af9033.c 23 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. { 0x800045, state->cfg.adc_multiplier, 0xff },
  195. };
  196. /* program clock control */
  197. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  198. buf[0] = (clock_cw >> 0) & 0xff;
  199. buf[1] = (clock_cw >> 8) & 0xff;
  200. buf[2] = (clock_cw >> 16) & 0xff;
  201. buf[3] = (clock_cw >> 24) & 0xff;
  202. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  203. __func__, state->cfg.clock, clock_cw);
  204. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  205. if (ret < 0)
  206. goto err;
  207. /* program ADC control */
  208. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  209. if (clock_adc_lut[i].clock == state->cfg.clock)
  210. break;
  211. }
  212. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  213. buf[0] = (adc_cw >> 0) & 0xff;
  214. buf[1] = (adc_cw >> 8) & 0xff;
  215. buf[2] = (adc_cw >> 16) & 0xff;
  216. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  217. __func__, clock_adc_lut[i].adc, adc_cw);
  218. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  219. if (ret < 0)
  220. goto err;
  221. /* program register table */
  222. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  223. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  224. tab[i].mask);
  225. if (ret < 0)
  226. goto err;
  227. }
  228. /* settings for TS interface */
  229. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  230. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  231. if (ret < 0)
  232. goto err;
  233. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  234. if (ret < 0)
  235. goto err;
  236. } else {
  237. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  238. if (ret < 0)
  239. goto err;
  240. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  241. if (ret < 0)
  242. goto err;
  243. }
  244. /* load OFSM settings */
  245. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  246. switch (state->cfg.tuner) {
  247. case AF9033_TUNER_IT9135_38:
  248. case AF9033_TUNER_IT9135_51:
  249. case AF9033_TUNER_IT9135_52:
  250. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  251. init = ofsm_init_it9135_v1;
  252. break;
  253. case AF9033_TUNER_IT9135_60:
  254. case AF9033_TUNER_IT9135_61:
  255. case AF9033_TUNER_IT9135_62:
  256. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  257. init = ofsm_init_it9135_v2;
  258. break;
  259. default:
  260. len = ARRAY_SIZE(ofsm_init);
  261. init = ofsm_init;
  262. break;
  263. }
  264. for (i = 0; i < len; i++) {
  265. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  266. if (ret < 0)
  267. goto err;
  268. }
  269. /* load tuner specific settings */
  270. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  271. __func__);
  272. switch (state->cfg.tuner) {
  273. case AF9033_TUNER_TUA9001:
  274. len = ARRAY_SIZE(tuner_init_tua9001);
  275. init = tuner_init_tua9001;
  276. break;
  277. case AF9033_TUNER_FC0011:
  278. len = ARRAY_SIZE(tuner_init_fc0011);
  279. init = tuner_init_fc0011;
  280. break;
  281. case AF9033_TUNER_MXL5007T:
  282. len = ARRAY_SIZE(tuner_init_mxl5007t);
  283. init = tuner_init_mxl5007t;
  284. break;
  285. case AF9033_TUNER_TDA18218:
  286. len = ARRAY_SIZE(tuner_init_tda18218);
  287. init = tuner_init_tda18218;
  288. break;
  289. case AF9033_TUNER_FC2580:
  290. len = ARRAY_SIZE(tuner_init_fc2580);
  291. init = tuner_init_fc2580;
  292. break;
  293. case AF9033_TUNER_FC0012:
  294. len = ARRAY_SIZE(tuner_init_fc0012);
  295. init = tuner_init_fc0012;
  296. break;
  297. case AF9033_TUNER_IT9135_38:
  298. len = ARRAY_SIZE(tuner_init_it9135_38);
  299. init = tuner_init_it9135_38;
  300. break;
  301. case AF9033_TUNER_IT9135_51:
  302. len = ARRAY_SIZE(tuner_init_it9135_51);
  303. init = tuner_init_it9135_51;
  304. break;
  305. case AF9033_TUNER_IT9135_52:
  306. len = ARRAY_SIZE(tuner_init_it9135_52);
  307. init = tuner_init_it9135_52;
  308. break;
  309. case AF9033_TUNER_IT9135_60:
  310. len = ARRAY_SIZE(tuner_init_it9135_60);
  311. init = tuner_init_it9135_60;
  312. break;
  313. case AF9033_TUNER_IT9135_61:
  314. len = ARRAY_SIZE(tuner_init_it9135_61);
  315. init = tuner_init_it9135_61;
  316. break;
  317. case AF9033_TUNER_IT9135_62:
  318. len = ARRAY_SIZE(tuner_init_it9135_62);
  319. init = tuner_init_it9135_62;
