nandsim.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437
  1. /*
  2. * NAND flash simulator.
  3. *
  4. * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
  5. *
  6. * Copyright (C) 2004 Nokia Corporation
  7. *
  8. * Note: NS means "NAND Simulator".
  9. * Note: Input means input TO flash chip, output means output FROM chip.
  10. *
  11. * This program is free software; you can redistribute it and/or modify it
  12. * under the terms of the GNU General Public License as published by the
  13. * Free Software Foundation; either version 2, or (at your option) any later
  14. * version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19. * Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24. */
  25. #include <linux/init.h>
  26. #include <linux/types.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/math64.h>
  31. #include <linux/slab.h>
  32. #include <linux/errno.h>
  33. #include <linux/string.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/nand.h>
  36. #include <linux/mtd/nand_bch.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <linux/delay.h>
  39. #include <linux/list.h>
  40. #include <linux/random.h>
  41. #include <linux/sched.h>
  42. #include <linux/fs.h>
  43. #include <linux/pagemap.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/debugfs.h>
  46. /* Default simulator parameters values */
  47. #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
  48. !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  49. !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
  50. !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  51. #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
  52. #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  53. #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
  54. #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  55. #endif
  56. #ifndef CONFIG_NANDSIM_ACCESS_DELAY
  57. #define CONFIG_NANDSIM_ACCESS_DELAY 25
  58. #endif
  59. #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  60. #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  61. #endif
  62. #ifndef CONFIG_NANDSIM_ERASE_DELAY
  63. #define CONFIG_NANDSIM_ERASE_DELAY 2
  64. #endif
  65. #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  66. #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  67. #endif
  68. #ifndef CONFIG_NANDSIM_INPUT_CYCLE
  69. #define CONFIG_NANDSIM_INPUT_CYCLE 50
  70. #endif
  71. #ifndef CONFIG_NANDSIM_BUS_WIDTH
  72. #define CONFIG_NANDSIM_BUS_WIDTH 8
  73. #endif
  74. #ifndef CONFIG_NANDSIM_DO_DELAYS
  75. #define CONFIG_NANDSIM_DO_DELAYS 0
  76. #endif
  77. #ifndef CONFIG_NANDSIM_LOG
  78. #define CONFIG_NANDSIM_LOG 0
  79. #endif
  80. #ifndef CONFIG_NANDSIM_DBG
  81. #define CONFIG_NANDSIM_DBG 0
  82. #endif
  83. #ifndef CONFIG_NANDSIM_MAX_PARTS
  84. #define CONFIG_NANDSIM_MAX_PARTS 32
  85. #endif
  86. static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
  87. static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  88. static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
  89. static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  90. static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
  91. static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  92. static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
  93. static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
  94. static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
  95. static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
  96. static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
  97. static uint log = CONFIG_NANDSIM_LOG;
  98. static uint dbg = CONFIG_NANDSIM_DBG;
  99. static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
  100. static unsigned int parts_num;
  101. static char *badblocks = NULL;
  102. static char *weakblocks = NULL;
  103. static char *weakpages = NULL;
  104. static unsigned int bitflips = 0;
  105. static char *gravepages = NULL;
  106. static unsigned int overridesize = 0;
  107. static char *cache_file = NULL;
  108. static unsigned int bbt;
  109. static unsigned int bch;
  110. module_param(first_id_byte, uint, 0400);
  111. module_param(second_id_byte, uint, 0400);
  112. module_param(third_id_byte, uint, 0400);
  113. module_param(fourth_id_byte, uint, 0400);
  114. module_param(access_delay, uint, 0400);
  115. module_param(programm_delay, uint, 0400);
  116. module_param(erase_delay, uint, 0400);
  117. module_param(output_cycle, uint, 0400);
  118. module_param(input_cycle, uint, 0400);
  119. module_param(bus_width, uint, 0400);
  120. module_param(do_delays, uint, 0400);
  121. module_param(log, uint, 0400);
  122. module_param(dbg, uint, 0400);
  123. module_param_array(parts, ulong, &parts_num, 0400);
  124. module_param(badblocks, charp, 0400);
  125. module_param(weakblocks, charp, 0400);
  126. module_param(weakpages, charp, 0400);
  127. module_param(bitflips, uint, 0400);
  128. module_param(gravepages, charp, 0400);
  129. module_param(overridesize, uint, 0400);
  130. module_param(cache_file, charp, 0400);
  131. module_param(bbt, uint, 0400);
  132. module_param(bch, uint, 0400);
  133. MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
  134. MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
  135. MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
  136. MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
  137. MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
  138. MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
  139. MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
  140. MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
  141. MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
  142. MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
  143. MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
  144. MODULE_PARM_DESC(log, "Perform logging if not zero");
  145. MODULE_PARM_DESC(dbg, "Output debug information if not zero");
  146. MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
  147. /* Page and erase block positions for the following parameters are independent of any partitions */
  148. MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
  149. MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
  150. " separated by commas e.g. 113:2 means eb 113"
  151. " can be erased only twice before failing");
  152. MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
  153. " separated by commas e.g. 1401:2 means page 1401"
  154. " can be written only twice before failing");
  155. MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
  156. MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
  157. " separated by commas e.g. 1401:2 means page 1401"
  158. " can be read only twice before failing");
  159. MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
  160. "The size is specified in erase blocks and as the exponent of a power of two"
  161. " e.g. 5 means a size of 32 erase blocks");
  162. MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
  163. MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
  164. MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
  165. "be correctable in 512-byte blocks");
  166. /* The largest possible page size */
  167. #define NS_LARGEST_PAGE_SIZE 4096
  168. /* The prefix for simulator output */
  169. #define NS_OUTPUT_PREFIX "[nandsim]"
  170. /* Simulator's output macros (logging, debugging, warning, error) */
  171. #define NS_LOG(args...) \
  172. do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
  173. #define NS_DBG(args...) \
  174. do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
  175. #define NS_WARN(args...) \
  176. do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
  177. #define NS_ERR(args...) \
  178. do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
  179. #define NS_INFO(args...) \
  180. do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
  181. /* Busy-wait delay macros (microseconds, milliseconds) */
  182. #define NS_UDELAY(us) \
  183. do { if (do_delays) udelay(us); } while(0)
  184. #define NS_MDELAY(us) \
  185. do { if (do_delays) mdelay(us); } while(0)
  186. /* Is the nandsim structure initialized ? */
  187. #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
  188. /* Good operation completion status */
  189. #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
  190. /* Operation failed completion status */
  191. #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
  192. /* Calculate the page offset in flash RAM image by (row, column) address */
  193. #define NS_RAW_OFFSET(ns) \
  194. (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
  195. /* Calculate the OOB offset in flash RAM image by (row, column) address */
  196. #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
  197. /* After a command is input, the simulator goes to one of the following states */
  198. #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
  199. #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
  200. #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
  201. #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
  202. #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
  203. #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
  204. #define STATE_CMD_STATUS 0x00000007 /* read status */
  205. #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
  206. #define STATE_CMD_READID 0x0000000A /* read ID */
  207. #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
  208. #define STATE_CMD_RESET 0x0000000C /* reset */
  209. #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
  210. #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
  211. #define STATE_CMD_MASK 0x0000000F /* command states mask */
  212. /* After an address is input, the simulator goes to one of these states */
  213. #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
  214. #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
  215. #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
  216. #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
  217. #define STATE_ADDR_MASK 0x00000070 /* address states mask */
  218. /* During data input/output the simulator is in these states */
  219. #define STATE_DATAIN 0x00000100 /* waiting for data input */
  220. #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
  221. #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
  222. #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
  223. #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
  224. #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
  225. #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
  226. /* Previous operation is done, ready to accept new requests */
  227. #define STATE_READY 0x00000000
  228. /* This state is used to mark that the next state isn't known yet */
  229. #define STATE_UNKNOWN 0x10000000
  230. /* Simulator's actions bit masks */
  231. #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
  232. #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
  233. #define ACTION_SECERASE 0x00300000 /* erase sector */
  234. #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
  235. #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
  236. #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
  237. #define ACTION_MASK 0x00700000 /* action mask */
  238. #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
  239. #define NS_OPER_STATES 6 /* Maximum number of states in operation */
  240. #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
  241. #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
  242. #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
  243. #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
  244. #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
  245. #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
  246. #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
  247. #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
  248. #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
  249. /* Remove action bits from state */
  250. #define NS_STATE(x) ((x) & ~ACTION_MASK)
  251. /*
  252. * Maximum previous states which need to be saved. Currently saving is
  253. * only needed for page program operation with preceded read command
  254. * (which is only valid for 512-byte pages).
  255. */
  256. #define NS_MAX_PREVSTATES 1
  257. /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
  258. #define NS_MAX_HELD_PAGES 16
  259. struct nandsim_debug_info {
  260. struct dentry *dfs_root;
  261. struct dentry *dfs_wear_report;
  262. };
  263. /*
  264. * A union to represent flash memory contents and flash buffer.
  265. */
  266. union ns_mem {
  267. u_char *byte; /* for byte access */
  268. uint16_t *word; /* for 16-bit word access */
  269. };
  270. /*
  271. * The structure which describes all the internal simulator data.
