keyboard.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/consolemap.h>
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/tty.h>
  30. #include <linux/tty_flip.h>
  31. #include <linux/mm.h>
  32. #include <linux/string.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/irq.h>
  36. #include <linux/kbd_kern.h>
  37. #include <linux/kbd_diacr.h>
  38. #include <linux/vt_kern.h>
  39. #include <linux/sysrq.h>
  40. #include <linux/input.h>
  41. #include <linux/reboot.h>
  42. #include <linux/notifier.h>
  43. extern void ctrl_alt_del(void);
  44. /*
  45. * Exported functions/variables
  46. */
  47. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  48. /*
  49. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  50. * This seems a good reason to start with NumLock off. On HIL keyboards
  51. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  52. * to be used for numbers.
  53. */
  54. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  55. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  56. #else
  57. #define KBD_DEFLEDS 0
  58. #endif
  59. #define KBD_DEFLOCK 0
  60. void compute_shiftstate(void);
  61. /*
  62. * Handler Tables.
  63. */
  64. #define K_HANDLERS\
  65. k_self, k_fn, k_spec, k_pad,\
  66. k_dead, k_cons, k_cur, k_shift,\
  67. k_meta, k_ascii, k_lock, k_lowercase,\
  68. k_slock, k_dead2, k_brl, k_ignore
  69. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  70. char up_flag);
  71. static k_handler_fn K_HANDLERS;
  72. k_handler_fn *k_handler[16] = { K_HANDLERS };
  73. EXPORT_SYMBOL_GPL(k_handler);
  74. #define FN_HANDLERS\
  75. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  76. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  77. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  78. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  79. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  80. typedef void (fn_handler_fn)(struct vc_data *vc);
  81. static fn_handler_fn FN_HANDLERS;
  82. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  83. /*
  84. * Variables exported for vt_ioctl.c
  85. */
  86. /* maximum values each key_handler can handle */
  87. const int max_vals[] = {
  88. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  89. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  90. 255, NR_LOCK - 1, 255, NR_BRL - 1
  91. };
  92. const int NR_TYPES = ARRAY_SIZE(max_vals);
  93. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  94. static struct kbd_struct *kbd = kbd_table;
  95. struct vt_spawn_console vt_spawn_con = {
  96. .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  97. .pid = NULL,
  98. .sig = 0,
  99. };
  100. /*
  101. * Variables exported for vt.c
  102. */
  103. int shift_state = 0;
  104. /*
  105. * Internal Data.
  106. */
  107. static struct input_handler kbd_handler;
  108. static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
  109. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  110. static int dead_key_next;
  111. static int npadch = -1; /* -1 or number assembled on pad */
  112. static unsigned int diacr;
  113. static char rep; /* flag telling character repeat */
  114. static unsigned char ledstate = 0xff; /* undefined */
  115. static unsigned char ledioctl;
  116. static struct ledptr {
  117. unsigned int *addr;
  118. unsigned int mask;
  119. unsigned char valid:1;
  120. } ledptrs[3];
  121. /* Simple translation table for the SysRq keys */
  122. #ifdef CONFIG_MAGIC_SYSRQ
  123. unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
  124. "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
  125. "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
  126. "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
  127. "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
  128. "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
  129. "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
  130. "\r\000/"; /* 0x60 - 0x6f */
  131. static int sysrq_down;
  132. static int sysrq_alt_use;
  133. #endif
  134. static int sysrq_alt;
  135. /*
  136. * Notifier list for console keyboard events
  137. */
  138. static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
  139. int register_keyboard_notifier(struct notifier_block *nb)
  140. {
  141. return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
  142. }
  143. EXPORT_SYMBOL_GPL(register_keyboard_notifier);
  144. int unregister_keyboard_notifier(struct notifier_block *nb)
  145. {
  146. return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
  147. }
  148. EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
  149. /*
  150. * Translation of scancodes to keycodes. We set them on only the first
  151. * keyboard in the list that accepts the scancode and keycode.
  152. * Explanation for not choosing the first attached keyboard anymore:
  153. * USB keyboards for example have two event devices: one for all "normal"
  154. * keys and one for extra function keys (like "volume up", "make coffee",
  155. * etc.). So this means that scancodes for the extra function keys won't
  156. * be valid for the first event device, but will be for the second.
  157. */
  158. int getkeycode(unsigned int scancode)
  159. {
  160. struct input_handle *handle;
  161. int keycode;
  162. int error = -ENODEV;
  163. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  164. error = input_get_keycode(handle->dev, scancode, &keycode);
  165. if (!error)
  166. return keycode;
  167. }
  168. return error;
  169. }
  170. int setkeycode(unsigned int scancode, unsigned int keycode)
  171. {
  172. struct input_handle *handle;
  173. int error = -ENODEV;
  174. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  175. error = input_set_keycode(handle->dev, scancode, keycode);
  176. if (!error)
  177. break;
  178. }
  179. return error;
  180. }
  181. /*
  182. * Making beeps and bells.
