC_EEPROM_SIZE) {
  4878. u32 here = start + offset;
  4879. u32 end;
  4880. err = niu_pci_eeprom_read(np, here);
  4881. if (err != 0x90)
  4882. return;
  4883. err = niu_pci_eeprom_read16_swp(np, here + 1);
  4884. if (err < 0)
  4885. return;
  4886. here = start + offset + 3;
  4887. end = start + offset + err;
  4888. offset += err;
  4889. err = niu_pci_vpd_scan_props(np, here, end);
  4890. if (err < 0 || err == 1)
  4891. return;
  4892. }
  4893. }
  4894. /* ESPC_PIO_EN_ENABLE must be set */
  4895. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  4896. {
  4897. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  4898. int err;
  4899. while (start < end) {
  4900. ret = start;
  4901. /* ROM header signature? */
  4902. err = niu_pci_eeprom_read16(np, start + 0);
  4903. if (err != 0x55aa)
  4904. return 0;
  4905. /* Apply offset to PCI data structure. */
  4906. err = niu_pci_eeprom_read16(np, start + 23);
  4907. if (err < 0)
  4908. return 0;
  4909. start += err;
  4910. /* Check for "PCIR" signature. */
  4911. err = niu_pci_eeprom_read16(np, start + 0);
  4912. if (err != 0x5043)
  4913. return 0;
  4914. err = niu_pci_eeprom_read16(np, start + 2);
  4915. if (err != 0x4952)
  4916. return 0;
  4917. /* Check for OBP image type. */
  4918. err = niu_pci_eeprom_read(np, start + 20);
  4919. if (err < 0)
  4920. return 0;
  4921. if (err != 0x01) {
  4922. err = niu_pci_eeprom_read(np, ret + 2);
  4923. if (err < 0)
  4924. return 0;
  4925. start = ret + (err * 512);
  4926. continue;
  4927. }
  4928. err = niu_pci_eeprom_read16_swp(np, start + 8);
  4929. if (err < 0)
  4930. return err;
  4931. ret += err;
  4932. err = niu_pci_eeprom_read(np, ret + 0);
  4933. if (err != 0x82)
  4934. return 0;
  4935. return ret;
  4936. }
  4937. return 0;
  4938. }
  4939. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  4940. const char *phy_prop)
  4941. {
  4942. if (!strcmp(phy_prop, "mif")) {
  4943. /* 1G copper, MII */
  4944. np->flags &= ~(NIU_FLAGS_FIBER |
  4945. NIU_FLAGS_10G);
  4946. np->mac_xcvr = MAC_XCVR_MII;
  4947. } else if (!strcmp(phy_prop, "xgf")) {
  4948. /* 10G fiber, XPCS */
  4949. np->flags |= (NIU_FLAGS_10G |
  4950. NIU_FLAGS_FIBER);
  4951. np->mac_xcvr = MAC_XCVR_XPCS;
  4952. } else if (!strcmp(phy_prop, "pcs")) {
  4953. /* 1G fiber, PCS */
  4954. np->flags &= ~NIU_FLAGS_10G;
  4955. np->flags |= NIU_FLAGS_FIBER;
  4956. np->mac_xcvr = MAC_XCVR_PCS;
  4957. } else if (!strcmp(phy_prop, "xgc")) {
  4958. /* 10G copper, XPCS */
  4959. np->flags |= NIU_FLAGS_10G;
  4960. np->flags &= ~NIU_FLAGS_FIBER;
  4961. np->mac_xcvr = MAC_XCVR_XPCS;
  4962. } else {
  4963. return -EINVAL;
  4964. }
  4965. return 0;
  4966. }
  4967. static void __devinit niu_pci_vpd_validate(struct niu *np)
  4968. {
  4969. struct net_device *dev = np->dev;
  4970. struct niu_vpd *vpd = &np->vpd;
  4971. u8 val8;
  4972. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  4973. dev_err(np->device, PFX "VPD MAC invalid, "
  4974. "falling back to SPROM.\n");
  4975. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4976. return;
  4977. }
  4978. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  4979. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  4980. np->vpd.phy_type);
  4981. dev_err(np->device, PFX "Falling back to SPROM.\n");
  4982. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4983. return;
  4984. }
  4985. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  4986. val8 = dev->perm_addr[5];
  4987. dev->perm_addr[5] += np->port;
  4988. if (dev->perm_addr[5] < val8)
  4989. dev->perm_addr[4]++;
  4990. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  4991. }
  4992. static int __devinit niu_pci_probe_sprom(struct niu *np)
  4993. {
  4994. struct net_device *dev = np->dev;
  4995. int len, i;
  4996. u64 val, sum;
  4997. u8 val8;
  4998. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  4999. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  5000. len = val / 4;
  5001. np->eeprom_len = len;
  5002. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  5003. sum = 0;
  5004. for (i = 0; i < len; i++) {
  5005. val = nr64(ESPC_NCR(i));
  5006. sum += (val >> 0) & 0xff;
  5007. sum += (val >> 8) & 0xff;
  5008. sum += (val >> 16) & 0xff;
  5009. sum += (val >> 24) & 0xff;
  5010. }
  5011. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  5012. if ((sum & 0xff) != 0xab) {
  5013. dev_err(np->device, PFX "Bad SPROM checksum "
  5014. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  5015. return -EINVAL;
  5016. }
  5017. val = nr64(ESPC_PHY_TYPE);
  5018. switch (np->port) {
  5019. case 0:
  5020. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  5021. ESPC_PHY_TYPE_PORT0_SHIFT;
  5022. break;
  5023. case 1:
  5024. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  5025. ESPC_PHY_TYPE_PORT1_SHIFT;
  5026. break;
  5027. case 2:
  5028. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  5029. ESPC_PHY_TYPE_PORT2_SHIFT;
  5030. break;
  5031. case 3:
  5032. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  5033. ESPC_PHY_TYPE_PORT3_SHIFT;
  5034. break;
  5035. default:
  5036. dev_err(np->device, PFX "Bogus port number %u\n",
  5037. np->port);
  5038. return -EINVAL;
  5039. }
  5040. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  5041. switch (val8) {
  5042. case ESPC_PHY_TYPE_1G_COPPER:
  5043. /* 1G copper, MII */
  5044. np->flags &= ~(NIU_FLAGS_FIBER |
  5045. NIU_FLAGS_10G);
  5046. np->mac_xcvr = MAC_XCVR_MII;
  5047. break;
  5048. case ESPC_PHY_TYPE_1G_FIBER:
  5049. /* 1G fiber, PCS */
  5050. np->flags &= ~NIU_FLAGS_10G;
  5051. np->flags |= NIU_FLAGS_FIBER;
  5052. np->mac_xcvr = MAC_XCVR_PCS;
  5053. break;
  5054. case ESPC_PHY_TYPE_10G_COPPER:
  5055. /* 10G copper, XPCS */
  5056. np->flags |= NIU_FLAGS_10G;
  5057. np->flags &= ~NIU_FLAGS_FIBER;
  5058. np->mac_xcvr = MAC_XCVR_XPCS;
  5059. break;
  5060. case ESPC_PHY_TYPE_10G_FIBER:
  5061. /* 10G fiber, XPCS */
  5062. np->flags |= (NIU_FLAGS_10G |
  5063. NIU_FLAGS_FIBER);
  5064. np->mac_xcvr = MAC_XCVR_XPCS;
  5065. break;
  5066. default:
  5067. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  5068. return -EINVAL;
  5069. }
  5070. val = nr64(ESPC_MAC_ADDR0);
  5071. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  5072. (unsigned long long) val);
  5073. dev->perm_addr[0] = (val >> 0) & 0xff;
  5074. dev->perm_addr[1] = (val >> 8) & 0xff;
  5075. dev->perm_addr[2] = (val >> 16) & 0xff;
  5076. dev->perm_addr[3] = (val >> 24) & 0xff;
  5077. val = nr64(ESPC_MAC_ADDR1);
  5078. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  5079. (unsigned long long) val);
  5080. dev->perm_addr[4] = (val >> 0) & 0xff;
  5081. dev->perm_addr[5] = (val >> 8) & 0xff;
