page_alloc.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/nodemask.h>
  35. #include <linux/vmalloc.h>
  36. #include <asm/tlbflush.h>
  37. #include "internal.h"
  38. /*
  39. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  40. * initializer cleaner
  41. */
  42. nodemask_t node_online_map = { { [0] = 1UL } };
  43. EXPORT_SYMBOL(node_online_map);
  44. nodemask_t node_possible_map = NODE_MASK_ALL;
  45. EXPORT_SYMBOL(node_possible_map);
  46. struct pglist_data *pgdat_list;
  47. unsigned long totalram_pages;
  48. unsigned long totalhigh_pages;
  49. long nr_swap_pages;
  50. /*
  51. * results with 256, 32 in the lowmem_reserve sysctl:
  52. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  53. * 1G machine -> (16M dma, 784M normal, 224M high)
  54. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  55. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  56. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  57. */
  58. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
  59. EXPORT_SYMBOL(totalram_pages);
  60. EXPORT_SYMBOL(nr_swap_pages);
  61. /*
  62. * Used by page_zone() to look up the address of the struct zone whose
  63. * id is encoded in the upper bits of page->flags
  64. */
  65. struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
  66. EXPORT_SYMBOL(zone_table);
  67. static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
  68. int min_free_kbytes = 1024;
  69. unsigned long __initdata nr_kernel_pages;
  70. unsigned long __initdata nr_all_pages;
  71. /*
  72. * Temporary debugging check for pages not lying within a given zone.
  73. */
  74. static int bad_range(struct zone *zone, struct page *page)
  75. {
  76. if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
  77. return 1;
  78. if (page_to_pfn(page) < zone->zone_start_pfn)
  79. return 1;
  80. #ifdef CONFIG_HOLES_IN_ZONE
  81. if (!pfn_valid(page_to_pfn(page)))
  82. return 1;
  83. #endif
  84. if (zone != page_zone(page))
  85. return 1;
  86. return 0;
  87. }
  88. static void bad_page(const char *function, struct page *page)
  89. {
  90. printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
  91. function, current->comm, page);
  92. printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  93. (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
  94. page->mapping, page_mapcount(page), page_count(page));
  95. printk(KERN_EMERG "Backtrace:\n");
  96. dump_stack();
  97. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
  98. page->flags &= ~(1 << PG_private |
  99. 1 << PG_locked |
  100. 1 << PG_lru |
  101. 1 << PG_active |
  102. 1 << PG_dirty |
  103. 1 << PG_swapcache |
  104. 1 << PG_writeback);
  105. set_page_count(page, 0);
  106. reset_page_mapcount(page);
  107. page->mapping = NULL;
  108. tainted |= TAINT_BAD_PAGE;
  109. }
  110. #ifndef CONFIG_HUGETLB_PAGE
  111. #define prep_compound_page(page, order) do { } while (0)
  112. #define destroy_compound_page(page, order) do { } while (0)
  113. #else
  114. /*
  115. * Higher-order pages are called "compound pages". They are structured thusly:
  116. *
  117. * The first PAGE_SIZE page is called the "head page".
  118. *
  119. * The remaining PAGE_SIZE pages are called "tail pages".
  120. *
  121. * All pages have PG_compound set. All pages have their ->private pointing at
  122. * the head page (even the head page has this).
  123. *
  124. * The first tail page's ->mapping, if non-zero, holds the address of the
  125. * compound page's put_page() function.
  126. *
  127. * The order of the allocation is stored in the first tail page's ->index
  128. * This is only for debug at present. This usage means that zero-order pages
  129. * may not be compound.
  130. */
  131. static void prep_compound_page(struct page *page, unsigned long order)
  132. {
  133. int i;
  134. int nr_pages = 1 << order;
  135. page[1].mapping = NULL;
  136. page[1].index = order;
  137. for (i = 0; i < nr_pages; i++) {
  138. struct page *p = page + i;
  139. SetPageCompound(p);
  140. p->private = (unsigned long)page;
  141. }
  142. }
  143. static void destroy_compound_page(struct page *page, unsigned long order)
  144. {
  145. int i;
  146. int nr_pages = 1 << order;
  147. if (!PageCompound(page))
  148. return;
  149. if (page[1].index != order)
  150. bad_page(__FUNCTION__, page);
  151. for (i = 0; i < nr_pages; i++) {
  152. struct page *p = page + i;
  153. if (!PageCompound(p))
  154. bad_page(__FUNCTION__, page);
  155. if (p->private != (unsigned long)page)
  156. bad_page(__FUNCTION__, page);
  157. ClearPageCompound(p);
  158. }
  159. }
  160. #endif /* CONFIG_HUGETLB_PAGE */
  161. /*
  162. * function for dealing with page's order in buddy system.
  163. * zone->lock is already acquired when we use these.
  164. * So, we don't need atomic page->flags operations here.
  165. */
  166. static inline unsigned long page_order(struct page *page) {
  167. return page->private;
  168. }
  169. static inline void set_page_order(struct page *page, int order) {
  170. page->private = order;
  171. __SetPagePrivate(page);
  172. }
  173. static inline void rmv_page_order(struct page *page)
  174. {
  175. __ClearPagePrivate(page);
  176. page->private = 0;
  177. }
  178. /*
  179. * Locate the struct page for both the matching buddy in our
  180. * pair (buddy1) and the combined O(n+1) page they form (page).
  181. *
  182. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  183. * the following equation:
  184. * B2 = B1 ^ (1 << O)
  185. * For example, if the starting buddy (buddy2) is #8 its order
  186. * 1 buddy is #10:
  187. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  188. *
  189. * 2) Any buddy B will have an order O+1 parent P which
  190. * satisfies the following equation:
  191. * P = B & ~(1 << O)
  192. *
  193. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  194. */
  195. static inline struct page *
  196. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  197. {
  198. unsigned long buddy_idx = page_idx ^ (1 << order);
  199. return page + (buddy_idx - page_idx);
  200. }
  201. static inline unsigned long
  202. __find_combined_index(unsigned long page_idx, unsigned int order)
  203. {
  204. return (page_idx & ~(1 << order));
  205. }
  206. /*
  207. * This function checks whether a page is free && is the buddy
  208. * we can do coalesce a page and its buddy if
  209. * (a) the buddy is free &&
  210. * (b) the buddy is on the buddy system &&
  211. * (c) a page and its buddy have the same order.
  212. * for recording page's order, we use page->private and PG_private.
  213. *
  214. */
  215. static inline int page_is_buddy(struct page *page, int order)
  216. {
  217. if (PagePrivate(page) &&
  218. (page_order(page) == order) &&
  219. !PageReserved(page) &&
  220. page_count(page) == 0)
  221. return 1;
  222. return 0;
  223. }
  224. /*
  225. * Freeing function for a buddy system allocator.
  226. *
  227. * The concept of a buddy system is to maintain direct-mapped table
  228. * (containing bit values) for memory blocks of various "orders".
  229. * The bottom level table contains the map for the smallest allocatable
  230. * units of memory (here, pages), and each level above it describes
  231. * pairs of units from the levels below, hence, "buddies".
  232. * At a high level, all that happens here is marking the table entry
  233. * at the bottom level available, and propagating the changes upward
  234. * as necessary, plus some accounting needed to play nicely with other
  235. * parts of the VM system.
  236. * At each level, we keep a list of pages, which are heads of continuous
  237. * free pages of length of (1 << order) and marked with PG_Private.Page's
  238. * order is recorded in page->private field.
  239. * So when we are allocating or freeing one, we can derive the state of the
  240. * other. That is, if we allocate a small block, and both were
  241. * free, the remainder of the region must be split into blocks.
  242. * If a block is freed, and its buddy is also free, then this
  243. * triggers coalescing into a block of larger size.
  244. *
  245. * -- wli
  246. */
  247. static inline void __free_pages_bulk (struct page *page,
  248. struct zone *zone, unsigned int order)
  249. {
  250. unsigned long page_idx;
  251. int order_size = 1 << order;
  252. if (unlikely(order))
  253. destroy_compound_page(page, order);
  254. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  255. BUG_ON(page_idx & (order_size - 1));
  256. BUG_ON(bad_range(zone, page));
  257. zone->free_pages += order_size;
  258. while (order < MAX_ORDER-1) {
  259. unsigned long combined_idx;
  260. struct free_area *area;
  261. struct page *buddy;
  262. combined_idx = __find_combined_index(page_idx, order);
  263. buddy = __page_find_buddy(page, page_idx, order);
  264. if (bad_range(zone, buddy))
  265. break;
  266. if (!page_is_buddy(buddy, order))
  267. break; /* Move the buddy up one level. */
  268. list_del(&buddy->lru);
  269. area = zone->free_area + order;
  270. area->nr_free--;
  271. rmv_page_order(buddy);
  272. page = page + (combined_idx - page_idx);
  273. page_idx = combined_idx;
  274. order++;
  275. }
  276. set_page_order(page, order);
  277. list_add(&page->lru, &zone->free_area[order].free_list);
  278. zone->free_area[order].nr_free++;
  279. }
  280. static inline void free_pages_check(const char *function, struct page *page)
  281. {
  282. if ( page_mapcount(page) ||
  283. page->mapping != NULL ||
  284. page_count(page) != 0 ||
  285. (page->flags & (
  286. 1 << PG_lru |
  287. 1 << PG_private |
  288. 1 << PG_locked |
  289. 1 << PG_active |
  290. 1 << PG_reclaim |
  291. 1 << PG_slab |
  292. 1 << PG_swapcache |
  293. 1 << PG_writeback )))
  294. bad_page(function, page);
  295. if (PageDirty(page))
  296. ClearPageDirty(page);
  297. }
  298. /*
  299. * Frees a list of pages.
