smp-mt.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * This program is free software; you can distribute it and/or modify it
  3. * under the terms of the GNU General Public License (Version 2) as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope it will be useful, but WITHOUT
  7. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  8. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  9. * for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License along
  12. * with this program; if not, write to the Free Software Foundation, Inc.,
  13. * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  14. *
  15. * Copyright (C) 2004, 05, 06 MIPS Technologies, Inc.
  16. * Elizabeth Clarke (beth@mips.com)
  17. * Ralf Baechle (ralf@linux-mips.org)
  18. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/cpumask.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/compiler.h>
  25. #include <linux/smp.h>
  26. #include <asm/atomic.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/cpu.h>
  29. #include <asm/processor.h>
  30. #include <asm/system.h>
  31. #include <asm/hardirq.h>
  32. #include <asm/mmu_context.h>
  33. #include <asm/time.h>
  34. #include <asm/mipsregs.h>
  35. #include <asm/mipsmtregs.h>
  36. #include <asm/mips_mt.h>
  37. #define MIPS_CPU_IPI_RESCHED_IRQ 0
  38. #define MIPS_CPU_IPI_CALL_IRQ 1
  39. static int cpu_ipi_resched_irq, cpu_ipi_call_irq;
  40. #if 0
  41. static void dump_mtregisters(int vpe, int tc)
  42. {
  43. printk("vpe %d tc %d\n", vpe, tc);
  44. settc(tc);
  45. printk(" c0 status 0x%lx\n", read_vpe_c0_status());
  46. printk(" vpecontrol 0x%lx\n", read_vpe_c0_vpecontrol());
  47. printk(" vpeconf0 0x%lx\n", read_vpe_c0_vpeconf0());
  48. printk(" tcstatus 0x%lx\n", read_tc_c0_tcstatus());
  49. printk(" tcrestart 0x%lx\n", read_tc_c0_tcrestart());
  50. printk(" tcbind 0x%lx\n", read_tc_c0_tcbind());
  51. printk(" tchalt 0x%lx\n", read_tc_c0_tchalt());
  52. }
  53. #endif
  54. static void ipi_resched_dispatch(void)
  55. {
  56. do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ);
  57. }
  58. static void ipi_call_dispatch(void)
  59. {
  60. do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ);
  61. }
  62. static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
  63. {
  64. return IRQ_HANDLED;
  65. }
  66. static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
  67. {
  68. smp_call_function_interrupt();
  69. return IRQ_HANDLED;
  70. }
  71. static struct irqaction irq_resched = {
  72. .handler = ipi_resched_interrupt,
  73. .flags = IRQF_DISABLED|IRQF_PERCPU,
  74. .name = "IPI_resched"
  75. };
  76. static struct irqaction irq_call = {
  77. .handler = ipi_call_interrupt,
  78. .flags = IRQF_DISABLED|IRQF_PERCPU,
  79. .name = "IPI_call"
  80. };
  81. static void __init smp_copy_vpe_config(void)
  82. {
  83. write_vpe_c0_status(
  84. (read_c0_status() & ~(ST0_IM | ST0_IE | ST0_KSU)) | ST0_CU0);
  85. /* set config to be the same as vpe0, particularly kseg0 coherency alg */
  86. write_vpe_c0_config( read_c0_config());
  87. /* make sure there are no software interrupts pending */
  88. write_vpe_c0_cause(0);
  89. /* Propagate Config7 */
  90. write_vpe_c0_config7(read_c0_config7());
  91. write_vpe_c0_count(read_c0_count());
  92. }