  5082. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5083. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  5084. dev_err(np->device, PFX "[ \n");
  5085. for (i = 0; i < 6; i++)
  5086. printk("%02x ", dev->perm_addr[i]);
  5087. printk("]\n");
  5088. return -EINVAL;
  5089. }
  5090. val8 = dev->perm_addr[5];
  5091. dev->perm_addr[5] += np->port;
  5092. if (dev->perm_addr[5] < val8)
  5093. dev->perm_addr[4]++;
  5094. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5095. val = nr64(ESPC_MOD_STR_LEN);
  5096. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  5097. (unsigned long long) val);
  5098. if (val >= 8 * 4)
  5099. return -EINVAL;
  5100. for (i = 0; i < val; i += 4) {
  5101. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  5102. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  5103. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  5104. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  5105. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  5106. }
  5107. np->vpd.model[val] = '\0';
  5108. val = nr64(ESPC_BD_MOD_STR_LEN);
  5109. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  5110. (unsigned long long) val);
  5111. if (val >= 4 * 4)
  5112. return -EINVAL;
  5113. for (i = 0; i < val; i += 4) {
  5114. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  5115. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  5116. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  5117. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  5118. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  5119. }
  5120. np->vpd.board_model[val] = '\0';
  5121. np->vpd.mac_num =
  5122. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  5123. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  5124. np->vpd.mac_num);
  5125. return 0;
  5126. }
  5127. static int __devinit niu_get_and_validate_port(struct niu *np)
  5128. {
  5129. struct niu_parent *parent = np->parent;
  5130. if (np->port <= 1)
  5131. np->flags |= NIU_FLAGS_XMAC;
  5132. if (!parent->num_ports) {
  5133. if (parent->plat_type == PLAT_TYPE_NIU) {
  5134. parent->num_ports = 2;
  5135. } else {
  5136. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  5137. ESPC_NUM_PORTS_MACS_VAL;
  5138. if (!parent->num_ports)
  5139. parent->num_ports = 4;
  5140. }
  5141. }
  5142. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  5143. np->port, parent->num_ports);
  5144. if (np->port >= parent->num_ports)
  5145. return -ENODEV;
  5146. return 0;
  5147. }
  5148. static int __devinit phy_record(struct niu_parent *parent,
  5149. struct phy_probe_info *p,
  5150. int dev_id_1, int dev_id_2, u8 phy_port,
  5151. int type)
  5152. {
  5153. u32 id = (dev_id_1 << 16) | dev_id_2;
  5154. u8 idx;
  5155. if (dev_id_1 < 0 || dev_id_2 < 0)
  5156. return 0;
  5157. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  5158. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704)
  5159. return 0;
  5160. } else {
  5161. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  5162. return 0;
  5163. }
  5164. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  5165. parent->index, id,
  5166. (type == PHY_TYPE_PMA_PMD ?
  5167. "PMA/PMD" :
  5168. (type == PHY_TYPE_PCS ?
  5169. "PCS" : "MII")),
  5170. phy_port);
  5171. if (p->cur[type] >= NIU_MAX_PORTS) {
  5172. printk(KERN_ERR PFX "Too many PHY ports.\n");
  5173. return -EINVAL;
  5174. }
  5175. idx = p->cur[type];
  5176. p->phy_id[type][idx] = id;
  5177. p->phy_port[type][idx] = phy_port;
  5178. p->cur[type] = idx + 1;
  5179. return 0;
  5180. }
  5181. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  5182. {
  5183. int i;
  5184. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  5185. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  5186. return 1;
  5187. }
  5188. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  5189. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  5190. return 1;
  5191. }
  5192. return 0;
  5193. }
  5194. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  5195. {
  5196. int port, cnt;
  5197. cnt = 0;
  5198. *lowest = 32;
  5199. for (port = 8; port < 32; port++) {
  5200. if (port_has_10g(p, port)) {
  5201. if (!cnt)
  5202. *lowest = port;
  5203. cnt++;
  5204. }
  5205. }
  5206. return cnt;
  5207. }
  5208. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  5209. {
  5210. *lowest = 32;
  5211. if (p->cur[PHY_TYPE_MII])
  5212. *lowest = p->phy_port[PHY_TYPE_MII][0];
  5213. return p->cur[PHY_TYPE_MII];
  5214. }
  5215. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  5216. {
  5217. int num_ports = parent->num_ports;
  5218. int i;
  5219. for (i = 0; i < num_ports; i++) {
  5220. parent->rxchan_per_port[i] = (16 / num_ports);
  5221. parent->txchan_per_port[i] = (16 / num_ports);
  5222. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5223. "[%u TX chans]\n",
  5224. parent->index, i,
  5225. parent->rxchan_per_port[i],
  5226. parent->txchan_per_port[i]);
  5227. }
  5228. }
  5229. static void __devinit niu_divide_channels(struct niu_parent *parent,
  5230. int num_10g, int num_1g)
  5231. {
  5232. int num_ports = parent->num_ports;
  5233. int rx_chans_per_10g, rx_chans_per_1g;
  5234. int tx_chans_per_10g, tx_chans_per_1g;
  5235. int i, tot_rx, tot_tx;
  5236. if (!num_10g || !num_1g) {
  5237. rx_chans_per_10g = rx_chans_per_1g =
  5238. (NIU_NUM_RXCHAN / num_ports);
  5239. tx_chans_per_10g = tx_chans_per_1g =
  5240. (NIU_NUM_TXCHAN / num_ports);
  5241. } else {
  5242. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  5243. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  5244. (rx_chans_per_1g * num_1g)) /
  5245. num_10g;
  5246. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  5247. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  5248. (tx_chans_per_1g * num_1g)) /
  5249. num_10g;
  5250. }
  5251. tot_rx = tot_tx = 0;
  5252. for (i = 0; i < num_ports; i++) {
  5253. int type = phy_decode(parent->port_phy, i);
  5254. if (type == PORT_TYPE_10G) {
  5255. parent->rxchan_per_port[i] = rx_chans_per_10g;
  5256. parent->txchan_per_port[i] = tx_chans_per_10g;
  5257. } else {
  5258. parent->rxchan_per_port[i] = rx_chans_per_1g;
  5259. parent->txchan_per_port[i] = tx_chans_per_1g;
  5260. }
  5261. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5262. "[%u TX chans]\n",
  5263. parent->index, i,
  5264. parent->rxchan_per_port[i],
  5265. parent->txchan_per_port[i]);
  5266. tot_rx += parent->rxchan_per_port[i];
  5267. tot_tx += parent->txchan_per_port[i];
  5268. }
  5269. if (tot_rx > NIU_NUM_RXCHAN) {
  5270. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  5271. "resetting to one per port.\n",
  5272. parent->index, tot_rx);
  5273. for (i = 0; i < num_ports; i++)