  300. * Assumes all pages on list are in same zone, and of same order.
  301. * count is the number of pages to free, or 0 for all on the list.
  302. *
  303. * If the zone was previously in an "all pages pinned" state then look to
  304. * see if this freeing clears that state.
  305. *
  306. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  307. * pinned" detection logic.
  308. */
  309. static int
  310. free_pages_bulk(struct zone *zone, int count,
  311. struct list_head *list, unsigned int order)
  312. {
  313. unsigned long flags;
  314. struct page *page = NULL;
  315. int ret = 0;
  316. spin_lock_irqsave(&zone->lock, flags);
  317. zone->all_unreclaimable = 0;
  318. zone->pages_scanned = 0;
  319. while (!list_empty(list) && count--) {
  320. page = list_entry(list->prev, struct page, lru);
  321. /* have to delete it as __free_pages_bulk list manipulates */
  322. list_del(&page->lru);
  323. __free_pages_bulk(page, zone, order);
  324. ret++;
  325. }
  326. spin_unlock_irqrestore(&zone->lock, flags);
  327. return ret;
  328. }
  329. void __free_pages_ok(struct page *page, unsigned int order)
  330. {
  331. LIST_HEAD(list);
  332. int i;
  333. arch_free_page(page, order);
  334. mod_page_state(pgfree, 1 << order);
  335. #ifndef CONFIG_MMU
  336. if (order > 0)
  337. for (i = 1 ; i < (1 << order) ; ++i)
  338. __put_page(page + i);
  339. #endif
  340. for (i = 0 ; i < (1 << order) ; ++i)
  341. free_pages_check(__FUNCTION__, page + i);
  342. list_add(&page->lru, &list);
  343. kernel_map_pages(page, 1<<order, 0);
  344. free_pages_bulk(page_zone(page), 1, &list, order);
  345. }
  346. /*
  347. * The order of subdivision here is critical for the IO subsystem.
  348. * Please do not alter this order without good reasons and regression
  349. * testing. Specifically, as large blocks of memory are subdivided,
  350. * the order in which smaller blocks are delivered depends on the order
  351. * they're subdivided in this function. This is the primary factor
  352. * influencing the order in which pages are delivered to the IO
  353. * subsystem according to empirical testing, and this is also justified
  354. * by considering the behavior of a buddy system containing a single
  355. * large block of memory acted on by a series of small allocations.
  356. * This behavior is a critical factor in sglist merging's success.
  357. *
  358. * -- wli
  359. */
  360. static inline struct page *
  361. expand(struct zone *zone, struct page *page,
  362. int low, int high, struct free_area *area)
  363. {
  364. unsigned long size = 1 << high;
  365. while (high > low) {
  366. area--;
  367. high--;
  368. size >>= 1;
  369. BUG_ON(bad_range(zone, &page[size]));
  370. list_add(&page[size].lru, &area->free_list);
  371. area->nr_free++;
  372. set_page_order(&page[size], high);
  373. }
  374. return page;
  375. }
  376. void set_page_refs(struct page *page, int order)
  377. {
  378. #ifdef CONFIG_MMU
  379. set_page_count(page, 1);
  380. #else
  381. int i;
  382. /*
  383. * We need to reference all the pages for this order, otherwise if
  384. * anyone accesses one of the pages with (get/put) it will be freed.
  385. * - eg: access_process_vm()
  386. */
  387. for (i = 0; i < (1 << order); i++)
  388. set_page_count(page + i, 1);
  389. #endif /* CONFIG_MMU */
  390. }
  391. /*
  392. * This page is about to be returned from the page allocator
  393. */
  394. static void prep_new_page(struct page *page, int order)
  395. {
  396. if (page->mapping || page_mapcount(page) ||
  397. (page->flags & (
  398. 1 << PG_private |
  399. 1 << PG_locked |
  400. 1 << PG_lru |
  401. 1 << PG_active |
  402. 1 << PG_dirty |
  403. 1 << PG_reclaim |
  404. 1 << PG_swapcache |
  405. 1 << PG_writeback )))
  406. bad_page(__FUNCTION__, page);
  407. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  408. 1 << PG_referenced | 1 << PG_arch_1 |
  409. 1 << PG_checked | 1 << PG_mappedtodisk);
  410. page->private = 0;
  411. set_page_refs(page, order);
  412. kernel_map_pages(page, 1 << order, 1);
  413. }
  414. /*
  415. * Do the hard work of removing an element from the buddy allocator.
  416. * Call me with the zone->lock already held.
  417. */
  418. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  419. {
  420. struct free_area * area;
  421. unsigned int current_order;
  422. struct page *page;
  423. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  424. area = zone->free_area + current_order;
  425. if (list_empty(&area->free_list))
  426. continue;
  427. page = list_entry(area->free_list.next, struct page, lru);
  428. list_del(&page->lru);
  429. rmv_page_order(page);
  430. area->nr_free--;
  431. zone->free_pages -= 1UL << order;
  432. return expand(zone, page, order, current_order, area);
  433. }
  434. return NULL;
  435. }
  436. /*
  437. * Obtain a specified number of elements from the buddy allocator, all under
  438. * a single hold of the lock, for efficiency. Add them to the supplied list.
  439. * Returns the number of new pages which were placed at *list.
  440. */
  441. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  442. unsigned long count, struct list_head *list)
  443. {
  444. unsigned long flags;
  445. int i;
  446. int allocated = 0;
  447. struct page *page;
  448. spin_lock_irqsave(&zone->lock, flags);
  449. for (i = 0; i < count; ++i) {
  450. page = __rmqueue(zone, order);
  451. if (page == NULL)
  452. break;
  453. allocated++;
  454. list_add_tail(&page->lru, list);
  455. }
  456. spin_unlock_irqrestore(&zone->lock, flags);
  457. return allocated;
  458. }
  459. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  460. static void __drain_pages(unsigned int cpu)
  461. {
  462. struct zone *zone;
  463. int i;
  464. for_each_zone(zone) {
  465. struct per_cpu_pageset *pset;
  466. pset = &zone->pageset[cpu];
  467. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  468. struct per_cpu_pages *pcp;
  469. pcp = &pset->pcp[i];
  470. pcp->count -= free_pages_bulk(zone, pcp->count,
  471. &pcp->list, 0);
  472. }
  473. }
  474. }
  475. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  476. #ifdef CONFIG_PM
  477. void mark_free_pages(struct zone *zone)
  478. {
  479. unsigned long zone_pfn, flags;
  480. int order;
  481. struct list_head *curr;
  482. if (!zone->spanned_pages)
  483. return;
  484. spin_lock_irqsave(&zone->lock, flags);
  485. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  486. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  487. for (order = MAX_ORDER - 1; order >= 0; --order)
  488. list_for_each(curr, &zone->free_area[order].free_list) {
  489. unsigned long start_pfn, i;
  490. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  491. for (i=0; i < (1<<order); i++)
  492. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  493. }
  494. spin_unlock_irqrestore(&zone->lock, flags);
  495. }
  496. /*
  497. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  498. */
  499. void drain_local_pages(void)
  500. {
  501. unsigned long flags;
  502. local_irq_save(flags);
  503. __drain_pages(smp_processor_id());
  504. local_irq_restore(flags);
  505. }
  506. #endif /* CONFIG_PM */
  507. static void zone_statistics(struct zonelist *zonelist, struct zone *z)
  508. {
  509. #ifdef CONFIG_NUMA
  510. unsigned long flags;
  511. int cpu;
  512. pg_data_t *pg = z->zone_pgdat;
  513. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  514. struct per_cpu_pageset *p;
  515. local_irq_save(flags);
  516. cpu = smp_processor_id();
  517. p = &z->pageset[cpu];
  518. if (pg == orig) {
  519. z->pageset[cpu].numa_hit++;
  520. } else {
  521. p->numa_miss++;
  522. zonelist->zones[0]->pageset[cpu].numa_foreign++;
  523. }
  524. if (pg == NODE_DATA(numa_node_id()))
  525. p->local_node++;
  526. else
  527. p->other_node++;
  528. local_irq_restore(flags);
  529. #endif
  530. }
  531. /*
  532. * Free a 0-order page
  533. */
  534. static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
  535. static void fastcall free_hot_cold_page(struct page *page, int cold)
  536. {
  537. struct zone *zone = page_zone(page);
  538. struct per_cpu_pages *pcp;
  539. unsigned long flags;
  540. arch_free_page(page, 0);
  541. kernel_map_pages(page, 1, 0);
  542. inc_page_state(pgfree);
  543. if (PageAnon(page))
  544. page->mapping = NULL;
  545. free_pages_check(__FUNCTION__, page);
  546. pcp = &zone->pageset[get_cpu()].pcp[cold];
  547. local_irq_save(flags);
  548. if (pcp->count >= pcp->high)
  549. pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  550. list_add(&page->lru, &pcp->list);
  551. pcp->count++;
  552. local_irq_restore(flags);
  553. put_cpu();
  554. }
  555. void fastcall free_hot_page(struct page *page)
  556. {
  557. free_hot_cold_page(page, 0);
  558. }
  559. void fastcall free_cold_page(struct page *page)
  560. {
  561. free_hot_cold_page(page, 1);
  562. }
  563. static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
  564. {
  565. int i;
  566. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  567. for(i = 0; i < (1 << order); i++)
  568. clear_highpage(page + i);
  569. }
  570. /*
  571. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  572. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  573. * or two.