  320. break;
  321. default:
  322. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  323. __func__, state->cfg.tuner);
  324. ret = -ENODEV;
  325. goto err;
  326. }
  327. for (i = 0; i < len; i++) {
  328. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  329. if (ret < 0)
  330. goto err;
  331. }
  332. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  333. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  334. if (ret < 0)
  335. goto err;
  336. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  337. if (ret < 0)
  338. goto err;
  339. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  340. if (ret < 0)
  341. goto err;
  342. }
  343. switch (state->cfg.tuner) {
  344. case AF9033_TUNER_IT9135_60:
  345. case AF9033_TUNER_IT9135_61:
  346. case AF9033_TUNER_IT9135_62:
  347. ret = af9033_wr_reg(state, 0x800000, 0x01);
  348. if (ret < 0)
  349. goto err;
  350. }
  351. state->bandwidth_hz = 0; /* force to program all parameters */
  352. return 0;
  353. err:
  354. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  355. return ret;
  356. }
  357. static int af9033_sleep(struct dvb_frontend *fe)
  358. {
  359. struct af9033_state *state = fe->demodulator_priv;
  360. int ret, i;
  361. u8 tmp;
  362. ret = af9033_wr_reg(state, 0x80004c, 1);
  363. if (ret < 0)
  364. goto err;
  365. ret = af9033_wr_reg(state, 0x800000, 0);
  366. if (ret < 0)
  367. goto err;
  368. for (i = 100, tmp = 1; i && tmp; i--) {
  369. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  370. if (ret < 0)
  371. goto err;
  372. usleep_range(200, 10000);
  373. }
  374. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  375. if (i == 0) {
  376. ret = -ETIMEDOUT;
  377. goto err;
  378. }
  379. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  380. if (ret < 0)
  381. goto err;
  382. /* prevent current leak (?) */
  383. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  384. /* enable parallel TS */
  385. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  386. if (ret < 0)
  387. goto err;
  388. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  389. if (ret < 0)
  390. goto err;
  391. }
  392. return 0;
  393. err:
  394. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  395. return ret;
  396. }
  397. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  398. struct dvb_frontend_tune_settings *fesettings)
  399. {
  400. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  401. fesettings->min_delay_ms = 2000;
  402. fesettings->step_size = 0;
  403. fesettings->max_drift = 0;
  404. return 0;
  405. }
  406. static int af9033_set_frontend(struct dvb_frontend *fe)
  407. {
  408. struct af9033_state *state = fe->demodulator_priv;
  409. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  410. int ret, i, spec_inv, sampling_freq;
  411. u8 tmp, buf[3], bandwidth_reg_val;
  412. u32 if_frequency, freq_cw, adc_freq;
  413. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  414. __func__, c->frequency, c->bandwidth_hz);
  415. /* check bandwidth */
  416. switch (c->bandwidth_hz) {
  417. case 6000000:
  418. bandwidth_reg_val = 0x00;
  419. break;
  420. case 7000000:
  421. bandwidth_reg_val = 0x01;
  422. break;
  423. case 8000000:
  424. bandwidth_reg_val = 0x02;
  425. break;
  426. default:
  427. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  428. __func__);
  429. ret = -EINVAL;
  430. goto err;
  431. }
  432. /* program tuner */
  433. if (fe->ops.tuner_ops.set_params)
  434. fe->ops.tuner_ops.set_params(fe);
  435. /* program CFOE coefficients */
  436. if (c->bandwidth_hz != state->bandwidth_hz) {
  437. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  438. if (coeff_lut[i].clock == state->cfg.clock &&
  439. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  440. break;
  441. }
  442. }
  443. ret = af9033_wr_regs(state, 0x800001,
  444. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  445. }
  446. /* program frequency control */
  447. if (c->bandwidth_hz != state->bandwidth_hz) {
  448. spec_inv = state->cfg.spec_inv ? -1 : 1;
  449. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  450. if (clock_adc_lut[i].clock == state->cfg.clock)
  451. break;
  452. }
  453. adc_freq = clock_adc_lut[i].adc;
  454. /* get used IF frequency */