  5274. parent->rxchan_per_port[i] = 1;
  5275. }
  5276. if (tot_tx > NIU_NUM_TXCHAN) {
  5277. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  5278. "resetting to one per port.\n",
  5279. parent->index, tot_tx);
  5280. for (i = 0; i < num_ports; i++)
  5281. parent->txchan_per_port[i] = 1;
  5282. }
  5283. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  5284. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  5285. "RX[%d] TX[%d]\n",
  5286. parent->index, tot_rx, tot_tx);
  5287. }
  5288. }
  5289. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  5290. int num_10g, int num_1g)
  5291. {
  5292. int i, num_ports = parent->num_ports;
  5293. int rdc_group, rdc_groups_per_port;
  5294. int rdc_channel_base;
  5295. rdc_group = 0;
  5296. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  5297. rdc_channel_base = 0;
  5298. for (i = 0; i < num_ports; i++) {
  5299. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  5300. int grp, num_channels = parent->rxchan_per_port[i];
  5301. int this_channel_offset;
  5302. tp->first_table_num = rdc_group;
  5303. tp->num_tables = rdc_groups_per_port;
  5304. this_channel_offset = 0;
  5305. for (grp = 0; grp < tp->num_tables; grp++) {
  5306. struct rdc_table *rt = &tp->tables[grp];
  5307. int slot;
  5308. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  5309. parent->index, i, tp->first_table_num + grp);
  5310. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  5311. rt->rxdma_channel[slot] =
  5312. rdc_channel_base + this_channel_offset;
  5313. printk("%d ", rt->rxdma_channel[slot]);
  5314. if (++this_channel_offset == num_channels)
  5315. this_channel_offset = 0;
  5316. }
  5317. printk("]\n");
  5318. }
  5319. parent->rdc_default[i] = rdc_channel_base;
  5320. rdc_channel_base += num_channels;
  5321. rdc_group += rdc_groups_per_port;
  5322. }
  5323. }
  5324. static int __devinit fill_phy_probe_info(struct niu *np,
  5325. struct niu_parent *parent,
  5326. struct phy_probe_info *info)
  5327. {
  5328. unsigned long flags;
  5329. int port, err;
  5330. memset(info, 0, sizeof(*info));
  5331. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  5332. niu_lock_parent(np, flags);
  5333. err = 0;
  5334. for (port = 8; port < 32; port++) {
  5335. int dev_id_1, dev_id_2;
  5336. dev_id_1 = mdio_read(np, port,
  5337. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  5338. dev_id_2 = mdio_read(np, port,
  5339. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  5340. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5341. PHY_TYPE_PMA_PMD);
  5342. if (err)
  5343. break;
  5344. dev_id_1 = mdio_read(np, port,
  5345. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  5346. dev_id_2 = mdio_read(np, port,
  5347. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  5348. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5349. PHY_TYPE_PCS);
  5350. if (err)
  5351. break;
  5352. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  5353. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  5354. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5355. PHY_TYPE_MII);
  5356. if (err)
  5357. break;
  5358. }
  5359. niu_unlock_parent(np, flags);
  5360. return err;
  5361. }
  5362. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  5363. {
  5364. struct phy_probe_info *info = &parent->phy_probe_info;
  5365. int lowest_10g, lowest_1g;
  5366. int num_10g, num_1g;
  5367. u32 val;
  5368. int err;
  5369. err = fill_phy_probe_info(np, parent, info);
  5370. if (err)
  5371. return err;
  5372. num_10g = count_10g_ports(info, &lowest_10g);
  5373. num_1g = count_1g_ports(info, &lowest_1g);
  5374. switch ((num_10g << 4) | num_1g) {
  5375. case 0x24:
  5376. if (lowest_1g == 10)
  5377. parent->plat_type = PLAT_TYPE_VF_P0;
  5378. else if (lowest_1g == 26)
  5379. parent->plat_type = PLAT_TYPE_VF_P1;
  5380. else
  5381. goto unknown_vg_1g_port;
  5382. /* fallthru */
  5383. case 0x22:
  5384. val = (phy_encode(PORT_TYPE_10G, 0) |
  5385. phy_encode(PORT_TYPE_10G, 1) |
  5386. phy_encode(PORT_TYPE_1G, 2) |
  5387. phy_encode(PORT_TYPE_1G, 3));
  5388. break;
  5389. case 0x20:
  5390. val = (phy_encode(PORT_TYPE_10G, 0) |
  5391. phy_encode(PORT_TYPE_10G, 1));
  5392. break;
  5393. case 0x10:
  5394. val = phy_encode(PORT_TYPE_10G, np->port);
  5395. break;
  5396. case 0x14:
  5397. if (lowest_1g == 10)
  5398. parent->plat_type = PLAT_TYPE_VF_P0;
  5399. else if (lowest_1g == 26)
  5400. parent->plat_type = PLAT_TYPE_VF_P1;
  5401. else
  5402. goto unknown_vg_1g_port;
  5403. /* fallthru */
  5404. case 0x13:
  5405. if ((lowest_10g & 0x7) == 0)
  5406. val = (phy_encode(PORT_TYPE_10G, 0) |
  5407. phy_encode(PORT_TYPE_1G, 1) |
  5408. phy_encode(PORT_TYPE_1G, 2) |
  5409. phy_encode(PORT_TYPE_1G, 3));
  5410. else
  5411. val = (phy_encode(PORT_TYPE_1G, 0) |
  5412. phy_encode(PORT_TYPE_10G, 1) |
  5413. phy_encode(PORT_TYPE_1G, 2) |
  5414. phy_encode(PORT_TYPE_1G, 3));
  5415. break;
  5416. case 0x04:
  5417. if (lowest_1g == 10)
  5418. parent->plat_type = PLAT_TYPE_VF_P0;
  5419. else if (lowest_1g == 26)
  5420. parent->plat_type = PLAT_TYPE_VF_P1;
  5421. else
  5422. goto unknown_vg_1g_port;
  5423. val = (phy_encode(PORT_TYPE_1G, 0) |
  5424. phy_encode(PORT_TYPE_1G, 1) |
  5425. phy_encode(PORT_TYPE_1G, 2) |
  5426. phy_encode(PORT_TYPE_1G, 3));
  5427. break;
  5428. default:
  5429. printk(KERN_ERR PFX "Unsupported port config "
  5430. "10G[%d] 1G[%d]\n",
  5431. num_10g, num_1g);
  5432. return -EINVAL;
  5433. }
  5434. parent->port_phy = val;
  5435. if (parent->plat_type == PLAT_TYPE_NIU)
  5436. niu_n2_divide_channels(parent);
  5437. else
  5438. niu_divide_channels(parent, num_10g, num_1g);
  5439. niu_divide_rdc_groups(parent, num_10g, num_1g);
  5440. return 0;
  5441. unknown_vg_1g_port:
  5442. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  5443. lowest_1g);
  5444. return -EINVAL;
  5445. }
  5446. static int __devinit niu_probe_ports(struct niu *np)
  5447. {
  5448. struct niu_parent *parent = np->parent;
  5449. int err, i;
  5450. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  5451. parent->port_phy);
  5452. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  5453. err = walk_phys(np, parent);
  5454. if (err)
  5455. return err;
  5456. niu_set_ldg_timer_res(np, 2);
  5457. for (i = 0; i <= LDN_MAX; i++)
  5458. niu_ldn_irq_enable(np, i, 0);
  5459. }
  5460. if (parent->port_phy == PORT_PHY_INVALID)
  5461. return -EINVAL;
  5462. return 0;
  5463. }
  5464. static int __devinit niu_classifier_swstate_init(struct niu *np)
  5465. {
  5466. struct niu_classifier *cp = &np->clas;
  5467. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  5468. np->parent->tcam_num_entries);
  5469. cp->tcam_index = (u16) np->port;