  574. */
  575. static struct page *
  576. buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
  577. {
  578. unsigned long flags;
  579. struct page *page = NULL;
  580. int cold = !!(gfp_flags & __GFP_COLD);
  581. if (order == 0) {
  582. struct per_cpu_pages *pcp;
  583. pcp = &zone->pageset[get_cpu()].pcp[cold];
  584. local_irq_save(flags);
  585. if (pcp->count <= pcp->low)
  586. pcp->count += rmqueue_bulk(zone, 0,
  587. pcp->batch, &pcp->list);
  588. if (pcp->count) {
  589. page = list_entry(pcp->list.next, struct page, lru);
  590. list_del(&page->lru);
  591. pcp->count--;
  592. }
  593. local_irq_restore(flags);
  594. put_cpu();
  595. }
  596. if (page == NULL) {
  597. spin_lock_irqsave(&zone->lock, flags);
  598. page = __rmqueue(zone, order);
  599. spin_unlock_irqrestore(&zone->lock, flags);
  600. }
  601. if (page != NULL) {
  602. BUG_ON(bad_range(zone, page));
  603. mod_page_state_zone(zone, pgalloc, 1 << order);
  604. prep_new_page(page, order);
  605. if (gfp_flags & __GFP_ZERO)
  606. prep_zero_page(page, order, gfp_flags);
  607. if (order && (gfp_flags & __GFP_COMP))
  608. prep_compound_page(page, order);
  609. }
  610. return page;
  611. }
  612. /*
  613. * Return 1 if free pages are above 'mark'. This takes into account the order
  614. * of the allocation.
  615. */
  616. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  617. int classzone_idx, int can_try_harder, int gfp_high)
  618. {
  619. /* free_pages my go negative - that's OK */
  620. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  621. int o;
  622. if (gfp_high)
  623. min -= min / 2;
  624. if (can_try_harder)
  625. min -= min / 4;
  626. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  627. return 0;
  628. for (o = 0; o < order; o++) {
  629. /* At the next order, this order's pages become unavailable */
  630. free_pages -= z->free_area[o].nr_free << o;
  631. /* Require fewer higher order pages to be free */
  632. min >>= 1;
  633. if (free_pages <= min)
  634. return 0;
  635. }
  636. return 1;
  637. }
  638. static inline int
  639. should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
  640. {
  641. if (!z->reclaim_pages)
  642. return 0;
  643. if (gfp_mask & __GFP_NORECLAIM)
  644. return 0;
  645. return 1;
  646. }
  647. /*
  648. * This is the 'heart' of the zoned buddy allocator.
  649. */
  650. struct page * fastcall
  651. __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
  652. struct zonelist *zonelist)
  653. {
  654. const int wait = gfp_mask & __GFP_WAIT;
  655. struct zone **zones, *z;
  656. struct page *page;
  657. struct reclaim_state reclaim_state;
  658. struct task_struct *p = current;
  659. int i;
  660. int classzone_idx;
  661. int do_retry;
  662. int can_try_harder;
  663. int did_some_progress;
  664. might_sleep_if(wait);
  665. /*
  666. * The caller may dip into page reserves a bit more if the caller
  667. * cannot run direct reclaim, or is the caller has realtime scheduling
  668. * policy
  669. */
  670. can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
  671. zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
  672. if (unlikely(zones[0] == NULL)) {
  673. /* Should this ever happen?? */
  674. return NULL;
  675. }
  676. classzone_idx = zone_idx(zones[0]);
  677. restart:
  678. /* Go through the zonelist once, looking for a zone with enough free */
  679. for (i = 0; (z = zones[i]) != NULL; i++) {
  680. int do_reclaim = should_reclaim_zone(z, gfp_mask);
  681. if (!cpuset_zone_allowed(z))
  682. continue;
  683. /*
  684. * If the zone is to attempt early page reclaim then this loop
  685. * will try to reclaim pages and check the watermark a second
  686. * time before giving up and falling back to the next zone.
  687. */
  688. zone_reclaim_retry:
  689. if (!zone_watermark_ok(z, order, z->pages_low,
  690. classzone_idx, 0, 0)) {
  691. if (!do_reclaim)
  692. continue;
  693. else {
  694. zone_reclaim(z, gfp_mask, order);
  695. /* Only try reclaim once */
  696. do_reclaim = 0;
  697. goto zone_reclaim_retry;
  698. }
  699. }
  700. page = buffered_rmqueue(z, order, gfp_mask);
  701. if (page)
  702. goto got_pg;
  703. }
  704. for (i = 0; (z = zones[i]) != NULL; i++)
  705. wakeup_kswapd(z, order);
  706. /*
  707. * Go through the zonelist again. Let __GFP_HIGH and allocations
  708. * coming from realtime tasks to go deeper into reserves
  709. *
  710. * This is the last chance, in general, before the goto nopage.
  711. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  712. */
  713. for (i = 0; (z = zones[i]) != NULL; i++) {
  714. if (!zone_watermark_ok(z, order, z->pages_min,
  715. classzone_idx, can_try_harder,
  716. gfp_mask & __GFP_HIGH))
  717. continue;
  718. if (wait && !cpuset_zone_allowed(z))
  719. continue;
  720. page = buffered_rmqueue(z, order, gfp_mask);
  721. if (page)
  722. goto got_pg;
  723. }
  724. /* This allocation should allow future memory freeing. */
  725. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  726. && !in_interrupt()) {
  727. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  728. /* go through the zonelist yet again, ignoring mins */
  729. for (i = 0; (z = zones[i]) != NULL; i++) {
  730. if (!cpuset_zone_allowed(z))
  731. continue;
  732. page = buffered_rmqueue(z, order, gfp_mask);
  733. if (page)
  734. goto got_pg;
  735. }
  736. }
  737. goto nopage;
  738. }
  739. /* Atomic allocations - we can't balance anything */
  740. if (!wait)
  741. goto nopage;
  742. rebalance:
  743. cond_resched();
  744. /* We now go into synchronous reclaim */
  745. p->flags |= PF_MEMALLOC;
  746. reclaim_state.reclaimed_slab = 0;
  747. p->reclaim_state = &reclaim_state;
  748. did_some_progress = try_to_free_pages(zones, gfp_mask, order);
  749. p->reclaim_state = NULL;
  750. p->flags &= ~PF_MEMALLOC;
  751. cond_resched();
  752. if (likely(did_some_progress)) {
  753. /*
  754. * Go through the zonelist yet one more time, keep
  755. * very high watermark here, this is only to catch
  756. * a parallel oom killing, we must fail if we're still
  757. * under heavy pressure.
  758. */
  759. for (i = 0; (z = zones[i]) != NULL; i++) {
  760. if (!zone_watermark_ok(z, order, z->pages_min,
  761. classzone_idx, can_try_harder,
  762. gfp_mask & __GFP_HIGH))
  763. continue;
  764. if (!cpuset_zone_allowed(z))
  765. continue;
  766. page = buffered_rmqueue(z, order, gfp_mask);
  767. if (page)
  768. goto got_pg;
  769. }
  770. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  771. /*
  772. * Go through the zonelist yet one more time, keep
  773. * very high watermark here, this is only to catch
  774. * a parallel oom killing, we must fail if we're still
  775. * under heavy pressure.
  776. */
  777. for (i = 0; (z = zones[i]) != NULL; i++) {
  778. if (!zone_watermark_ok(z, order, z->pages_high,
  779. classzone_idx, 0, 0))
  780. continue;
  781. if (!cpuset_zone_allowed(z))
  782. continue;
  783. page = buffered_rmqueue(z, order, gfp_mask);
  784. if (page)
  785. goto got_pg;
  786. }
  787. out_of_memory(gfp_mask);
  788. goto restart;
  789. }
  790. /*
  791. * Don't let big-order allocations loop unless the caller explicitly
  792. * requests that. Wait for some write requests to complete then retry.
  793. *
  794. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  795. * <= 3, but that may not be true in other implementations.
  796. */
  797. do_retry = 0;
  798. if (!(gfp_mask & __GFP_NORETRY)) {
  799. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  800. do_retry = 1;
  801. if (gfp_mask & __GFP_NOFAIL)
  802. do_retry = 1;
  803. }
  804. if (do_retry) {
  805. blk_congestion_wait(WRITE, HZ/50);
  806. goto rebalance;
  807. }
  808. nopage:
  809. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  810. printk(KERN_WARNING "%s: page allocation failure."
