intel_dp.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  57. {
  58. return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
  59. }
  60. static void intel_dp_link_train(struct intel_dp *intel_dp);
  61. static void intel_dp_link_down(struct intel_dp *intel_dp);
  62. void
  63. intel_edp_link_config (struct intel_encoder *intel_encoder,
  64. int *lane_num, int *link_bw)
  65. {
  66. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  67. *lane_num = intel_dp->lane_count;
  68. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  69. *link_bw = 162000;
  70. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  71. *link_bw = 270000;
  72. }
  73. static int
  74. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  75. {
  76. int max_lane_count = 4;
  77. if (intel_dp->dpcd[0] >= 0x11) {
  78. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  90. {
  91. int max_link_bw = intel_dp->dpcd[1];
  92. switch (max_link_bw) {
  93. case DP_LINK_BW_1_62:
  94. case DP_LINK_BW_2_7:
  95. break;
  96. default:
  97. max_link_bw = DP_LINK_BW_1_62;
  98. break;
  99. }
  100. return max_link_bw;
  101. }
  102. static int
  103. intel_dp_link_clock(uint8_t link_bw)
  104. {
  105. if (link_bw == DP_LINK_BW_2_7)
  106. return 270000;
  107. else
  108. return 162000;
  109. }
  110. /* I think this is a fiction */
  111. static int
  112. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  131. struct drm_device *dev = connector->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  134. int max_lanes = intel_dp_max_lane_count(intel_dp);
  135. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  136. dev_priv->panel_fixed_mode) {
  137. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. }
  142. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  143. which are outside spec tolerances but somehow work by magic */
  144. if (!IS_eDP(intel_dp) &&
  145. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  146. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  147. return MODE_CLOCK_HIGH;
  148. if (mode->clock < 10000)
  149. return MODE_CLOCK_LOW;
  150. return MODE_OK;
  151. }
  152. static uint32_t
  153. pack_aux(uint8_t *src, int src_bytes)
  154. {
  155. int i;
  156. uint32_t v = 0;
  157. if (src_bytes > 4)
  158. src_bytes = 4;
  159. for (i = 0; i < src_bytes; i++)
  160. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  161. return v;
  162. }
  163. static void
  164. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  165. {
  166. int i;
  167. if (dst_bytes > 4)
  168. dst_bytes = 4;
  169. for (i = 0; i < dst_bytes; i++)
  170. dst[i] = src >> ((3-i) * 8);
  171. }
  172. /* hrawclock is 1/4 the FSB frequency */
  173. static int
  174. intel_hrawclk(struct drm_device *dev)
  175. {
  176. struct drm_i915_private *dev_priv = dev->dev_private;
  177. uint32_t clkcfg;
  178. clkcfg = I915_READ(CLKCFG);
  179. switch (clkcfg & CLKCFG_FSB_MASK) {
  180. case CLKCFG_FSB_400:
  181. return 100;
  182. case CLKCFG_FSB_533:
  183. return 133;
  184. case CLKCFG_FSB_667:
  185. return 166;
  186. case CLKCFG_FSB_800:
  187. return 200;
  188. case CLKCFG_FSB_1067:
  189. return 266;
  190. case CLKCFG_FSB_1333:
  191. return 333;
  192. /* these two are just a guess; one of them might be right */
  193. case CLKCFG_FSB_1600:
  194. case CLKCFG_FSB_1600_ALT:
  195. return 400;
  196. default:
  197. return 133;
  198. }
  199. }
  200. static int
  201. intel_dp_aux_ch(struct intel_dp *intel_dp,
  202. uint8_t *send, int send_bytes,
  203. uint8_t *recv, int recv_size)
  204. {
  205. uint32_t output_reg = intel_dp->output_reg;
  206. struct drm_device *dev = intel_dp->base.enc.dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. uint32_t ch_ctl = output_reg + 0x10;
  209. uint32_t ch_data = ch_ctl + 4;
  210. int i;
  211. int recv_bytes;
  212. uint32_t ctl;
  213. uint32_t status;
  214. uint32_t aux_clock_divider;
  215. int try, precharge;
  216. /* The clock divider is based off the hrawclk,
  217. * and would like to run at 2MHz. So, take the
  218. * hrawclk value and divide by 2 and use that
  219. */
  220. if (IS_eDP(intel_dp)) {
  221. if (IS_GEN6(dev))
  222. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  223. else
  224. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  225. } else if (HAS_PCH_SPLIT(dev))