  272. */
  273. struct nandsim {
  274. struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
  275. unsigned int nbparts;
  276. uint busw; /* flash chip bus width (8 or 16) */
  277. u_char ids[4]; /* chip's ID bytes */
  278. uint32_t options; /* chip's characteristic bits */
  279. uint32_t state; /* current chip state */
  280. uint32_t nxstate; /* next expected state */
  281. uint32_t *op; /* current operation, NULL operations isn't known yet */
  282. uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
  283. uint16_t npstates; /* number of previous states saved */
  284. uint16_t stateidx; /* current state index */
  285. /* The simulated NAND flash pages array */
  286. union ns_mem *pages;
  287. /* Slab allocator for nand pages */
  288. struct kmem_cache *nand_pages_slab;
  289. /* Internal buffer of page + OOB size bytes */
  290. union ns_mem buf;
  291. /* NAND flash "geometry" */
  292. struct {
  293. uint64_t totsz; /* total flash size, bytes */
  294. uint32_t secsz; /* flash sector (erase block) size, bytes */
  295. uint pgsz; /* NAND flash page size, bytes */
  296. uint oobsz; /* page OOB area size, bytes */
  297. uint64_t totszoob; /* total flash size including OOB, bytes */
  298. uint pgszoob; /* page size including OOB , bytes*/
  299. uint secszoob; /* sector size including OOB, bytes */
  300. uint pgnum; /* total number of pages */
  301. uint pgsec; /* number of pages per sector */
  302. uint secshift; /* bits number in sector size */
  303. uint pgshift; /* bits number in page size */
  304. uint oobshift; /* bits number in OOB size */
  305. uint pgaddrbytes; /* bytes per page address */
  306. uint secaddrbytes; /* bytes per sector address */
  307. uint idbytes; /* the number ID bytes that this chip outputs */
  308. } geom;
  309. /* NAND flash internal registers */
  310. struct {
  311. unsigned command; /* the command register */
  312. u_char status; /* the status register */
  313. uint row; /* the page number */
  314. uint column; /* the offset within page */
  315. uint count; /* internal counter */
  316. uint num; /* number of bytes which must be processed */
  317. uint off; /* fixed page offset */
  318. } regs;
  319. /* NAND flash lines state */
  320. struct {
  321. int ce; /* chip Enable */
  322. int cle; /* command Latch Enable */
  323. int ale; /* address Latch Enable */
  324. int wp; /* write Protect */
  325. } lines;
  326. /* Fields needed when using a cache file */
  327. struct file *cfile; /* Open file */
  328. unsigned char *pages_written; /* Which pages have been written */
  329. void *file_buf;
  330. struct page *held_pages[NS_MAX_HELD_PAGES];
  331. int held_cnt;
  332. struct nandsim_debug_info dbg;
  333. };
  334. /*
  335. * Operations array. To perform any operation the simulator must pass
  336. * through the correspondent states chain.
  337. */
  338. static struct nandsim_operations {
  339. uint32_t reqopts; /* options which are required to perform the operation */
  340. uint32_t states[NS_OPER_STATES]; /* operation's states */
  341. } ops[NS_OPER_NUM] = {
  342. /* Read page + OOB from the beginning */
  343. {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
  344. STATE_DATAOUT, STATE_READY}},
  345. /* Read page + OOB from the second half */
  346. {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
  347. STATE_DATAOUT, STATE_READY}},
  348. /* Read OOB */
  349. {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
  350. STATE_DATAOUT, STATE_READY}},
  351. /* Program page starting from the beginning */
  352. {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
  353. STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  354. /* Program page starting from the beginning */
  355. {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
  356. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  357. /* Program page starting from the second half */
  358. {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
  359. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  360. /* Program OOB */
  361. {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
  362. STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
  363. /* Erase sector */
  364. {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
  365. /* Read status */
  366. {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
  367. /* Read ID */
  368. {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
  369. /* Large page devices read page */
  370. {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
  371. STATE_DATAOUT, STATE_READY}},
  372. /* Large page devices random page read */
  373. {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
  374. STATE_DATAOUT, STATE_READY}},
  375. };
  376. struct weak_block {
  377. struct list_head list;
  378. unsigned int erase_block_no;
  379. unsigned int max_erases;
  380. unsigned int erases_done;
  381. };
  382. static LIST_HEAD(weak_blocks);
  383. struct weak_page {
  384. struct list_head list;
  385. unsigned int page_no;
  386. unsigned int max_writes;
  387. unsigned int writes_done;
  388. };
  389. static LIST_HEAD(weak_pages);
  390. struct grave_page {
  391. struct list_head list;
  392. unsigned int page_no;
  393. unsigned int max_reads;
  394. unsigned int reads_done;
  395. };
  396. static LIST_HEAD(grave_pages);
  397. static unsigned long *erase_block_wear = NULL;
  398. static unsigned int wear_eb_count = 0;
  399. static unsigned long total_wear = 0;
  400. /* MTD structure for NAND controller */
  401. static struct mtd_info *nsmtd;
  402. static int nandsim_debugfs_show(struct seq_file *m, void *private)
  403. {
  404. unsigned long wmin = -1, wmax = 0, avg;
  405. unsigned long deciles[10], decile_max[10], tot = 0;
  406. unsigned int i;
  407. /* Calc wear stats */
  408. for (i = 0; i < wear_eb_count; ++i) {
  409. unsigned long wear = erase_block_wear[i];
  410. if (wear < wmin)
  411. wmin = wear;
  412. if (wear > wmax)
  413. wmax = wear;
  414. tot += wear;
  415. }
  416. for (i = 0; i < 9; ++i) {
  417. deciles[i] = 0;
  418. decile_max[i] = (wmax * (i + 1) + 5) / 10;
  419. }
  420. deciles[9] = 0;
  421. decile_max[9] = wmax;
  422. for (i = 0; i < wear_eb_count; ++i) {
  423. int d;
  424. unsigned long wear = erase_block_wear[i];
  425. for (d = 0; d < 10; ++d)
  426. if (wear <= decile_max[d]) {
  427. deciles[d] += 1;
  428. break;
  429. }
  430. }
  431. avg = tot / wear_eb_count;
  432. /* Output wear report */
  433. seq_printf(m, "Total numbers of erases: %lu\n", tot);
  434. seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
  435. seq_printf(m, "Average number of erases: %lu\n", avg);
  436. seq_printf(m, "Maximum number of erases: %lu\n", wmax);
  437. seq_printf(m, "Minimum number of erases: %lu\n", wmin);
  438. for (i = 0; i < 10; ++i) {
  439. unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
  440. if (from > decile_max[i])
  441. continue;
  442. seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
  443. from,
  444. decile_max[i],
  445. deciles[i]);
  446. }
  447. return 0;
  448. }
  449. static int nandsim_debugfs_open(struct inode *inode, struct file *file)
  450. {
  451. return single_open(file, nandsim_debugfs_show, inode->i_private);
  452. }
  453. static const struct file_operations dfs_fops = {
  454. .open = nandsim_debugfs_open,
  455. .read = seq_read,
  456. .llseek = seq_lseek,
  457. .release = single_release,
  458. };
  459. /**
  460. * nandsim_debugfs_create - initialize debugfs
  461. * @dev: nandsim device description object
  462. *
  463. * This function creates all debugfs files for UBI device @ubi. Returns zero in
  464. * case of success and a negative error code in case of failure.
  465. */
  466. static int nandsim_debugfs_create(struct nandsim *dev)
  467. {
  468. struct nandsim_debug_info *dbg = &dev->dbg;
  469. struct dentry *dent;
  470. int err;
  471. if (!IS_ENABLED(CONFIG_DEBUG_FS))
  472. return 0;
  473. dent = debugfs_create_dir("nandsim", NULL);
  474. if (IS_ERR_OR_NULL(dent)) {
  475. int err = dent ? -ENODEV : PTR_ERR(dent);
  476. NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
  477. err);
  478. return err;
  479. }
  480. dbg->dfs_root = dent;
  481. dent = debugfs_create_file("wear_report", S_IRUSR,
  482. dbg->dfs_root, dev, &dfs_fops);
  483. if (IS_ERR_OR_NULL(dent))
  484. goto out_remove;
  485. dbg->dfs_wear_report = dent;
  486. return 0;
  487. out_remove:
  488. debugfs_remove_recursive(dbg->dfs_root);
  489. err = dent ? PTR_ERR(dent) : -ENODEV;
  490. return err;
  491. }
  492. /**
  493. * nandsim_debugfs_remove - destroy all debugfs files
  494. */
  495. static void nandsim_debugfs_remove(struct nandsim *ns)
  496. {
  497. if (IS_ENABLED(CONFIG_DEBUG_FS))
  498. debugfs_remove_recursive(ns->dbg.dfs_root);
  499. }
  500. /*
  501. * Allocate array of page pointers, create slab allocation for an array
  502. * and initialize the array by NULL pointers.
  503. *
  504. * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
  505. */
  506. static int alloc_device(struct nandsim *ns)
  507. {
  508. struct file *cfile;
  509. int i, err;
  510. if (cache_file) {
  511. cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
  512. if (IS_ERR(cfile))
  513. return PTR_ERR(cfile);
  514. if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
  515. NS_ERR("alloc_device: cache file not readable\n");
  516. err = -EINVAL;
  517. goto err_close;
  518. }
  519. if (!cfile->f_op->write && !cfile->f_op->aio_write) {
  520. NS_ERR("alloc_device: cache file not writeable\n");
  521. err = -EINVAL;
  522. goto err_close;
  523. }
  524. ns->pages_written = vzalloc(ns->geom.pgnum);
  525. if (!ns->pages_written) {
  526. NS_ERR("alloc_device: unable to allocate pages written array\n");
  527. err = -ENOMEM;
  528. goto err_close;
  529. }
  530. ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
  531. if (!ns->file_buf) {
  532. NS_ERR("alloc_device: unable to allocate file buf\n");
  533. err = -ENOMEM;
  534. goto err_free;
  535. }
  536. ns->cfile = cfile;
  537. return 0;
  538. }
  539. ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
  540. if (!ns->pages) {
  541. NS_ERR("alloc_device: unable to allocate page array\n");
  542. return -ENOMEM;
  543. }
  544. for (i = 0; i < ns->geom.pgnum; i++) {
  545. ns->pages[i].byte = NULL;
  546. }
  547. ns->nand_pages_slab = kmem_cache_create("nandsim",
  548. ns->geom.pgszoob, 0, 0, NULL);
  549. if (!ns->nand_pages_slab) {
  550. NS_ERR("cache_create: unable to create kmem_cache\n");
  551. return -ENOMEM;
  552. }
  553. return 0;
  554. err_free:
  555. vfree(ns->pages_written);
  556. err_close:
  557. filp_close(cfile, NULL);
  558. return err;
  559. }
  560. /*
  561. * Free any allocated pages, and free the array of page pointers.