  811. " order:%d, mode:0x%x\n",
  812. p->comm, order, gfp_mask);
  813. dump_stack();
  814. }
  815. return NULL;
  816. got_pg:
  817. zone_statistics(zonelist, z);
  818. return page;
  819. }
  820. EXPORT_SYMBOL(__alloc_pages);
  821. /*
  822. * Common helper functions.
  823. */
  824. fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
  825. {
  826. struct page * page;
  827. page = alloc_pages(gfp_mask, order);
  828. if (!page)
  829. return 0;
  830. return (unsigned long) page_address(page);
  831. }
  832. EXPORT_SYMBOL(__get_free_pages);
  833. fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
  834. {
  835. struct page * page;
  836. /*
  837. * get_zeroed_page() returns a 32-bit address, which cannot represent
  838. * a highmem page
  839. */
  840. BUG_ON(gfp_mask & __GFP_HIGHMEM);
  841. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  842. if (page)
  843. return (unsigned long) page_address(page);
  844. return 0;
  845. }
  846. EXPORT_SYMBOL(get_zeroed_page);
  847. void __pagevec_free(struct pagevec *pvec)
  848. {
  849. int i = pagevec_count(pvec);
  850. while (--i >= 0)
  851. free_hot_cold_page(pvec->pages[i], pvec->cold);
  852. }
  853. fastcall void __free_pages(struct page *page, unsigned int order)
  854. {
  855. if (!PageReserved(page) && put_page_testzero(page)) {
  856. if (order == 0)
  857. free_hot_page(page);
  858. else
  859. __free_pages_ok(page, order);
  860. }
  861. }
  862. EXPORT_SYMBOL(__free_pages);
  863. fastcall void free_pages(unsigned long addr, unsigned int order)
  864. {
  865. if (addr != 0) {
  866. BUG_ON(!virt_addr_valid((void *)addr));
  867. __free_pages(virt_to_page((void *)addr), order);
  868. }
  869. }
  870. EXPORT_SYMBOL(free_pages);
  871. /*
  872. * Total amount of free (allocatable) RAM:
  873. */
  874. unsigned int nr_free_pages(void)
  875. {
  876. unsigned int sum = 0;
  877. struct zone *zone;
  878. for_each_zone(zone)
  879. sum += zone->free_pages;
  880. return sum;
  881. }
  882. EXPORT_SYMBOL(nr_free_pages);
  883. #ifdef CONFIG_NUMA
  884. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  885. {
  886. unsigned int i, sum = 0;
  887. for (i = 0; i < MAX_NR_ZONES; i++)
  888. sum += pgdat->node_zones[i].free_pages;
  889. return sum;
  890. }
  891. #endif
  892. static unsigned int nr_free_zone_pages(int offset)
  893. {
  894. pg_data_t *pgdat;
  895. unsigned int sum = 0;
  896. for_each_pgdat(pgdat) {
  897. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  898. struct zone **zonep = zonelist->zones;
  899. struct zone *zone;
  900. for (zone = *zonep++; zone; zone = *zonep++) {
  901. unsigned long size = zone->present_pages;
  902. unsigned long high = zone->pages_high;
  903. if (size > high)
  904. sum += size - high;
  905. }
  906. }
  907. return sum;
  908. }
  909. /*
  910. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  911. */
  912. unsigned int nr_free_buffer_pages(void)
  913. {
  914. return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
  915. }
  916. /*
  917. * Amount of free RAM allocatable within all zones
  918. */
  919. unsigned int nr_free_pagecache_pages(void)
  920. {
  921. return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
  922. }
  923. #ifdef CONFIG_HIGHMEM
  924. unsigned int nr_free_highpages (void)
  925. {
  926. pg_data_t *pgdat;
  927. unsigned int pages = 0;
  928. for_each_pgdat(pgdat)
  929. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  930. return pages;
  931. }
  932. #endif
  933. #ifdef CONFIG_NUMA
  934. static void show_node(struct zone *zone)
  935. {
  936. printk("Node %d ", zone->zone_pgdat->node_id);
  937. }
  938. #else
  939. #define show_node(zone) do { } while (0)
  940. #endif
  941. /*
  942. * Accumulate the page_state information across all CPUs.
  943. * The result is unavoidably approximate - it can change
  944. * during and after execution of this function.
  945. */
  946. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  947. atomic_t nr_pagecache = ATOMIC_INIT(0);
  948. EXPORT_SYMBOL(nr_pagecache);
  949. #ifdef CONFIG_SMP
  950. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  951. #endif
  952. void __get_page_state(struct page_state *ret, int nr)
  953. {
  954. int cpu = 0;
  955. memset(ret, 0, sizeof(*ret));
  956. cpu = first_cpu(cpu_online_map);
  957. while (cpu < NR_CPUS) {
  958. unsigned long *in, *out, off;
  959. in = (unsigned long *)&per_cpu(page_states, cpu);
  960. cpu = next_cpu(cpu, cpu_online_map);
  961. if (cpu < NR_CPUS)
  962. prefetch(&per_cpu(page_states, cpu));
  963. out = (unsigned long *)ret;
  964. for (off = 0; off < nr; off++)
  965. *out++ += *in++;
  966. }
  967. }
  968. void get_page_state(struct page_state *ret)
  969. {
  970. int nr;
  971. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  972. nr /= sizeof(unsigned long);
  973. __get_page_state(ret, nr + 1);
  974. }
  975. void get_full_page_state(struct page_state *ret)
  976. {
  977. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
  978. }
  979. unsigned long __read_page_state(unsigned offset)
  980. {
  981. unsigned long ret = 0;
  982. int cpu;
  983. for_each_online_cpu(cpu) {
  984. unsigned long in;
  985. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  986. ret += *((unsigned long *)in);
  987. }
  988. return ret;
  989. }
  990. void __mod_page_state(unsigned offset, unsigned long delta)
  991. {
  992. unsigned long flags;
  993. void* ptr;
  994. local_irq_save(flags);
  995. ptr = &__get_cpu_var(page_states);
  996. *(unsigned long*)(ptr + offset) += delta;
  997. local_irq_restore(flags);
  998. }
  999. EXPORT_SYMBOL(__mod_page_state);
  1000. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1001. unsigned long *free, struct pglist_data *pgdat)
  1002. {
  1003. struct zone *zones = pgdat->node_zones;
  1004. int i;
  1005. *active = 0;
  1006. *inactive = 0;
  1007. *free = 0;
  1008. for (i = 0; i < MAX_NR_ZONES; i++) {
  1009. *active += zones[i].nr_active;
  1010. *inactive += zones[i].nr_inactive;
  1011. *free += zones[i].free_pages;
  1012. }
  1013. }
  1014. void get_zone_counts(unsigned long *active,
  1015. unsigned long *inactive, unsigned long *free)
  1016. {
  1017. struct pglist_data *pgdat;
  1018. *active = 0;
  1019. *inactive = 0;
  1020. *free = 0;
  1021. for_each_pgdat(pgdat) {
  1022. unsigned long l, m, n;
  1023. __get_zone_counts(&l, &m, &n, pgdat);
  1024. *active += l;
  1025. *inactive += m;
  1026. *free += n;
  1027. }
  1028. }
  1029. void si_meminfo(struct sysinfo *val)
  1030. {
  1031. val->totalram = totalram_pages;
  1032. val->sharedram = 0;
  1033. val->freeram = nr_free_pages();
  1034. val->bufferram = nr_blockdev_pages();
  1035. #ifdef CONFIG_HIGHMEM
  1036. val->totalhigh = totalhigh_pages;
  1037. val->freehigh = nr_free_highpages();
  1038. #else
  1039. val->totalhigh = 0;
  1040. val->freehigh = 0;
  1041. #endif
  1042. val->mem_unit = PAGE_SIZE;
  1043. }
  1044. EXPORT_SYMBOL(si_meminfo);
  1045. #ifdef CONFIG_NUMA
  1046. void si_meminfo_node(struct sysinfo *val, int nid)
  1047. {
  1048. pg_data_t *pgdat = NODE_DATA(nid);
  1049. val->totalram = pgdat->node_present_pages;
  1050. val->freeram = nr_free_pages_pgdat(pgdat);
  1051. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1052. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1053. val->mem_unit = PAGE_SIZE;
  1054. }
  1055. #endif
  1056. #define K(x) ((x) << (PAGE_SHIFT-10))
  1057. /*
  1058. * Show free area list (used inside shift_scroll-lock stuff)
  1059. * We also calculate the percentage fragmentation. We do this by counting the
  1060. * memory on each free list with the exception of the first item on the list.
