exynos_tmu.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. /*
  2. * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
  3. *
  4. * Copyright (C) 2011 Samsung Electronics
  5. * Donggeun Kim <dg77.kim@samsung.com>
  6. * Amit Daniel Kachhap <amit.kachhap@linaro.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <linux/clk.h>
  24. #include <linux/io.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/module.h>
  27. #include <linux/of.h>
  28. #include <linux/platform_device.h>
  29. #include "exynos_thermal_common.h"
  30. #include "exynos_tmu.h"
  31. /* Exynos generic registers */
  32. #define EXYNOS_TMU_REG_TRIMINFO 0x0
  33. #define EXYNOS_TMU_REG_CONTROL 0x20
  34. #define EXYNOS_TMU_REG_STATUS 0x28
  35. #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40
  36. #define EXYNOS_TMU_REG_INTEN 0x70
  37. #define EXYNOS_TMU_REG_INTSTAT 0x74
  38. #define EXYNOS_TMU_REG_INTCLEAR 0x78
  39. #define EXYNOS_TMU_TRIM_TEMP_MASK 0xff
  40. #define EXYNOS_TMU_GAIN_SHIFT 8
  41. #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24
  42. #define EXYNOS_TMU_CORE_ON 3
  43. #define EXYNOS_TMU_CORE_OFF 2
  44. #define EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET 50
  45. /* Exynos4210 specific registers */
  46. #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44
  47. #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50
  48. #define EXYNOS4210_TMU_REG_TRIG_LEVEL1 0x54
  49. #define EXYNOS4210_TMU_REG_TRIG_LEVEL2 0x58
  50. #define EXYNOS4210_TMU_REG_TRIG_LEVEL3 0x5C
  51. #define EXYNOS4210_TMU_REG_PAST_TEMP0 0x60
  52. #define EXYNOS4210_TMU_REG_PAST_TEMP1 0x64
  53. #define EXYNOS4210_TMU_REG_PAST_TEMP2 0x68
  54. #define EXYNOS4210_TMU_REG_PAST_TEMP3 0x6C
  55. #define EXYNOS4210_TMU_TRIG_LEVEL0_MASK 0x1
  56. #define EXYNOS4210_TMU_TRIG_LEVEL1_MASK 0x10
  57. #define EXYNOS4210_TMU_TRIG_LEVEL2_MASK 0x100
  58. #define EXYNOS4210_TMU_TRIG_LEVEL3_MASK 0x1000
  59. #define EXYNOS4210_TMU_INTCLEAR_VAL 0x1111
  60. /* Exynos5250 and Exynos4412 specific registers */
  61. #define EXYNOS_TMU_TRIMINFO_CON 0x14
  62. #define EXYNOS_THD_TEMP_RISE 0x50
  63. #define EXYNOS_THD_TEMP_FALL 0x54
  64. #define EXYNOS_EMUL_CON 0x80
  65. #define EXYNOS_TRIMINFO_RELOAD 0x1
  66. #define EXYNOS_TMU_CLEAR_RISE_INT 0x111
  67. #define EXYNOS_TMU_CLEAR_FALL_INT (0x111 << 12)
  68. #define EXYNOS_MUX_ADDR_VALUE 6
  69. #define EXYNOS_MUX_ADDR_SHIFT 20
  70. #define EXYNOS_TMU_TRIP_MODE_SHIFT 13
  71. #define EFUSE_MIN_VALUE 40
  72. #define EFUSE_MAX_VALUE 100
  73. #ifdef CONFIG_THERMAL_EMULATION
  74. #define EXYNOS_EMUL_TIME 0x57F0
  75. #define EXYNOS_EMUL_TIME_SHIFT 16
  76. #define EXYNOS_EMUL_DATA_SHIFT 8
  77. #define EXYNOS_EMUL_DATA_MASK 0xFF
  78. #define EXYNOS_EMUL_ENABLE 0x1
  79. #endif /* CONFIG_THERMAL_EMULATION */
  80. struct exynos_tmu_data {
  81. struct exynos_tmu_platform_data *pdata;
  82. struct resource *mem;
  83. void __iomem *base;
  84. int irq;
  85. enum soc_type soc;
  86. struct work_struct irq_work;
  87. struct mutex lock;
  88. struct clk *clk;
  89. u8 temp_error1, temp_error2;
  90. };
  91. /*
  92. * TMU treats temperature as a mapped temperature code.