  5470. cp->h1_init = 0xffffffff;
  5471. cp->h2_init = 0xffff;
  5472. return fflp_early_init(np);
  5473. }
  5474. static void __devinit niu_link_config_init(struct niu *np)
  5475. {
  5476. struct niu_link_config *lp = &np->link_config;
  5477. lp->advertising = (ADVERTISED_10baseT_Half |
  5478. ADVERTISED_10baseT_Full |
  5479. ADVERTISED_100baseT_Half |
  5480. ADVERTISED_100baseT_Full |
  5481. ADVERTISED_1000baseT_Half |
  5482. ADVERTISED_1000baseT_Full |
  5483. ADVERTISED_10000baseT_Full |
  5484. ADVERTISED_Autoneg);
  5485. lp->speed = lp->active_speed = SPEED_INVALID;
  5486. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  5487. #if 0
  5488. lp->loopback_mode = LOOPBACK_MAC;
  5489. lp->active_speed = SPEED_10000;
  5490. lp->active_duplex = DUPLEX_FULL;
  5491. #else
  5492. lp->loopback_mode = LOOPBACK_DISABLED;
  5493. #endif
  5494. }
  5495. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  5496. {
  5497. switch (np->port) {
  5498. case 0:
  5499. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  5500. np->ipp_off = 0x00000;
  5501. np->pcs_off = 0x04000;
  5502. np->xpcs_off = 0x02000;
  5503. break;
  5504. case 1:
  5505. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  5506. np->ipp_off = 0x08000;
  5507. np->pcs_off = 0x0a000;
  5508. np->xpcs_off = 0x08000;
  5509. break;
  5510. case 2:
  5511. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  5512. np->ipp_off = 0x04000;
  5513. np->pcs_off = 0x0e000;
  5514. np->xpcs_off = ~0UL;
  5515. break;
  5516. case 3:
  5517. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  5518. np->ipp_off = 0x0c000;
  5519. np->pcs_off = 0x12000;
  5520. np->xpcs_off = ~0UL;
  5521. break;
  5522. default:
  5523. dev_err(np->device, PFX "Port %u is invalid, cannot "
  5524. "compute MAC block offset.\n", np->port);
  5525. return -EINVAL;
  5526. }
  5527. return 0;
  5528. }
  5529. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  5530. {
  5531. struct msix_entry msi_vec[NIU_NUM_LDG];
  5532. struct niu_parent *parent = np->parent;
  5533. struct pci_dev *pdev = np->pdev;
  5534. int i, num_irqs, err;
  5535. u8 first_ldg;
  5536. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  5537. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  5538. ldg_num_map[i] = first_ldg + i;
  5539. num_irqs = (parent->rxchan_per_port[np->port] +
  5540. parent->txchan_per_port[np->port] +
  5541. (np->port == 0 ? 3 : 1));
  5542. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  5543. retry:
  5544. for (i = 0; i < num_irqs; i++) {
  5545. msi_vec[i].vector = 0;
  5546. msi_vec[i].entry = i;
  5547. }
  5548. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  5549. if (err < 0) {
  5550. np->flags &= ~NIU_FLAGS_MSIX;
  5551. return;
  5552. }
  5553. if (err > 0) {
  5554. num_irqs = err;
  5555. goto retry;
  5556. }
  5557. np->flags |= NIU_FLAGS_MSIX;
  5558. for (i = 0; i < num_irqs; i++)
  5559. np->ldg[i].irq = msi_vec[i].vector;
  5560. np->num_ldg = num_irqs;
  5561. }
  5562. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  5563. {
  5564. #ifdef CONFIG_SPARC64
  5565. struct of_device *op = np->op;
  5566. const u32 *int_prop;
  5567. int i;
  5568. int_prop = of_get_property(op->node, "interrupts", NULL);
  5569. if (!int_prop)
  5570. return -ENODEV;
  5571. for (i = 0; i < op->num_irqs; i++) {
  5572. ldg_num_map[i] = int_prop[i];
  5573. np->ldg[i].irq = op->irqs[i];
  5574. }
  5575. np->num_ldg = op->num_irqs;
  5576. return 0;
  5577. #else
  5578. return -EINVAL;
  5579. #endif
  5580. }
  5581. static int __devinit niu_ldg_init(struct niu *np)
  5582. {
  5583. struct niu_parent *parent = np->parent;
  5584. u8 ldg_num_map[NIU_NUM_LDG];
  5585. int first_chan, num_chan;
  5586. int i, err, ldg_rotor;
  5587. u8 port;
  5588. np->num_ldg = 1;
  5589. np->ldg[0].irq = np->dev->irq;
  5590. if (parent->plat_type == PLAT_TYPE_NIU) {
  5591. err = niu_n2_irq_init(np, ldg_num_map);
  5592. if (err)
  5593. return err;
  5594. } else
  5595. niu_try_msix(np, ldg_num_map);
  5596. port = np->port;
  5597. for (i = 0; i < np->num_ldg; i++) {
  5598. struct niu_ldg *lp = &np->ldg[i];
  5599. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  5600. lp->np = np;
  5601. lp->ldg_num = ldg_num_map[i];
  5602. lp->timer = 2; /* XXX */
  5603. /* On N2 NIU the firmware has setup the SID mappings so they go
  5604. * to the correct values that will route the LDG to the proper
  5605. * interrupt in the NCU interrupt table.
  5606. */
  5607. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  5608. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  5609. if (err)
  5610. return err;
  5611. }
  5612. }
  5613. /* We adopt the LDG assignment ordering used by the N2 NIU
  5614. * 'interrupt' properties because that simplifies a lot of
  5615. * things. This ordering is:
  5616. *
  5617. * MAC
  5618. * MIF (if port zero)
  5619. * SYSERR (if port zero)
  5620. * RX channels
  5621. * TX channels
  5622. */
  5623. ldg_rotor = 0;
  5624. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  5625. LDN_MAC(port));
  5626. if (err)
  5627. return err;
  5628. ldg_rotor++;
  5629. if (ldg_rotor == np->num_ldg)
  5630. ldg_rotor = 0;
  5631. if (port == 0) {
  5632. err = niu_ldg_assign_ldn(np, parent,
  5633. ldg_num_map[ldg_rotor],
  5634. LDN_MIF);
  5635. if (err)
  5636. return err;
  5637. ldg_rotor++;
  5638. if (ldg_rotor == np->num_ldg)
  5639. ldg_rotor = 0;
  5640. err = niu_ldg_assign_ldn(np, parent,
  5641. ldg_num_map[ldg_rotor],
  5642. LDN_DEVICE_ERROR);
  5643. if (err)
  5644. return err;
  5645. ldg_rotor++;
  5646. if (ldg_rotor == np->num_ldg)
  5647. ldg_rotor = 0;
  5648. }
  5649. first_chan = 0;
  5650. for (i = 0; i < port; i++)
  5651. first_chan += parent->rxchan_per_port[port];
  5652. num_chan = parent->rxchan_per_port[port];
  5653. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5654. err = niu_ldg_assign_ldn(np, parent,
  5655. ldg_num_map[ldg_rotor],
  5656. LDN_RXDMA(i));
  5657. if (err)
  5658. return err;
  5659. ldg_rotor++;
  5660. if (ldg_rotor == np->num_ldg)
  5661. ldg_rotor = 0;
  5662. }
  5663. first_chan = 0;
  5664. for (i = 0; i < port; i++)
  5665. first_chan += parent->txchan_per_port[port];
  5666. num_chan = parent->txchan_per_port[port];
  5667. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5668. err = niu_ldg_assign_ldn(np, parent,
  5669. ldg_num_map[ldg_rotor],
  5670. LDN_TXDMA(i));
  5671. if (err)
  5672. return err;
  5673. ldg_rotor++;
  5674. if (ldg_rotor == np->num_ldg)
  5675. ldg_rotor = 0;
  5676. }
  5677. return 0;
  5678. }
  5679. static void __devexit niu_ldg_free(struct niu *np)
  5680. {
  5681. if (np->flags & NIU_FLAGS_MSIX)
  5682. pci_disable_msix(np->pdev);
