omap-aes.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for OMAP AES HW acceleration.
  5. *
  6. * Copyright (c) 2010 Nokia Corporation
  7. * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
  8. * Copyright (c) 2011 Texas Instruments Incorporated
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. *
  14. */
  15. #define pr_fmt(fmt) "%20s: " fmt, __func__
  16. #define prn(num) pr_debug(#num "=%d\n", num)
  17. #define prx(num) pr_debug(#num "=%x\n", num)
  18. #include <linux/err.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/kernel.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/omap-dma.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/of.h>
  30. #include <linux/of_device.h>
  31. #include <linux/of_address.h>
  32. #include <linux/io.h>
  33. #include <linux/crypto.h>
  34. #include <linux/interrupt.h>
  35. #include <crypto/scatterwalk.h>
  36. #include <crypto/aes.h>
  37. #define DST_MAXBURST 4
  38. #define DMA_MIN (DST_MAXBURST * sizeof(u32))
  39. /* OMAP TRM gives bitfields as start:end, where start is the higher bit
  40. number. For example 7:0 */
  41. #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
  42. #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
  43. #define AES_REG_KEY(dd, x) ((dd)->pdata->key_ofs - \
  44. ((x ^ 0x01) * 0x04))
  45. #define AES_REG_IV(dd, x) ((dd)->pdata->iv_ofs + ((x) * 0x04))
  46. #define AES_REG_CTRL(dd) ((dd)->pdata->ctrl_ofs)
  47. #define AES_REG_CTRL_CTR_WIDTH_MASK (3 << 7)
  48. #define AES_REG_CTRL_CTR_WIDTH_32 (0 << 7)
  49. #define AES_REG_CTRL_CTR_WIDTH_64 (1 << 7)
  50. #define AES_REG_CTRL_CTR_WIDTH_96 (2 << 7)
  51. #define AES_REG_CTRL_CTR_WIDTH_128 (3 << 7)
  52. #define AES_REG_CTRL_CTR (1 << 6)
  53. #define AES_REG_CTRL_CBC (1 << 5)
  54. #define AES_REG_CTRL_KEY_SIZE (3 << 3)
  55. #define AES_REG_CTRL_DIRECTION (1 << 2)
  56. #define AES_REG_CTRL_INPUT_READY (1 << 1)
  57. #define AES_REG_CTRL_OUTPUT_READY (1 << 0)
  58. #define AES_REG_DATA_N(dd, x) ((dd)->pdata->data_ofs + ((x) * 0x04))
  59. #define AES_REG_REV(dd) ((dd)->pdata->rev_ofs)
  60. #define AES_REG_MASK(dd) ((dd)->pdata->mask_ofs)
  61. #define AES_REG_MASK_SIDLE (1 << 6)
  62. #define AES_REG_MASK_START (1 << 5)
  63. #define AES_REG_MASK_DMA_OUT_EN (1 << 3)
  64. #define AES_REG_MASK_DMA_IN_EN (1 << 2)
  65. #define AES_REG_MASK_SOFTRESET (1 << 1)
  66. #define AES_REG_AUTOIDLE (1 << 0)
  67. #define AES_REG_LENGTH_N(x) (0x54 + ((x) * 0x04))
  68. #define DEFAULT_TIMEOUT (5*HZ)
  69. #define FLAGS_MODE_MASK 0x000f
  70. #define FLAGS_ENCRYPT BIT(0)
  71. #define FLAGS_CBC BIT(1)
  72. #define FLAGS_GIV BIT(2)
  73. #define FLAGS_CTR BIT(3)
  74. #define FLAGS_INIT BIT(4)
  75. #define FLAGS_FAST BIT(5)
  76. #define FLAGS_BUSY BIT(6)
  77. struct omap_aes_ctx {
  78. struct omap_aes_dev *dd;
  79. int keylen;
  80. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  81. unsigned long flags;
  82. };
  83. struct omap_aes_reqctx {
  84. unsigned long mode;
  85. };
  86. #define OMAP_AES_QUEUE_LENGTH 1
  87. #define OMAP_AES_CACHE_SIZE 0
  88. struct omap_aes_algs_info {
  89. struct crypto_alg *algs_list;
  90. unsigned int size;
  91. unsigned int registered;
  92. };
  93. struct omap_aes_pdata {
  94. struct omap_aes_algs_info *algs_info;
  95. unsigned int algs_info_size;
  96. void (*trigger)(struct omap_aes_dev *dd, int length);
  97. u32 key_ofs;
  98. u32 iv_ofs;
  99. u32 ctrl_ofs;
  100. u32 data_ofs;
  101. u32 rev_ofs;
  102. u32 mask_ofs;
  103. u32 dma_enable_in;
  104. u32 dma_enable_out;
  105. u32 dma_start;
  106. u32 major_mask;
  107. u32 major_shift;
  108. u32 minor_mask;
  109. u32 minor_shift;
  110. };
  111. struct omap_aes_dev {
  112. struct list_head list;
  113. unsigned long phys_base;
  114. void __iomem *io_base;
  115. struct omap_aes_ctx *ctx;