  93. * The temperature is converted differently depending on the calibration type.
  94. */
  95. static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
  96. {
  97. struct exynos_tmu_platform_data *pdata = data->pdata;
  98. int temp_code;
  99. if (data->soc == SOC_ARCH_EXYNOS4210)
  100. /* temp should range between 25 and 125 */
  101. if (temp < 25 || temp > 125) {
  102. temp_code = -EINVAL;
  103. goto out;
  104. }
  105. switch (pdata->cal_type) {
  106. case TYPE_TWO_POINT_TRIMMING:
  107. temp_code = (temp - 25) *
  108. (data->temp_error2 - data->temp_error1) /
  109. (85 - 25) + data->temp_error1;
  110. break;
  111. case TYPE_ONE_POINT_TRIMMING:
  112. temp_code = temp + data->temp_error1 - 25;
  113. break;
  114. default:
  115. temp_code = temp + EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
  116. break;
  117. }
  118. out:
  119. return temp_code;
  120. }
  121. /*
  122. * Calculate a temperature value from a temperature code.
  123. * The unit of the temperature is degree Celsius.
  124. */
  125. static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
  126. {
  127. struct exynos_tmu_platform_data *pdata = data->pdata;
  128. int temp;
  129. if (data->soc == SOC_ARCH_EXYNOS4210)
  130. /* temp_code should range between 75 and 175 */
  131. if (temp_code < 75 || temp_code > 175) {
  132. temp = -ENODATA;
  133. goto out;
  134. }
  135. switch (pdata->cal_type) {
  136. case TYPE_TWO_POINT_TRIMMING:
  137. temp = (temp_code - data->temp_error1) * (85 - 25) /
  138. (data->temp_error2 - data->temp_error1) + 25;
  139. break;
  140. case TYPE_ONE_POINT_TRIMMING:
  141. temp = temp_code - data->temp_error1 + 25;
  142. break;
  143. default:
  144. temp = temp_code - EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
  145. break;
  146. }
  147. out:
  148. return temp;
  149. }
  150. static int exynos_tmu_initialize(struct platform_device *pdev)
  151. {
  152. struct exynos_tmu_data *data = platform_get_drvdata(pdev);
  153. struct exynos_tmu_platform_data *pdata = data->pdata;
  154. unsigned int status, trim_info;
  155. unsigned int rising_threshold = 0, falling_threshold = 0;
  156. int ret = 0, threshold_code, i, trigger_levs = 0;
  157. mutex_lock(&data->lock);
  158. clk_enable(data->clk);
  159. status = readb(data->base + EXYNOS_TMU_REG_STATUS);
  160. if (!status) {
  161. ret = -EBUSY;
  162. goto out;
  163. }
  164. if (data->soc == SOC_ARCH_EXYNOS) {
  165. __raw_writel(EXYNOS_TRIMINFO_RELOAD,
  166. data->base + EXYNOS_TMU_TRIMINFO_CON);
  167. }
  168. /* Save trimming info in order to perform calibration */
  169. trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
  170. data->temp_error1 = trim_info & EXYNOS_TMU_TRIM_TEMP_MASK;
  171. data->temp_error2 = ((trim_info >> 8) & EXYNOS_TMU_TRIM_TEMP_MASK);
  172. if ((EFUSE_MIN_VALUE > data->temp_error1) ||
  173. (data->temp_error1 > EFUSE_MAX_VALUE) ||
  174. (data->temp_error2 != 0))
  175. data->temp_error1 = pdata->efuse_value;
  176. /* Count trigger levels to be enabled */
  177. for (i = 0; i < MAX_THRESHOLD_LEVS; i++)
  178. if (pdata->trigger_levels[i])
  179. trigger_levs++;
  180. if (data->soc == SOC_ARCH_EXYNOS4210) {
  181. /* Write temperature code for threshold */