  93. static unsigned int __init smp_vpe_init(unsigned int tc, unsigned int mvpconf0,
  94. unsigned int ncpu)
  95. {
  96. if (tc > ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT))
  97. return ncpu;
  98. /* Deactivate all but VPE 0 */
  99. if (tc != 0) {
  100. unsigned long tmp = read_vpe_c0_vpeconf0();
  101. tmp &= ~VPECONF0_VPA;
  102. /* master VPE */
  103. tmp |= VPECONF0_MVP;
  104. write_vpe_c0_vpeconf0(tmp);
  105. /* Record this as available CPU */
  106. cpu_set(tc, phys_cpu_present_map);
  107. __cpu_number_map[tc] = ++ncpu;
  108. __cpu_logical_map[ncpu] = tc;
  109. }
  110. /* Disable multi-threading with TC's */
  111. write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
  112. if (tc != 0)
  113. smp_copy_vpe_config();
  114. return ncpu;
  115. }
  116. static void __init smp_tc_init(unsigned int tc, unsigned int mvpconf0)
  117. {
  118. unsigned long tmp;
  119. if (!tc)
  120. return;
  121. /* bind a TC to each VPE, May as well put all excess TC's
  122. on the last VPE */
  123. if (tc >= (((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT)+1))
  124. write_tc_c0_tcbind(read_tc_c0_tcbind() | ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT));
  125. else {
  126. write_tc_c0_tcbind(read_tc_c0_tcbind() | tc);
  127. /* and set XTC */
  128. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | (tc << VPECONF0_XTC_SHIFT));
  129. }
  130. tmp = read_tc_c0_tcstatus();
  131. /* mark not allocated and not dynamically allocatable */
  132. tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
  133. tmp |= TCSTATUS_IXMT; /* interrupt exempt */
  134. write_tc_c0_tcstatus(tmp);
  135. write_tc_c0_tchalt(TCHALT_H);
  136. }
  137. static void vsmp_send_ipi_single(int cpu, unsigned int action)
  138. {
  139. int i;
  140. unsigned long flags;
  141. int vpflags;
  142. local_irq_save(flags);
  143. vpflags = dvpe(); /* cant access the other CPU's registers whilst MVPE enabled */
  144. switch (action) {
  145. case SMP_CALL_FUNCTION:
  146. i = C_SW1;
  147. break;
  148. case SMP_RESCHEDULE_YOURSELF:
  149. default:
  150. i = C_SW0;
  151. break;
  152. }
  153. /* 1:1 mapping of vpe and tc... */
  154. settc(cpu);
  155. write_vpe_c0_cause(read_vpe_c0_cause() | i);
  156. evpe(vpflags);
  157. local_irq_restore(flags);
  158. }
  159. static void vsmp_send_ipi_mask(cpumask_t mask, unsigned int action)
  160. {
  161. unsigned int i;
  162. for_each_cpu_mask(i, mask)
  163. vsmp_send_ipi_single(i, action);
  164. }
  165. static void __cpuinit vsmp_init_secondary(void)
  166. {
  167. /* Enable per-cpu interrupts */
  168. /* This is Malta specific: IPI,performance and timer inetrrupts */
  169. write_c0_status((read_c0_status() & ~ST0_IM ) |
  170. (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP6 | STATUSF_IP7));
  171. }
  172. static void __cpuinit vsmp_smp_finish(void)
  173. {
  174. write_c0_compare(read_c0_count() + (8* mips_hpt_frequency/HZ));
  175. #ifdef CONFIG_MIPS_MT_FPAFF
  176. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  177. if (cpu_has_fpu)
  178. cpu_set(smp_processor_id(), mt_fpu_cpumask);
  179. #endif /* CONFIG_MIPS_MT_FPAFF */
  180. local_irq_enable();
  181. }
  182. static void vsmp_cpus_done(void)
  183. {
  184. }
  185. /*
  186. * Setup the PC, SP, and GP of a secondary processor and start it
  187. * running!