  562. */
  563. static void free_device(struct nandsim *ns)
  564. {
  565. int i;
  566. if (ns->cfile) {
  567. kfree(ns->file_buf);
  568. vfree(ns->pages_written);
  569. filp_close(ns->cfile, NULL);
  570. return;
  571. }
  572. if (ns->pages) {
  573. for (i = 0; i < ns->geom.pgnum; i++) {
  574. if (ns->pages[i].byte)
  575. kmem_cache_free(ns->nand_pages_slab,
  576. ns->pages[i].byte);
  577. }
  578. kmem_cache_destroy(ns->nand_pages_slab);
  579. vfree(ns->pages);
  580. }
  581. }
  582. static char *get_partition_name(int i)
  583. {
  584. char buf[64];
  585. sprintf(buf, "NAND simulator partition %d", i);
  586. return kstrdup(buf, GFP_KERNEL);
  587. }
  588. /*
  589. * Initialize the nandsim structure.
  590. *
  591. * RETURNS: 0 if success, -ERRNO if failure.
  592. */
  593. static int init_nandsim(struct mtd_info *mtd)
  594. {
  595. struct nand_chip *chip = mtd->priv;
  596. struct nandsim *ns = chip->priv;
  597. int i, ret = 0;
  598. uint64_t remains;
  599. uint64_t next_offset;
  600. if (NS_IS_INITIALIZED(ns)) {
  601. NS_ERR("init_nandsim: nandsim is already initialized\n");
  602. return -EIO;
  603. }
  604. /* Force mtd to not do delays */
  605. chip->chip_delay = 0;
  606. /* Initialize the NAND flash parameters */
  607. ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
  608. ns->geom.totsz = mtd->size;
  609. ns->geom.pgsz = mtd->writesize;
  610. ns->geom.oobsz = mtd->oobsize;
  611. ns->geom.secsz = mtd->erasesize;
  612. ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
  613. ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
  614. ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
  615. ns->geom.secshift = ffs(ns->geom.secsz) - 1;
  616. ns->geom.pgshift = chip->page_shift;
  617. ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
  618. ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
  619. ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
  620. ns->options = 0;
  621. if (ns->geom.pgsz == 256) {
  622. ns->options |= OPT_PAGE256;
  623. }
  624. else if (ns->geom.pgsz == 512) {
  625. ns->options |= OPT_PAGE512;
  626. if (ns->busw == 8)
  627. ns->options |= OPT_PAGE512_8BIT;
  628. } else if (ns->geom.pgsz == 2048) {
  629. ns->options |= OPT_PAGE2048;
  630. } else if (ns->geom.pgsz == 4096) {
  631. ns->options |= OPT_PAGE4096;
  632. } else {
  633. NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
  634. return -EIO;
  635. }
  636. if (ns->options & OPT_SMALLPAGE) {
  637. if (ns->geom.totsz <= (32 << 20)) {
  638. ns->geom.pgaddrbytes = 3;
  639. ns->geom.secaddrbytes = 2;
  640. } else {
  641. ns->geom.pgaddrbytes = 4;
  642. ns->geom.secaddrbytes = 3;
  643. }
  644. } else {
  645. if (ns->geom.totsz <= (128 << 20)) {
  646. ns->geom.pgaddrbytes = 4;
  647. ns->geom.secaddrbytes = 2;
  648. } else {
  649. ns->geom.pgaddrbytes = 5;
  650. ns->geom.secaddrbytes = 3;
  651. }
  652. }
  653. /* Fill the partition_info structure */
  654. if (parts_num > ARRAY_SIZE(ns->partitions)) {
  655. NS_ERR("too many partitions.\n");
  656. ret = -EINVAL;
  657. goto error;
  658. }
  659. remains = ns->geom.totsz;
  660. next_offset = 0;
  661. for (i = 0; i < parts_num; ++i) {
  662. uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
  663. if (!part_sz || part_sz > remains) {
  664. NS_ERR("bad partition size.\n");
  665. ret = -EINVAL;
  666. goto error;
  667. }
  668. ns->partitions[i].name = get_partition_name(i);
  669. ns->partitions[i].offset = next_offset;
  670. ns->partitions[i].size = part_sz;
  671. next_offset += ns->partitions[i].size;
  672. remains -= ns->partitions[i].size;
  673. }
  674. ns->nbparts = parts_num;
  675. if (remains) {
  676. if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
  677. NS_ERR("too many partitions.\n");
  678. ret = -EINVAL;
  679. goto error;
  680. }
  681. ns->partitions[i].name = get_partition_name(i);
  682. ns->partitions[i].offset = next_offset;
  683. ns->partitions[i].size = remains;
  684. ns->nbparts += 1;
  685. }
  686. /* Detect how many ID bytes the NAND chip outputs */
  687. for (i = 0; nand_flash_ids[i].name != NULL; i++) {
  688. if (second_id_byte != nand_flash_ids[i].id)
  689. continue;
  690. }
  691. if (ns->busw == 16)
  692. NS_WARN("16-bit flashes support wasn't tested\n");
  693. printk("flash size: %llu MiB\n",
  694. (unsigned long long)ns->geom.totsz >> 20);
  695. printk("page size: %u bytes\n", ns->geom.pgsz);
  696. printk("OOB area size: %u bytes\n", ns->geom.oobsz);
  697. printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
  698. printk("pages number: %u\n", ns->geom.pgnum);
  699. printk("pages per sector: %u\n", ns->geom.pgsec);
  700. printk("bus width: %u\n", ns->busw);
  701. printk("bits in sector size: %u\n", ns->geom.secshift);
  702. printk("bits in page size: %u\n", ns->geom.pgshift);
  703. printk("bits in OOB size: %u\n", ns->geom.oobshift);
  704. printk("flash size with OOB: %llu KiB\n",
  705. (unsigned long long)ns->geom.totszoob >> 10);
  706. printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
  707. printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
  708. printk("options: %#x\n", ns->options);
  709. if ((ret = alloc_device(ns)) != 0)
  710. goto error;
  711. /* Allocate / initialize the internal buffer */
  712. ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
  713. if (!ns->buf.byte) {
  714. NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
  715. ns->geom.pgszoob);
  716. ret = -ENOMEM;
  717. goto error;
  718. }
  719. memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
  720. return 0;
  721. error:
  722. free_device(ns);
  723. return ret;
  724. }
  725. /*
  726. * Free the nandsim structure.