  183. */
  184. static void kd_nosound(unsigned long ignored)
  185. {
  186. struct input_handle *handle;
  187. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  188. if (test_bit(EV_SND, handle->dev->evbit)) {
  189. if (test_bit(SND_TONE, handle->dev->sndbit))
  190. input_inject_event(handle, EV_SND, SND_TONE, 0);
  191. if (test_bit(SND_BELL, handle->dev->sndbit))
  192. input_inject_event(handle, EV_SND, SND_BELL, 0);
  193. }
  194. }
  195. }
  196. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  197. void kd_mksound(unsigned int hz, unsigned int ticks)
  198. {
  199. struct list_head *node;
  200. del_timer(&kd_mksound_timer);
  201. if (hz) {
  202. list_for_each_prev(node, &kbd_handler.h_list) {
  203. struct input_handle *handle = to_handle_h(node);
  204. if (test_bit(EV_SND, handle->dev->evbit)) {
  205. if (test_bit(SND_TONE, handle->dev->sndbit)) {
  206. input_inject_event(handle, EV_SND, SND_TONE, hz);
  207. break;
  208. }
  209. if (test_bit(SND_BELL, handle->dev->sndbit)) {
  210. input_inject_event(handle, EV_SND, SND_BELL, 1);
  211. break;
  212. }
  213. }
  214. }
  215. if (ticks)
  216. mod_timer(&kd_mksound_timer, jiffies + ticks);
  217. } else
  218. kd_nosound(0);
  219. }
  220. /*
  221. * Setting the keyboard rate.
  222. */
  223. int kbd_rate(struct kbd_repeat *rep)
  224. {
  225. struct list_head *node;
  226. unsigned int d = 0;
  227. unsigned int p = 0;
  228. list_for_each(node, &kbd_handler.h_list) {
  229. struct input_handle *handle = to_handle_h(node);
  230. struct input_dev *dev = handle->dev;
  231. if (test_bit(EV_REP, dev->evbit)) {
  232. if (rep->delay > 0)
  233. input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
  234. if (rep->period > 0)
  235. input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
  236. d = dev->rep[REP_DELAY];
  237. p = dev->rep[REP_PERIOD];
  238. }
  239. }
  240. rep->delay = d;
  241. rep->period = p;
  242. return 0;
  243. }
  244. /*
  245. * Helper Functions.
  246. */
  247. static void put_queue(struct vc_data *vc, int ch)
  248. {
  249. struct tty_struct *tty = vc->vc_tty;
  250. if (tty) {
  251. tty_insert_flip_char(tty, ch, 0);
  252. con_schedule_flip(tty);
  253. }
  254. }
  255. static void puts_queue(struct vc_data *vc, char *cp)
  256. {
  257. struct tty_struct *tty = vc->vc_tty;
  258. if (!tty)
  259. return;
  260. while (*cp) {
  261. tty_insert_flip_char(tty, *cp, 0);
  262. cp++;
  263. }
  264. con_schedule_flip(tty);
  265. }
  266. static void applkey(struct vc_data *vc, int key, char mode)
  267. {
  268. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  269. buf[1] = (mode ? 'O' : '[');
  270. buf[2] = key;
  271. puts_queue(vc, buf);
  272. }
  273. /*
  274. * Many other routines do put_queue, but I think either
  275. * they produce ASCII, or they produce some user-assigned
  276. * string, and in both cases we might assume that it is
  277. * in utf-8 already.
  278. */
  279. static void to_utf8(struct vc_data *vc, uint c)
  280. {
  281. if (c < 0x80)
  282. /* 0******* */
  283. put_queue(vc, c);
  284. else if (c < 0x800) {
  285. /* 110***** 10****** */
  286. put_queue(vc, 0xc0 | (c >> 6));
  287. put_queue(vc, 0x80 | (c & 0x3f));
  288. } else if (c < 0x10000) {
  289. if (c >= 0xD800 && c < 0xE000)
  290. return;
  291. if (c == 0xFFFF)
  292. return;
  293. /* 1110**** 10****** 10****** */
  294. put_queue(vc, 0xe0 | (c >> 12));
  295. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  296. put_queue(vc, 0x80 | (c & 0x3f));
  297. } else if (c < 0x110000) {
  298. /* 11110*** 10****** 10****** 10****** */
  299. put_queue(vc, 0xf0 | (c >> 18));
  300. put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
  301. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  302. put_queue(vc, 0x80 | (c & 0x3f));
  303. }
  304. }
  305. /*
  306. * Called after returning from RAW mode or when changing consoles - recompute
  307. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  308. * undefined, so that shiftkey release is seen
  309. */
  310. void compute_shiftstate(void)
  311. {
  312. unsigned int i, j, k, sym, val;
  313. shift_state = 0;
  314. memset(shift_down, 0, sizeof(shift_down));
  315. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  316. if (!key_down[i])
  317. continue;
  318. k = i * BITS_PER_LONG;
  319. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  320. if (!test_bit(k, key_down))
  321. continue;
  322. sym = U(key_maps[0][k]);
  323. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  324. continue;
  325. val = KVAL(sym);
  326. if (val == KVAL(K_CAPSSHIFT))
  327. val = KVAL(K_SHIFT);
  328. shift_down[val]++;
  329. shift_state |= (1 << val);
  330. }
  331. }
  332. }
  333. /*
  334. * We have a combining character DIACR here, followed by the character CH.