  182. threshold_code = temp_to_code(data, pdata->threshold);
  183. if (threshold_code < 0) {
  184. ret = threshold_code;
  185. goto out;
  186. }
  187. writeb(threshold_code,
  188. data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
  189. for (i = 0; i < trigger_levs; i++)
  190. writeb(pdata->trigger_levels[i],
  191. data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
  192. writel(EXYNOS4210_TMU_INTCLEAR_VAL,
  193. data->base + EXYNOS_TMU_REG_INTCLEAR);
  194. } else if (data->soc == SOC_ARCH_EXYNOS) {
  195. /* Write temperature code for rising and falling threshold */
  196. for (i = 0; i < trigger_levs; i++) {
  197. threshold_code = temp_to_code(data,
  198. pdata->trigger_levels[i]);
  199. if (threshold_code < 0) {
  200. ret = threshold_code;
  201. goto out;
  202. }
  203. rising_threshold |= threshold_code << 8 * i;
  204. if (pdata->threshold_falling) {
  205. threshold_code = temp_to_code(data,
  206. pdata->trigger_levels[i] -
  207. pdata->threshold_falling);
  208. if (threshold_code > 0)
  209. falling_threshold |=
  210. threshold_code << 8 * i;
  211. }
  212. }
  213. writel(rising_threshold,
  214. data->base + EXYNOS_THD_TEMP_RISE);
  215. writel(falling_threshold,
  216. data->base + EXYNOS_THD_TEMP_FALL);
  217. writel(EXYNOS_TMU_CLEAR_RISE_INT | EXYNOS_TMU_CLEAR_FALL_INT,
  218. data->base + EXYNOS_TMU_REG_INTCLEAR);
  219. }
  220. out:
  221. clk_disable(data->clk);
  222. mutex_unlock(&data->lock);
  223. return ret;
  224. }
  225. static void exynos_tmu_control(struct platform_device *pdev, bool on)
  226. {
  227. struct exynos_tmu_data *data = platform_get_drvdata(pdev);
  228. struct exynos_tmu_platform_data *pdata = data->pdata;
  229. unsigned int con, interrupt_en;
  230. mutex_lock(&data->lock);
  231. clk_enable(data->clk);
  232. con = pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT |
  233. pdata->gain << EXYNOS_TMU_GAIN_SHIFT;
  234. if (data->soc == SOC_ARCH_EXYNOS) {
  235. con |= pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT;
  236. con |= (EXYNOS_MUX_ADDR_VALUE << EXYNOS_MUX_ADDR_SHIFT);
  237. }
  238. if (on) {
  239. con |= EXYNOS_TMU_CORE_ON;
  240. interrupt_en = pdata->trigger_level3_en << 12 |
  241. pdata->trigger_level2_en << 8 |
  242. pdata->trigger_level1_en << 4 |
  243. pdata->trigger_level0_en;
  244. if (pdata->threshold_falling)
  245. interrupt_en |= interrupt_en << 16;
  246. } else {
  247. con |= EXYNOS_TMU_CORE_OFF;
  248. interrupt_en = 0; /* Disable all interrupts */
  249. }
  250. writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
  251. writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
  252. clk_disable(data->clk);
  253. mutex_unlock(&data->lock);
  254. }
  255. static int exynos_tmu_read(struct exynos_tmu_data *data)
  256. {
  257. u8 temp_code;
  258. int temp;
  259. mutex_lock(&data->lock);
  260. clk_enable(data->clk);
  261. temp_code = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
  262. temp = code_to_temp(data, temp_code);
  263. clk_disable(data->clk);
  264. mutex_unlock(&data->lock);
  265. return temp;
  266. }
  267. #ifdef CONFIG_THERMAL_EMULATION
  268. static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
  269. {
  270. struct exynos_tmu_data *data = drv_data;
  271. unsigned int reg;