  5683. }
  5684. static int __devinit niu_get_of_props(struct niu *np)
  5685. {
  5686. #ifdef CONFIG_SPARC64
  5687. struct net_device *dev = np->dev;
  5688. struct device_node *dp;
  5689. const char *phy_type;
  5690. const u8 *mac_addr;
  5691. int prop_len;
  5692. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5693. dp = np->op->node;
  5694. else
  5695. dp = pci_device_to_OF_node(np->pdev);
  5696. phy_type = of_get_property(dp, "phy-type", &prop_len);
  5697. if (!phy_type) {
  5698. dev_err(np->device, PFX "%s: OF node lacks "
  5699. "phy-type property\n",
  5700. dp->full_name);
  5701. return -EINVAL;
  5702. }
  5703. if (!strcmp(phy_type, "none"))
  5704. return -ENODEV;
  5705. strcpy(np->vpd.phy_type, phy_type);
  5706. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5707. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  5708. dp->full_name, np->vpd.phy_type);
  5709. return -EINVAL;
  5710. }
  5711. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  5712. if (!mac_addr) {
  5713. dev_err(np->device, PFX "%s: OF node lacks "
  5714. "local-mac-address property\n",
  5715. dp->full_name);
  5716. return -EINVAL;
  5717. }
  5718. if (prop_len != dev->addr_len) {
  5719. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  5720. "is wrong.\n",
  5721. dp->full_name, prop_len);
  5722. }
  5723. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  5724. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5725. int i;
  5726. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  5727. dp->full_name);
  5728. dev_err(np->device, PFX "%s: [ \n",
  5729. dp->full_name);
  5730. for (i = 0; i < 6; i++)
  5731. printk("%02x ", dev->perm_addr[i]);
  5732. printk("]\n");
  5733. return -EINVAL;
  5734. }
  5735. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5736. return 0;
  5737. #else
  5738. return -EINVAL;
  5739. #endif
  5740. }
  5741. static int __devinit niu_get_invariants(struct niu *np)
  5742. {
  5743. int err, have_props;
  5744. u32 offset;
  5745. err = niu_get_of_props(np);
  5746. if (err == -ENODEV)
  5747. return err;
  5748. have_props = !err;
  5749. err = niu_get_and_validate_port(np);
  5750. if (err)
  5751. return err;
  5752. err = niu_init_mac_ipp_pcs_base(np);
  5753. if (err)
  5754. return err;
  5755. if (!have_props) {
  5756. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5757. return -EINVAL;
  5758. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  5759. offset = niu_pci_vpd_offset(np);
  5760. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  5761. offset);
  5762. if (offset)
  5763. niu_pci_vpd_fetch(np, offset);
  5764. nw64(ESPC_PIO_EN, 0);
  5765. if (np->flags & NIU_FLAGS_VPD_VALID)
  5766. niu_pci_vpd_validate(np);
  5767. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  5768. err = niu_pci_probe_sprom(np);
  5769. if (err)
  5770. return err;
  5771. }
  5772. }
  5773. err = niu_probe_ports(np);
  5774. if (err)
  5775. return err;
  5776. niu_ldg_init(np);
  5777. niu_classifier_swstate_init(np);
  5778. niu_link_config_init(np);
  5779. err = niu_determine_phy_disposition(np);
  5780. if (!err)
  5781. err = niu_init_link(np);
  5782. return err;
  5783. }
  5784. static LIST_HEAD(niu_parent_list);
  5785. static DEFINE_MUTEX(niu_parent_lock);
  5786. static int niu_parent_index;
  5787. static ssize_t show_port_phy(struct device *dev,
  5788. struct device_attribute *attr, char *buf)
  5789. {
  5790. struct platform_device *plat_dev = to_platform_device(dev);
  5791. struct niu_parent *p = plat_dev->dev.platform_data;
  5792. u32 port_phy = p->port_phy;
  5793. char *orig_buf = buf;
  5794. int i;
  5795. if (port_phy == PORT_PHY_UNKNOWN ||
  5796. port_phy == PORT_PHY_INVALID)
  5797. return 0;
  5798. for (i = 0; i < p->num_ports; i++) {
  5799. const char *type_str;
  5800. int type;
  5801. type = phy_decode(port_phy, i);
  5802. if (type == PORT_TYPE_10G)
  5803. type_str = "10G";
  5804. else
  5805. type_str = "1G";
  5806. buf += sprintf(buf,
  5807. (i == 0) ? "%s" : " %s",
  5808. type_str);
  5809. }
  5810. buf += sprintf(buf, "\n");
  5811. return buf - orig_buf;
  5812. }
  5813. static ssize_t show_plat_type(struct device *dev,
  5814. struct device_attribute *attr, char *buf)
  5815. {
  5816. struct platform_device *plat_dev = to_platform_device(dev);
  5817. struct niu_parent *p = plat_dev->dev.platform_data;
  5818. const char *type_str;
  5819. switch (p->plat_type) {
  5820. case PLAT_TYPE_ATLAS:
  5821. type_str = "atlas";
  5822. break;
  5823. case PLAT_TYPE_NIU:
  5824. type_str = "niu";
  5825. break;
  5826. case PLAT_TYPE_VF_P0:
  5827. type_str = "vf_p0";
  5828. break;
  5829. case PLAT_TYPE_VF_P1:
  5830. type_str = "vf_p1";
  5831. break;
  5832. default:
  5833. type_str = "unknown";
  5834. break;
  5835. }
  5836. return sprintf(buf, "%s\n", type_str);
  5837. }
  5838. static ssize_t __show_chan_per_port(struct device *dev,
  5839. struct device_attribute *attr, char *buf,
  5840. int rx)
  5841. {
  5842. struct platform_device *plat_dev = to_platform_device(dev);
  5843. struct niu_parent *p = plat_dev->dev.platform_data;
  5844. char *orig_buf = buf;
  5845. u8 *arr;
  5846. int i;
  5847. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  5848. for (i = 0; i < p->num_ports; i++) {
  5849. buf += sprintf(buf,
  5850. (i == 0) ? "%d" : " %d",
  5851. arr[i]);
  5852. }
  5853. buf += sprintf(buf, "\n");
  5854. return buf - orig_buf;
  5855. }
  5856. static ssize_t show_rxchan_per_port(struct device *dev,
  5857. struct device_attribute *attr, char *buf)
  5858. {
  5859. return __show_chan_per_port(dev, attr, buf, 1);
  5860. }
  5861. static ssize_t show_txchan_per_port(struct device *dev,
  5862. struct device_attribute *attr, char *buf)
  5863. {
  5864. return __show_chan_per_port(dev, attr, buf, 1);
  5865. }
  5866. static ssize_t show_num_ports(struct device *dev,
  5867. struct device_attribute *attr, char *buf)
  5868. {
  5869. struct platform_device *plat_dev = to_platform_device(dev);
  5870. struct niu_parent *p = plat_dev->dev.platform_data;
  5871. return sprintf(buf, "%d\n", p->num_ports);
  5872. }
  5873. static struct device_attribute niu_parent_attributes[] = {
  5874. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  5875. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  5876. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  5877. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  5878. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  5879. {}
  5880. };
  5881. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  5882. union niu_parent_id *id,
  5883. u8 ptype)
  5884. {
  5885. struct platform_device *plat_dev;
  5886. struct niu_parent *p;
  5887. int i;