  226. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  227. else
  228. aux_clock_divider = intel_hrawclk(dev) / 2;
  229. if (IS_GEN6(dev))
  230. precharge = 3;
  231. else
  232. precharge = 5;
  233. /* Must try at least 3 times according to DP spec */
  234. for (try = 0; try < 5; try++) {
  235. /* Load the send data into the aux channel data registers */
  236. for (i = 0; i < send_bytes; i += 4) {
  237. uint32_t d = pack_aux(send + i, send_bytes - i);
  238. I915_WRITE(ch_data + i, d);
  239. }
  240. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  241. DP_AUX_CH_CTL_TIME_OUT_400us |
  242. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  243. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  244. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  245. DP_AUX_CH_CTL_DONE |
  246. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  247. DP_AUX_CH_CTL_RECEIVE_ERROR);
  248. /* Send the command and wait for it to complete */
  249. I915_WRITE(ch_ctl, ctl);
  250. (void) I915_READ(ch_ctl);
  251. for (;;) {
  252. udelay(100);
  253. status = I915_READ(ch_ctl);
  254. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  255. break;
  256. }
  257. /* Clear done status and any errors */
  258. I915_WRITE(ch_ctl, (status |
  259. DP_AUX_CH_CTL_DONE |
  260. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  261. DP_AUX_CH_CTL_RECEIVE_ERROR));
  262. (void) I915_READ(ch_ctl);
  263. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  264. break;
  265. }
  266. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  267. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  268. return -EBUSY;
  269. }
  270. /* Check for timeout or receive error.
  271. * Timeouts occur when the sink is not connected
  272. */
  273. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  274. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  275. return -EIO;
  276. }
  277. /* Timeouts occur when the device isn't connected, so they're
  278. * "normal" -- don't fill the kernel log with these */
  279. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  280. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  281. return -ETIMEDOUT;
  282. }
  283. /* Unload any bytes sent back from the other side */
  284. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  285. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  286. if (recv_bytes > recv_size)
  287. recv_bytes = recv_size;
  288. for (i = 0; i < recv_bytes; i += 4) {
  289. uint32_t d = I915_READ(ch_data + i);
  290. unpack_aux(d, recv + i, recv_bytes - i);
  291. }
  292. return recv_bytes;
  293. }
  294. /* Write data to the aux channel in native mode */
  295. static int
  296. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  297. uint16_t address, uint8_t *send, int send_bytes)
  298. {
  299. int ret;
  300. uint8_t msg[20];
  301. int msg_bytes;
  302. uint8_t ack;
  303. if (send_bytes > 16)
  304. return -1;
  305. msg[0] = AUX_NATIVE_WRITE << 4;
  306. msg[1] = address >> 8;
  307. msg[2] = address & 0xff;
  308. msg[3] = send_bytes - 1;
  309. memcpy(&msg[4], send, send_bytes);
  310. msg_bytes = send_bytes + 4;
  311. for (;;) {
  312. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  313. if (ret < 0)
  314. return ret;
  315. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  316. break;
  317. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  318. udelay(100);
  319. else
  320. return -EIO;
  321. }
  322. return send_bytes;
  323. }
  324. /* Write a single byte to the aux channel in native mode */
  325. static int
  326. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  327. uint16_t address, uint8_t byte)
  328. {
  329. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  330. }
  331. /* read bytes from a native aux channel */
  332. static int
  333. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  334. uint16_t address, uint8_t *recv, int recv_bytes)
  335. {
  336. uint8_t msg[4];
  337. int msg_bytes;
  338. uint8_t reply[20];
  339. int reply_bytes;
  340. uint8_t ack;
  341. int ret;
  342. msg[0] = AUX_NATIVE_READ << 4;
  343. msg[1] = address >> 8;
  344. msg[2] = address & 0xff;
  345. msg[3] = recv_bytes - 1;
  346. msg_bytes = 4;
  347. reply_bytes = recv_bytes + 1;
  348. for (;;) {
  349. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  350. reply, reply_bytes);