  272. int ret = -EINVAL;
  273. if (data->soc == SOC_ARCH_EXYNOS4210)
  274. goto out;
  275. if (temp && temp < MCELSIUS)
  276. goto out;
  277. mutex_lock(&data->lock);
  278. clk_enable(data->clk);
  279. reg = readl(data->base + EXYNOS_EMUL_CON);
  280. if (temp) {
  281. temp /= MCELSIUS;
  282. reg = (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT) |
  283. (temp_to_code(data, temp)
  284. << EXYNOS_EMUL_DATA_SHIFT) | EXYNOS_EMUL_ENABLE;
  285. } else {
  286. reg &= ~EXYNOS_EMUL_ENABLE;
  287. }
  288. writel(reg, data->base + EXYNOS_EMUL_CON);
  289. clk_disable(data->clk);
  290. mutex_unlock(&data->lock);
  291. return 0;
  292. out:
  293. return ret;
  294. }
  295. #else
  296. static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
  297. { return -EINVAL; }
  298. #endif/*CONFIG_THERMAL_EMULATION*/
  299. static void exynos_tmu_work(struct work_struct *work)
  300. {
  301. struct exynos_tmu_data *data = container_of(work,
  302. struct exynos_tmu_data, irq_work);
  303. exynos_report_trigger();
  304. mutex_lock(&data->lock);
  305. clk_enable(data->clk);
  306. if (data->soc == SOC_ARCH_EXYNOS)
  307. writel(EXYNOS_TMU_CLEAR_RISE_INT |
  308. EXYNOS_TMU_CLEAR_FALL_INT,
  309. data->base + EXYNOS_TMU_REG_INTCLEAR);
  310. else
  311. writel(EXYNOS4210_TMU_INTCLEAR_VAL,
  312. data->base + EXYNOS_TMU_REG_INTCLEAR);
  313. clk_disable(data->clk);
  314. mutex_unlock(&data->lock);
  315. enable_irq(data->irq);
  316. }
  317. static irqreturn_t exynos_tmu_irq(int irq, void *id)
  318. {
  319. struct exynos_tmu_data *data = id;
  320. disable_irq_nosync(irq);
  321. schedule_work(&data->irq_work);
  322. return IRQ_HANDLED;
  323. }
  324. static struct thermal_sensor_conf exynos_sensor_conf = {
  325. .name = "exynos-therm",
  326. .read_temperature = (int (*)(void *))exynos_tmu_read,
  327. .write_emul_temp = exynos_tmu_set_emulation,
  328. };
  329. #if defined(CONFIG_CPU_EXYNOS4210)
  330. static struct exynos_tmu_platform_data const exynos4210_default_tmu_data = {
  331. .threshold = 80,
  332. .trigger_levels[0] = 5,
  333. .trigger_levels[1] = 20,
  334. .trigger_levels[2] = 30,
  335. .trigger_level0_en = 1,
  336. .trigger_level1_en = 1,
  337. .trigger_level2_en = 1,
  338. .trigger_level3_en = 0,
  339. .gain = 15,
  340. .reference_voltage = 7,
  341. .cal_type = TYPE_ONE_POINT_TRIMMING,
  342. .freq_tab[0] = {
  343. .freq_clip_max = 800 * 1000,
  344. .temp_level = 85,
  345. },
  346. .freq_tab[1] = {
  347. .freq_clip_max = 200 * 1000,
  348. .temp_level = 100,
  349. },
  350. .freq_tab_count = 2,
  351. .type = SOC_ARCH_EXYNOS4210,
  352. };
  353. #define EXYNOS4210_TMU_DRV_DATA (&exynos4210_default_tmu_data)
  354. #else
  355. #define EXYNOS4210_TMU_DRV_DATA (NULL)
  356. #endif
  357. #if defined(CONFIG_SOC_EXYNOS5250) || defined(CONFIG_SOC_EXYNOS4412) || \
  358. defined(CONFIG_SOC_EXYNOS4212)
  359. static struct exynos_tmu_platform_data const exynos_default_tmu_data = {
  360. .threshold_falling = 10,
  361. .trigger_levels[0] = 85,
  362. .trigger_levels[1] = 103,
  363. .trigger_levels[2] = 110,
  364. .trigger_level0_en = 1,
  365. .trigger_level1_en = 1,
  366. .trigger_level2_en = 1,
  367. .trigger_level3_en = 0,
  368. .gain = 8,
  369. .reference_voltage = 16,