  5888. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  5889. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  5890. NULL, 0);
  5891. if (!plat_dev)
  5892. return NULL;
  5893. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  5894. int err = device_create_file(&plat_dev->dev,
  5895. &niu_parent_attributes[i]);
  5896. if (err)
  5897. goto fail_unregister;
  5898. }
  5899. p = kzalloc(sizeof(*p), GFP_KERNEL);
  5900. if (!p)
  5901. goto fail_unregister;
  5902. p->index = niu_parent_index++;
  5903. plat_dev->dev.platform_data = p;
  5904. p->plat_dev = plat_dev;
  5905. memcpy(&p->id, id, sizeof(*id));
  5906. p->plat_type = ptype;
  5907. INIT_LIST_HEAD(&p->list);
  5908. atomic_set(&p->refcnt, 0);
  5909. list_add(&p->list, &niu_parent_list);
  5910. spin_lock_init(&p->lock);
  5911. p->rxdma_clock_divider = 7500;
  5912. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  5913. if (p->plat_type == PLAT_TYPE_NIU)
  5914. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  5915. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  5916. int index = i - CLASS_CODE_USER_PROG1;
  5917. p->tcam_key[index] = TCAM_KEY_TSEL;
  5918. p->flow_key[index] = (FLOW_KEY_IPSA |
  5919. FLOW_KEY_IPDA |
  5920. FLOW_KEY_PROTO |
  5921. (FLOW_KEY_L4_BYTE12 <<
  5922. FLOW_KEY_L4_0_SHIFT) |
  5923. (FLOW_KEY_L4_BYTE12 <<
  5924. FLOW_KEY_L4_1_SHIFT));
  5925. }
  5926. for (i = 0; i < LDN_MAX + 1; i++)
  5927. p->ldg_map[i] = LDG_INVALID;
  5928. return p;
  5929. fail_unregister:
  5930. platform_device_unregister(plat_dev);
  5931. return NULL;
  5932. }
  5933. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  5934. union niu_parent_id *id,
  5935. u8 ptype)
  5936. {
  5937. struct niu_parent *p, *tmp;
  5938. int port = np->port;
  5939. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  5940. ptype, port);
  5941. mutex_lock(&niu_parent_lock);
  5942. p = NULL;
  5943. list_for_each_entry(tmp, &niu_parent_list, list) {
  5944. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  5945. p = tmp;
  5946. break;
  5947. }
  5948. }
  5949. if (!p)
  5950. p = niu_new_parent(np, id, ptype);
  5951. if (p) {
  5952. char port_name[6];
  5953. int err;
  5954. sprintf(port_name, "port%d", port);
  5955. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  5956. &np->device->kobj,
  5957. port_name);
  5958. if (!err) {
  5959. p->ports[port] = np;
  5960. atomic_inc(&p->refcnt);
  5961. }
  5962. }
  5963. mutex_unlock(&niu_parent_lock);
  5964. return p;
  5965. }
  5966. static void niu_put_parent(struct niu *np)
  5967. {
  5968. struct niu_parent *p = np->parent;
  5969. u8 port = np->port;
  5970. char port_name[6];
  5971. BUG_ON(!p || p->ports[port] != np);
  5972. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  5973. sprintf(port_name, "port%d", port);
  5974. mutex_lock(&niu_parent_lock);
  5975. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  5976. p->ports[port] = NULL;
  5977. np->parent = NULL;
  5978. if (atomic_dec_and_test(&p->refcnt)) {
  5979. list_del(&p->list);
  5980. platform_device_unregister(p->plat_dev);
  5981. }
  5982. mutex_unlock(&niu_parent_lock);
  5983. }
  5984. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  5985. u64 *handle, gfp_t flag)
  5986. {
  5987. dma_addr_t dh;
  5988. void *ret;
  5989. ret = dma_alloc_coherent(dev, size, &dh, flag);
  5990. if (ret)
  5991. *handle = dh;
  5992. return ret;
  5993. }
  5994. static void niu_pci_free_coherent(struct device *dev, size_t size,
  5995. void *cpu_addr, u64 handle)
  5996. {
  5997. dma_free_coherent(dev, size, cpu_addr, handle);
  5998. }
  5999. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  6000. unsigned long offset, size_t size,
  6001. enum dma_data_direction direction)
  6002. {
  6003. return dma_map_page(dev, page, offset, size, direction);
  6004. }
  6005. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  6006. size_t size, enum dma_data_direction direction)
  6007. {
  6008. return dma_unmap_page(dev, dma_address, size, direction);
  6009. }
  6010. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  6011. size_t size,
  6012. enum dma_data_direction direction)
  6013. {
  6014. return dma_map_single(dev, cpu_addr, size, direction);
  6015. }
  6016. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  6017. size_t size,
  6018. enum dma_data_direction direction)
  6019. {
  6020. dma_unmap_single(dev, dma_address, size, direction);
  6021. }
  6022. static const struct niu_ops niu_pci_ops = {
  6023. .alloc_coherent = niu_pci_alloc_coherent,
  6024. .free_coherent = niu_pci_free_coherent,
  6025. .map_page = niu_pci_map_page,
  6026. .unmap_page = niu_pci_unmap_page,
  6027. .map_single = niu_pci_map_single,
  6028. .unmap_single = niu_pci_unmap_single,
  6029. };
  6030. static void __devinit niu_driver_version(void)
  6031. {
  6032. static int niu_version_printed;
  6033. if (niu_version_printed++ == 0)
  6034. pr_info("%s", version);
  6035. }
  6036. static struct net_device * __devinit niu_alloc_and_init(
  6037. struct device *gen_dev, struct pci_dev *pdev,
  6038. struct of_device *op, const struct niu_ops *ops,
  6039. u8 port)
  6040. {
  6041. struct net_device *dev = alloc_etherdev(sizeof(struct niu));
  6042. struct niu *np;
  6043. if (!dev) {
  6044. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  6045. return NULL;
  6046. }
  6047. SET_NETDEV_DEV(dev, gen_dev);
  6048. np = netdev_priv(dev);
  6049. np->dev = dev;
  6050. np->pdev = pdev;
  6051. np->op = op;
  6052. np->device = gen_dev;
  6053. np->ops = ops;
  6054. np->msg_enable = niu_debug;
  6055. spin_lock_init(&np->lock);
  6056. INIT_WORK(&np->reset_task, niu_reset_task);
  6057. np->port = port;
  6058. return dev;
  6059. }
  6060. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  6061. {
  6062. dev->open = niu_open;
  6063. dev->stop = niu_close;
  6064. dev->get_stats = niu_get_stats;
  6065. dev->set_multicast_list = niu_set_rx_mode;
  6066. dev->set_mac_address = niu_set_mac_addr;
  6067. dev->do_ioctl = niu_ioctl;
  6068. dev->tx_timeout = niu_tx_timeout;
  6069. dev->hard_start_xmit = niu_start_xmit;
  6070. dev->ethtool_ops = &niu_ethtool_ops;
  6071. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  6072. dev->change_mtu = niu_change_mtu;
  6073. }
  6074. static void __devinit niu_device_announce(struct niu *np)
  6075. {
  6076. struct net_device *dev = np->dev;
  6077. int i;
  6078. pr_info("%s: NIU Ethernet ", dev->name);
  6079. for (i = 0; i < 6; i++)
  6080. printk("%2.2x%c", dev->dev_addr[i],
  6081. i == 5 ? '\n' : ':');
  6082. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6083. dev->name,
  6084. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6085. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6086. (np->flags & NIU_FLAGS_FIBER ? "FIBER" : "COPPER"),