  727. */
  728. static void free_nandsim(struct nandsim *ns)
  729. {
  730. kfree(ns->buf.byte);
  731. free_device(ns);
  732. return;
  733. }
  734. static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
  735. {
  736. char *w;
  737. int zero_ok;
  738. unsigned int erase_block_no;
  739. loff_t offset;
  740. if (!badblocks)
  741. return 0;
  742. w = badblocks;
  743. do {
  744. zero_ok = (*w == '0' ? 1 : 0);
  745. erase_block_no = simple_strtoul(w, &w, 0);
  746. if (!zero_ok && !erase_block_no) {
  747. NS_ERR("invalid badblocks.\n");
  748. return -EINVAL;
  749. }
  750. offset = erase_block_no * ns->geom.secsz;
  751. if (mtd_block_markbad(mtd, offset)) {
  752. NS_ERR("invalid badblocks.\n");
  753. return -EINVAL;
  754. }
  755. if (*w == ',')
  756. w += 1;
  757. } while (*w);
  758. return 0;
  759. }
  760. static int parse_weakblocks(void)
  761. {
  762. char *w;
  763. int zero_ok;
  764. unsigned int erase_block_no;
  765. unsigned int max_erases;
  766. struct weak_block *wb;
  767. if (!weakblocks)
  768. return 0;
  769. w = weakblocks;
  770. do {
  771. zero_ok = (*w == '0' ? 1 : 0);
  772. erase_block_no = simple_strtoul(w, &w, 0);
  773. if (!zero_ok && !erase_block_no) {
  774. NS_ERR("invalid weakblocks.\n");
  775. return -EINVAL;
  776. }
  777. max_erases = 3;
  778. if (*w == ':') {
  779. w += 1;
  780. max_erases = simple_strtoul(w, &w, 0);
  781. }
  782. if (*w == ',')
  783. w += 1;
  784. wb = kzalloc(sizeof(*wb), GFP_KERNEL);
  785. if (!wb) {
  786. NS_ERR("unable to allocate memory.\n");
  787. return -ENOMEM;
  788. }
  789. wb->erase_block_no = erase_block_no;
  790. wb->max_erases = max_erases;
  791. list_add(&wb->list, &weak_blocks);
  792. } while (*w);
  793. return 0;
  794. }
  795. static int erase_error(unsigned int erase_block_no)
  796. {
  797. struct weak_block *wb;
  798. list_for_each_entry(wb, &weak_blocks, list)
  799. if (wb->erase_block_no == erase_block_no) {
  800. if (wb->erases_done >= wb->max_erases)
  801. return 1;
  802. wb->erases_done += 1;
  803. return 0;
  804. }
  805. return 0;
  806. }
  807. static int parse_weakpages(void)
  808. {
  809. char *w;
  810. int zero_ok;
  811. unsigned int page_no;
  812. unsigned int max_writes;
  813. struct weak_page *wp;
  814. if (!weakpages)
  815. return 0;
  816. w = weakpages;
  817. do {
  818. zero_ok = (*w == '0' ? 1 : 0);
  819. page_no = simple_strtoul(w, &w, 0);
  820. if (!zero_ok && !page_no) {
  821. NS_ERR("invalid weakpagess.\n");
  822. return -EINVAL;
  823. }
  824. max_writes = 3;
  825. if (*w == ':') {
  826. w += 1;
  827. max_writes = simple_strtoul(w, &w, 0);
  828. }
  829. if (*w == ',')
  830. w += 1;
  831. wp = kzalloc(sizeof(*wp), GFP_KERNEL);
  832. if (!wp) {
  833. NS_ERR("unable to allocate memory.\n");
  834. return -ENOMEM;
  835. }
  836. wp->page_no = page_no;
  837. wp->max_writes = max_writes;
  838. list_add(&wp->list, &weak_pages);
  839. } while (*w);
  840. return 0;
  841. }
  842. static int write_error(unsigned int page_no)
  843. {
  844. struct weak_page *wp;
  845. list_for_each_entry(wp, &weak_pages, list)
  846. if (wp->page_no == page_no) {
  847. if (wp->writes_done >= wp->max_writes)
  848. return 1;
  849. wp->writes_done += 1;
  850. return 0;
  851. }
  852. return 0;
  853. }
  854. static int parse_gravepages(void)
  855. {
  856. char *g;
  857. int zero_ok;
  858. unsigned int page_no;
  859. unsigned int max_reads;
  860. struct grave_page *gp;
  861. if (!gravepages)
  862. return 0;
  863. g = gravepages;
  864. do {
  865. zero_ok = (*g == '0' ? 1 : 0);
  866. page_no = simple_strtoul(g, &g, 0);
  867. if (!zero_ok && !page_no) {
  868. NS_ERR("invalid gravepagess.\n");
  869. return -EINVAL;
  870. }
  871. max_reads = 3;
  872. if (*g == ':') {
  873. g += 1;
  874. max_reads = simple_strtoul(g, &g, 0);
  875. }
  876. if (*g == ',')
  877. g += 1;
  878. gp = kzalloc(sizeof(*gp), GFP_KERNEL);
  879. if (!gp) {
  880. NS_ERR("unable to allocate memory.\n");
  881. return -ENOMEM;
  882. }
  883. gp->page_no = page_no;
  884. gp->max_reads = max_reads;
  885. list_add(&gp->list, &grave_pages);
  886. } while (*g);
  887. return 0;
  888. }
  889. static int read_error(unsigned int page_no)
  890. {
  891. struct grave_page *gp;
  892. list_for_each_entry(gp, &grave_pages, list)
  893. if (gp->page_no == page_no) {
  894. if (gp->reads_done >= gp->max_reads)
  895. return 1;
  896. gp->reads_done += 1;
  897. return 0;
  898. }
  899. return 0;
  900. }
  901. static void free_lists(void)
  902. {
  903. struct list_head *pos, *n;
  904. list_for_each_safe(pos, n, &weak_blocks) {
  905. list_del(pos);
  906. kfree(list_entry(pos, struct weak_block, list));
  907. }
  908. list_for_each_safe(pos, n, &weak_pages) {
  909. list_del(pos);
  910. kfree(list_entry(pos, struct weak_page, list));
  911. }
  912. list_for_each_safe(pos, n, &grave_pages) {
  913. list_del(pos);
  914. kfree(list_entry(pos, struct grave_page, list));
  915. }
  916. kfree(erase_block_wear);
  917. }
  918. static int setup_wear_reporting(struct mtd_info *mtd)
  919. {
  920. size_t mem;
  921. wear_eb_count = div_u64(mtd->size, mtd->erasesize);
  922. mem = wear_eb_count * sizeof(unsigned long);
  923. if (mem / sizeof(unsigned long) != wear_eb_count) {
  924. NS_ERR("Too many erase blocks for wear reporting\n");
  925. return -ENOMEM;
  926. }
  927. erase_block_wear = kzalloc(mem, GFP_KERNEL);
  928. if (!erase_block_wear) {
  929. NS_ERR("Too many erase blocks for wear reporting\n");
  930. return -ENOMEM;
  931. }
  932. return 0;
  933. }
  934. static void update_wear(unsigned int erase_block_no)
  935. {
  936. if (!erase_block_wear)
  937. return;
  938. total_wear += 1;
  939. /*
  940. * TODO: Notify this through a debugfs entry,
  941. * instead of showing an error message.
  942. */
  943. if (total_wear == 0)
  944. NS_ERR("Erase counter total overflow\n");
  945. erase_block_wear[erase_block_no] += 1;
  946. if (erase_block_wear[erase_block_no] == 0)
  947. NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
  948. }
  949. /*
  950. * Returns the string representation of 'state' state.
  951. */
  952. static char *get_state_name(uint32_t state)
  953. {
  954. switch (NS_STATE(state)) {
  955. case STATE_CMD_READ0:
  956. return "STATE_CMD_READ0";
  957. case STATE_CMD_READ1:
  958. return "STATE_CMD_READ1";
  959. case STATE_CMD_PAGEPROG:
  960. return "STATE_CMD_PAGEPROG";
  961. case STATE_CMD_READOOB:
  962. return "STATE_CMD_READOOB";
  963. case STATE_CMD_READSTART:
  964. return "STATE_CMD_READSTART";
  965. case STATE_CMD_ERASE1:
  966. return "STATE_CMD_ERASE1";
  967. case STATE_CMD_STATUS:
  968. return "STATE_CMD_STATUS";
  969. case STATE_CMD_SEQIN:
  970. return "STATE_CMD_SEQIN";
  971. case STATE_CMD_READID:
  972. return "STATE_CMD_READID";
  973. case STATE_CMD_ERASE2:
  974. return "STATE_CMD_ERASE2";
  975. case STATE_CMD_RESET:
  976. return "STATE_CMD_RESET";
  977. case STATE_CMD_RNDOUT:
  978. return "STATE_CMD_RNDOUT";
  979. case STATE_CMD_RNDOUTSTART:
  980. return "STATE_CMD_RNDOUTSTART";
  981. case STATE_ADDR_PAGE:
  982. return "STATE_ADDR_PAGE";
  983. case STATE_ADDR_SEC:
  984. return "STATE_ADDR_SEC";
  985. case STATE_ADDR_ZERO:
  986. return "STATE_ADDR_ZERO";
  987. case STATE_ADDR_COLUMN:
  988. return "STATE_ADDR_COLUMN";
  989. case STATE_DATAIN:
  990. return "STATE_DATAIN";
  991. case STATE_DATAOUT:
  992. return "STATE_DATAOUT";
  993. case STATE_DATAOUT_ID:
  994. return "STATE_DATAOUT_ID";
  995. case STATE_DATAOUT_STATUS:
  996. return "STATE_DATAOUT_STATUS";
  997. case STATE_DATAOUT_STATUS_M:
  998. return "STATE_DATAOUT_STATUS_M";
  999. case STATE_READY:
  1000. return "STATE_READY";
  1001. case STATE_UNKNOWN:
  1002. return "STATE_UNKNOWN";
  1003. }
  1004. NS_ERR("get_state_name: unknown state, BUG\n");
  1005. return NULL;
  1006. }
  1007. /*
  1008. * Check if command is valid.
  1009. *
  1010. * RETURNS: 1 if wrong command, 0 if right.
  1011. */
  1012. static int check_command(int cmd)
  1013. {
  1014. switch (cmd) {
  1015. case NAND_CMD_READ0:
  1016. case NAND_CMD_READ1:
  1017. case NAND_CMD_READSTART:
  1018. case NAND_CMD_PAGEPROG:
  1019. case NAND_CMD_READOOB:
  1020. case NAND_CMD_ERASE1:
  1021. case NAND_CMD_STATUS:
  1022. case NAND_CMD_SEQIN:
  1023. case NAND_CMD_READID:
  1024. case NAND_CMD_ERASE2:
  1025. case NAND_CMD_RESET:
  1026. case NAND_CMD_RNDOUT:
  1027. case NAND_CMD_RNDOUTSTART:
  1028. return 0;
  1029. default:
  1030. return 1;
  1031. }
  1032. }
  1033. /*
  1034. * Returns state after command is accepted by command number.
  1035. */
  1036. static uint32_t get_state_by_command(unsigned command)
  1037. {
  1038. switch (command) {
  1039. case NAND_CMD_READ0:
  1040. return STATE_CMD_READ0;
  1041. case NAND_CMD_READ1:
  1042. return STATE_CMD_READ1;
  1043. case NAND_CMD_PAGEPROG:
  1044. return STATE_CMD_PAGEPROG;
  1045. case NAND_CMD_READSTART:
  1046. return STATE_CMD_READSTART;
  1047. case NAND_CMD_READOOB:
  1048. return STATE_CMD_READOOB;
  1049. case NAND_CMD_ERASE1:
  1050. return STATE_CMD_ERASE1;
  1051. case NAND_CMD_STATUS:
  1052. return STATE_CMD_STATUS;
  1053. case NAND_CMD_SEQIN:
  1054. return STATE_CMD_SEQIN;
  1055. case NAND_CMD_READID:
  1056. return STATE_CMD_READID;
  1057. case NAND_CMD_ERASE2:
  1058. return STATE_CMD_ERASE2;
  1059. case NAND_CMD_RESET:
  1060. return STATE_CMD_RESET;
  1061. case NAND_CMD_RNDOUT:
  1062. return STATE_CMD_RNDOUT;
  1063. case NAND_CMD_RNDOUTSTART:
  1064. return STATE_CMD_RNDOUTSTART;
  1065. }
  1066. NS_ERR("get_state_by_command: unknown command, BUG\n");
  1067. return 0;
  1068. }
  1069. /*
  1070. * Move an address byte to the correspondent internal register.