  116. struct device *dev;
  117. unsigned long flags;
  118. int err;
  119. spinlock_t lock;
  120. struct crypto_queue queue;
  121. struct tasklet_struct done_task;
  122. struct tasklet_struct queue_task;
  123. struct ablkcipher_request *req;
  124. size_t total;
  125. struct scatterlist *in_sg;
  126. struct scatterlist *out_sg;
  127. int dma_in;
  128. struct dma_chan *dma_lch_in;
  129. int dma_out;
  130. struct dma_chan *dma_lch_out;
  131. int in_sg_len;
  132. int out_sg_len;
  133. const struct omap_aes_pdata *pdata;
  134. };
  135. /* keep registered devices data here */
  136. static LIST_HEAD(dev_list);
  137. static DEFINE_SPINLOCK(list_lock);
  138. #ifdef DEBUG
  139. #define omap_aes_read(dd, offset) \
  140. ({ \
  141. int _read_ret; \
  142. _read_ret = __raw_readl(dd->io_base + offset); \
  143. pr_debug("omap_aes_read(" #offset "=%#x)= %#x\n", \
  144. offset, _read_ret); \
  145. _read_ret; \
  146. })
  147. #else
  148. static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
  149. {
  150. return __raw_readl(dd->io_base + offset);
  151. }
  152. #endif
  153. #ifdef DEBUG
  154. #define omap_aes_write(dd, offset, value) \
  155. do { \
  156. pr_debug("omap_aes_write(" #offset "=%#x) value=%#x\n", \
  157. offset, value); \
  158. __raw_writel(value, dd->io_base + offset); \
  159. } while (0)
  160. #else
  161. static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
  162. u32 value)
  163. {
  164. __raw_writel(value, dd->io_base + offset);
  165. }
  166. #endif
  167. static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
  168. u32 value, u32 mask)
  169. {
  170. u32 val;
  171. val = omap_aes_read(dd, offset);
  172. val &= ~mask;
  173. val |= value;
  174. omap_aes_write(dd, offset, val);
  175. }
  176. static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
  177. u32 *value, int count)
  178. {
  179. for (; count--; value++, offset += 4)
  180. omap_aes_write(dd, offset, *value);
  181. }
  182. static int omap_aes_hw_init(struct omap_aes_dev *dd)
  183. {
  184. if (!(dd->flags & FLAGS_INIT)) {
  185. dd->flags |= FLAGS_INIT;
  186. dd->err = 0;
  187. }
  188. return 0;
  189. }
  190. static int omap_aes_write_ctrl(struct omap_aes_dev *dd)
  191. {
  192. unsigned int key32;
  193. int i, err;
  194. u32 val, mask = 0;
  195. err = omap_aes_hw_init(dd);
  196. if (err)
  197. return err;
  198. key32 = dd->ctx->keylen / sizeof(u32);
  199. /* it seems a key should always be set even if it has not changed */
  200. for (i = 0; i < key32; i++) {
  201. omap_aes_write(dd, AES_REG_KEY(dd, i),
  202. __le32_to_cpu(dd->ctx->key[i]));
  203. }
  204. if ((dd->flags & (FLAGS_CBC | FLAGS_CTR)) && dd->req->info)
  205. omap_aes_write_n(dd, AES_REG_IV(dd, 0), dd->req->info, 4);
  206. val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
  207. if (dd->flags & FLAGS_CBC)
  208. val |= AES_REG_CTRL_CBC;
  209. if (dd->flags & FLAGS_CTR) {
  210. val |= AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_32;
  211. mask = AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_MASK;
  212. }
  213. if (dd->flags & FLAGS_ENCRYPT)
  214. val |= AES_REG_CTRL_DIRECTION;
  215. mask |= AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION |
  216. AES_REG_CTRL_KEY_SIZE;
  217. omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, mask);
  218. return 0;
  219. }
  220. static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length)
  221. {
  222. u32 mask, val;
  223. val = dd->pdata->dma_start;
  224. if (dd->dma_lch_out != NULL)
  225. val |= dd->pdata->dma_enable_out;
  226. if (dd->dma_lch_in != NULL)
  227. val |= dd->pdata->dma_enable_in;
  228. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  229. dd->pdata->dma_start;
  230. omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask);
  231. }