  335. * If the combination occurs in the table, return the corresponding value.
  336. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  337. * Otherwise, conclude that DIACR was not combining after all,
  338. * queue it and return CH.
  339. */
  340. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  341. {
  342. unsigned int d = diacr;
  343. unsigned int i;
  344. diacr = 0;
  345. if ((d & ~0xff) == BRL_UC_ROW) {
  346. if ((ch & ~0xff) == BRL_UC_ROW)
  347. return d | ch;
  348. } else {
  349. for (i = 0; i < accent_table_size; i++)
  350. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  351. return accent_table[i].result;
  352. }
  353. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  354. return d;
  355. if (kbd->kbdmode == VC_UNICODE)
  356. to_utf8(vc, d);
  357. else {
  358. int c = conv_uni_to_8bit(d);
  359. if (c != -1)
  360. put_queue(vc, c);
  361. }
  362. return ch;
  363. }
  364. /*
  365. * Special function handlers
  366. */
  367. static void fn_enter(struct vc_data *vc)
  368. {
  369. if (diacr) {
  370. if (kbd->kbdmode == VC_UNICODE)
  371. to_utf8(vc, diacr);
  372. else {
  373. int c = conv_uni_to_8bit(diacr);
  374. if (c != -1)
  375. put_queue(vc, c);
  376. }
  377. diacr = 0;
  378. }
  379. put_queue(vc, 13);
  380. if (vc_kbd_mode(kbd, VC_CRLF))
  381. put_queue(vc, 10);
  382. }
  383. static void fn_caps_toggle(struct vc_data *vc)
  384. {
  385. if (rep)
  386. return;
  387. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  388. }
  389. static void fn_caps_on(struct vc_data *vc)
  390. {
  391. if (rep)
  392. return;
  393. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  394. }
  395. static void fn_show_ptregs(struct vc_data *vc)
  396. {
  397. struct pt_regs *regs = get_irq_regs();
  398. if (regs)
  399. show_regs(regs);
  400. }
  401. static void fn_hold(struct vc_data *vc)
  402. {
  403. struct tty_struct *tty = vc->vc_tty;
  404. if (rep || !tty)
  405. return;
  406. /*
  407. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  408. * these routines are also activated by ^S/^Q.
  409. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  410. */
  411. if (tty->stopped)
  412. start_tty(tty);
  413. else
  414. stop_tty(tty);
  415. }
  416. static void fn_num(struct vc_data *vc)
  417. {
  418. if (vc_kbd_mode(kbd,VC_APPLIC))
  419. applkey(vc, 'P', 1);
  420. else
  421. fn_bare_num(vc);
  422. }
  423. /*
  424. * Bind this to Shift-NumLock if you work in application keypad mode
  425. * but want to be able to change the NumLock flag.
  426. * Bind this to NumLock if you prefer that the NumLock key always
  427. * changes the NumLock flag.