  370. .noise_cancel_mode = 4,
  371. .cal_type = TYPE_ONE_POINT_TRIMMING,
  372. .efuse_value = 55,
  373. .freq_tab[0] = {
  374. .freq_clip_max = 800 * 1000,
  375. .temp_level = 85,
  376. },
  377. .freq_tab[1] = {
  378. .freq_clip_max = 200 * 1000,
  379. .temp_level = 103,
  380. },
  381. .freq_tab_count = 2,
  382. .type = SOC_ARCH_EXYNOS,
  383. };
  384. #define EXYNOS_TMU_DRV_DATA (&exynos_default_tmu_data)
  385. #else
  386. #define EXYNOS_TMU_DRV_DATA (NULL)
  387. #endif
  388. #ifdef CONFIG_OF
  389. static const struct of_device_id exynos_tmu_match[] = {
  390. {
  391. .compatible = "samsung,exynos4210-tmu",
  392. .data = (void *)EXYNOS4210_TMU_DRV_DATA,
  393. },
  394. {
  395. .compatible = "samsung,exynos4412-tmu",
  396. .data = (void *)EXYNOS_TMU_DRV_DATA,
  397. },
  398. {
  399. .compatible = "samsung,exynos5250-tmu",
  400. .data = (void *)EXYNOS_TMU_DRV_DATA,
  401. },
  402. {},
  403. };
  404. MODULE_DEVICE_TABLE(of, exynos_tmu_match);
  405. #endif
  406. static struct platform_device_id exynos_tmu_driver_ids[] = {
  407. {
  408. .name = "exynos4210-tmu",
  409. .driver_data = (kernel_ulong_t)EXYNOS4210_TMU_DRV_DATA,
  410. },
  411. {
  412. .name = "exynos5250-tmu",
  413. .driver_data = (kernel_ulong_t)EXYNOS_TMU_DRV_DATA,
  414. },
  415. { },
  416. };
  417. MODULE_DEVICE_TABLE(platform, exynos_tmu_driver_ids);
  418. static inline struct exynos_tmu_platform_data *exynos_get_driver_data(
  419. struct platform_device *pdev)
  420. {
  421. #ifdef CONFIG_OF
  422. if (pdev->dev.of_node) {
  423. const struct of_device_id *match;
  424. match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
  425. if (!match)
  426. return NULL;
  427. return (struct exynos_tmu_platform_data *) match->data;
  428. }
  429. #endif
  430. return (struct exynos_tmu_platform_data *)
  431. platform_get_device_id(pdev)->driver_data;
  432. }
  433. static int exynos_tmu_probe(struct platform_device *pdev)
  434. {
  435. struct exynos_tmu_data *data;
  436. struct exynos_tmu_platform_data *pdata = pdev->dev.platform_data;
  437. int ret, i;
  438. if (!pdata)
  439. pdata = exynos_get_driver_data(pdev);
  440. if (!pdata) {
  441. dev_err(&pdev->dev, "No platform init data supplied.\n");
  442. return -ENODEV;
  443. }
  444. data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
  445. GFP_KERNEL);
  446. if (!data) {
  447. dev_err(&pdev->dev, "Failed to allocate driver structure\n");
  448. return -ENOMEM;
  449. }
  450. data->irq = platform_get_irq(pdev, 0);
  451. if (data->irq < 0) {
  452. dev_err(&pdev->dev, "Failed to get platform irq\n");
  453. return data->irq;
  454. }
  455. INIT_WORK(&data->irq_work, exynos_tmu_work);
  456. data->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  457. data->base = devm_ioremap_resource(&pdev->dev, data->mem);
  458. if (IS_ERR(data->base))
  459. return PTR_ERR(data->base);
  460. ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
  461. IRQF_TRIGGER_RISING, "exynos-tmu", data);
  462. if (ret) {
  463. dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
  464. return ret;
  465. }
  466. data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
  467. if (IS_ERR(data->clk)) {
  468. dev_err(&pdev->dev, "Failed to get clock\n");
  469. return PTR_ERR(data->clk);