  455. if (fe->ops.tuner_ops.get_if_frequency)
  456. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  457. else
  458. if_frequency = 0;
  459. sampling_freq = if_frequency;
  460. while (sampling_freq > (adc_freq / 2))
  461. sampling_freq -= adc_freq;
  462. if (sampling_freq >= 0)
  463. spec_inv *= -1;
  464. else
  465. sampling_freq *= -1;
  466. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  467. if (spec_inv == -1)
  468. freq_cw = 0x800000 - freq_cw;
  469. if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  470. freq_cw /= 2;
  471. buf[0] = (freq_cw >> 0) & 0xff;
  472. buf[1] = (freq_cw >> 8) & 0xff;
  473. buf[2] = (freq_cw >> 16) & 0x7f;
  474. /* FIXME: there seems to be calculation error here... */
  475. if (if_frequency == 0)
  476. buf[2] = 0;
  477. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  478. if (ret < 0)
  479. goto err;
  480. state->bandwidth_hz = c->bandwidth_hz;
  481. }
  482. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  483. if (ret < 0)
  484. goto err;
  485. ret = af9033_wr_reg(state, 0x800040, 0x00);
  486. if (ret < 0)
  487. goto err;
  488. ret = af9033_wr_reg(state, 0x800047, 0x00);
  489. if (ret < 0)
  490. goto err;
  491. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  492. if (ret < 0)
  493. goto err;
  494. if (c->frequency <= 230000000)
  495. tmp = 0x00; /* VHF */
  496. else
  497. tmp = 0x01; /* UHF */
  498. ret = af9033_wr_reg(state, 0x80004b, tmp);
  499. if (ret < 0)
  500. goto err;
  501. ret = af9033_wr_reg(state, 0x800000, 0x00);
  502. if (ret < 0)
  503. goto err;
  504. return 0;
  505. err:
  506. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  507. return ret;
  508. }
  509. static int af9033_get_frontend(struct dvb_frontend *fe)
  510. {
  511. struct af9033_state *state = fe->demodulator_priv;
  512. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  513. int ret;
  514. u8 buf[8];
  515. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  516. /* read all needed registers */
  517. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  518. if (ret < 0)
  519. goto err;
  520. switch ((buf[0] >> 0) & 3) {
  521. case 0:
  522. c->transmission_mode = TRANSMISSION_MODE_2K;
  523. break;
  524. case 1:
  525. c->transmission_mode = TRANSMISSION_MODE_8K;
  526. break;
  527. }
  528. switch ((buf[1] >> 0) & 3) {
  529. case 0:
  530. c->guard_interval = GUARD_INTERVAL_1_32;
  531. break;
  532. case 1:
  533. c->guard_interval = GUARD_INTERVAL_1_16;
  534. break;
  535. case 2:
  536. c->guard_interval = GUARD_INTERVAL_1_8;
  537. break;
  538. case 3:
  539. c->guard_interval = GUARD_INTERVAL_1_4;
  540. break;
  541. }
  542. switch ((buf[2] >> 0) & 7) {
  543. case 0:
  544. c->hierarchy = HIERARCHY_NONE;
  545. break;
  546. case 1:
  547. c->hierarchy = HIERARCHY_1;
  548. break;
  549. case 2:
  550. c->hierarchy = HIERARCHY_2;
  551. break;
  552. case 3:
  553. c->hierarchy = HIERARCHY_4;
  554. break;
  555. }
  556. switch ((buf[3] >> 0) & 3) {
  557. case 0:
  558. c->modulation = QPSK;
  559. break;
  560. case 1:
  561. c->modulation = QAM_16;
  562. break;
  563. case 2:
  564. c->modulation = QAM_64;
  565. break;
  566. }
  567. switch ((buf[4] >> 0) & 3) {
  568. case 0:
  569. c->bandwidth_hz = 6000000;
  570. break;
  571. case 1:
  572. c->bandwidth_hz = 7000000;
  573. break;
  574. case 2:
  575. c->bandwidth_hz = 8000000;
  576. break;
  577. }
  578. switch ((buf[6] >> 0) & 7) {
  579. case 0:
  580. c->code_rate_HP = FEC_1_2;
  581. break;
  582. case 1:
  583. c->code_rate_HP = FEC_2_3;
  584. break;
  585. case 2:
  586. c->code_rate_HP = FEC_3_4;
  587. break;
  588. case 3:
  589. c->code_rate_HP = FEC_5_6;
  590. break;
  591. case 4:
  592. c->code_rate_HP = FEC_7_8;
  593. break;
  594. case 5:
  595. c->code_rate_HP = FEC_NONE;
  596. break;
  597. }
  598. switch ((buf[7] >> 0) & 7) {
  599. case 0:
  600. c->code_rate_LP = FEC_1_2;
  601. break;
  602. case 1:
  603. c->code_rate_LP = FEC_2_3;
  604. break;
  605. case 2:
  606. c->code_rate_LP = FEC_3_4;
  607. break;
  608. case 3:
  609. c->code_rate_LP = FEC_5_6;
  610. break;
  611. case 4:
  612. c->code_rate_LP = FEC_7_8;
  613. break;
  614. case 5:
  615. c->code_rate_LP = FEC_NONE;
  616. break;
  617. }
  618. return 0;
  619. err:
  620. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  621. return ret;
  622. }
  623. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  624. {
  625. struct af9033_state *state = fe->demodulator_priv;
  626. int ret;
  627. u8 tmp;
  628. *status = 0;
  629. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  630. ret = af9033_rd_reg(state, 0x800047, &tmp);
  631. if (ret < 0)
  632. goto err;
  633. /* has signal */
  634. if (tmp == 0x01)
  635. *status |= FE_HAS_SIGNAL;
  636. if (tmp != 0x02) {
  637. /* TPS lock */
  638. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  639. if (ret < 0)
  640. goto err;
  641. if (tmp)
  642. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  643. FE_HAS_VITERBI;
  644. /* full lock */
  645. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  646. if (ret < 0)
  647. goto err;
  648. if (tmp)
  649. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  650. FE_HAS_VITERBI | FE_HAS_SYNC |
  651. FE_HAS_LOCK;
  652. }
  653. return 0;
  654. err:
  655. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  656. return ret;
  657. }
  658. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  659. {
  660. struct af9033_state *state = fe->demodulator_priv;
  661. int ret, i, len;
  662. u8 buf[3], tmp;
  663. u32 snr_val;
  664. const struct val_snr *uninitialized_var(snr_lut);
  665. /* read value */
  666. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  667. if (ret < 0)
  668. goto err;
  669. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  670. /* read current modulation */
  671. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  672. if (ret < 0)
  673. goto err;
  674. switch ((tmp >> 0) & 3) {
  675. case 0:
  676. len = ARRAY_SIZE(qpsk_snr_lut);
  677. snr_lut = qpsk_snr_lut;
  678. break;
  679. case 1:
  680. len = ARRAY_SIZE(qam16_snr_lut);
  681. snr_lut = qam16_snr_lut;
  682. break;
  683. case 2:
  684. len = ARRAY_SIZE(qam64_snr_lut);
  685. snr_lut = qam64_snr_lut;
  686. break;
  687. default:
  688. goto err;
  689. }
  690. for (i = 0; i < len; i++) {
  691. tmp = snr_lut[i].snr;
  692. if (snr_val < snr_lut[i].val)
  693. break;
  694. }
  695. *snr = tmp * 10; /* dB/10 */
  696. return 0;
  697. err:
  698. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  699. return ret;
  700. }
  701. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  702. {
  703. struct af9033_state *state = fe->demodulator_priv;
  704. int ret;
  705. u8 strength2;
  706. /* read signal strength of 0-100 scale */
  707. ret = af9033_rd_reg(state, 0x800048, &strength2);
  708. if (ret < 0)
  709. goto err;
  710. /* scale value to 0x0000-0xffff */
  711. *strength = strength2 * 0xffff / 100;
  712. return 0;
  713. err:
  714. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  715. return ret;
  716. }
  717. static int af9033_update_ch_stat(struct af9033_state *state)
  718. {
  719. int ret = 0;
  720. u32 err_cnt, bit_cnt;
  721. u16 abort_cnt;
  722. u8 buf[7];
  723. /* only update data every half second */
  724. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  725. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  726. if (ret < 0)
  727. goto err;
  728. /* in 8 byte packets? */
  729. abort_cnt = (buf[1] << 8) + buf[0];
  730. /* in bits */
  731. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  732. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  733. bit_cnt = (buf[6] << 8) + buf[5];
  734. if (bit_cnt < abort_cnt) {
  735. abort_cnt = 1000;
  736. state->ber = 0xffffffff;
  737. } else {
  738. /* 8 byte packets, that have not been rejected already */
  739. bit_cnt -= (u32)abort_cnt;
  740. if (bit_cnt == 0) {
  741. state->ber = 0xffffffff;
  742. } else {
  743. err_cnt -= (u32)abort_cnt * 8 * 8;
  744. bit_cnt *= 8 * 8;
  745. state->ber = err_cnt * (0xffffffff / bit_cnt);
  746. }
  747. }
  748. state->ucb += abort_cnt;
  749. state->last_stat_check = jiffies;
  750. }
  751. return 0;
  752. err:
  753. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  754. return ret;
  755. }
  756. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  757. {
  758. struct af9033_state *state = fe->demodulator_priv;
  759. int ret;
  760. ret = af9033_update_ch_stat(state);
  761. if (ret < 0)
  762. return ret;
  763. *ber = state->ber;
  764. return 0;
  765. }