  1071. */
  1072. static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
  1073. {
  1074. uint byte = (uint)bt;
  1075. if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
  1076. ns->regs.column |= (byte << 8 * ns->regs.count);
  1077. else {
  1078. ns->regs.row |= (byte << 8 * (ns->regs.count -
  1079. ns->geom.pgaddrbytes +
  1080. ns->geom.secaddrbytes));
  1081. }
  1082. return;
  1083. }
  1084. /*
  1085. * Switch to STATE_READY state.
  1086. */
  1087. static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
  1088. {
  1089. NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
  1090. ns->state = STATE_READY;
  1091. ns->nxstate = STATE_UNKNOWN;
  1092. ns->op = NULL;
  1093. ns->npstates = 0;
  1094. ns->stateidx = 0;
  1095. ns->regs.num = 0;
  1096. ns->regs.count = 0;
  1097. ns->regs.off = 0;
  1098. ns->regs.row = 0;
  1099. ns->regs.column = 0;
  1100. ns->regs.status = status;
  1101. }
  1102. /*
  1103. * If the operation isn't known yet, try to find it in the global array
  1104. * of supported operations.
  1105. *
  1106. * Operation can be unknown because of the following.
  1107. * 1. New command was accepted and this is the first call to find the
  1108. * correspondent states chain. In this case ns->npstates = 0;
  1109. * 2. There are several operations which begin with the same command(s)
  1110. * (for example program from the second half and read from the
  1111. * second half operations both begin with the READ1 command). In this
  1112. * case the ns->pstates[] array contains previous states.
  1113. *
  1114. * Thus, the function tries to find operation containing the following
  1115. * states (if the 'flag' parameter is 0):
  1116. * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
  1117. *
  1118. * If (one and only one) matching operation is found, it is accepted (
  1119. * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
  1120. * zeroed).
  1121. *
  1122. * If there are several matches, the current state is pushed to the
  1123. * ns->pstates.
  1124. *
  1125. * The operation can be unknown only while commands are input to the chip.
  1126. * As soon as address command is accepted, the operation must be known.
  1127. * In such situation the function is called with 'flag' != 0, and the
  1128. * operation is searched using the following pattern:
  1129. * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
  1130. *
  1131. * It is supposed that this pattern must either match one operation or
  1132. * none. There can't be ambiguity in that case.
  1133. *
  1134. * If no matches found, the function does the following:
  1135. * 1. if there are saved states present, try to ignore them and search
  1136. * again only using the last command. If nothing was found, switch
  1137. * to the STATE_READY state.
  1138. * 2. if there are no saved states, switch to the STATE_READY state.
  1139. *
  1140. * RETURNS: -2 - no matched operations found.
  1141. * -1 - several matches.
  1142. * 0 - operation is found.
  1143. */
  1144. static int find_operation(struct nandsim *ns, uint32_t flag)
  1145. {
  1146. int opsfound = 0;
  1147. int i, j, idx = 0;
  1148. for (i = 0; i < NS_OPER_NUM; i++) {
  1149. int found = 1;
  1150. if (!(ns->options & ops[i].reqopts))
  1151. /* Ignore operations we can't perform */
  1152. continue;
  1153. if (flag) {
  1154. if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
  1155. continue;
  1156. } else {
  1157. if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
  1158. continue;
  1159. }
  1160. for (j = 0; j < ns->npstates; j++)
  1161. if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
  1162. && (ns->options & ops[idx].reqopts)) {
  1163. found = 0;
  1164. break;
  1165. }
  1166. if (found) {
  1167. idx = i;
  1168. opsfound += 1;
  1169. }
  1170. }
  1171. if (opsfound == 1) {
  1172. /* Exact match */
  1173. ns->op = &ops[idx].states[0];
  1174. if (flag) {
  1175. /*
  1176. * In this case the find_operation function was
  1177. * called when address has just began input. But it isn't
  1178. * yet fully input and the current state must
  1179. * not be one of STATE_ADDR_*, but the STATE_ADDR_*
  1180. * state must be the next state (ns->nxstate).
  1181. */
  1182. ns->stateidx = ns->npstates - 1;
  1183. } else {
  1184. ns->stateidx = ns->npstates;
  1185. }
  1186. ns->npstates = 0;
  1187. ns->state = ns->op[ns->stateidx];
  1188. ns->nxstate = ns->op[ns->stateidx + 1];
  1189. NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
  1190. idx, get_state_name(ns->state), get_state_name(ns->nxstate));
  1191. return 0;
  1192. }
  1193. if (opsfound == 0) {
  1194. /* Nothing was found. Try to ignore previous commands (if any) and search again */
  1195. if (ns->npstates != 0) {
  1196. NS_DBG("find_operation: no operation found, try again with state %s\n",
  1197. get_state_name(ns->state));
  1198. ns->npstates = 0;
  1199. return find_operation(ns, 0);
  1200. }
  1201. NS_DBG("find_operation: no operations found\n");
  1202. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1203. return -2;
  1204. }
  1205. if (flag) {
  1206. /* This shouldn't happen */
  1207. NS_DBG("find_operation: BUG, operation must be known if address is input\n");
  1208. return -2;
  1209. }
  1210. NS_DBG("find_operation: there is still ambiguity\n");
  1211. ns->pstates[ns->npstates++] = ns->state;
  1212. return -1;
  1213. }
  1214. static void put_pages(struct nandsim *ns)
  1215. {
  1216. int i;
  1217. for (i = 0; i < ns->held_cnt; i++)
  1218. page_cache_release(ns->held_pages[i]);
  1219. }
  1220. /* Get page cache pages in advance to provide NOFS memory allocation */
  1221. static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
  1222. {
  1223. pgoff_t index, start_index, end_index;
  1224. struct page *page;
  1225. struct address_space *mapping = file->f_mapping;
  1226. start_index = pos >> PAGE_CACHE_SHIFT;
  1227. end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  1228. if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
  1229. return -EINVAL;
  1230. ns->held_cnt = 0;
  1231. for (index = start_index; index <= end_index; index++) {
  1232. page = find_get_page(mapping, index);
  1233. if (page == NULL) {
  1234. page = find_or_create_page(mapping, index, GFP_NOFS);
  1235. if (page == NULL) {
  1236. write_inode_now(mapping->host, 1);
  1237. page = find_or_create_page(mapping, index, GFP_NOFS);
  1238. }
  1239. if (page == NULL) {
  1240. put_pages(ns);
  1241. return -ENOMEM;
  1242. }
  1243. unlock_page(page);
  1244. }
  1245. ns->held_pages[ns->held_cnt++] = page;
  1246. }
  1247. return 0;
  1248. }
  1249. static int set_memalloc(void)
  1250. {
  1251. if (current->flags & PF_MEMALLOC)
  1252. return 0;
  1253. current->flags |= PF_MEMALLOC;
  1254. return 1;
  1255. }
  1256. static void clear_memalloc(int memalloc)
  1257. {
  1258. if (memalloc)
  1259. current->flags &= ~PF_MEMALLOC;
  1260. }
  1261. static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
  1262. {
  1263. ssize_t tx;
  1264. int err, memalloc;
  1265. err = get_pages(ns, file, count, pos);
  1266. if (err)
  1267. return err;
  1268. memalloc = set_memalloc();
  1269. tx = kernel_read(file, pos, buf, count);
  1270. clear_memalloc(memalloc);
  1271. put_pages(ns);
  1272. return tx;
  1273. }
  1274. static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
  1275. {
  1276. ssize_t tx;
  1277. int err, memalloc;
  1278. err = get_pages(ns, file, count, pos);
  1279. if (err)
  1280. return err;
  1281. memalloc = set_memalloc();
  1282. tx = kernel_write(file, buf, count, pos);
  1283. clear_memalloc(memalloc);
  1284. put_pages(ns);
  1285. return tx;
  1286. }
  1287. /*
  1288. * Returns a pointer to the current page.
  1289. */
  1290. static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
  1291. {
  1292. return &(ns->pages[ns->regs.row]);
  1293. }
  1294. /*
  1295. * Retuns a pointer to the current byte, within the current page.
  1296. */
  1297. static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
  1298. {
  1299. return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
  1300. }
  1301. int do_read_error(struct nandsim *ns, int num)
  1302. {
  1303. unsigned int page_no = ns->regs.row;
  1304. if (read_error(page_no)) {
  1305. prandom_bytes(ns->buf.byte, num);
  1306. NS_WARN("simulating read error in page %u\n", page_no);
  1307. return 1;
  1308. }
  1309. return 0;
  1310. }
  1311. void do_bit_flips(struct nandsim *ns, int num)
  1312. {
  1313. if (bitflips && prandom_u32() < (1 << 22)) {
  1314. int flips = 1;
  1315. if (bitflips > 1)
  1316. flips = (prandom_u32() % (int) bitflips) + 1;
  1317. while (flips--) {
  1318. int pos = prandom_u32() % (num * 8);
  1319. ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
  1320. NS_WARN("read_page: flipping bit %d in page %d "
  1321. "reading from %d ecc: corrected=%u failed=%u\n",
  1322. pos, ns->regs.row, ns->regs.column + ns->regs.off,
  1323. nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
  1324. }
  1325. }
  1326. }
  1327. /*
  1328. * Fill the NAND buffer with data read from the specified page.