  428. */
  429. static void fn_bare_num(struct vc_data *vc)
  430. {
  431. if (!rep)
  432. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  433. }
  434. static void fn_lastcons(struct vc_data *vc)
  435. {
  436. /* switch to the last used console, ChN */
  437. set_console(last_console);
  438. }
  439. static void fn_dec_console(struct vc_data *vc)
  440. {
  441. int i, cur = fg_console;
  442. /* Currently switching? Queue this next switch relative to that. */
  443. if (want_console != -1)
  444. cur = want_console;
  445. for (i = cur - 1; i != cur; i--) {
  446. if (i == -1)
  447. i = MAX_NR_CONSOLES - 1;
  448. if (vc_cons_allocated(i))
  449. break;
  450. }
  451. set_console(i);
  452. }
  453. static void fn_inc_console(struct vc_data *vc)
  454. {
  455. int i, cur = fg_console;
  456. /* Currently switching? Queue this next switch relative to that. */
  457. if (want_console != -1)
  458. cur = want_console;
  459. for (i = cur+1; i != cur; i++) {
  460. if (i == MAX_NR_CONSOLES)
  461. i = 0;
  462. if (vc_cons_allocated(i))
  463. break;
  464. }
  465. set_console(i);
  466. }
  467. static void fn_send_intr(struct vc_data *vc)
  468. {
  469. struct tty_struct *tty = vc->vc_tty;
  470. if (!tty)
  471. return;
  472. tty_insert_flip_char(tty, 0, TTY_BREAK);
  473. con_schedule_flip(tty);
  474. }
  475. static void fn_scroll_forw(struct vc_data *vc)
  476. {
  477. scrollfront(vc, 0);
  478. }
  479. static void fn_scroll_back(struct vc_data *vc)
  480. {
  481. scrollback(vc, 0);
  482. }
  483. static void fn_show_mem(struct vc_data *vc)
  484. {
  485. show_mem();
  486. }
  487. static void fn_show_state(struct vc_data *vc)
  488. {
  489. show_state();
  490. }
  491. static void fn_boot_it(struct vc_data *vc)
  492. {
  493. ctrl_alt_del();
  494. }
  495. static void fn_compose(struct vc_data *vc)
  496. {
  497. dead_key_next = 1;
  498. }
  499. static void fn_spawn_con(struct vc_data *vc)
  500. {
  501. spin_lock(&vt_spawn_con.lock);
  502. if (vt_spawn_con.pid)
  503. if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
  504. put_pid(vt_spawn_con.pid);
  505. vt_spawn_con.pid = NULL;
  506. }
  507. spin_unlock(&vt_spawn_con.lock);
  508. }
  509. static void fn_SAK(struct vc_data *vc)
  510. {
  511. struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
  512. schedule_work(SAK_work);
  513. }
  514. static void fn_null(struct vc_data *vc)
  515. {
  516. compute_shiftstate();
  517. }
  518. /*
  519. * Special key handlers
  520. */
  521. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
  522. {
  523. }
  524. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
  525. {
  526. if (up_flag)
  527. return;
  528. if (value >= ARRAY_SIZE(fn_handler))
  529. return;
  530. if ((kbd->kbdmode == VC_RAW ||
  531. kbd->kbdmode == VC_MEDIUMRAW) &&
  532. value != KVAL(K_SAK))
  533. return; /* SAK is allowed even in raw mode */
  534. fn_handler[value](vc);
  535. }
  536. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
  537. {
  538. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  539. }
  540. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
  541. {
  542. if (up_flag)
  543. return; /* no action, if this is a key release */
  544. if (diacr)
  545. value = handle_diacr(vc, value);
  546. if (dead_key_next) {
  547. dead_key_next = 0;
  548. diacr = value;
  549. return;
  550. }
  551. if (kbd->kbdmode == VC_UNICODE)
  552. to_utf8(vc, value);
  553. else {
  554. int c = conv_uni_to_8bit(value);
  555. if (c != -1)
  556. put_queue(vc, c);
  557. }
  558. }
  559. /*
  560. * Handle dead key. Note that we now may have several
  561. * dead keys modifying the same character. Very useful
  562. * for Vietnamese.
  563. */
  564. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
  565. {
  566. if (up_flag)
  567. return;
  568. diacr = (diacr ? handle_diacr(vc, value) : value);
  569. }
  570. static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
  571. {
  572. unsigned int uni;
  573. if (kbd->kbdmode == VC_UNICODE)
  574. uni = value;
  575. else
  576. uni = conv_8bit_to_uni(value);
  577. k_unicode(vc, uni, up_flag);
  578. }
  579. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
  580. {
  581. k_deadunicode(vc, value, up_flag);
  582. }
  583. /*
  584. * Obsolete - for backwards compatibility only
  585. */
  586. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
  587. {
  588. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  589. value = ret_diacr[value];
  590. k_deadunicode(vc, value, up_flag);
  591. }
  592. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
  593. {
  594. if (up_flag)
  595. return;
  596. set_console(value);
  597. }
  598. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
  599. {
  600. unsigned v;
  601. if (up_flag)
  602. return;
  603. v = value;
  604. if (v < ARRAY_SIZE(func_table)) {
  605. if (func_table[value])
  606. puts_queue(vc, func_table[value]);
  607. } else
  608. printk(KERN_ERR "k_fn called with value=%d\n", value);
  609. }
  610. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
  611. {
  612. static const char cur_chars[] = "BDCA";
  613. if (up_flag)
  614. return;
  615. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  616. }
  617. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
  618. {
  619. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  620. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  621. if (up_flag)
  622. return; /* no action, if this is a key release */
  623. /* kludge... shift forces cursor/number keys */