  232. static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length)
  233. {
  234. omap_aes_write(dd, AES_REG_LENGTH_N(0), length);
  235. omap_aes_write(dd, AES_REG_LENGTH_N(1), 0);
  236. omap_aes_dma_trigger_omap2(dd, length);
  237. }
  238. static void omap_aes_dma_stop(struct omap_aes_dev *dd)
  239. {
  240. u32 mask;
  241. mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
  242. dd->pdata->dma_start;
  243. omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask);
  244. }
  245. static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx)
  246. {
  247. struct omap_aes_dev *dd = NULL, *tmp;
  248. spin_lock_bh(&list_lock);
  249. if (!ctx->dd) {
  250. list_for_each_entry(tmp, &dev_list, list) {
  251. /* FIXME: take fist available aes core */
  252. dd = tmp;
  253. break;
  254. }
  255. ctx->dd = dd;
  256. } else {
  257. /* already found before */
  258. dd = ctx->dd;
  259. }
  260. spin_unlock_bh(&list_lock);
  261. return dd;
  262. }
  263. static void omap_aes_dma_out_callback(void *data)
  264. {
  265. struct omap_aes_dev *dd = data;
  266. /* dma_lch_out - completed */
  267. tasklet_schedule(&dd->done_task);
  268. }
  269. static int omap_aes_dma_init(struct omap_aes_dev *dd)
  270. {
  271. int err = -ENOMEM;
  272. dma_cap_mask_t mask;
  273. dd->dma_lch_out = NULL;
  274. dd->dma_lch_in = NULL;
  275. dma_cap_zero(mask);
  276. dma_cap_set(DMA_SLAVE, mask);
  277. dd->dma_lch_in = dma_request_slave_channel_compat(mask,
  278. omap_dma_filter_fn,
  279. &dd->dma_in,
  280. dd->dev, "rx");
  281. if (!dd->dma_lch_in) {
  282. dev_err(dd->dev, "Unable to request in DMA channel\n");
  283. goto err_dma_in;
  284. }
  285. dd->dma_lch_out = dma_request_slave_channel_compat(mask,
  286. omap_dma_filter_fn,
  287. &dd->dma_out,
  288. dd->dev, "tx");
  289. if (!dd->dma_lch_out) {
  290. dev_err(dd->dev, "Unable to request out DMA channel\n");
  291. goto err_dma_out;
  292. }
  293. return 0;
  294. err_dma_out:
  295. dma_release_channel(dd->dma_lch_in);
  296. err_dma_in:
  297. if (err)
  298. pr_err("error: %d\n", err);
  299. return err;
  300. }
  301. static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
  302. {
  303. dma_release_channel(dd->dma_lch_out);
  304. dma_release_channel(dd->dma_lch_in);
  305. }
  306. static void sg_copy_buf(void *buf, struct scatterlist *sg,
  307. unsigned int start, unsigned int nbytes, int out)
  308. {
  309. struct scatter_walk walk;
  310. if (!nbytes)
  311. return;
  312. scatterwalk_start(&walk, sg);
  313. scatterwalk_advance(&walk, start);
  314. scatterwalk_copychunks(buf, &walk, nbytes, out);
  315. scatterwalk_done(&walk, out, 0);
  316. }
  317. static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
  318. struct scatterlist *in_sg, struct scatterlist *out_sg,
  319. int in_sg_len, int out_sg_len)
  320. {
  321. struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  322. struct omap_aes_dev *dd = ctx->dd;
  323. struct dma_async_tx_descriptor *tx_in, *tx_out;
  324. struct dma_slave_config cfg;
  325. int ret;
  326. dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
  327. memset(&cfg, 0, sizeof(cfg));
  328. cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  329. cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
  330. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  331. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  332. cfg.src_maxburst = DST_MAXBURST;
  333. cfg.dst_maxburst = DST_MAXBURST;
  334. /* IN */
  335. ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
  336. if (ret) {
  337. dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
  338. ret);
  339. return ret;
  340. }
  341. tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
  342. DMA_MEM_TO_DEV,
  343. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  344. if (!tx_in) {