  1329. */
  1330. static void read_page(struct nandsim *ns, int num)
  1331. {
  1332. union ns_mem *mypage;
  1333. if (ns->cfile) {
  1334. if (!ns->pages_written[ns->regs.row]) {
  1335. NS_DBG("read_page: page %d not written\n", ns->regs.row);
  1336. memset(ns->buf.byte, 0xFF, num);
  1337. } else {
  1338. loff_t pos;
  1339. ssize_t tx;
  1340. NS_DBG("read_page: page %d written, reading from %d\n",
  1341. ns->regs.row, ns->regs.column + ns->regs.off);
  1342. if (do_read_error(ns, num))
  1343. return;
  1344. pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
  1345. tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
  1346. if (tx != num) {
  1347. NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1348. return;
  1349. }
  1350. do_bit_flips(ns, num);
  1351. }
  1352. return;
  1353. }
  1354. mypage = NS_GET_PAGE(ns);
  1355. if (mypage->byte == NULL) {
  1356. NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
  1357. memset(ns->buf.byte, 0xFF, num);
  1358. } else {
  1359. NS_DBG("read_page: page %d allocated, reading from %d\n",
  1360. ns->regs.row, ns->regs.column + ns->regs.off);
  1361. if (do_read_error(ns, num))
  1362. return;
  1363. memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
  1364. do_bit_flips(ns, num);
  1365. }
  1366. }
  1367. /*
  1368. * Erase all pages in the specified sector.
  1369. */
  1370. static void erase_sector(struct nandsim *ns)
  1371. {
  1372. union ns_mem *mypage;
  1373. int i;
  1374. if (ns->cfile) {
  1375. for (i = 0; i < ns->geom.pgsec; i++)
  1376. if (ns->pages_written[ns->regs.row + i]) {
  1377. NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
  1378. ns->pages_written[ns->regs.row + i] = 0;
  1379. }
  1380. return;
  1381. }
  1382. mypage = NS_GET_PAGE(ns);
  1383. for (i = 0; i < ns->geom.pgsec; i++) {
  1384. if (mypage->byte != NULL) {
  1385. NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
  1386. kmem_cache_free(ns->nand_pages_slab, mypage->byte);
  1387. mypage->byte = NULL;
  1388. }
  1389. mypage++;
  1390. }
  1391. }
  1392. /*
  1393. * Program the specified page with the contents from the NAND buffer.
  1394. */
  1395. static int prog_page(struct nandsim *ns, int num)
  1396. {
  1397. int i;
  1398. union ns_mem *mypage;
  1399. u_char *pg_off;
  1400. if (ns->cfile) {
  1401. loff_t off;
  1402. ssize_t tx;
  1403. int all;
  1404. NS_DBG("prog_page: writing page %d\n", ns->regs.row);
  1405. pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
  1406. off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
  1407. if (!ns->pages_written[ns->regs.row]) {
  1408. all = 1;
  1409. memset(ns->file_buf, 0xff, ns->geom.pgszoob);
  1410. } else {
  1411. all = 0;
  1412. tx = read_file(ns, ns->cfile, pg_off, num, off);
  1413. if (tx != num) {
  1414. NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1415. return -1;
  1416. }
  1417. }
  1418. for (i = 0; i < num; i++)
  1419. pg_off[i] &= ns->buf.byte[i];
  1420. if (all) {
  1421. loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
  1422. tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
  1423. if (tx != ns->geom.pgszoob) {
  1424. NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1425. return -1;
  1426. }
  1427. ns->pages_written[ns->regs.row] = 1;
  1428. } else {
  1429. tx = write_file(ns, ns->cfile, pg_off, num, off);
  1430. if (tx != num) {
  1431. NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
  1432. return -1;
  1433. }
  1434. }
  1435. return 0;
  1436. }
  1437. mypage = NS_GET_PAGE(ns);
  1438. if (mypage->byte == NULL) {
  1439. NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
  1440. /*
  1441. * We allocate memory with GFP_NOFS because a flash FS may
  1442. * utilize this. If it is holding an FS lock, then gets here,
  1443. * then kernel memory alloc runs writeback which goes to the FS
  1444. * again and deadlocks. This was seen in practice.
  1445. */
  1446. mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
  1447. if (mypage->byte == NULL) {
  1448. NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
  1449. return -1;
  1450. }
  1451. memset(mypage->byte, 0xFF, ns->geom.pgszoob);
  1452. }
  1453. pg_off = NS_PAGE_BYTE_OFF(ns);
  1454. for (i = 0; i < num; i++)
  1455. pg_off[i] &= ns->buf.byte[i];
  1456. return 0;
  1457. }
  1458. /*
  1459. * If state has any action bit, perform this action.
  1460. *
  1461. * RETURNS: 0 if success, -1 if error.
  1462. */
  1463. static int do_state_action(struct nandsim *ns, uint32_t action)
  1464. {
  1465. int num;
  1466. int busdiv = ns->busw == 8 ? 1 : 2;
  1467. unsigned int erase_block_no, page_no;
  1468. action &= ACTION_MASK;
  1469. /* Check that page address input is correct */
  1470. if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
  1471. NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
  1472. return -1;
  1473. }
  1474. switch (action) {
  1475. case ACTION_CPY:
  1476. /*
  1477. * Copy page data to the internal buffer.
  1478. */
  1479. /* Column shouldn't be very large */
  1480. if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
  1481. NS_ERR("do_state_action: column number is too large\n");
  1482. break;
  1483. }
  1484. num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1485. read_page(ns, num);
  1486. NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
  1487. num, NS_RAW_OFFSET(ns) + ns->regs.off);
  1488. if (ns->regs.off == 0)
  1489. NS_LOG("read page %d\n", ns->regs.row);
  1490. else if (ns->regs.off < ns->geom.pgsz)
  1491. NS_LOG("read page %d (second half)\n", ns->regs.row);
  1492. else
  1493. NS_LOG("read OOB of page %d\n", ns->regs.row);
  1494. NS_UDELAY(access_delay);
  1495. NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
  1496. break;
  1497. case ACTION_SECERASE:
  1498. /*
  1499. * Erase sector.
  1500. */
  1501. if (ns->lines.wp) {
  1502. NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
  1503. return -1;
  1504. }
  1505. if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
  1506. || (ns->regs.row & ~(ns->geom.secsz - 1))) {
  1507. NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
  1508. return -1;
  1509. }
  1510. ns->regs.row = (ns->regs.row <<
  1511. 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
  1512. ns->regs.column = 0;
  1513. erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
  1514. NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
  1515. ns->regs.row, NS_RAW_OFFSET(ns));
  1516. NS_LOG("erase sector %u\n", erase_block_no);
  1517. erase_sector(ns);
  1518. NS_MDELAY(erase_delay);
  1519. if (erase_block_wear)
  1520. update_wear(erase_block_no);
  1521. if (erase_error(erase_block_no)) {
  1522. NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
  1523. return -1;
  1524. }
  1525. break;
  1526. case ACTION_PRGPAGE:
  1527. /*
  1528. * Program page - move internal buffer data to the page.
  1529. */
  1530. if (ns->lines.wp) {
  1531. NS_WARN("do_state_action: device is write-protected, programm\n");
  1532. return -1;
  1533. }
  1534. num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1535. if (num != ns->regs.count) {
  1536. NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
  1537. ns->regs.count, num);
  1538. return -1;
  1539. }
  1540. if (prog_page(ns, num) == -1)
  1541. return -1;
  1542. page_no = ns->regs.row;
  1543. NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
  1544. num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
  1545. NS_LOG("programm page %d\n", ns->regs.row);
  1546. NS_UDELAY(programm_delay);
  1547. NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
  1548. if (write_error(page_no)) {
  1549. NS_WARN("simulating write failure in page %u\n", page_no);
  1550. return -1;
  1551. }
  1552. break;
  1553. case ACTION_ZEROOFF:
  1554. NS_DBG("do_state_action: set internal offset to 0\n");
  1555. ns->regs.off = 0;
  1556. break;
  1557. case ACTION_HALFOFF:
  1558. if (!(ns->options & OPT_PAGE512_8BIT)) {
  1559. NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
  1560. "byte page size 8x chips\n");
  1561. return -1;
  1562. }
  1563. NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
  1564. ns->regs.off = ns->geom.pgsz/2;
  1565. break;
  1566. case ACTION_OOBOFF:
  1567. NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
  1568. ns->regs.off = ns->geom.pgsz;
  1569. break;
  1570. default:
  1571. NS_DBG("do_state_action: BUG! unknown action\n");
  1572. }
  1573. return 0;
  1574. }
  1575. /*
  1576. * Switch simulator's state.
  1577. */
  1578. static void switch_state(struct nandsim *ns)
  1579. {
  1580. if (ns->op) {
  1581. /*
  1582. * The current operation have already been identified.
  1583. * Just follow the states chain.
  1584. */
  1585. ns->stateidx += 1;
  1586. ns->state = ns->nxstate;
  1587. ns->nxstate = ns->op[ns->stateidx + 1];
  1588. NS_DBG("switch_state: operation is known, switch to the next state, "
  1589. "state: %s, nxstate: %s\n",
  1590. get_state_name(ns->state), get_state_name(ns->nxstate));
  1591. /* See, whether we need to do some action */
  1592. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1593. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1594. return;
  1595. }
  1596. } else {
  1597. /*
  1598. * We don't yet know which operation we perform.
  1599. * Try to identify it.
  1600. */
  1601. /*
  1602. * The only event causing the switch_state function to
  1603. * be called with yet unknown operation is new command.