  624. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  625. applkey(vc, app_map[value], 1);
  626. return;
  627. }
  628. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  629. switch (value) {
  630. case KVAL(K_PCOMMA):
  631. case KVAL(K_PDOT):
  632. k_fn(vc, KVAL(K_REMOVE), 0);
  633. return;
  634. case KVAL(K_P0):
  635. k_fn(vc, KVAL(K_INSERT), 0);
  636. return;
  637. case KVAL(K_P1):
  638. k_fn(vc, KVAL(K_SELECT), 0);
  639. return;
  640. case KVAL(K_P2):
  641. k_cur(vc, KVAL(K_DOWN), 0);
  642. return;
  643. case KVAL(K_P3):
  644. k_fn(vc, KVAL(K_PGDN), 0);
  645. return;
  646. case KVAL(K_P4):
  647. k_cur(vc, KVAL(K_LEFT), 0);
  648. return;
  649. case KVAL(K_P6):
  650. k_cur(vc, KVAL(K_RIGHT), 0);
  651. return;
  652. case KVAL(K_P7):
  653. k_fn(vc, KVAL(K_FIND), 0);
  654. return;
  655. case KVAL(K_P8):
  656. k_cur(vc, KVAL(K_UP), 0);
  657. return;
  658. case KVAL(K_P9):
  659. k_fn(vc, KVAL(K_PGUP), 0);
  660. return;
  661. case KVAL(K_P5):
  662. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  663. return;
  664. }
  665. put_queue(vc, pad_chars[value]);
  666. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  667. put_queue(vc, 10);
  668. }
  669. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
  670. {
  671. int old_state = shift_state;
  672. if (rep)
  673. return;
  674. /*
  675. * Mimic typewriter:
  676. * a CapsShift key acts like Shift but undoes CapsLock
  677. */
  678. if (value == KVAL(K_CAPSSHIFT)) {
  679. value = KVAL(K_SHIFT);
  680. if (!up_flag)
  681. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  682. }
  683. if (up_flag) {
  684. /*
  685. * handle the case that two shift or control
  686. * keys are depressed simultaneously
  687. */
  688. if (shift_down[value])
  689. shift_down[value]--;
  690. } else
  691. shift_down[value]++;
  692. if (shift_down[value])
  693. shift_state |= (1 << value);
  694. else
  695. shift_state &= ~(1 << value);
  696. /* kludge */
  697. if (up_flag && shift_state != old_state && npadch != -1) {
  698. if (kbd->kbdmode == VC_UNICODE)
  699. to_utf8(vc, npadch);
  700. else
  701. put_queue(vc, npadch & 0xff);
  702. npadch = -1;
  703. }
  704. }
  705. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
  706. {
  707. if (up_flag)
  708. return;
  709. if (vc_kbd_mode(kbd, VC_META)) {
  710. put_queue(vc, '\033');
  711. put_queue(vc, value);
  712. } else
  713. put_queue(vc, value | 0x80);
  714. }
  715. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
  716. {
  717. int base;
  718. if (up_flag)
  719. return;
  720. if (value < 10) {
  721. /* decimal input of code, while Alt depressed */
  722. base = 10;
  723. } else {
  724. /* hexadecimal input of code, while AltGr depressed */
  725. value -= 10;
  726. base = 16;
  727. }
  728. if (npadch == -1)
  729. npadch = value;
  730. else
  731. npadch = npadch * base + value;
  732. }
  733. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
  734. {
  735. if (up_flag || rep)
  736. return;
  737. chg_vc_kbd_lock(kbd, value);
  738. }
  739. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
  740. {
  741. k_shift(vc, value, up_flag);
  742. if (up_flag || rep)
  743. return;
  744. chg_vc_kbd_slock(kbd, value);
  745. /* try to make Alt, oops, AltGr and such work */
  746. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  747. kbd->slockstate = 0;
  748. chg_vc_kbd_slock(kbd, value);
  749. }
  750. }
  751. /* by default, 300ms interval for combination release */
  752. static unsigned brl_timeout = 300;
  753. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  754. module_param(brl_timeout, uint, 0644);
  755. static unsigned brl_nbchords = 1;
  756. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  757. module_param(brl_nbchords, uint, 0644);
  758. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
  759. {
  760. static unsigned long chords;
  761. static unsigned committed;
  762. if (!brl_nbchords)
  763. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
  764. else {
  765. committed |= pattern;
  766. chords++;
  767. if (chords == brl_nbchords) {
  768. k_unicode(vc, BRL_UC_ROW | committed, up_flag);
  769. chords = 0;
  770. committed = 0;
  771. }
  772. }
  773. }
  774. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
  775. {
  776. static unsigned pressed,committing;
  777. static unsigned long releasestart;
  778. if (kbd->kbdmode != VC_UNICODE) {
  779. if (!up_flag)
  780. printk("keyboard mode must be unicode for braille patterns\n");
  781. return;
  782. }
  783. if (!value) {
  784. k_unicode(vc, BRL_UC_ROW, up_flag);
  785. return;
  786. }
  787. if (value > 8)
  788. return;
  789. if (up_flag) {
  790. if (brl_timeout) {
  791. if (!committing ||
  792. jiffies - releasestart > (brl_timeout * HZ) / 1000) {
  793. committing = pressed;
  794. releasestart = jiffies;
  795. }
  796. pressed &= ~(1 << (value - 1));
  797. if (!pressed) {
  798. if (committing) {
  799. k_brlcommit(vc, committing, 0);
  800. committing = 0;
  801. }
  802. }
  803. } else {
  804. if (committing) {
  805. k_brlcommit(vc, committing, 0);
  806. committing = 0;
  807. }
  808. pressed &= ~(1 << (value - 1));
  809. }
  810. } else {
  811. pressed |= 1 << (value - 1);
  812. if (!brl_timeout)
  813. committing = pressed;
  814. }
  815. }
  816. /*
  817. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  818. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  819. * or (iii) specified bits of specified words in kernel memory.