  345. dev_err(dd->dev, "IN prep_slave_sg() failed\n");
  346. return -EINVAL;
  347. }
  348. /* No callback necessary */
  349. tx_in->callback_param = dd;
  350. /* OUT */
  351. ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
  352. if (ret) {
  353. dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
  354. ret);
  355. return ret;
  356. }
  357. tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, out_sg_len,
  358. DMA_DEV_TO_MEM,
  359. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  360. if (!tx_out) {
  361. dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
  362. return -EINVAL;
  363. }
  364. tx_out->callback = omap_aes_dma_out_callback;
  365. tx_out->callback_param = dd;
  366. dmaengine_submit(tx_in);
  367. dmaengine_submit(tx_out);
  368. dma_async_issue_pending(dd->dma_lch_in);
  369. dma_async_issue_pending(dd->dma_lch_out);
  370. /* start DMA */
  371. dd->pdata->trigger(dd, dd->total);
  372. return 0;
  373. }
  374. static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
  375. {
  376. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
  377. crypto_ablkcipher_reqtfm(dd->req));
  378. int err;
  379. pr_debug("total: %d\n", dd->total);
  380. err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  381. if (!err) {
  382. dev_err(dd->dev, "dma_map_sg() error\n");
  383. return -EINVAL;
  384. }
  385. err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
  386. if (!err) {
  387. dev_err(dd->dev, "dma_map_sg() error\n");
  388. return -EINVAL;
  389. }
  390. err = omap_aes_crypt_dma(tfm, dd->in_sg, dd->out_sg, dd->in_sg_len,
  391. dd->out_sg_len);
  392. if (err) {
  393. dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  394. dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
  395. DMA_FROM_DEVICE);
  396. }
  397. return err;
  398. }
  399. static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
  400. {
  401. struct ablkcipher_request *req = dd->req;
  402. pr_debug("err: %d\n", err);
  403. dd->flags &= ~FLAGS_BUSY;
  404. req->base.complete(&req->base, err);
  405. }
  406. static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
  407. {
  408. int err = 0;
  409. pr_debug("total: %d\n", dd->total);
  410. omap_aes_dma_stop(dd);
  411. dmaengine_terminate_all(dd->dma_lch_in);
  412. dmaengine_terminate_all(dd->dma_lch_out);
  413. dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
  414. dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
  415. return err;
  416. }
  417. static int omap_aes_handle_queue(struct omap_aes_dev *dd,
  418. struct ablkcipher_request *req)
  419. {
  420. struct crypto_async_request *async_req, *backlog;
  421. struct omap_aes_ctx *ctx;
  422. struct omap_aes_reqctx *rctx;
  423. unsigned long flags;
  424. int err, ret = 0;
  425. spin_lock_irqsave(&dd->lock, flags);
  426. if (req)
  427. ret = ablkcipher_enqueue_request(&dd->queue, req);
  428. if (dd->flags & FLAGS_BUSY) {
  429. spin_unlock_irqrestore(&dd->lock, flags);
  430. return ret;
  431. }
  432. backlog = crypto_get_backlog(&dd->queue);
  433. async_req = crypto_dequeue_request(&dd->queue);
  434. if (async_req)
  435. dd->flags |= FLAGS_BUSY;
  436. spin_unlock_irqrestore(&dd->lock, flags);
  437. if (!async_req)
  438. return ret;
  439. if (backlog)
  440. backlog->complete(backlog, -EINPROGRESS);
  441. req = ablkcipher_request_cast(async_req);
  442. /* assign new request to device */
  443. dd->req = req;
  444. dd->total = req->nbytes;
  445. dd->in_sg = req->src;
  446. dd->out_sg = req->dst;
  447. dd->in_sg_len = scatterwalk_bytes_sglen(dd->in_sg, dd->total);
  448. dd->out_sg_len = scatterwalk_bytes_sglen(dd->out_sg, dd->total);
  449. BUG_ON(dd->in_sg_len < 0 || dd->out_sg_len < 0);
  450. rctx = ablkcipher_request_ctx(req);