  1061. */
  1062. void show_free_areas(void)
  1063. {
  1064. struct page_state ps;
  1065. int cpu, temperature;
  1066. unsigned long active;
  1067. unsigned long inactive;
  1068. unsigned long free;
  1069. struct zone *zone;
  1070. for_each_zone(zone) {
  1071. show_node(zone);
  1072. printk("%s per-cpu:", zone->name);
  1073. if (!zone->present_pages) {
  1074. printk(" empty\n");
  1075. continue;
  1076. } else
  1077. printk("\n");
  1078. for (cpu = 0; cpu < NR_CPUS; ++cpu) {
  1079. struct per_cpu_pageset *pageset;
  1080. if (!cpu_possible(cpu))
  1081. continue;
  1082. pageset = zone->pageset + cpu;
  1083. for (temperature = 0; temperature < 2; temperature++)
  1084. printk("cpu %d %s: low %d, high %d, batch %d\n",
  1085. cpu,
  1086. temperature ? "cold" : "hot",
  1087. pageset->pcp[temperature].low,
  1088. pageset->pcp[temperature].high,
  1089. pageset->pcp[temperature].batch);
  1090. }
  1091. }
  1092. get_page_state(&ps);
  1093. get_zone_counts(&active, &inactive, &free);
  1094. printk("\nFree pages: %11ukB (%ukB HighMem)\n",
  1095. K(nr_free_pages()),
  1096. K(nr_free_highpages()));
  1097. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1098. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1099. active,
  1100. inactive,
  1101. ps.nr_dirty,
  1102. ps.nr_writeback,
  1103. ps.nr_unstable,
  1104. nr_free_pages(),
  1105. ps.nr_slab,
  1106. ps.nr_mapped,
  1107. ps.nr_page_table_pages);
  1108. for_each_zone(zone) {
  1109. int i;
  1110. show_node(zone);
  1111. printk("%s"
  1112. " free:%lukB"
  1113. " min:%lukB"
  1114. " low:%lukB"
  1115. " high:%lukB"
  1116. " active:%lukB"
  1117. " inactive:%lukB"
  1118. " present:%lukB"
  1119. " pages_scanned:%lu"
  1120. " all_unreclaimable? %s"
  1121. "\n",
  1122. zone->name,
  1123. K(zone->free_pages),
  1124. K(zone->pages_min),
  1125. K(zone->pages_low),
  1126. K(zone->pages_high),
  1127. K(zone->nr_active),
  1128. K(zone->nr_inactive),
  1129. K(zone->present_pages),
  1130. zone->pages_scanned,
  1131. (zone->all_unreclaimable ? "yes" : "no")
  1132. );
  1133. printk("lowmem_reserve[]:");
  1134. for (i = 0; i < MAX_NR_ZONES; i++)
  1135. printk(" %lu", zone->lowmem_reserve[i]);
  1136. printk("\n");
  1137. }
  1138. for_each_zone(zone) {
  1139. unsigned long nr, flags, order, total = 0;
  1140. show_node(zone);
  1141. printk("%s: ", zone->name);
  1142. if (!zone->present_pages) {
  1143. printk("empty\n");
  1144. continue;
  1145. }
  1146. spin_lock_irqsave(&zone->lock, flags);
  1147. for (order = 0; order < MAX_ORDER; order++) {
  1148. nr = zone->free_area[order].nr_free;
  1149. total += nr << order;
  1150. printk("%lu*%lukB ", nr, K(1UL) << order);
  1151. }
  1152. spin_unlock_irqrestore(&zone->lock, flags);
  1153. printk("= %lukB\n", K(total));
  1154. }
  1155. show_swap_cache_info();
  1156. }
  1157. /*
  1158. * Builds allocation fallback zone lists.
  1159. */
  1160. static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
  1161. {
  1162. switch (k) {
  1163. struct zone *zone;
  1164. default:
  1165. BUG();
  1166. case ZONE_HIGHMEM:
  1167. zone = pgdat->node_zones + ZONE_HIGHMEM;
  1168. if (zone->present_pages) {
  1169. #ifndef CONFIG_HIGHMEM
  1170. BUG();
  1171. #endif
  1172. zonelist->zones[j++] = zone;
  1173. }
  1174. case ZONE_NORMAL:
  1175. zone = pgdat->node_zones + ZONE_NORMAL;
  1176. if (zone->present_pages)
  1177. zonelist->zones[j++] = zone;
  1178. case ZONE_DMA:
  1179. zone = pgdat->node_zones + ZONE_DMA;
  1180. if (zone->present_pages)
  1181. zonelist->zones[j++] = zone;
  1182. }
  1183. return j;
  1184. }
  1185. #ifdef CONFIG_NUMA
  1186. #define MAX_NODE_LOAD (num_online_nodes())
  1187. static int __initdata node_load[MAX_NUMNODES];
  1188. /**
  1189. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1190. * @node: node whose fallback list we're appending
  1191. * @used_node_mask: nodemask_t of already used nodes
  1192. *
  1193. * We use a number of factors to determine which is the next node that should
  1194. * appear on a given node's fallback list. The node should not have appeared
  1195. * already in @node's fallback list, and it should be the next closest node
  1196. * according to the distance array (which contains arbitrary distance values
  1197. * from each node to each node in the system), and should also prefer nodes
  1198. * with no CPUs, since presumably they'll have very little allocation pressure
  1199. * on them otherwise.
  1200. * It returns -1 if no node is found.
  1201. */
  1202. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1203. {
  1204. int i, n, val;
  1205. int min_val = INT_MAX;
  1206. int best_node = -1;
  1207. for_each_online_node(i) {
  1208. cpumask_t tmp;
  1209. /* Start from local node */
  1210. n = (node+i) % num_online_nodes();
  1211. /* Don't want a node to appear more than once */
  1212. if (node_isset(n, *used_node_mask))
  1213. continue;
  1214. /* Use the local node if we haven't already */
  1215. if (!node_isset(node, *used_node_mask)) {
  1216. best_node = node;
  1217. break;
  1218. }
  1219. /* Use the distance array to find the distance */
  1220. val = node_distance(node, n);
  1221. /* Give preference to headless and unused nodes */
  1222. tmp = node_to_cpumask(n);
  1223. if (!cpus_empty(tmp))
  1224. val += PENALTY_FOR_NODE_WITH_CPUS;
  1225. /* Slight preference for less loaded node */
  1226. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1227. val += node_load[n];
  1228. if (val < min_val) {
  1229. min_val = val;
  1230. best_node = n;
  1231. }
  1232. }
  1233. if (best_node >= 0)
  1234. node_set(best_node, *used_node_mask);
  1235. return best_node;
  1236. }
  1237. static void __init build_zonelists(pg_data_t *pgdat)
  1238. {
  1239. int i, j, k, node, local_node;
  1240. int prev_node, load;
  1241. struct zonelist *zonelist;
  1242. nodemask_t used_mask;
  1243. /* initialize zonelists */
  1244. for (i = 0; i < GFP_ZONETYPES; i++) {
  1245. zonelist = pgdat->node_zonelists + i;
  1246. zonelist->zones[0] = NULL;
  1247. }
  1248. /* NUMA-aware ordering of nodes */
  1249. local_node = pgdat->node_id;
  1250. load = num_online_nodes();
  1251. prev_node = local_node;
  1252. nodes_clear(used_mask);
  1253. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1254. /*
  1255. * We don't want to pressure a particular node.
  1256. * So adding penalty to the first node in same
  1257. * distance group to make it round-robin.
  1258. */
  1259. if (node_distance(local_node, node) !=
  1260. node_distance(local_node, prev_node))
  1261. node_load[node] += load;
  1262. prev_node = node;
  1263. load--;
  1264. for (i = 0; i < GFP_ZONETYPES; i++) {
  1265. zonelist = pgdat->node_zonelists + i;
  1266. for (j = 0; zonelist->zones[j] != NULL; j++);
  1267. k = ZONE_NORMAL;
  1268. if (i & __GFP_HIGHMEM)
  1269. k = ZONE_HIGHMEM;
  1270. if (i & __GFP_DMA)
  1271. k = ZONE_DMA;
  1272. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1273. zonelist->zones[j] = NULL;
  1274. }
  1275. }
  1276. }
  1277. #else /* CONFIG_NUMA */
  1278. static void __init build_zonelists(pg_data_t *pgdat)
  1279. {
  1280. int i, j, k, node, local_node;
  1281. local_node = pgdat->node_id;
  1282. for (i = 0; i < GFP_ZONETYPES; i++) {
  1283. struct zonelist *zonelist;
  1284. zonelist = pgdat->node_zonelists + i;
  1285. j = 0;
  1286. k = ZONE_NORMAL;
  1287. if (i & __GFP_HIGHMEM)
  1288. k = ZONE_HIGHMEM;
  1289. if (i & __GFP_DMA)
  1290. k = ZONE_DMA;
  1291. j = build_zonelists_node(pgdat, zonelist, j, k);
  1292. /*
  1293. * Now we build the zonelist so that it contains the zones
  1294. * of all the other nodes.