  766. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  767. {
  768. struct af9033_state *state = fe->demodulator_priv;
  769. int ret;
  770. ret = af9033_update_ch_stat(state);
  771. if (ret < 0)
  772. return ret;
  773. *ucblocks = state->ucb;
  774. return 0;
  775. }
  776. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  777. {
  778. struct af9033_state *state = fe->demodulator_priv;
  779. int ret;
  780. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  781. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  782. if (ret < 0)
  783. goto err;
  784. return 0;
  785. err:
  786. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  787. return ret;
  788. }
  789. static struct dvb_frontend_ops af9033_ops;
  790. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  791. struct i2c_adapter *i2c)
  792. {
  793. int ret;
  794. struct af9033_state *state;
  795. u8 buf[8];
  796. dev_dbg(&i2c->dev, "%s:\n", __func__);
  797. /* allocate memory for the internal state */
  798. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  799. if (state == NULL)
  800. goto err;
  801. /* setup the state */
  802. state->i2c = i2c;
  803. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  804. if (state->cfg.clock != 12000000) {
  805. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  806. "only 12000000 Hz is supported currently\n",
  807. KBUILD_MODNAME, state->cfg.clock);
  808. goto err;
  809. }
  810. /* firmware version */
  811. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  812. if (ret < 0)
  813. goto err;
  814. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  815. if (ret < 0)
  816. goto err;
  817. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  818. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  819. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  820. /* sleep */
  821. switch (state->cfg.tuner) {
  822. case AF9033_TUNER_IT9135_38:
  823. case AF9033_TUNER_IT9135_51:
  824. case AF9033_TUNER_IT9135_52:
  825. case AF9033_TUNER_IT9135_60:
  826. case AF9033_TUNER_IT9135_61:
  827. case AF9033_TUNER_IT9135_62:
  828. /* IT9135 did not like to sleep at that early */
  829. break;
  830. default:
  831. ret = af9033_wr_reg(state, 0x80004c, 1);
  832. if (ret < 0)
  833. goto err;
  834. ret = af9033_wr_reg(state, 0x800000, 0);
  835. if (ret < 0)
  836. goto err;
  837. }
  838. /* configure internal TS mode */
  839. switch (state->cfg.ts_mode) {
  840. case AF9033_TS_MODE_PARALLEL:
  841. state->ts_mode_parallel = true;
  842. break;
  843. case AF9033_TS_MODE_SERIAL:
  844. state->ts_mode_serial = true;
  845. break;
  846. case AF9033_TS_MODE_USB:
  847. /* usb mode for AF9035 */
  848. default:
  849. break;
  850. }
  851. /* create dvb_frontend */
  852. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  853. state->fe.demodulator_priv = state;
  854. return &state->fe;
  855. err:
  856. kfree(state);
  857. return NULL;
  858. }
  859. EXPORT_SYMBOL(af9033_attach);
  860. static struct dvb_frontend_ops af9033_ops = {
  861. .delsys = { SYS_DVBT },
  862. .info = {
  863. .name = "Afatech AF9033 (DVB-T)",
  864. .frequency_min = 174000000,
  865. .frequency_max = 862000000,
  866. .frequency_stepsize = 250000,
  867. .frequency_tolerance = 0,
  868. .caps = FE_CAN_FEC_1_2 |
  869. FE_CAN_FEC_2_3 |
  870. FE_CAN_FEC_3_4 |
  871. FE_CAN_FEC_5_6 |
  872. FE_CAN_FEC_7_8 |
  873. FE_CAN_FEC_AUTO |
  874. FE_CAN_QPSK |
  875. FE_CAN_QAM_16 |
  876. FE_CAN_QAM_64 |
  877. FE_CAN_QAM_AUTO |
  878. FE_CAN_TRANSMISSION_MODE_AUTO |
  879. FE_CAN_GUARD_INTERVAL_AUTO |
  880. FE_CAN_HIERARCHY_AUTO |
  881. FE_CAN_RECOVER |
  882. FE_CAN_MUTE_TS
  883. },
  884. .release = af9033_release,
  885. .init = af9033_init,
  886. .sleep = af9033_sleep,
  887. .get_tune_settings = af9033_get_tune_settings,
  888. .set_frontend = af9033_set_frontend,
  889. .get_frontend = af9033_get_frontend,
  890. .read_status = af9033_read_status,
  891. .read_snr = af9033_read_snr,
  892. .read_signal_strength = af9033_read_signal_strength,
  893. .read_ber = af9033_read_ber,
  894. .read_ucblocks = af9033_read_ucblocks,
  895. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  896. };
  897. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  898. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  899. MODULE_LICENSE("GPL");