  451. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  452. rctx->mode &= FLAGS_MODE_MASK;
  453. dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
  454. dd->ctx = ctx;
  455. ctx->dd = dd;
  456. err = omap_aes_write_ctrl(dd);
  457. if (!err)
  458. err = omap_aes_crypt_dma_start(dd);
  459. if (err) {
  460. /* aes_task will not finish it, so do it here */
  461. omap_aes_finish_req(dd, err);
  462. tasklet_schedule(&dd->queue_task);
  463. }
  464. return ret; /* return ret, which is enqueue return value */
  465. }
  466. static void omap_aes_done_task(unsigned long data)
  467. {
  468. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  469. pr_debug("enter done_task\n");
  470. dma_sync_sg_for_cpu(dd->dev, dd->in_sg, dd->in_sg_len, DMA_FROM_DEVICE);
  471. omap_aes_crypt_dma_stop(dd);
  472. omap_aes_finish_req(dd, 0);
  473. omap_aes_handle_queue(dd, NULL);
  474. pr_debug("exit\n");
  475. }
  476. static void omap_aes_queue_task(unsigned long data)
  477. {
  478. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  479. omap_aes_handle_queue(dd, NULL);
  480. }
  481. static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  482. {
  483. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
  484. crypto_ablkcipher_reqtfm(req));
  485. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  486. struct omap_aes_dev *dd;
  487. pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
  488. !!(mode & FLAGS_ENCRYPT),
  489. !!(mode & FLAGS_CBC));
  490. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  491. pr_err("request size is not exact amount of AES blocks\n");
  492. return -EINVAL;
  493. }
  494. dd = omap_aes_find_dev(ctx);
  495. if (!dd)
  496. return -ENODEV;
  497. rctx->mode = mode;
  498. return omap_aes_handle_queue(dd, req);
  499. }
  500. /* ********************** ALG API ************************************ */
  501. static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  502. unsigned int keylen)
  503. {
  504. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  505. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  506. keylen != AES_KEYSIZE_256)
  507. return -EINVAL;
  508. pr_debug("enter, keylen: %d\n", keylen);
  509. memcpy(ctx->key, key, keylen);
  510. ctx->keylen = keylen;
  511. return 0;
  512. }
  513. static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
  514. {
  515. return omap_aes_crypt(req, FLAGS_ENCRYPT);
  516. }
  517. static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
  518. {
  519. return omap_aes_crypt(req, 0);
  520. }
  521. static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
  522. {
  523. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
  524. }
  525. static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
  526. {
  527. return omap_aes_crypt(req, FLAGS_CBC);
  528. }
  529. static int omap_aes_ctr_encrypt(struct ablkcipher_request *req)
  530. {
  531. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CTR);
  532. }
  533. static int omap_aes_ctr_decrypt(struct ablkcipher_request *req)
  534. {
  535. return omap_aes_crypt(req, FLAGS_CTR);
  536. }
  537. static int omap_aes_cra_init(struct crypto_tfm *tfm)
  538. {
  539. struct omap_aes_dev *dd = NULL;
  540. /* Find AES device, currently picks the first device */
  541. spin_lock_bh(&list_lock);
  542. list_for_each_entry(dd, &dev_list, list) {
  543. break;
  544. }
  545. spin_unlock_bh(&list_lock);
  546. pm_runtime_get_sync(dd->dev);
  547. tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
  548. return 0;
  549. }
  550. static void omap_aes_cra_exit(struct crypto_tfm *tfm)
  551. {
  552. struct omap_aes_dev *dd = NULL;
  553. /* Find AES device, currently picks the first device */
  554. spin_lock_bh(&list_lock);
  555. list_for_each_entry(dd, &dev_list, list) {
  556. break;
  557. }