  1295. * We don't want to pressure a particular node, so when
  1296. * building the zones for node N, we make sure that the
  1297. * zones coming right after the local ones are those from
  1298. * node N+1 (modulo N)
  1299. */
  1300. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1301. if (!node_online(node))
  1302. continue;
  1303. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1304. }
  1305. for (node = 0; node < local_node; node++) {
  1306. if (!node_online(node))
  1307. continue;
  1308. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1309. }
  1310. zonelist->zones[j] = NULL;
  1311. }
  1312. }
  1313. #endif /* CONFIG_NUMA */
  1314. void __init build_all_zonelists(void)
  1315. {
  1316. int i;
  1317. for_each_online_node(i)
  1318. build_zonelists(NODE_DATA(i));
  1319. printk("Built %i zonelists\n", num_online_nodes());
  1320. cpuset_init_current_mems_allowed();
  1321. }
  1322. /*
  1323. * Helper functions to size the waitqueue hash table.
  1324. * Essentially these want to choose hash table sizes sufficiently
  1325. * large so that collisions trying to wait on pages are rare.
  1326. * But in fact, the number of active page waitqueues on typical
  1327. * systems is ridiculously low, less than 200. So this is even
  1328. * conservative, even though it seems large.
  1329. *
  1330. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1331. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1332. */
  1333. #define PAGES_PER_WAITQUEUE 256
  1334. static inline unsigned long wait_table_size(unsigned long pages)
  1335. {
  1336. unsigned long size = 1;
  1337. pages /= PAGES_PER_WAITQUEUE;
  1338. while (size < pages)
  1339. size <<= 1;
  1340. /*
  1341. * Once we have dozens or even hundreds of threads sleeping
  1342. * on IO we've got bigger problems than wait queue collision.
  1343. * Limit the size of the wait table to a reasonable size.
  1344. */
  1345. size = min(size, 4096UL);
  1346. return max(size, 4UL);
  1347. }
  1348. /*
  1349. * This is an integer logarithm so that shifts can be used later
  1350. * to extract the more random high bits from the multiplicative
  1351. * hash function before the remainder is taken.
  1352. */
  1353. static inline unsigned long wait_table_bits(unsigned long size)
  1354. {
  1355. return ffz(~size);
  1356. }
  1357. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1358. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1359. unsigned long *zones_size, unsigned long *zholes_size)
  1360. {
  1361. unsigned long realtotalpages, totalpages = 0;
  1362. int i;
  1363. for (i = 0; i < MAX_NR_ZONES; i++)
  1364. totalpages += zones_size[i];
  1365. pgdat->node_spanned_pages = totalpages;
  1366. realtotalpages = totalpages;
  1367. if (zholes_size)
  1368. for (i = 0; i < MAX_NR_ZONES; i++)
  1369. realtotalpages -= zholes_size[i];
  1370. pgdat->node_present_pages = realtotalpages;
  1371. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1372. }
  1373. /*
  1374. * Initially all pages are reserved - free ones are freed
  1375. * up by free_all_bootmem() once the early boot process is
  1376. * done. Non-atomic initialization, single-pass.
  1377. */
  1378. void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1379. unsigned long start_pfn)
  1380. {
  1381. struct page *start = pfn_to_page(start_pfn);
  1382. struct page *page;
  1383. for (page = start; page < (start + size); page++) {
  1384. set_page_zone(page, NODEZONE(nid, zone));
  1385. set_page_count(page, 0);
  1386. reset_page_mapcount(page);
  1387. SetPageReserved(page);
  1388. INIT_LIST_HEAD(&page->lru);
  1389. #ifdef WANT_PAGE_VIRTUAL
  1390. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1391. if (!is_highmem_idx(zone))
  1392. set_page_address(page, __va(start_pfn << PAGE_SHIFT));
  1393. #endif
  1394. start_pfn++;
  1395. }
  1396. }
  1397. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1398. unsigned long size)
  1399. {
  1400. int order;
  1401. for (order = 0; order < MAX_ORDER ; order++) {
  1402. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1403. zone->free_area[order].nr_free = 0;
  1404. }
  1405. }
  1406. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1407. #define memmap_init(size, nid, zone, start_pfn) \
  1408. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1409. #endif
  1410. /*
  1411. * Set up the zone data structures:
  1412. * - mark all pages reserved
  1413. * - mark all memory queues empty
  1414. * - clear the memory bitmaps
  1415. */
  1416. static void __init free_area_init_core(struct pglist_data *pgdat,
  1417. unsigned long *zones_size, unsigned long *zholes_size)
  1418. {
  1419. unsigned long i, j;
  1420. const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
  1421. int cpu, nid = pgdat->node_id;
  1422. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1423. pgdat->nr_zones = 0;
  1424. init_waitqueue_head(&pgdat->kswapd_wait);
  1425. pgdat->kswapd_max_order = 0;
  1426. for (j = 0; j < MAX_NR_ZONES; j++) {
  1427. struct zone *zone = pgdat->node_zones + j;
  1428. unsigned long size, realsize;
  1429. unsigned long batch;
  1430. zone_table[NODEZONE(nid, j)] = zone;
  1431. realsize = size = zones_size[j];
  1432. if (zholes_size)
  1433. realsize -= zholes_size[j];
  1434. if (j == ZONE_DMA || j == ZONE_NORMAL)
  1435. nr_kernel_pages += realsize;
  1436. nr_all_pages += realsize;
  1437. zone->spanned_pages = size;
  1438. zone->present_pages = realsize;
  1439. zone->name = zone_names[j];
  1440. spin_lock_init(&zone->lock);
  1441. spin_lock_init(&zone->lru_lock);
  1442. zone->zone_pgdat = pgdat;
  1443. zone->free_pages = 0;
  1444. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1445. /*
  1446. * The per-cpu-pages pools are set to around 1000th of the
  1447. * size of the zone. But no more than 1/4 of a meg - there's
  1448. * no point in going beyond the size of L2 cache.
  1449. *
  1450. * OK, so we don't know how big the cache is. So guess.
  1451. */
  1452. batch = zone->present_pages / 1024;
  1453. if (batch * PAGE_SIZE > 256 * 1024)
  1454. batch = (256 * 1024) / PAGE_SIZE;
  1455. batch /= 4; /* We effectively *= 4 below */
  1456. if (batch < 1)
  1457. batch = 1;
  1458. /*
  1459. * Clamp the batch to a 2^n - 1 value. Having a power
  1460. * of 2 value was found to be more likely to have
  1461. * suboptimal cache aliasing properties in some cases.
  1462. *
  1463. * For example if 2 tasks are alternately allocating
  1464. * batches of pages, one task can end up with a lot
  1465. * of pages of one half of the possible page colors
  1466. * and the other with pages of the other colors.
  1467. */
  1468. batch = (1 << fls(batch + batch/2)) - 1;
  1469. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1470. struct per_cpu_pages *pcp;
  1471. pcp = &zone->pageset[cpu].pcp[0]; /* hot */
  1472. pcp->count = 0;
  1473. pcp->low = 2 * batch;
  1474. pcp->high = 6 * batch;
  1475. pcp->batch = 1 * batch;
  1476. INIT_LIST_HEAD(&pcp->list);
  1477. pcp = &zone->pageset[cpu].pcp[1]; /* cold */
  1478. pcp->count = 0;
  1479. pcp->low = 0;
  1480. pcp->high = 2 * batch;
  1481. pcp->batch = 1 * batch;
  1482. INIT_LIST_HEAD(&pcp->list);
  1483. }
  1484. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1485. zone_names[j], realsize, batch);
  1486. INIT_LIST_HEAD(&zone->active_list);
  1487. INIT_LIST_HEAD(&zone->inactive_list);
  1488. zone->nr_scan_active = 0;
  1489. zone->nr_scan_inactive = 0;
  1490. zone->nr_active = 0;
  1491. zone->nr_inactive = 0;
  1492. if (!size)
  1493. continue;
  1494. /*
  1495. * The per-page waitqueue mechanism uses hashed waitqueues
  1496. * per zone.