  820. */
  821. unsigned char getledstate(void)
  822. {
  823. return ledstate;
  824. }
  825. void setledstate(struct kbd_struct *kbd, unsigned int led)
  826. {
  827. if (!(led & ~7)) {
  828. ledioctl = led;
  829. kbd->ledmode = LED_SHOW_IOCTL;
  830. } else
  831. kbd->ledmode = LED_SHOW_FLAGS;
  832. set_leds();
  833. }
  834. static inline unsigned char getleds(void)
  835. {
  836. struct kbd_struct *kbd = kbd_table + fg_console;
  837. unsigned char leds;
  838. int i;
  839. if (kbd->ledmode == LED_SHOW_IOCTL)
  840. return ledioctl;
  841. leds = kbd->ledflagstate;
  842. if (kbd->ledmode == LED_SHOW_MEM) {
  843. for (i = 0; i < 3; i++)
  844. if (ledptrs[i].valid) {
  845. if (*ledptrs[i].addr & ledptrs[i].mask)
  846. leds |= (1 << i);
  847. else
  848. leds &= ~(1 << i);
  849. }
  850. }
  851. return leds;
  852. }
  853. /*
  854. * This routine is the bottom half of the keyboard interrupt
  855. * routine, and runs with all interrupts enabled. It does
  856. * console changing, led setting and copy_to_cooked, which can
  857. * take a reasonably long time.
  858. *
  859. * Aside from timing (which isn't really that important for
  860. * keyboard interrupts as they happen often), using the software
  861. * interrupt routines for this thing allows us to easily mask
  862. * this when we don't want any of the above to happen.
  863. * This allows for easy and efficient race-condition prevention
  864. * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
  865. */
  866. static void kbd_bh(unsigned long dummy)
  867. {
  868. struct list_head *node;
  869. unsigned char leds = getleds();
  870. if (leds != ledstate) {
  871. list_for_each(node, &kbd_handler.h_list) {
  872. struct input_handle *handle = to_handle_h(node);
  873. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  874. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  875. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  876. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  877. }
  878. }
  879. ledstate = leds;
  880. }
  881. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  882. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  883. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  884. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  885. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
  886. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  887. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  888. static const unsigned short x86_keycodes[256] =
  889. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  890. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  891. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  892. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  893. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  894. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  895. 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
  896. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  897. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  898. 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
  899. 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
  900. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  901. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  902. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  903. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  904. #ifdef CONFIG_SPARC
  905. static int sparc_l1_a_state = 0;
  906. extern void sun_do_break(void);
  907. #endif
  908. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  909. unsigned char up_flag)
  910. {
  911. int code;
  912. switch (keycode) {
  913. case KEY_PAUSE:
  914. put_queue(vc, 0xe1);
  915. put_queue(vc, 0x1d | up_flag);
  916. put_queue(vc, 0x45 | up_flag);
  917. break;
  918. case KEY_HANGEUL:
  919. if (!up_flag)
  920. put_queue(vc, 0xf2);
  921. break;
  922. case KEY_HANJA:
  923. if (!up_flag)
  924. put_queue(vc, 0xf1);
  925. break;
  926. case KEY_SYSRQ:
  927. /*
  928. * Real AT keyboards (that's what we're trying
  929. * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
  930. * pressing PrtSc/SysRq alone, but simply 0x54
  931. * when pressing Alt+PrtSc/SysRq.