  558. spin_unlock_bh(&list_lock);
  559. pm_runtime_put_sync(dd->dev);
  560. }
  561. /* ********************** ALGS ************************************ */
  562. static struct crypto_alg algs_ecb_cbc[] = {
  563. {
  564. .cra_name = "ecb(aes)",
  565. .cra_driver_name = "ecb-aes-omap",
  566. .cra_priority = 100,
  567. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  568. CRYPTO_ALG_KERN_DRIVER_ONLY |
  569. CRYPTO_ALG_ASYNC,
  570. .cra_blocksize = AES_BLOCK_SIZE,
  571. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  572. .cra_alignmask = 0,
  573. .cra_type = &crypto_ablkcipher_type,
  574. .cra_module = THIS_MODULE,
  575. .cra_init = omap_aes_cra_init,
  576. .cra_exit = omap_aes_cra_exit,
  577. .cra_u.ablkcipher = {
  578. .min_keysize = AES_MIN_KEY_SIZE,
  579. .max_keysize = AES_MAX_KEY_SIZE,
  580. .setkey = omap_aes_setkey,
  581. .encrypt = omap_aes_ecb_encrypt,
  582. .decrypt = omap_aes_ecb_decrypt,
  583. }
  584. },
  585. {
  586. .cra_name = "cbc(aes)",
  587. .cra_driver_name = "cbc-aes-omap",
  588. .cra_priority = 100,
  589. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  590. CRYPTO_ALG_KERN_DRIVER_ONLY |
  591. CRYPTO_ALG_ASYNC,
  592. .cra_blocksize = AES_BLOCK_SIZE,
  593. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  594. .cra_alignmask = 0,
  595. .cra_type = &crypto_ablkcipher_type,
  596. .cra_module = THIS_MODULE,
  597. .cra_init = omap_aes_cra_init,
  598. .cra_exit = omap_aes_cra_exit,
  599. .cra_u.ablkcipher = {
  600. .min_keysize = AES_MIN_KEY_SIZE,
  601. .max_keysize = AES_MAX_KEY_SIZE,
  602. .ivsize = AES_BLOCK_SIZE,
  603. .setkey = omap_aes_setkey,
  604. .encrypt = omap_aes_cbc_encrypt,
  605. .decrypt = omap_aes_cbc_decrypt,
  606. }
  607. }
  608. };
  609. static struct crypto_alg algs_ctr[] = {
  610. {
  611. .cra_name = "ctr(aes)",
  612. .cra_driver_name = "ctr-aes-omap",
  613. .cra_priority = 100,
  614. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  615. CRYPTO_ALG_KERN_DRIVER_ONLY |
  616. CRYPTO_ALG_ASYNC,
  617. .cra_blocksize = AES_BLOCK_SIZE,
  618. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  619. .cra_alignmask = 0,
  620. .cra_type = &crypto_ablkcipher_type,
  621. .cra_module = THIS_MODULE,
  622. .cra_init = omap_aes_cra_init,
  623. .cra_exit = omap_aes_cra_exit,
  624. .cra_u.ablkcipher = {
  625. .min_keysize = AES_MIN_KEY_SIZE,
  626. .max_keysize = AES_MAX_KEY_SIZE,
  627. .geniv = "eseqiv",
  628. .ivsize = AES_BLOCK_SIZE,
  629. .setkey = omap_aes_setkey,
  630. .encrypt = omap_aes_ctr_encrypt,
  631. .decrypt = omap_aes_ctr_decrypt,
  632. }
  633. } ,
  634. };
  635. static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc[] = {
  636. {
  637. .algs_list = algs_ecb_cbc,
  638. .size = ARRAY_SIZE(algs_ecb_cbc),
  639. },
  640. };
  641. static const struct omap_aes_pdata omap_aes_pdata_omap2 = {
  642. .algs_info = omap_aes_algs_info_ecb_cbc,
  643. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc),
  644. .trigger = omap_aes_dma_trigger_omap2,
  645. .key_ofs = 0x1c,
  646. .iv_ofs = 0x20,
  647. .ctrl_ofs = 0x30,
  648. .data_ofs = 0x34,
  649. .rev_ofs = 0x44,
  650. .mask_ofs = 0x48,
  651. .dma_enable_in = BIT(2),
  652. .dma_enable_out = BIT(3),
  653. .dma_start = BIT(5),
  654. .major_mask = 0xf0,
  655. .major_shift = 4,
  656. .minor_mask = 0x0f,
  657. .minor_shift = 0,
  658. };
  659. #ifdef CONFIG_OF
  660. static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc_ctr[] = {
  661. {
  662. .algs_list = algs_ecb_cbc,
  663. .size = ARRAY_SIZE(algs_ecb_cbc),
  664. },
  665. {
  666. .algs_list = algs_ctr,
  667. .size = ARRAY_SIZE(algs_ctr),
  668. },
  669. };
  670. static const struct omap_aes_pdata omap_aes_pdata_omap3 = {
  671. .algs_info = omap_aes_algs_info_ecb_cbc_ctr,
  672. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