  1497. */
  1498. zone->wait_table_size = wait_table_size(size);
  1499. zone->wait_table_bits =
  1500. wait_table_bits(zone->wait_table_size);
  1501. zone->wait_table = (wait_queue_head_t *)
  1502. alloc_bootmem_node(pgdat, zone->wait_table_size
  1503. * sizeof(wait_queue_head_t));
  1504. for(i = 0; i < zone->wait_table_size; ++i)
  1505. init_waitqueue_head(zone->wait_table + i);
  1506. pgdat->nr_zones = j+1;
  1507. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1508. zone->zone_start_pfn = zone_start_pfn;
  1509. if ((zone_start_pfn) & (zone_required_alignment-1))
  1510. printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
  1511. memmap_init(size, nid, j, zone_start_pfn);
  1512. zone_start_pfn += size;
  1513. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1514. }
  1515. }
  1516. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1517. {
  1518. unsigned long size;
  1519. /* Skip empty nodes */
  1520. if (!pgdat->node_spanned_pages)
  1521. return;
  1522. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1523. if (!pgdat->node_mem_map) {
  1524. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1525. pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
  1526. }
  1527. #ifndef CONFIG_DISCONTIGMEM
  1528. /*
  1529. * With no DISCONTIG, the global mem_map is just set as node 0's
  1530. */
  1531. if (pgdat == NODE_DATA(0))
  1532. mem_map = NODE_DATA(0)->node_mem_map;
  1533. #endif
  1534. }
  1535. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1536. unsigned long *zones_size, unsigned long node_start_pfn,
  1537. unsigned long *zholes_size)
  1538. {
  1539. pgdat->node_id = nid;
  1540. pgdat->node_start_pfn = node_start_pfn;
  1541. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1542. alloc_node_mem_map(pgdat);
  1543. free_area_init_core(pgdat, zones_size, zholes_size);
  1544. }
  1545. #ifndef CONFIG_DISCONTIGMEM
  1546. static bootmem_data_t contig_bootmem_data;
  1547. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1548. EXPORT_SYMBOL(contig_page_data);
  1549. void __init free_area_init(unsigned long *zones_size)
  1550. {
  1551. free_area_init_node(0, &contig_page_data, zones_size,
  1552. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1553. }
  1554. #endif
  1555. #ifdef CONFIG_PROC_FS
  1556. #include <linux/seq_file.h>
  1557. static void *frag_start(struct seq_file *m, loff_t *pos)
  1558. {
  1559. pg_data_t *pgdat;
  1560. loff_t node = *pos;
  1561. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1562. --node;
  1563. return pgdat;
  1564. }
  1565. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1566. {
  1567. pg_data_t *pgdat = (pg_data_t *)arg;
  1568. (*pos)++;
  1569. return pgdat->pgdat_next;
  1570. }
  1571. static void frag_stop(struct seq_file *m, void *arg)
  1572. {
  1573. }
  1574. /*
  1575. * This walks the free areas for each zone.
  1576. */
  1577. static int frag_show(struct seq_file *m, void *arg)
  1578. {
  1579. pg_data_t *pgdat = (pg_data_t *)arg;
  1580. struct zone *zone;
  1581. struct zone *node_zones = pgdat->node_zones;
  1582. unsigned long flags;
  1583. int order;
  1584. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1585. if (!zone->present_pages)
  1586. continue;
  1587. spin_lock_irqsave(&zone->lock, flags);
  1588. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1589. for (order = 0; order < MAX_ORDER; ++order)
  1590. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1591. spin_unlock_irqrestore(&zone->lock, flags);
  1592. seq_putc(m, '\n');
  1593. }
  1594. return 0;
  1595. }
  1596. struct seq_operations fragmentation_op = {
  1597. .start = frag_start,
  1598. .next = frag_next,
  1599. .stop = frag_stop,
  1600. .show = frag_show,
  1601. };
  1602. /*
  1603. * Output information about zones in @pgdat.
  1604. */
  1605. static int zoneinfo_show(struct seq_file *m, void *arg)
  1606. {
  1607. pg_data_t *pgdat = arg;
  1608. struct zone *zone;
  1609. struct zone *node_zones = pgdat->node_zones;
  1610. unsigned long flags;
  1611. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1612. int i;
  1613. if (!zone->present_pages)
  1614. continue;
  1615. spin_lock_irqsave(&zone->lock, flags);
  1616. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1617. seq_printf(m,
  1618. "\n pages free %lu"
  1619. "\n min %lu"
  1620. "\n low %lu"
  1621. "\n high %lu"
  1622. "\n active %lu"
  1623. "\n inactive %lu"
  1624. "\n scanned %lu (a: %lu i: %lu)"
  1625. "\n spanned %lu"
  1626. "\n present %lu",
  1627. zone->free_pages,
  1628. zone->pages_min,
  1629. zone->pages_low,
  1630. zone->pages_high,
  1631. zone->nr_active,
  1632. zone->nr_inactive,
  1633. zone->pages_scanned,
  1634. zone->nr_scan_active, zone->nr_scan_inactive,
  1635. zone->spanned_pages,
  1636. zone->present_pages);
  1637. seq_printf(m,
  1638. "\n protection: (%lu",
  1639. zone->lowmem_reserve[0]);
  1640. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1641. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1642. seq_printf(m,
  1643. ")"
  1644. "\n pagesets");
  1645. for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
  1646. struct per_cpu_pageset *pageset;
  1647. int j;
  1648. pageset = &zone->pageset[i];
  1649. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1650. if (pageset->pcp[j].count)
  1651. break;
  1652. }
  1653. if (j == ARRAY_SIZE(pageset->pcp))
  1654. continue;
  1655. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1656. seq_printf(m,
  1657. "\n cpu: %i pcp: %i"
  1658. "\n count: %i"
  1659. "\n low: %i"
  1660. "\n high: %i"
  1661. "\n batch: %i",
  1662. i, j,
  1663. pageset->pcp[j].count,
  1664. pageset->pcp[j].low,
  1665. pageset->pcp[j].high,
  1666. pageset->pcp[j].batch);
  1667. }
  1668. #ifdef CONFIG_NUMA
  1669. seq_printf(m,
  1670. "\n numa_hit: %lu"
  1671. "\n numa_miss: %lu"
  1672. "\n numa_foreign: %lu"
  1673. "\n interleave_hit: %lu"
  1674. "\n local_node: %lu"
  1675. "\n other_node: %lu",
  1676. pageset->numa_hit,
  1677. pageset->numa_miss,
  1678. pageset->numa_foreign,
  1679. pageset->interleave_hit,
  1680. pageset->local_node,
  1681. pageset->other_node);
  1682. #endif
  1683. }
  1684. seq_printf(m,
  1685. "\n all_unreclaimable: %u"
  1686. "\n prev_priority: %i"
  1687. "\n temp_priority: %i"
  1688. "\n start_pfn: %lu",
  1689. zone->all_unreclaimable,
  1690. zone->prev_priority,
  1691. zone->temp_priority,
  1692. zone->zone_start_pfn);
  1693. spin_unlock_irqrestore(&zone->lock, flags);
  1694. seq_putc(m, '\n');
  1695. }
  1696. return 0;
  1697. }
  1698. struct seq_operations zoneinfo_op = {
  1699. .start = frag_start, /* iterate over all zones. The same as in
  1700. * fragmentation. */
  1701. .next = frag_next,
  1702. .stop = frag_stop,
  1703. .show = zoneinfo_show,
  1704. };
  1705. static char *vmstat_text[] = {
  1706. "nr_dirty",
  1707. "nr_writeback",
  1708. "nr_unstable",
  1709. "nr_page_table_pages",
  1710. "nr_mapped",
  1711. "nr_slab",
  1712. "pgpgin",
  1713. "pgpgout",
  1714. "pswpin",
  1715. "pswpout",
  1716. "pgalloc_high",
  1717. "pgalloc_normal",
  1718. "pgalloc_dma",
  1719. "pgfree",
  1720. "pgactivate",
  1721. "pgdeactivate",
  1722. "pgfault",
  1723. "pgmajfault",
  1724. "pgrefill_high",
  1725. "pgrefill_normal",
  1726. "pgrefill_dma",
  1727. "pgsteal_high",
  1728. "pgsteal_normal",
  1729. "pgsteal_dma",
  1730. "pgscan_kswapd_high",
  1731. "pgscan_kswapd_normal",
  1732. "pgscan_kswapd_dma",
  1733. "pgscan_direct_high",
  1734. "pgscan_direct_normal",
  1735. "pgscan_direct_dma",
  1736. "pginodesteal",
  1737. "slabs_scanned",
  1738. "kswapd_steal",
  1739. "kswapd_inodesteal",
  1740. "pageoutrun",
  1741. "allocstall",
  1742. "pgrotated",
  1743. "nr_bounce",
  1744. };
  1745. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1746. {
  1747. struct page_state *ps;
  1748. if (*pos >= ARRAY_SIZE(vmstat_text))
  1749. return NULL;
  1750. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  1751. m->private = ps;
  1752. if (!ps)
  1753. return ERR_PTR(-ENOMEM);
  1754. get_full_page_state(ps);
  1755. ps->pgpgin /= 2; /* sectors -> kbytes */
  1756. ps->pgpgout /= 2;
  1757. return (unsigned long *)ps + *pos;
  1758. }
  1759. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1760. {
  1761. (*pos)++;
  1762. if (*pos >= ARRAY_SIZE(vmstat_text))
  1763. return NULL;
  1764. return (unsigned long *)m->private + *pos;
  1765. }
  1766. static int vmstat_show(struct seq_file *m, void *arg)
  1767. {
  1768. unsigned long *l = arg;
  1769. unsigned long off = l - (unsigned long *)m->private;
  1770. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1771. return 0;
  1772. }
  1773. static void vmstat_stop(struct seq_file *m, void *arg)
  1774. {
  1775. kfree(m->private);
  1776. m->private = NULL;
  1777. }
  1778. struct seq_operations vmstat_op = {
  1779. .start = vmstat_start,
  1780. .next = vmstat_next,
  1781. .stop = vmstat_stop,
  1782. .show = vmstat_show,
  1783. };
  1784. #endif /* CONFIG_PROC_FS */
  1785. #ifdef CONFIG_HOTPLUG_CPU
  1786. static int page_alloc_cpu_notify(struct notifier_block *self,
  1787. unsigned long action, void *hcpu)
  1788. {
  1789. int cpu = (unsigned long)hcpu;
  1790. long *count;
  1791. unsigned long *src, *dest;
  1792. if (action == CPU_DEAD) {
  1793. int i;
  1794. /* Drain local pagecache count. */
  1795. count = &per_cpu(nr_pagecache_local, cpu);
  1796. atomic_add(*count, &nr_pagecache);
  1797. *count = 0;
  1798. local_irq_disable();
  1799. __drain_pages(cpu);
  1800. /* Add dead cpu's page_states to our own. */
  1801. dest = (unsigned long *)&__get_cpu_var(page_states);
  1802. src = (unsigned long *)&per_cpu(page_states, cpu);
  1803. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  1804. i++) {
  1805. dest[i] += src[i];
  1806. src[i] = 0;
  1807. }
  1808. local_irq_enable();
  1809. }
  1810. return NOTIFY_OK;
  1811. }
  1812. #endif /* CONFIG_HOTPLUG_CPU */
  1813. void __init page_alloc_init(void)
  1814. {
  1815. hotcpu_notifier(page_alloc_cpu_notify, 0);
  1816. }
  1817. /*
  1818. * setup_per_zone_lowmem_reserve - called whenever
  1819. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  1820. * has a correct pages reserved value, so an adequate number of
  1821. * pages are left in the zone after a successful __alloc_pages().