  351. if (ret == 0)
  352. return -EPROTO;
  353. if (ret < 0)
  354. return ret;
  355. ack = reply[0];
  356. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  357. memcpy(recv, reply + 1, ret - 1);
  358. return ret - 1;
  359. }
  360. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  361. udelay(100);
  362. else
  363. return -EIO;
  364. }
  365. }
  366. static int
  367. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  368. uint8_t write_byte, uint8_t *read_byte)
  369. {
  370. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  371. struct intel_dp *intel_dp = container_of(adapter,
  372. struct intel_dp,
  373. adapter);
  374. uint16_t address = algo_data->address;
  375. uint8_t msg[5];
  376. uint8_t reply[2];
  377. int msg_bytes;
  378. int reply_bytes;
  379. int ret;
  380. /* Set up the command byte */
  381. if (mode & MODE_I2C_READ)
  382. msg[0] = AUX_I2C_READ << 4;
  383. else
  384. msg[0] = AUX_I2C_WRITE << 4;
  385. if (!(mode & MODE_I2C_STOP))
  386. msg[0] |= AUX_I2C_MOT << 4;
  387. msg[1] = address >> 8;
  388. msg[2] = address;
  389. switch (mode) {
  390. case MODE_I2C_WRITE:
  391. msg[3] = 0;
  392. msg[4] = write_byte;
  393. msg_bytes = 5;
  394. reply_bytes = 1;
  395. break;
  396. case MODE_I2C_READ:
  397. msg[3] = 0;
  398. msg_bytes = 4;
  399. reply_bytes = 2;
  400. break;
  401. default:
  402. msg_bytes = 3;
  403. reply_bytes = 1;
  404. break;
  405. }
  406. for (;;) {
  407. ret = intel_dp_aux_ch(intel_dp,
  408. msg, msg_bytes,
  409. reply, reply_bytes);
  410. if (ret < 0) {
  411. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  412. return ret;
  413. }
  414. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  415. case AUX_I2C_REPLY_ACK:
  416. if (mode == MODE_I2C_READ) {
  417. *read_byte = reply[1];
  418. }
  419. return reply_bytes - 1;
  420. case AUX_I2C_REPLY_NACK:
  421. DRM_DEBUG_KMS("aux_ch nack\n");
  422. return -EREMOTEIO;
  423. case AUX_I2C_REPLY_DEFER:
  424. DRM_DEBUG_KMS("aux_ch defer\n");
  425. udelay(100);
  426. break;
  427. default:
  428. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  429. return -EREMOTEIO;
  430. }
  431. }
  432. }
  433. static int
  434. intel_dp_i2c_init(struct intel_dp *intel_dp,
  435. struct intel_connector *intel_connector, const char *name)
  436. {
  437. DRM_DEBUG_KMS("i2c_init %s\n", name);
  438. intel_dp->algo.running = false;
  439. intel_dp->algo.address = 0;
  440. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  441. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  442. intel_dp->adapter.owner = THIS_MODULE;
  443. intel_dp->adapter.class = I2C_CLASS_DDC;
  444. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  445. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  446. intel_dp->adapter.algo_data = &intel_dp->algo;
  447. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  448. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  449. }
  450. static bool
  451. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  452. struct drm_display_mode *adjusted_mode)
  453. {
  454. struct drm_device *dev = encoder->dev;
  455. struct drm_i915_private *dev_priv = dev->dev_private;
  456. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  457. int lane_count, clock;
  458. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  459. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  460. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  461. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  462. dev_priv->panel_fixed_mode) {
  463. struct drm_display_mode *fixed_mode = dev_priv->panel_fixed_mode;
  464. adjusted_mode->hdisplay = fixed_mode->hdisplay;
  465. adjusted_mode->hsync_start = fixed_mode->hsync_start;
  466. adjusted_mode->hsync_end = fixed_mode->hsync_end;
  467. adjusted_mode->htotal = fixed_mode->htotal;
  468. adjusted_mode->vdisplay = fixed_mode->vdisplay;
  469. adjusted_mode->vsync_start = fixed_mode->vsync_start;
  470. adjusted_mode->vsync_end = fixed_mode->vsync_end;
  471. adjusted_mode->vtotal = fixed_mode->vtotal;
  472. adjusted_mode->clock = fixed_mode->clock;
  473. drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
  474. /*
  475. * the mode->clock is used to calculate the Data&Link M/N
  476. * of the pipe. For the eDP the fixed clock should be used.