  673. .trigger = omap_aes_dma_trigger_omap2,
  674. .key_ofs = 0x1c,
  675. .iv_ofs = 0x20,
  676. .ctrl_ofs = 0x30,
  677. .data_ofs = 0x34,
  678. .rev_ofs = 0x44,
  679. .mask_ofs = 0x48,
  680. .dma_enable_in = BIT(2),
  681. .dma_enable_out = BIT(3),
  682. .dma_start = BIT(5),
  683. .major_mask = 0xf0,
  684. .major_shift = 4,
  685. .minor_mask = 0x0f,
  686. .minor_shift = 0,
  687. };
  688. static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
  689. .algs_info = omap_aes_algs_info_ecb_cbc_ctr,
  690. .algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
  691. .trigger = omap_aes_dma_trigger_omap4,
  692. .key_ofs = 0x3c,
  693. .iv_ofs = 0x40,
  694. .ctrl_ofs = 0x50,
  695. .data_ofs = 0x60,
  696. .rev_ofs = 0x80,
  697. .mask_ofs = 0x84,
  698. .dma_enable_in = BIT(5),
  699. .dma_enable_out = BIT(6),
  700. .major_mask = 0x0700,
  701. .major_shift = 8,
  702. .minor_mask = 0x003f,
  703. .minor_shift = 0,
  704. };
  705. static const struct of_device_id omap_aes_of_match[] = {
  706. {
  707. .compatible = "ti,omap2-aes",
  708. .data = &omap_aes_pdata_omap2,
  709. },
  710. {
  711. .compatible = "ti,omap3-aes",
  712. .data = &omap_aes_pdata_omap3,
  713. },
  714. {
  715. .compatible = "ti,omap4-aes",
  716. .data = &omap_aes_pdata_omap4,
  717. },
  718. {},
  719. };
  720. MODULE_DEVICE_TABLE(of, omap_aes_of_match);
  721. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  722. struct device *dev, struct resource *res)
  723. {
  724. struct device_node *node = dev->of_node;
  725. const struct of_device_id *match;
  726. int err = 0;
  727. match = of_match_device(of_match_ptr(omap_aes_of_match), dev);
  728. if (!match) {
  729. dev_err(dev, "no compatible OF match\n");
  730. err = -EINVAL;
  731. goto err;
  732. }
  733. err = of_address_to_resource(node, 0, res);
  734. if (err < 0) {
  735. dev_err(dev, "can't translate OF node address\n");
  736. err = -EINVAL;
  737. goto err;
  738. }
  739. dd->dma_out = -1; /* Dummy value that's unused */
  740. dd->dma_in = -1; /* Dummy value that's unused */
  741. dd->pdata = match->data;
  742. err:
  743. return err;
  744. }
  745. #else
  746. static const struct of_device_id omap_aes_of_match[] = {
  747. {},
  748. };
  749. static int omap_aes_get_res_of(struct omap_aes_dev *dd,
  750. struct device *dev, struct resource *res)
  751. {
  752. return -EINVAL;
  753. }
  754. #endif
  755. static int omap_aes_get_res_pdev(struct omap_aes_dev *dd,
  756. struct platform_device *pdev, struct resource *res)
  757. {
  758. struct device *dev = &pdev->dev;
  759. struct resource *r;
  760. int err = 0;
  761. /* Get the base address */
  762. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  763. if (!r) {
  764. dev_err(dev, "no MEM resource info\n");
  765. err = -ENODEV;
  766. goto err;
  767. }
  768. memcpy(res, r, sizeof(*res));
  769. /* Get the DMA out channel */
  770. r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  771. if (!r) {
  772. dev_err(dev, "no DMA out resource info\n");
  773. err = -ENODEV;
  774. goto err;
  775. }
  776. dd->dma_out = r->start;
  777. /* Get the DMA in channel */
  778. r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  779. if (!r) {
  780. dev_err(dev, "no DMA in resource info\n");
  781. err = -ENODEV;
  782. goto err;
  783. }
  784. dd->dma_in = r->start;
  785. /* Only OMAP2/3 can be non-DT */
  786. dd->pdata = &omap_aes_pdata_omap2;
  787. err:
  788. return err;
  789. }
  790. static int omap_aes_probe(struct platform_device *pdev)
  791. {
  792. struct device *dev = &pdev->dev;
  793. struct omap_aes_dev *dd;
  794. struct crypto_alg *algp;
  795. struct resource res;
  796. int err = -ENOMEM, i, j;
  797. u32 reg;
  798. dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
  799. if (dd == NULL) {