  6087. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6088. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6089. np->vpd.phy_type);
  6090. }
  6091. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  6092. const struct pci_device_id *ent)
  6093. {
  6094. unsigned long niureg_base, niureg_len;
  6095. union niu_parent_id parent_id;
  6096. struct net_device *dev;
  6097. struct niu *np;
  6098. int err, pos;
  6099. u64 dma_mask;
  6100. u16 val16;
  6101. niu_driver_version();
  6102. err = pci_enable_device(pdev);
  6103. if (err) {
  6104. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  6105. "aborting.\n");
  6106. return err;
  6107. }
  6108. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  6109. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  6110. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  6111. "base addresses, aborting.\n");
  6112. err = -ENODEV;
  6113. goto err_out_disable_pdev;
  6114. }
  6115. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  6116. if (err) {
  6117. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  6118. "aborting.\n");
  6119. goto err_out_disable_pdev;
  6120. }
  6121. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  6122. if (pos <= 0) {
  6123. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  6124. "aborting.\n");
  6125. goto err_out_free_res;
  6126. }
  6127. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  6128. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  6129. if (!dev) {
  6130. err = -ENOMEM;
  6131. goto err_out_free_res;
  6132. }
  6133. np = netdev_priv(dev);
  6134. memset(&parent_id, 0, sizeof(parent_id));
  6135. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  6136. parent_id.pci.bus = pdev->bus->number;
  6137. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  6138. np->parent = niu_get_parent(np, &parent_id,
  6139. PLAT_TYPE_ATLAS);
  6140. if (!np->parent) {
  6141. err = -ENOMEM;
  6142. goto err_out_free_dev;
  6143. }
  6144. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  6145. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  6146. val16 |= (PCI_EXP_DEVCTL_CERE |
  6147. PCI_EXP_DEVCTL_NFERE |
  6148. PCI_EXP_DEVCTL_FERE |
  6149. PCI_EXP_DEVCTL_URRE |
  6150. PCI_EXP_DEVCTL_RELAX_EN);
  6151. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  6152. dma_mask = DMA_44BIT_MASK;
  6153. err = pci_set_dma_mask(pdev, dma_mask);
  6154. if (!err) {
  6155. dev->features |= NETIF_F_HIGHDMA;
  6156. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  6157. if (err) {
  6158. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  6159. "DMA for consistent allocations, "
  6160. "aborting.\n");
  6161. goto err_out_release_parent;
  6162. }
  6163. }
  6164. if (err || dma_mask == DMA_32BIT_MASK) {
  6165. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  6166. if (err) {
  6167. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  6168. "aborting.\n");
  6169. goto err_out_release_parent;
  6170. }
  6171. }
  6172. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6173. niureg_base = pci_resource_start(pdev, 0);
  6174. niureg_len = pci_resource_len(pdev, 0);
  6175. np->regs = ioremap_nocache(niureg_base, niureg_len);
  6176. if (!np->regs) {
  6177. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  6178. "aborting.\n");
  6179. err = -ENOMEM;
  6180. goto err_out_release_parent;
  6181. }
  6182. pci_set_master(pdev);
  6183. pci_save_state(pdev);
  6184. dev->irq = pdev->irq;
  6185. niu_assign_netdev_ops(dev);
  6186. err = niu_get_invariants(np);
  6187. if (err) {
  6188. if (err != -ENODEV)
  6189. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  6190. "of chip, aborting.\n");
  6191. goto err_out_iounmap;
  6192. }
  6193. err = register_netdev(dev);
  6194. if (err) {
  6195. dev_err(&pdev->dev, PFX "Cannot register net device, "
  6196. "aborting.\n");
  6197. goto err_out_iounmap;
  6198. }
  6199. pci_set_drvdata(pdev, dev);
  6200. niu_device_announce(np);
  6201. return 0;
  6202. err_out_iounmap:
  6203. if (np->regs) {
  6204. iounmap(np->regs);
  6205. np->regs = NULL;
  6206. }
  6207. err_out_release_parent:
  6208. niu_put_parent(np);
  6209. err_out_free_dev:
  6210. free_netdev(dev);
  6211. err_out_free_res:
  6212. pci_release_regions(pdev);
  6213. err_out_disable_pdev:
  6214. pci_disable_device(pdev);
  6215. pci_set_drvdata(pdev, NULL);
  6216. return err;
  6217. }
  6218. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  6219. {
  6220. struct net_device *dev = pci_get_drvdata(pdev);
  6221. if (dev) {
  6222. struct niu *np = netdev_priv(dev);
  6223. unregister_netdev(dev);
  6224. if (np->regs) {
  6225. iounmap(np->regs);
  6226. np->regs = NULL;
  6227. }
  6228. niu_ldg_free(np);
  6229. niu_put_parent(np);
  6230. free_netdev(dev);
  6231. pci_release_regions(pdev);
  6232. pci_disable_device(pdev);
  6233. pci_set_drvdata(pdev, NULL);
  6234. }
  6235. }
  6236. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  6237. {
  6238. struct net_device *dev = pci_get_drvdata(pdev);
  6239. struct niu *np = netdev_priv(dev);
  6240. unsigned long flags;
  6241. if (!netif_running(dev))
  6242. return 0;
  6243. flush_scheduled_work();
  6244. niu_netif_stop(np);
  6245. del_timer_sync(&np->timer);
  6246. spin_lock_irqsave(&np->lock, flags);
  6247. niu_enable_interrupts(np, 0);
  6248. spin_unlock_irqrestore(&np->lock, flags);
  6249. netif_device_detach(dev);
  6250. spin_lock_irqsave(&np->lock, flags);
  6251. niu_stop_hw(np);
  6252. spin_unlock_irqrestore(&np->lock, flags);
  6253. pci_save_state(pdev);
  6254. return 0;
  6255. }
  6256. static int niu_resume(struct pci_dev *pdev)
  6257. {
  6258. struct net_device *dev = pci_get_drvdata(pdev);
  6259. struct niu *np = netdev_priv(dev);
  6260. unsigned long flags;
  6261. int err;
  6262. if (!netif_running(dev))
  6263. return 0;
  6264. pci_restore_state(pdev);
  6265. netif_device_attach(dev);
  6266. spin_lock_irqsave(&np->lock, flags);
  6267. err = niu_init_hw(np);
  6268. if (!err) {
  6269. np->timer.expires = jiffies + HZ;
  6270. add_timer(&np->timer);
  6271. niu_netif_start(np);
  6272. }
  6273. spin_unlock_irqrestore(&np->lock, flags);
  6274. return err;
  6275. }
  6276. static struct pci_driver niu_pci_driver = {
  6277. .name = DRV_MODULE_NAME,
  6278. .id_table = niu_pci_tbl,
  6279. .probe = niu_pci_init_one,
  6280. .remove = __devexit_p(niu_pci_remove_one),
  6281. .suspend = niu_suspend,
  6282. .resume = niu_resume,
  6283. };
  6284. #ifdef CONFIG_SPARC64
  6285. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  6286. u64 *dma_addr, gfp_t flag)
  6287. {
  6288. unsigned long order = get_order(size);