  188. * smp_bootstrap is the place to resume from
  189. * __KSTK_TOS(idle) is apparently the stack pointer
  190. * (unsigned long)idle->thread_info the gp
  191. * assumes a 1:1 mapping of TC => VPE
  192. */
  193. static void __cpuinit vsmp_boot_secondary(int cpu, struct task_struct *idle)
  194. {
  195. struct thread_info *gp = task_thread_info(idle);
  196. dvpe();
  197. set_c0_mvpcontrol(MVPCONTROL_VPC);
  198. settc(cpu);
  199. /* restart */
  200. write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
  201. /* enable the tc this vpe/cpu will be running */
  202. write_tc_c0_tcstatus((read_tc_c0_tcstatus() & ~TCSTATUS_IXMT) | TCSTATUS_A);
  203. write_tc_c0_tchalt(0);
  204. /* enable the VPE */
  205. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
  206. /* stack pointer */
  207. write_tc_gpr_sp( __KSTK_TOS(idle));
  208. /* global pointer */
  209. write_tc_gpr_gp((unsigned long)gp);
  210. flush_icache_range((unsigned long)gp,
  211. (unsigned long)(gp + sizeof(struct thread_info)));
  212. /* finally out of configuration and into chaos */
  213. clear_c0_mvpcontrol(MVPCONTROL_VPC);
  214. evpe(EVPE_ENABLE);
  215. }
  216. /*
  217. * Common setup before any secondaries are started
  218. * Make sure all CPU's are in a sensible state before we boot any of the
  219. * secondarys
  220. */
  221. static void __init vsmp_smp_setup(void)
  222. {
  223. unsigned int mvpconf0, ntc, tc, ncpu = 0;
  224. unsigned int nvpe;
  225. #ifdef CONFIG_MIPS_MT_FPAFF
  226. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  227. if (cpu_has_fpu)
  228. cpu_set(0, mt_fpu_cpumask);
  229. #endif /* CONFIG_MIPS_MT_FPAFF */
  230. if (!cpu_has_mipsmt)
  231. return;
  232. /* disable MT so we can configure */
  233. dvpe();
  234. dmt();
  235. /* Put MVPE's into 'configuration state' */
  236. set_c0_mvpcontrol(MVPCONTROL_VPC);
  237. mvpconf0 = read_c0_mvpconf0();
  238. ntc = (mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT;
  239. nvpe = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
  240. smp_num_siblings = nvpe;
  241. /* we'll always have more TC's than VPE's, so loop setting everything
  242. to a sensible state */
  243. for (tc = 0; tc <= ntc; tc++) {
  244. settc(tc);
  245. smp_tc_init(tc, mvpconf0);
  246. ncpu = smp_vpe_init(tc, mvpconf0, ncpu);
  247. }
  248. /* Release config state */
  249. clear_c0_mvpcontrol(MVPCONTROL_VPC);
  250. /* We'll wait until starting the secondaries before starting MVPE */
  251. printk(KERN_INFO "Detected %i available secondary CPU(s)\n", ncpu);
  252. }
  253. static void __init vsmp_prepare_cpus(unsigned int max_cpus)
  254. {
  255. mips_mt_set_cpuoptions();
  256. /* set up ipi interrupts */
  257. if (cpu_has_vint) {
  258. set_vi_handler(MIPS_CPU_IPI_RESCHED_IRQ, ipi_resched_dispatch);
  259. set_vi_handler(MIPS_CPU_IPI_CALL_IRQ, ipi_call_dispatch);
  260. }
  261. cpu_ipi_resched_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ;
  262. cpu_ipi_call_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ;
  263. setup_irq(cpu_ipi_resched_irq, &irq_resched);
  264. setup_irq(cpu_ipi_call_irq, &irq_call);
  265. set_irq_handler(cpu_ipi_resched_irq, handle_percpu_irq);
  266. set_irq_handler(cpu_ipi_call_irq, handle_percpu_irq);
  267. }
  268. struct plat_smp_ops vsmp_smp_ops = {
  269. .send_ipi_single = vsmp_send_ipi_single,
  270. .send_ipi_mask = vsmp_send_ipi_mask,
  271. .init_secondary = vsmp_init_secondary,
  272. .smp_finish = vsmp_smp_finish,
  273. .cpus_done = vsmp_cpus_done,
  274. .boot_secondary = vsmp_boot_secondary,
  275. .smp_setup = vsmp_smp_setup,
  276. .prepare_cpus = vsmp_prepare_cpus,
  277. };