  932. */
  933. if (sysrq_alt) {
  934. put_queue(vc, 0x54 | up_flag);
  935. } else {
  936. put_queue(vc, 0xe0);
  937. put_queue(vc, 0x2a | up_flag);
  938. put_queue(vc, 0xe0);
  939. put_queue(vc, 0x37 | up_flag);
  940. }
  941. break;
  942. default:
  943. if (keycode > 255)
  944. return -1;
  945. code = x86_keycodes[keycode];
  946. if (!code)
  947. return -1;
  948. if (code & 0x100)
  949. put_queue(vc, 0xe0);
  950. put_queue(vc, (code & 0x7f) | up_flag);
  951. break;
  952. }
  953. return 0;
  954. }
  955. #else
  956. #define HW_RAW(dev) 0
  957. #warning "Cannot generate rawmode keyboard for your architecture yet."
  958. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  959. {
  960. if (keycode > 127)
  961. return -1;
  962. put_queue(vc, keycode | up_flag);
  963. return 0;
  964. }
  965. #endif
  966. static void kbd_rawcode(unsigned char data)
  967. {
  968. struct vc_data *vc = vc_cons[fg_console].d;
  969. kbd = kbd_table + fg_console;
  970. if (kbd->kbdmode == VC_RAW)
  971. put_queue(vc, data);
  972. }
  973. static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
  974. {
  975. struct vc_data *vc = vc_cons[fg_console].d;
  976. unsigned short keysym, *key_map;
  977. unsigned char type, raw_mode;
  978. struct tty_struct *tty;
  979. int shift_final;
  980. struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
  981. tty = vc->vc_tty;
  982. if (tty && (!tty->driver_data)) {
  983. /* No driver data? Strange. Okay we fix it then. */
  984. tty->driver_data = vc;
  985. }
  986. kbd = kbd_table + fg_console;
  987. if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
  988. sysrq_alt = down ? keycode : 0;
  989. #ifdef CONFIG_SPARC
  990. if (keycode == KEY_STOP)
  991. sparc_l1_a_state = down;
  992. #endif
  993. rep = (down == 2);
  994. #ifdef CONFIG_MAC_EMUMOUSEBTN
  995. if (mac_hid_mouse_emulate_buttons(1, keycode, down))
  996. return;
  997. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  998. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  999. if (emulate_raw(vc, keycode, !down << 7))
  1000. if (keycode < BTN_MISC && printk_ratelimit())
  1001. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  1002. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  1003. if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
  1004. if (!sysrq_down) {
  1005. sysrq_down = down;
  1006. sysrq_alt_use = sysrq_alt;
  1007. }
  1008. return;
  1009. }
  1010. if (sysrq_down && !down && keycode == sysrq_alt_use)
  1011. sysrq_down = 0;
  1012. if (sysrq_down && down && !rep) {
  1013. handle_sysrq(kbd_sysrq_xlate[keycode], tty);
  1014. return;
  1015. }
  1016. #endif
  1017. #ifdef CONFIG_SPARC
  1018. if (keycode == KEY_A && sparc_l1_a_state) {
  1019. sparc_l1_a_state = 0;
  1020. sun_do_break();
  1021. }
  1022. #endif
  1023. if (kbd->kbdmode == VC_MEDIUMRAW) {
  1024. /*
  1025. * This is extended medium raw mode, with keys above 127
  1026. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  1027. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  1028. * interfere with anything else. The two bytes after 0 will
  1029. * always have the up flag set not to interfere with older
  1030. * applications. This allows for 16384 different keycodes,
  1031. * which should be enough.
  1032. */
  1033. if (keycode < 128) {
  1034. put_queue(vc, keycode | (!down << 7));
  1035. } else {
  1036. put_queue(vc, !down << 7);
  1037. put_queue(vc, (keycode >> 7) | 0x80);
  1038. put_queue(vc, keycode | 0x80);
  1039. }
  1040. raw_mode = 1;
  1041. }
  1042. if (down)
  1043. set_bit(keycode, key_down);
  1044. else
  1045. clear_bit(keycode, key_down);
  1046. if (rep &&
  1047. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1048. (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
  1049. /*
  1050. * Don't repeat a key if the input buffers are not empty and the
  1051. * characters get aren't echoed locally. This makes key repeat
  1052. * usable with slow applications and under heavy loads.