  1604. */
  1605. ns->state = get_state_by_command(ns->regs.command);
  1606. NS_DBG("switch_state: operation is unknown, try to find it\n");
  1607. if (find_operation(ns, 0) != 0)
  1608. return;
  1609. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1610. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1611. return;
  1612. }
  1613. }
  1614. /* For 16x devices column means the page offset in words */
  1615. if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
  1616. NS_DBG("switch_state: double the column number for 16x device\n");
  1617. ns->regs.column <<= 1;
  1618. }
  1619. if (NS_STATE(ns->nxstate) == STATE_READY) {
  1620. /*
  1621. * The current state is the last. Return to STATE_READY
  1622. */
  1623. u_char status = NS_STATUS_OK(ns);
  1624. /* In case of data states, see if all bytes were input/output */
  1625. if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
  1626. && ns->regs.count != ns->regs.num) {
  1627. NS_WARN("switch_state: not all bytes were processed, %d left\n",
  1628. ns->regs.num - ns->regs.count);
  1629. status = NS_STATUS_FAILED(ns);
  1630. }
  1631. NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
  1632. switch_to_ready_state(ns, status);
  1633. return;
  1634. } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
  1635. /*
  1636. * If the next state is data input/output, switch to it now
  1637. */
  1638. ns->state = ns->nxstate;
  1639. ns->nxstate = ns->op[++ns->stateidx + 1];
  1640. ns->regs.num = ns->regs.count = 0;
  1641. NS_DBG("switch_state: the next state is data I/O, switch, "
  1642. "state: %s, nxstate: %s\n",
  1643. get_state_name(ns->state), get_state_name(ns->nxstate));
  1644. /*
  1645. * Set the internal register to the count of bytes which
  1646. * are expected to be input or output
  1647. */
  1648. switch (NS_STATE(ns->state)) {
  1649. case STATE_DATAIN:
  1650. case STATE_DATAOUT:
  1651. ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
  1652. break;
  1653. case STATE_DATAOUT_ID:
  1654. ns->regs.num = ns->geom.idbytes;
  1655. break;
  1656. case STATE_DATAOUT_STATUS:
  1657. case STATE_DATAOUT_STATUS_M:
  1658. ns->regs.count = ns->regs.num = 0;
  1659. break;
  1660. default:
  1661. NS_ERR("switch_state: BUG! unknown data state\n");
  1662. }
  1663. } else if (ns->nxstate & STATE_ADDR_MASK) {
  1664. /*
  1665. * If the next state is address input, set the internal
  1666. * register to the number of expected address bytes
  1667. */
  1668. ns->regs.count = 0;
  1669. switch (NS_STATE(ns->nxstate)) {
  1670. case STATE_ADDR_PAGE:
  1671. ns->regs.num = ns->geom.pgaddrbytes;
  1672. break;
  1673. case STATE_ADDR_SEC:
  1674. ns->regs.num = ns->geom.secaddrbytes;
  1675. break;
  1676. case STATE_ADDR_ZERO:
  1677. ns->regs.num = 1;
  1678. break;
  1679. case STATE_ADDR_COLUMN:
  1680. /* Column address is always 2 bytes */
  1681. ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
  1682. break;
  1683. default:
  1684. NS_ERR("switch_state: BUG! unknown address state\n");
  1685. }
  1686. } else {
  1687. /*
  1688. * Just reset internal counters.
  1689. */
  1690. ns->regs.num = 0;
  1691. ns->regs.count = 0;
  1692. }
  1693. }
  1694. static u_char ns_nand_read_byte(struct mtd_info *mtd)
  1695. {
  1696. struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
  1697. u_char outb = 0x00;
  1698. /* Sanity and correctness checks */
  1699. if (!ns->lines.ce) {
  1700. NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
  1701. return outb;
  1702. }
  1703. if (ns->lines.ale || ns->lines.cle) {
  1704. NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
  1705. return outb;
  1706. }
  1707. if (!(ns->state & STATE_DATAOUT_MASK)) {
  1708. NS_WARN("read_byte: unexpected data output cycle, state is %s "
  1709. "return %#x\n", get_state_name(ns->state), (uint)outb);
  1710. return outb;
  1711. }
  1712. /* Status register may be read as many times as it is wanted */
  1713. if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
  1714. NS_DBG("read_byte: return %#x status\n", ns->regs.status);
  1715. return ns->regs.status;
  1716. }
  1717. /* Check if there is any data in the internal buffer which may be read */
  1718. if (ns->regs.count == ns->regs.num) {
  1719. NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
  1720. return outb;
  1721. }
  1722. switch (NS_STATE(ns->state)) {
  1723. case STATE_DATAOUT:
  1724. if (ns->busw == 8) {
  1725. outb = ns->buf.byte[ns->regs.count];
  1726. ns->regs.count += 1;
  1727. } else {
  1728. outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
  1729. ns->regs.count += 2;
  1730. }
  1731. break;
  1732. case STATE_DATAOUT_ID:
  1733. NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
  1734. outb = ns->ids[ns->regs.count];
  1735. ns->regs.count += 1;
  1736. break;
  1737. default:
  1738. BUG();
  1739. }
  1740. if (ns->regs.count == ns->regs.num) {
  1741. NS_DBG("read_byte: all bytes were read\n");
  1742. if (NS_STATE(ns->nxstate) == STATE_READY)
  1743. switch_state(ns);
  1744. }
  1745. return outb;
  1746. }
  1747. static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
  1748. {
  1749. struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
  1750. /* Sanity and correctness checks */
  1751. if (!ns->lines.ce) {
  1752. NS_ERR("write_byte: chip is disabled, ignore write\n");
  1753. return;
  1754. }
  1755. if (ns->lines.ale && ns->lines.cle) {
  1756. NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
  1757. return;
  1758. }
  1759. if (ns->lines.cle == 1) {
  1760. /*
  1761. * The byte written is a command.
  1762. */
  1763. if (byte == NAND_CMD_RESET) {
  1764. NS_LOG("reset chip\n");
  1765. switch_to_ready_state(ns, NS_STATUS_OK(ns));
  1766. return;
  1767. }
  1768. /* Check that the command byte is correct */
  1769. if (check_command(byte)) {
  1770. NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
  1771. return;
  1772. }
  1773. if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
  1774. || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
  1775. || NS_STATE(ns->state) == STATE_DATAOUT) {
  1776. int row = ns->regs.row;
  1777. switch_state(ns);
  1778. if (byte == NAND_CMD_RNDOUT)
  1779. ns->regs.row = row;
  1780. }
  1781. /* Check if chip is expecting command */
  1782. if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
  1783. /* Do not warn if only 2 id bytes are read */
  1784. if (!(ns->regs.command == NAND_CMD_READID &&
  1785. NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
  1786. /*
  1787. * We are in situation when something else (not command)
  1788. * was expected but command was input. In this case ignore
  1789. * previous command(s)/state(s) and accept the last one.
  1790. */
  1791. NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
  1792. "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
  1793. }
  1794. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1795. }
  1796. NS_DBG("command byte corresponding to %s state accepted\n",
  1797. get_state_name(get_state_by_command(byte)));
  1798. ns->regs.command = byte;
  1799. switch_state(ns);
  1800. } else if (ns->lines.ale == 1) {
  1801. /*
  1802. * The byte written is an address.
  1803. */
  1804. if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
  1805. NS_DBG("write_byte: operation isn't known yet, identify it\n");
  1806. if (find_operation(ns, 1) < 0)
  1807. return;
  1808. if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
  1809. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1810. return;
  1811. }
  1812. ns->regs.count = 0;
  1813. switch (NS_STATE(ns->nxstate)) {
  1814. case STATE_ADDR_PAGE:
  1815. ns->regs.num = ns->geom.pgaddrbytes;
  1816. break;
  1817. case STATE_ADDR_SEC:
  1818. ns->regs.num = ns->geom.secaddrbytes;
  1819. break;
  1820. case STATE_ADDR_ZERO:
  1821. ns->regs.num = 1;
  1822. break;
  1823. default:
  1824. BUG();
  1825. }
  1826. }
  1827. /* Check that chip is expecting address */
  1828. if (!(ns->nxstate & STATE_ADDR_MASK)) {
  1829. NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
  1830. "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
  1831. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1832. return;
  1833. }
  1834. /* Check if this is expected byte */
  1835. if (ns->regs.count == ns->regs.num) {
  1836. NS_ERR("write_byte: no more address bytes expected\n");
  1837. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1838. return;
  1839. }
  1840. accept_addr_byte(ns, byte);
  1841. ns->regs.count += 1;
  1842. NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
  1843. (uint)byte, ns->regs.count, ns->regs.num);
  1844. if (ns->regs.count == ns->regs.num) {
  1845. NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
  1846. switch_state(ns);
  1847. }
  1848. } else {
  1849. /*
  1850. * The byte written is an input data.