  477. */
  478. mode->clock = dev_priv->panel_fixed_mode->clock;
  479. }
  480. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  481. for (clock = 0; clock <= max_clock; clock++) {
  482. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  483. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  484. <= link_avail) {
  485. intel_dp->link_bw = bws[clock];
  486. intel_dp->lane_count = lane_count;
  487. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  488. DRM_DEBUG_KMS("Display port link bw %02x lane "
  489. "count %d clock %d\n",
  490. intel_dp->link_bw, intel_dp->lane_count,
  491. adjusted_mode->clock);
  492. return true;
  493. }
  494. }
  495. }
  496. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  497. /* okay we failed just pick the highest */
  498. intel_dp->lane_count = max_lane_count;
  499. intel_dp->link_bw = bws[max_clock];
  500. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  501. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  502. "count %d clock %d\n",
  503. intel_dp->link_bw, intel_dp->lane_count,
  504. adjusted_mode->clock);
  505. return true;
  506. }
  507. return false;
  508. }
  509. struct intel_dp_m_n {
  510. uint32_t tu;
  511. uint32_t gmch_m;
  512. uint32_t gmch_n;
  513. uint32_t link_m;
  514. uint32_t link_n;
  515. };
  516. static void
  517. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  518. {
  519. while (*num > 0xffffff || *den > 0xffffff) {
  520. *num >>= 1;
  521. *den >>= 1;
  522. }
  523. }
  524. static void
  525. intel_dp_compute_m_n(int bpp,
  526. int nlanes,
  527. int pixel_clock,
  528. int link_clock,
  529. struct intel_dp_m_n *m_n)
  530. {
  531. m_n->tu = 64;
  532. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  533. m_n->gmch_n = link_clock * nlanes;
  534. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  535. m_n->link_m = pixel_clock;
  536. m_n->link_n = link_clock;
  537. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  538. }
  539. bool intel_pch_has_edp(struct drm_crtc *crtc)
  540. {
  541. struct drm_device *dev = crtc->dev;
  542. struct drm_mode_config *mode_config = &dev->mode_config;
  543. struct drm_encoder *encoder;
  544. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  545. struct intel_dp *intel_dp;
  546. if (encoder->crtc != crtc)
  547. continue;
  548. intel_dp = enc_to_intel_dp(encoder);
  549. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  550. return intel_dp->is_pch_edp;
  551. }
  552. return false;
  553. }
  554. void
  555. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  556. struct drm_display_mode *adjusted_mode)
  557. {
  558. struct drm_device *dev = crtc->dev;
  559. struct drm_mode_config *mode_config = &dev->mode_config;
  560. struct drm_encoder *encoder;
  561. struct drm_i915_private *dev_priv = dev->dev_private;
  562. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  563. int lane_count = 4, bpp = 24;
  564. struct intel_dp_m_n m_n;
  565. /*
  566. * Find the lane count in the intel_encoder private
  567. */
  568. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  569. struct intel_dp *intel_dp;
  570. if (encoder->crtc != crtc)
  571. continue;
  572. intel_dp = enc_to_intel_dp(encoder);
  573. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  574. lane_count = intel_dp->lane_count;
  575. if (IS_PCH_eDP(intel_dp))
  576. bpp = dev_priv->edp_bpp;
  577. break;
  578. }
  579. }
  580. /*
  581. * Compute the GMCH and Link ratios. The '3' here is
  582. * the number of bytes_per_pixel post-LUT, which we always
  583. * set up for 8-bits of R/G/B, or 3 bytes total.