  1053. */
  1054. return;
  1055. }
  1056. param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1057. param.ledstate = kbd->ledflagstate;
  1058. key_map = key_maps[shift_final];
  1059. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
  1060. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
  1061. compute_shiftstate();
  1062. kbd->slockstate = 0;
  1063. return;
  1064. }
  1065. if (keycode > NR_KEYS)
  1066. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1067. keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
  1068. else
  1069. return;
  1070. else
  1071. keysym = key_map[keycode];
  1072. type = KTYP(keysym);
  1073. if (type < 0xf0) {
  1074. param.value = keysym;
  1075. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
  1076. return;
  1077. if (down && !raw_mode)
  1078. to_utf8(vc, keysym);
  1079. return;
  1080. }
  1081. type -= 0xf0;
  1082. if (type == KT_LETTER) {
  1083. type = KT_LATIN;
  1084. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1085. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1086. if (key_map)
  1087. keysym = key_map[keycode];
  1088. }
  1089. }
  1090. param.value = keysym;
  1091. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
  1092. return;
  1093. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1094. return;
  1095. (*k_handler[type])(vc, keysym & 0xff, !down);
  1096. param.ledstate = kbd->ledflagstate;
  1097. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
  1098. if (type != KT_SLOCK)
  1099. kbd->slockstate = 0;
  1100. }
  1101. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1102. unsigned int event_code, int value)
  1103. {
  1104. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1105. kbd_rawcode(value);
  1106. if (event_type == EV_KEY)
  1107. kbd_keycode(event_code, value, HW_RAW(handle->dev));
  1108. tasklet_schedule(&keyboard_tasklet);
  1109. do_poke_blanked_console = 1;
  1110. schedule_console_callback();
  1111. }
  1112. /*
  1113. * When a keyboard (or other input device) is found, the kbd_connect
  1114. * function is called. The function then looks at the device, and if it
  1115. * likes it, it can open it and get events from it. In this (kbd_connect)
  1116. * function, we should decide which VT to bind that keyboard to initially.
  1117. */
  1118. static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
  1119. const struct input_device_id *id)
  1120. {
  1121. struct input_handle *handle;
  1122. int error;
  1123. int i;
  1124. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1125. if (test_bit(i, dev->keybit))
  1126. break;
  1127. if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
  1128. return -ENODEV;
  1129. handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
  1130. if (!handle)
  1131. return -ENOMEM;
  1132. handle->dev = dev;
  1133. handle->handler = handler;
  1134. handle->name = "kbd";
  1135. error = input_register_handle(handle);
  1136. if (error)
  1137. goto err_free_handle;
  1138. error = input_open_device(handle);
  1139. if (error)
  1140. goto err_unregister_handle;
  1141. return 0;
  1142. err_unregister_handle:
  1143. input_unregister_handle(handle);
  1144. err_free_handle:
  1145. kfree(handle);
  1146. return error;
  1147. }
  1148. static void kbd_disconnect(struct input_handle *handle)
  1149. {
  1150. input_close_device(handle);
  1151. input_unregister_handle(handle);
  1152. kfree(handle);
  1153. }
  1154. /*
  1155. * Start keyboard handler on the new keyboard by refreshing LED state to
  1156. * match the rest of the system.
  1157. */
  1158. static void kbd_start(struct input_handle *handle)
  1159. {
  1160. unsigned char leds = ledstate;
  1161. tasklet_disable(&keyboard_tasklet);
  1162. if (leds != 0xff) {
  1163. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  1164. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  1165. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  1166. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  1167. }
  1168. tasklet_enable(&keyboard_tasklet);
  1169. }
  1170. static const struct input_device_id kbd_ids[] = {
  1171. {
  1172. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1173. .evbit = { BIT_MASK(EV_KEY) },
  1174. },
  1175. {
  1176. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1177. .evbit = { BIT_MASK(EV_SND) },
  1178. },
  1179. { }, /* Terminating entry */
  1180. };
  1181. MODULE_DEVICE_TABLE(input, kbd_ids);
  1182. static struct input_handler kbd_handler = {
  1183. .event = kbd_event,
  1184. .connect = kbd_connect,
  1185. .disconnect = kbd_disconnect,
  1186. .start = kbd_start,
  1187. .name = "kbd",
  1188. .id_table = kbd_ids,
  1189. };
  1190. int __init kbd_init(void)
  1191. {
  1192. int i;
  1193. int error;
  1194. for (i = 0; i < MAX_NR_CONSOLES; i++) {
  1195. kbd_table[i].ledflagstate = KBD_DEFLEDS;
  1196. kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
  1197. kbd_table[i].ledmode = LED_SHOW_FLAGS;
  1198. kbd_table[i].lockstate = KBD_DEFLOCK;
  1199. kbd_table[i].slockstate = 0;
  1200. kbd_table[i].modeflags = KBD_DEFMODE;
  1201. kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
  1202. }
  1203. error = input_register_handler(&kbd_handler);
  1204. if (error)
  1205. return error;
  1206. tasklet_enable(&keyboard_tasklet);
  1207. tasklet_schedule(&keyboard_tasklet);
  1208. return 0;
  1209. }