  6289. unsigned long page = __get_free_pages(flag, order);
  6290. if (page == 0UL)
  6291. return NULL;
  6292. memset((char *)page, 0, PAGE_SIZE << order);
  6293. *dma_addr = __pa(page);
  6294. return (void *) page;
  6295. }
  6296. static void niu_phys_free_coherent(struct device *dev, size_t size,
  6297. void *cpu_addr, u64 handle)
  6298. {
  6299. unsigned long order = get_order(size);
  6300. free_pages((unsigned long) cpu_addr, order);
  6301. }
  6302. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  6303. unsigned long offset, size_t size,
  6304. enum dma_data_direction direction)
  6305. {
  6306. return page_to_phys(page) + offset;
  6307. }
  6308. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  6309. size_t size, enum dma_data_direction direction)
  6310. {
  6311. /* Nothing to do. */
  6312. }
  6313. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  6314. size_t size,
  6315. enum dma_data_direction direction)
  6316. {
  6317. return __pa(cpu_addr);
  6318. }
  6319. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  6320. size_t size,
  6321. enum dma_data_direction direction)
  6322. {
  6323. /* Nothing to do. */
  6324. }
  6325. static const struct niu_ops niu_phys_ops = {
  6326. .alloc_coherent = niu_phys_alloc_coherent,
  6327. .free_coherent = niu_phys_free_coherent,
  6328. .map_page = niu_phys_map_page,
  6329. .unmap_page = niu_phys_unmap_page,
  6330. .map_single = niu_phys_map_single,
  6331. .unmap_single = niu_phys_unmap_single,
  6332. };
  6333. static unsigned long res_size(struct resource *r)
  6334. {
  6335. return r->end - r->start + 1UL;
  6336. }
  6337. static int __devinit niu_of_probe(struct of_device *op,
  6338. const struct of_device_id *match)
  6339. {
  6340. union niu_parent_id parent_id;
  6341. struct net_device *dev;
  6342. struct niu *np;
  6343. const u32 *reg;
  6344. int err;
  6345. niu_driver_version();
  6346. reg = of_get_property(op->node, "reg", NULL);
  6347. if (!reg) {
  6348. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  6349. op->node->full_name);
  6350. return -ENODEV;
  6351. }
  6352. dev = niu_alloc_and_init(&op->dev, NULL, op,
  6353. &niu_phys_ops, reg[0] & 0x1);
  6354. if (!dev) {
  6355. err = -ENOMEM;
  6356. goto err_out;
  6357. }
  6358. np = netdev_priv(dev);
  6359. memset(&parent_id, 0, sizeof(parent_id));
  6360. parent_id.of = of_get_parent(op->node);
  6361. np->parent = niu_get_parent(np, &parent_id,
  6362. PLAT_TYPE_NIU);
  6363. if (!np->parent) {
  6364. err = -ENOMEM;
  6365. goto err_out_free_dev;
  6366. }
  6367. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6368. np->regs = of_ioremap(&op->resource[1], 0,
  6369. res_size(&op->resource[1]),
  6370. "niu regs");
  6371. if (!np->regs) {
  6372. dev_err(&op->dev, PFX "Cannot map device registers, "
  6373. "aborting.\n");
  6374. err = -ENOMEM;
  6375. goto err_out_release_parent;
  6376. }
  6377. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  6378. res_size(&op->resource[2]),
  6379. "niu vregs-1");
  6380. if (!np->vir_regs_1) {
  6381. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  6382. "aborting.\n");
  6383. err = -ENOMEM;
  6384. goto err_out_iounmap;
  6385. }
  6386. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  6387. res_size(&op->resource[3]),
  6388. "niu vregs-2");
  6389. if (!np->vir_regs_2) {
  6390. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  6391. "aborting.\n");
  6392. err = -ENOMEM;
  6393. goto err_out_iounmap;
  6394. }
  6395. niu_assign_netdev_ops(dev);
  6396. err = niu_get_invariants(np);
  6397. if (err) {
  6398. if (err != -ENODEV)
  6399. dev_err(&op->dev, PFX "Problem fetching invariants "
  6400. "of chip, aborting.\n");
  6401. goto err_out_iounmap;
  6402. }
  6403. err = register_netdev(dev);
  6404. if (err) {
  6405. dev_err(&op->dev, PFX "Cannot register net device, "
  6406. "aborting.\n");
  6407. goto err_out_iounmap;
  6408. }
  6409. dev_set_drvdata(&op->dev, dev);
  6410. niu_device_announce(np);
  6411. return 0;
  6412. err_out_iounmap:
  6413. if (np->vir_regs_1) {
  6414. of_iounmap(&op->resource[2], np->vir_regs_1,
  6415. res_size(&op->resource[2]));
  6416. np->vir_regs_1 = NULL;
  6417. }
  6418. if (np->vir_regs_2) {
  6419. of_iounmap(&op->resource[3], np->vir_regs_2,
  6420. res_size(&op->resource[3]));
  6421. np->vir_regs_2 = NULL;
  6422. }
  6423. if (np->regs) {
  6424. of_iounmap(&op->resource[1], np->regs,
  6425. res_size(&op->resource[1]));
  6426. np->regs = NULL;
  6427. }
  6428. err_out_release_parent:
  6429. niu_put_parent(np);
  6430. err_out_free_dev:
  6431. free_netdev(dev);
  6432. err_out:
  6433. return err;
  6434. }
  6435. static int __devexit niu_of_remove(struct of_device *op)
  6436. {
  6437. struct net_device *dev = dev_get_drvdata(&op->dev);
  6438. if (dev) {
  6439. struct niu *np = netdev_priv(dev);
  6440. unregister_netdev(dev);
  6441. if (np->vir_regs_1) {
  6442. of_iounmap(&op->resource[2], np->vir_regs_1,
  6443. res_size(&op->resource[2]));
  6444. np->vir_regs_1 = NULL;
  6445. }
  6446. if (np->vir_regs_2) {
  6447. of_iounmap(&op->resource[3], np->vir_regs_2,
  6448. res_size(&op->resource[3]));
  6449. np->vir_regs_2 = NULL;
  6450. }
  6451. if (np->regs) {
  6452. of_iounmap(&op->resource[1], np->regs,
  6453. res_size(&op->resource[1]));
  6454. np->regs = NULL;
  6455. }
  6456. niu_ldg_free(np);
  6457. niu_put_parent(np);
  6458. free_netdev(dev);
  6459. dev_set_drvdata(&op->dev, NULL);
  6460. }
  6461. return 0;
  6462. }
  6463. static struct of_device_id niu_match[] = {
  6464. {
  6465. .name = "network",
  6466. .compatible = "SUNW,niusl",
  6467. },
  6468. {},
  6469. };
  6470. MODULE_DEVICE_TABLE(of, niu_match);
  6471. static struct of_platform_driver niu_of_driver = {
  6472. .name = "niu",
  6473. .match_table = niu_match,
  6474. .probe = niu_of_probe,
  6475. .remove = __devexit_p(niu_of_remove),
  6476. };
  6477. #endif /* CONFIG_SPARC64 */
  6478. static int __init niu_init(void)
  6479. {
  6480. int err = 0;
  6481. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  6482. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  6483. #ifdef CONFIG_SPARC64
  6484. err = of_register_driver(&niu_of_driver, &of_bus_type);
  6485. #endif
  6486. if (!err) {
  6487. err = pci_register_driver(&niu_pci_driver);
  6488. #ifdef CONFIG_SPARC64
  6489. if (err)
  6490. of_unregister_driver(&niu_of_driver);
  6491. #endif
  6492. }
  6493. return err;
  6494. }
  6495. static void __exit niu_exit(void)
  6496. {
  6497. pci_unregister_driver(&niu_pci_driver);
  6498. #ifdef CONFIG_SPARC64
  6499. of_unregister_driver(&niu_of_driver);
  6500. #endif
  6501. }
  6502. module_init(niu_init);
  6503. module_exit(niu_exit);