  1851. */
  1852. /* Check that chip is expecting data input */
  1853. if (!(ns->state & STATE_DATAIN_MASK)) {
  1854. NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
  1855. "switch to %s\n", (uint)byte,
  1856. get_state_name(ns->state), get_state_name(STATE_READY));
  1857. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1858. return;
  1859. }
  1860. /* Check if this is expected byte */
  1861. if (ns->regs.count == ns->regs.num) {
  1862. NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
  1863. ns->regs.num);
  1864. return;
  1865. }
  1866. if (ns->busw == 8) {
  1867. ns->buf.byte[ns->regs.count] = byte;
  1868. ns->regs.count += 1;
  1869. } else {
  1870. ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
  1871. ns->regs.count += 2;
  1872. }
  1873. }
  1874. return;
  1875. }
  1876. static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
  1877. {
  1878. struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
  1879. ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
  1880. ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
  1881. ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
  1882. if (cmd != NAND_CMD_NONE)
  1883. ns_nand_write_byte(mtd, cmd);
  1884. }
  1885. static int ns_device_ready(struct mtd_info *mtd)
  1886. {
  1887. NS_DBG("device_ready\n");
  1888. return 1;
  1889. }
  1890. static uint16_t ns_nand_read_word(struct mtd_info *mtd)
  1891. {
  1892. struct nand_chip *chip = (struct nand_chip *)mtd->priv;
  1893. NS_DBG("read_word\n");
  1894. return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
  1895. }
  1896. static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  1897. {
  1898. struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
  1899. /* Check that chip is expecting data input */
  1900. if (!(ns->state & STATE_DATAIN_MASK)) {
  1901. NS_ERR("write_buf: data input isn't expected, state is %s, "
  1902. "switch to STATE_READY\n", get_state_name(ns->state));
  1903. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1904. return;
  1905. }
  1906. /* Check if these are expected bytes */
  1907. if (ns->regs.count + len > ns->regs.num) {
  1908. NS_ERR("write_buf: too many input bytes\n");
  1909. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1910. return;
  1911. }
  1912. memcpy(ns->buf.byte + ns->regs.count, buf, len);
  1913. ns->regs.count += len;
  1914. if (ns->regs.count == ns->regs.num) {
  1915. NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
  1916. }
  1917. }
  1918. static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  1919. {
  1920. struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
  1921. /* Sanity and correctness checks */
  1922. if (!ns->lines.ce) {
  1923. NS_ERR("read_buf: chip is disabled\n");
  1924. return;
  1925. }
  1926. if (ns->lines.ale || ns->lines.cle) {
  1927. NS_ERR("read_buf: ALE or CLE pin is high\n");
  1928. return;
  1929. }
  1930. if (!(ns->state & STATE_DATAOUT_MASK)) {
  1931. NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
  1932. get_state_name(ns->state));
  1933. return;
  1934. }
  1935. if (NS_STATE(ns->state) != STATE_DATAOUT) {
  1936. int i;
  1937. for (i = 0; i < len; i++)
  1938. buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
  1939. return;
  1940. }
  1941. /* Check if these are expected bytes */
  1942. if (ns->regs.count + len > ns->regs.num) {
  1943. NS_ERR("read_buf: too many bytes to read\n");
  1944. switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
  1945. return;
  1946. }
  1947. memcpy(buf, ns->buf.byte + ns->regs.count, len);
  1948. ns->regs.count += len;
  1949. if (ns->regs.count == ns->regs.num) {
  1950. if (NS_STATE(ns->nxstate) == STATE_READY)
  1951. switch_state(ns);
  1952. }
  1953. return;
  1954. }
  1955. /*
  1956. * Module initialization function
  1957. */
  1958. static int __init ns_init_module(void)
  1959. {
  1960. struct nand_chip *chip;
  1961. struct nandsim *nand;
  1962. int retval = -ENOMEM, i;
  1963. if (bus_width != 8 && bus_width != 16) {
  1964. NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
  1965. return -EINVAL;
  1966. }
  1967. /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
  1968. nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
  1969. + sizeof(struct nandsim), GFP_KERNEL);
  1970. if (!nsmtd) {
  1971. NS_ERR("unable to allocate core structures.\n");
  1972. return -ENOMEM;
  1973. }
  1974. chip = (struct nand_chip *)(nsmtd + 1);
  1975. nsmtd->priv = (void *)chip;
  1976. nand = (struct nandsim *)(chip + 1);
  1977. chip->priv = (void *)nand;
  1978. /*
  1979. * Register simulator's callbacks.
  1980. */
  1981. chip->cmd_ctrl = ns_hwcontrol;
  1982. chip->read_byte = ns_nand_read_byte;
  1983. chip->dev_ready = ns_device_ready;
  1984. chip->write_buf = ns_nand_write_buf;
  1985. chip->read_buf = ns_nand_read_buf;
  1986. chip->read_word = ns_nand_read_word;
  1987. chip->ecc.mode = NAND_ECC_SOFT;
  1988. /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
  1989. /* and 'badblocks' parameters to work */
  1990. chip->options |= NAND_SKIP_BBTSCAN;
  1991. switch (bbt) {
  1992. case 2:
  1993. chip->bbt_options |= NAND_BBT_NO_OOB;
  1994. case 1:
  1995. chip->bbt_options |= NAND_BBT_USE_FLASH;
  1996. case 0:
  1997. break;
  1998. default:
  1999. NS_ERR("bbt has to be 0..2\n");
  2000. retval = -EINVAL;
  2001. goto error;
  2002. }
  2003. /*
  2004. * Perform minimum nandsim structure initialization to handle
  2005. * the initial ID read command correctly
  2006. */
  2007. if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
  2008. nand->geom.idbytes = 4;
  2009. else
  2010. nand->geom.idbytes = 2;
  2011. nand->regs.status = NS_STATUS_OK(nand);
  2012. nand->nxstate = STATE_UNKNOWN;
  2013. nand->options |= OPT_PAGE256; /* temporary value */
  2014. nand->ids[0] = first_id_byte;
  2015. nand->ids[1] = second_id_byte;
  2016. nand->ids[2] = third_id_byte;
  2017. nand->ids[3] = fourth_id_byte;
  2018. if (bus_width == 16) {
  2019. nand->busw = 16;
  2020. chip->options |= NAND_BUSWIDTH_16;
  2021. }
  2022. nsmtd->owner = THIS_MODULE;
  2023. if ((retval = parse_weakblocks()) != 0)
  2024. goto error;
  2025. if ((retval = parse_weakpages()) != 0)
  2026. goto error;
  2027. if ((retval = parse_gravepages()) != 0)
  2028. goto error;
  2029. retval = nand_scan_ident(nsmtd, 1, NULL);
  2030. if (retval) {
  2031. NS_ERR("cannot scan NAND Simulator device\n");
  2032. if (retval > 0)
  2033. retval = -ENXIO;
  2034. goto error;
  2035. }
  2036. if (bch) {
  2037. unsigned int eccsteps, eccbytes;
  2038. if (!mtd_nand_has_bch()) {
  2039. NS_ERR("BCH ECC support is disabled\n");
  2040. retval = -EINVAL;
  2041. goto error;
  2042. }
  2043. /* use 512-byte ecc blocks */
  2044. eccsteps = nsmtd->writesize/512;
  2045. eccbytes = (bch*13+7)/8;
  2046. /* do not bother supporting small page devices */
  2047. if ((nsmtd->oobsize < 64) || !eccsteps) {
  2048. NS_ERR("bch not available on small page devices\n");
  2049. retval = -EINVAL;
  2050. goto error;
  2051. }
  2052. if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
  2053. NS_ERR("invalid bch value %u\n", bch);
  2054. retval = -EINVAL;
  2055. goto error;
  2056. }
  2057. chip->ecc.mode = NAND_ECC_SOFT_BCH;
  2058. chip->ecc.size = 512;
  2059. chip->ecc.bytes = eccbytes;
  2060. NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
  2061. }
  2062. retval = nand_scan_tail(nsmtd);
  2063. if (retval) {
  2064. NS_ERR("can't register NAND Simulator\n");
  2065. if (retval > 0)
  2066. retval = -ENXIO;
  2067. goto error;
  2068. }
  2069. if (overridesize) {
  2070. uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
  2071. if (new_size >> overridesize != nsmtd->erasesize) {
  2072. NS_ERR("overridesize is too big\n");
  2073. retval = -EINVAL;
  2074. goto err_exit;
  2075. }
  2076. /* N.B. This relies on nand_scan not doing anything with the size before we change it */
  2077. nsmtd->size = new_size;
  2078. chip->chipsize = new_size;
  2079. chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
  2080. chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
  2081. }
  2082. if ((retval = setup_wear_reporting(nsmtd)) != 0)
  2083. goto err_exit;
  2084. if ((retval = nandsim_debugfs_create(nand)) != 0)
  2085. goto err_exit;
  2086. if ((retval = init_nandsim(nsmtd)) != 0)
  2087. goto err_exit;
  2088. if ((retval = nand_default_bbt(nsmtd)) != 0)
  2089. goto err_exit;
  2090. if ((retval = parse_badblocks(nand, nsmtd)) != 0)
  2091. goto err_exit;
  2092. /* Register NAND partitions */
  2093. retval = mtd_device_register(nsmtd, &nand->partitions[0],
  2094. nand->nbparts);
  2095. if (retval != 0)
  2096. goto err_exit;
  2097. return 0;
  2098. err_exit:
  2099. free_nandsim(nand);
  2100. nand_release(nsmtd);
  2101. for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
  2102. kfree(nand->partitions[i].name);
  2103. error:
  2104. kfree(nsmtd);
  2105. free_lists();
  2106. return retval;
  2107. }
  2108. module_init(ns_init_module);
  2109. /*
  2110. * Module clean-up function
  2111. */
  2112. static void __exit ns_cleanup_module(void)
  2113. {
  2114. struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
  2115. int i;
  2116. nandsim_debugfs_remove(ns);
  2117. free_nandsim(ns); /* Free nandsim private resources */
  2118. nand_release(nsmtd); /* Unregister driver */
  2119. for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
  2120. kfree(ns->partitions[i].name);
  2121. kfree(nsmtd); /* Free other structures */
  2122. free_lists();
  2123. }
  2124. module_exit(ns_cleanup_module);
  2125. MODULE_LICENSE ("GPL");
  2126. MODULE_AUTHOR ("Artem B. Bityuckiy");
  2127. MODULE_DESCRIPTION ("The NAND flash simulator");