  1822. */
  1823. static void setup_per_zone_lowmem_reserve(void)
  1824. {
  1825. struct pglist_data *pgdat;
  1826. int j, idx;
  1827. for_each_pgdat(pgdat) {
  1828. for (j = 0; j < MAX_NR_ZONES; j++) {
  1829. struct zone *zone = pgdat->node_zones + j;
  1830. unsigned long present_pages = zone->present_pages;
  1831. zone->lowmem_reserve[j] = 0;
  1832. for (idx = j-1; idx >= 0; idx--) {
  1833. struct zone *lower_zone;
  1834. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  1835. sysctl_lowmem_reserve_ratio[idx] = 1;
  1836. lower_zone = pgdat->node_zones + idx;
  1837. lower_zone->lowmem_reserve[j] = present_pages /
  1838. sysctl_lowmem_reserve_ratio[idx];
  1839. present_pages += lower_zone->present_pages;
  1840. }
  1841. }
  1842. }
  1843. }
  1844. /*
  1845. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  1846. * that the pages_{min,low,high} values for each zone are set correctly
  1847. * with respect to min_free_kbytes.
  1848. */
  1849. static void setup_per_zone_pages_min(void)
  1850. {
  1851. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  1852. unsigned long lowmem_pages = 0;
  1853. struct zone *zone;
  1854. unsigned long flags;
  1855. /* Calculate total number of !ZONE_HIGHMEM pages */
  1856. for_each_zone(zone) {
  1857. if (!is_highmem(zone))
  1858. lowmem_pages += zone->present_pages;
  1859. }
  1860. for_each_zone(zone) {
  1861. spin_lock_irqsave(&zone->lru_lock, flags);
  1862. if (is_highmem(zone)) {
  1863. /*
  1864. * Often, highmem doesn't need to reserve any pages.
  1865. * But the pages_min/low/high values are also used for
  1866. * batching up page reclaim activity so we need a
  1867. * decent value here.
  1868. */
  1869. int min_pages;
  1870. min_pages = zone->present_pages / 1024;
  1871. if (min_pages < SWAP_CLUSTER_MAX)
  1872. min_pages = SWAP_CLUSTER_MAX;
  1873. if (min_pages > 128)
  1874. min_pages = 128;
  1875. zone->pages_min = min_pages;
  1876. } else {
  1877. /* if it's a lowmem zone, reserve a number of pages
  1878. * proportionate to the zone's size.
  1879. */
  1880. zone->pages_min = (pages_min * zone->present_pages) /
  1881. lowmem_pages;
  1882. }
  1883. /*
  1884. * When interpreting these watermarks, just keep in mind that:
  1885. * zone->pages_min == (zone->pages_min * 4) / 4;
  1886. */
  1887. zone->pages_low = (zone->pages_min * 5) / 4;
  1888. zone->pages_high = (zone->pages_min * 6) / 4;
  1889. spin_unlock_irqrestore(&zone->lru_lock, flags);
  1890. }
  1891. }
  1892. /*
  1893. * Initialise min_free_kbytes.
  1894. *
  1895. * For small machines we want it small (128k min). For large machines
  1896. * we want it large (64MB max). But it is not linear, because network
  1897. * bandwidth does not increase linearly with machine size. We use
  1898. *
  1899. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  1900. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  1901. *
  1902. * which yields
  1903. *
  1904. * 16MB: 512k
  1905. * 32MB: 724k
  1906. * 64MB: 1024k
  1907. * 128MB: 1448k
  1908. * 256MB: 2048k
  1909. * 512MB: 2896k
  1910. * 1024MB: 4096k
  1911. * 2048MB: 5792k
  1912. * 4096MB: 8192k
  1913. * 8192MB: 11584k
  1914. * 16384MB: 16384k
  1915. */
  1916. static int __init init_per_zone_pages_min(void)
  1917. {
  1918. unsigned long lowmem_kbytes;
  1919. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  1920. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  1921. if (min_free_kbytes < 128)
  1922. min_free_kbytes = 128;
  1923. if (min_free_kbytes > 65536)
  1924. min_free_kbytes = 65536;
  1925. setup_per_zone_pages_min();
  1926. setup_per_zone_lowmem_reserve();
  1927. return 0;
  1928. }
  1929. module_init(init_per_zone_pages_min)
  1930. /*
  1931. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  1932. * that we can call two helper functions whenever min_free_kbytes
  1933. * changes.
  1934. */
  1935. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  1936. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  1937. {
  1938. proc_dointvec(table, write, file, buffer, length, ppos);
  1939. setup_per_zone_pages_min();
  1940. return 0;
  1941. }
  1942. /*
  1943. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  1944. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  1945. * whenever sysctl_lowmem_reserve_ratio changes.
  1946. *
  1947. * The reserve ratio obviously has absolutely no relation with the
  1948. * pages_min watermarks. The lowmem reserve ratio can only make sense
  1949. * if in function of the boot time zone sizes.
  1950. */
  1951. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  1952. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  1953. {
  1954. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  1955. setup_per_zone_lowmem_reserve();
  1956. return 0;
  1957. }
  1958. __initdata int hashdist = HASHDIST_DEFAULT;
  1959. #ifdef CONFIG_NUMA
  1960. static int __init set_hashdist(char *str)
  1961. {
  1962. if (!str)
  1963. return 0;
  1964. hashdist = simple_strtoul(str, &str, 0);
  1965. return 1;
  1966. }
  1967. __setup("hashdist=", set_hashdist);
  1968. #endif
  1969. /*
  1970. * allocate a large system hash table from bootmem
  1971. * - it is assumed that the hash table must contain an exact power-of-2
  1972. * quantity of entries
  1973. * - limit is the number of hash buckets, not the total allocation size
  1974. */
  1975. void *__init alloc_large_system_hash(const char *tablename,
  1976. unsigned long bucketsize,
  1977. unsigned long numentries,
  1978. int scale,
  1979. int flags,
  1980. unsigned int *_hash_shift,
  1981. unsigned int *_hash_mask,
  1982. unsigned long limit)
  1983. {
  1984. unsigned long long max = limit;
  1985. unsigned long log2qty, size;
  1986. void *table = NULL;
  1987. /* allow the kernel cmdline to have a say */
  1988. if (!numentries) {
  1989. /* round applicable memory size up to nearest megabyte */
  1990. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  1991. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  1992. numentries >>= 20 - PAGE_SHIFT;
  1993. numentries <<= 20 - PAGE_SHIFT;
  1994. /* limit to 1 bucket per 2^scale bytes of low memory */
  1995. if (scale > PAGE_SHIFT)
  1996. numentries >>= (scale - PAGE_SHIFT);
  1997. else
  1998. numentries <<= (PAGE_SHIFT - scale);
  1999. }
  2000. /* rounded up to nearest power of 2 in size */
  2001. numentries = 1UL << (long_log2(numentries) + 1);
  2002. /* limit allocation size to 1/16 total memory by default */
  2003. if (max == 0) {
  2004. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2005. do_div(max, bucketsize);
  2006. }
  2007. if (numentries > max)
  2008. numentries = max;
  2009. log2qty = long_log2(numentries);
  2010. do {
  2011. size = bucketsize << log2qty;
  2012. if (flags & HASH_EARLY)
  2013. table = alloc_bootmem(size);
  2014. else if (hashdist)
  2015. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2016. else {
  2017. unsigned long order;
  2018. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2019. ;
  2020. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2021. }
  2022. } while (!table && size > PAGE_SIZE && --log2qty);
  2023. if (!table)
  2024. panic("Failed to allocate %s hash table\n", tablename);
  2025. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2026. tablename,
  2027. (1U << log2qty),
  2028. long_log2(size) - PAGE_SHIFT,
  2029. size);
  2030. if (_hash_shift)
  2031. *_hash_shift = log2qty;
  2032. if (_hash_mask)
  2033. *_hash_mask = (1 << log2qty) - 1;
  2034. return table;
  2035. }