  800. dev_err(dev, "unable to alloc data struct.\n");
  801. goto err_data;
  802. }
  803. dd->dev = dev;
  804. platform_set_drvdata(pdev, dd);
  805. spin_lock_init(&dd->lock);
  806. crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH);
  807. err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) :
  808. omap_aes_get_res_pdev(dd, pdev, &res);
  809. if (err)
  810. goto err_res;
  811. dd->io_base = devm_ioremap_resource(dev, &res);
  812. if (IS_ERR(dd->io_base)) {
  813. err = PTR_ERR(dd->io_base);
  814. goto err_res;
  815. }
  816. dd->phys_base = res.start;
  817. pm_runtime_enable(dev);
  818. pm_runtime_get_sync(dev);
  819. omap_aes_dma_stop(dd);
  820. reg = omap_aes_read(dd, AES_REG_REV(dd));
  821. pm_runtime_put_sync(dev);
  822. dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
  823. (reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
  824. (reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
  825. tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
  826. tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
  827. err = omap_aes_dma_init(dd);
  828. if (err)
  829. goto err_dma;
  830. INIT_LIST_HEAD(&dd->list);
  831. spin_lock(&list_lock);
  832. list_add_tail(&dd->list, &dev_list);
  833. spin_unlock(&list_lock);
  834. for (i = 0; i < dd->pdata->algs_info_size; i++) {
  835. for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
  836. algp = &dd->pdata->algs_info[i].algs_list[j];
  837. pr_debug("reg alg: %s\n", algp->cra_name);
  838. INIT_LIST_HEAD(&algp->cra_list);
  839. err = crypto_register_alg(algp);
  840. if (err)
  841. goto err_algs;
  842. dd->pdata->algs_info[i].registered++;
  843. }
  844. }
  845. return 0;
  846. err_algs:
  847. for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
  848. for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
  849. crypto_unregister_alg(
  850. &dd->pdata->algs_info[i].algs_list[j]);
  851. omap_aes_dma_cleanup(dd);
  852. err_dma:
  853. tasklet_kill(&dd->done_task);
  854. tasklet_kill(&dd->queue_task);
  855. pm_runtime_disable(dev);
  856. err_res:
  857. kfree(dd);
  858. dd = NULL;
  859. err_data:
  860. dev_err(dev, "initialization failed.\n");
  861. return err;
  862. }
  863. static int omap_aes_remove(struct platform_device *pdev)
  864. {
  865. struct omap_aes_dev *dd = platform_get_drvdata(pdev);
  866. int i, j;
  867. if (!dd)
  868. return -ENODEV;
  869. spin_lock(&list_lock);
  870. list_del(&dd->list);
  871. spin_unlock(&list_lock);
  872. for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
  873. for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
  874. crypto_unregister_alg(
  875. &dd->pdata->algs_info[i].algs_list[j]);
  876. tasklet_kill(&dd->done_task);
  877. tasklet_kill(&dd->queue_task);
  878. omap_aes_dma_cleanup(dd);
  879. pm_runtime_disable(dd->dev);
  880. kfree(dd);
  881. dd = NULL;
  882. return 0;
  883. }
  884. #ifdef CONFIG_PM_SLEEP
  885. static int omap_aes_suspend(struct device *dev)
  886. {
  887. pm_runtime_put_sync(dev);
  888. return 0;
  889. }
  890. static int omap_aes_resume(struct device *dev)
  891. {
  892. pm_runtime_get_sync(dev);
  893. return 0;
  894. }
  895. #endif
  896. static const struct dev_pm_ops omap_aes_pm_ops = {
  897. SET_SYSTEM_SLEEP_PM_OPS(omap_aes_suspend, omap_aes_resume)
  898. };
  899. static struct platform_driver omap_aes_driver = {
  900. .probe = omap_aes_probe,
  901. .remove = omap_aes_remove,
  902. .driver = {
  903. .name = "omap-aes",
  904. .owner = THIS_MODULE,
  905. .pm = &omap_aes_pm_ops,
  906. .of_match_table = omap_aes_of_match,
  907. },
  908. };
  909. module_platform_driver(omap_aes_driver);
  910. MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
  911. MODULE_LICENSE("GPL v2");
  912. MODULE_AUTHOR("Dmitry Kasatkin");