  470. }
  471. ret = clk_prepare(data->clk);
  472. if (ret)
  473. return ret;
  474. if (pdata->type == SOC_ARCH_EXYNOS ||
  475. pdata->type == SOC_ARCH_EXYNOS4210)
  476. data->soc = pdata->type;
  477. else {
  478. ret = -EINVAL;
  479. dev_err(&pdev->dev, "Platform not supported\n");
  480. goto err_clk;
  481. }
  482. data->pdata = pdata;
  483. platform_set_drvdata(pdev, data);
  484. mutex_init(&data->lock);
  485. ret = exynos_tmu_initialize(pdev);
  486. if (ret) {
  487. dev_err(&pdev->dev, "Failed to initialize TMU\n");
  488. goto err_clk;
  489. }
  490. exynos_tmu_control(pdev, true);
  491. /* Register the sensor with thermal management interface */
  492. (&exynos_sensor_conf)->private_data = data;
  493. exynos_sensor_conf.trip_data.trip_count = pdata->trigger_level0_en +
  494. pdata->trigger_level1_en + pdata->trigger_level2_en +
  495. pdata->trigger_level3_en;
  496. for (i = 0; i < exynos_sensor_conf.trip_data.trip_count; i++)
  497. exynos_sensor_conf.trip_data.trip_val[i] =
  498. pdata->threshold + pdata->trigger_levels[i];
  499. exynos_sensor_conf.trip_data.trigger_falling = pdata->threshold_falling;
  500. exynos_sensor_conf.cooling_data.freq_clip_count =
  501. pdata->freq_tab_count;
  502. for (i = 0; i < pdata->freq_tab_count; i++) {
  503. exynos_sensor_conf.cooling_data.freq_data[i].freq_clip_max =
  504. pdata->freq_tab[i].freq_clip_max;
  505. exynos_sensor_conf.cooling_data.freq_data[i].temp_level =
  506. pdata->freq_tab[i].temp_level;
  507. }
  508. ret = exynos_register_thermal(&exynos_sensor_conf);
  509. if (ret) {
  510. dev_err(&pdev->dev, "Failed to register thermal interface\n");
  511. goto err_clk;
  512. }
  513. return 0;
  514. err_clk:
  515. clk_unprepare(data->clk);
  516. return ret;
  517. }
  518. static int exynos_tmu_remove(struct platform_device *pdev)
  519. {
  520. struct exynos_tmu_data *data = platform_get_drvdata(pdev);
  521. exynos_tmu_control(pdev, false);
  522. exynos_unregister_thermal();
  523. clk_unprepare(data->clk);
  524. return 0;
  525. }
  526. #ifdef CONFIG_PM_SLEEP
  527. static int exynos_tmu_suspend(struct device *dev)
  528. {
  529. exynos_tmu_control(to_platform_device(dev), false);
  530. return 0;
  531. }
  532. static int exynos_tmu_resume(struct device *dev)
  533. {
  534. struct platform_device *pdev = to_platform_device(dev);
  535. exynos_tmu_initialize(pdev);
  536. exynos_tmu_control(pdev, true);
  537. return 0;
  538. }
  539. static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
  540. exynos_tmu_suspend, exynos_tmu_resume);
  541. #define EXYNOS_TMU_PM (&exynos_tmu_pm)
  542. #else
  543. #define EXYNOS_TMU_PM NULL
  544. #endif
  545. static struct platform_driver exynos_tmu_driver = {
  546. .driver = {
  547. .name = "exynos-tmu",
  548. .owner = THIS_MODULE,
  549. .pm = EXYNOS_TMU_PM,
  550. .of_match_table = of_match_ptr(exynos_tmu_match),
  551. },
  552. .probe = exynos_tmu_probe,
  553. .remove = exynos_tmu_remove,
  554. .id_table = exynos_tmu_driver_ids,
  555. };
  556. module_platform_driver(exynos_tmu_driver);
  557. MODULE_DESCRIPTION("EXYNOS TMU Driver");
  558. MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
  559. MODULE_LICENSE("GPL");
  560. MODULE_ALIAS("platform:exynos-tmu");