  584. */
  585. intel_dp_compute_m_n(bpp, lane_count,
  586. mode->clock, adjusted_mode->clock, &m_n);
  587. if (HAS_PCH_SPLIT(dev)) {
  588. if (intel_crtc->pipe == 0) {
  589. I915_WRITE(TRANSA_DATA_M1,
  590. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  591. m_n.gmch_m);
  592. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  593. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  594. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  595. } else {
  596. I915_WRITE(TRANSB_DATA_M1,
  597. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  598. m_n.gmch_m);
  599. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  600. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  601. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  602. }
  603. } else {
  604. if (intel_crtc->pipe == 0) {
  605. I915_WRITE(PIPEA_GMCH_DATA_M,
  606. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  607. m_n.gmch_m);
  608. I915_WRITE(PIPEA_GMCH_DATA_N,
  609. m_n.gmch_n);
  610. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  611. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  612. } else {
  613. I915_WRITE(PIPEB_GMCH_DATA_M,
  614. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  615. m_n.gmch_m);
  616. I915_WRITE(PIPEB_GMCH_DATA_N,
  617. m_n.gmch_n);
  618. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  619. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  620. }
  621. }
  622. }
  623. static void
  624. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  625. struct drm_display_mode *adjusted_mode)
  626. {
  627. struct drm_device *dev = encoder->dev;
  628. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  629. struct drm_crtc *crtc = intel_dp->base.enc.crtc;
  630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  631. intel_dp->DP = (DP_VOLTAGE_0_4 |
  632. DP_PRE_EMPHASIS_0);
  633. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  634. intel_dp->DP |= DP_SYNC_HS_HIGH;
  635. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  636. intel_dp->DP |= DP_SYNC_VS_HIGH;
  637. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  638. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  639. else
  640. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  641. switch (intel_dp->lane_count) {
  642. case 1:
  643. intel_dp->DP |= DP_PORT_WIDTH_1;
  644. break;
  645. case 2:
  646. intel_dp->DP |= DP_PORT_WIDTH_2;
  647. break;
  648. case 4:
  649. intel_dp->DP |= DP_PORT_WIDTH_4;
  650. break;
  651. }
  652. if (intel_dp->has_audio)
  653. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  654. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  655. intel_dp->link_configuration[0] = intel_dp->link_bw;
  656. intel_dp->link_configuration[1] = intel_dp->lane_count;
  657. /*
  658. * Check for DPCD version > 1.1 and enhanced framing support
  659. */
  660. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  661. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  662. intel_dp->DP |= DP_ENHANCED_FRAMING;
  663. }
  664. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  665. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  666. intel_dp->DP |= DP_PIPEB_SELECT;
  667. if (IS_eDP(intel_dp)) {
  668. /* don't miss out required setting for eDP */
  669. intel_dp->DP |= DP_PLL_ENABLE;
  670. if (adjusted_mode->clock < 200000)
  671. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  672. else
  673. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  674. }
  675. }
  676. static void ironlake_edp_panel_on (struct drm_device *dev)
  677. {
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  680. u32 pp, pp_status;
  681. pp_status = I915_READ(PCH_PP_STATUS);
  682. if (pp_status & PP_ON)
  683. return;
  684. pp = I915_READ(PCH_PP_CONTROL);
  685. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  686. I915_WRITE(PCH_PP_CONTROL, pp);
  687. do {
  688. pp_status = I915_READ(PCH_PP_STATUS);
  689. } while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));
  690. if (time_after(jiffies, timeout))
  691. DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);
  692. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  693. I915_WRITE(PCH_PP_CONTROL, pp);
  694. }
  695. static void ironlake_edp_panel_off (struct drm_device *dev)
  696. {
  697. struct drm_i915_private *dev_priv = dev->dev_private;
  698. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  699. u32 pp, pp_status;
  700. pp = I915_READ(PCH_PP_CONTROL);
  701. pp &= ~POWER_TARGET_ON;
  702. I915_WRITE(PCH_PP_CONTROL, pp);
  703. do {
  704. pp_status = I915_READ(PCH_PP_STATUS);
  705. } while ((pp_status & PP_ON) && !time_after(jiffies, timeout));
  706. if (time_after(jiffies, timeout))
  707. DRM_DEBUG_KMS("panel off wait timed out\n");
  708. /* Make sure VDD is enabled so DP AUX will work */
  709. pp |= EDP_FORCE_VDD;
  710. I915_WRITE(PCH_PP_CONTROL, pp);
  711. }
  712. static void ironlake_edp_backlight_on (struct drm_device *dev)
  713. {
  714. struct drm_i915_private *dev_priv = dev->dev_private;
  715. u32 pp;
  716. DRM_DEBUG_KMS("\n");
  717. pp = I915_READ(PCH_PP_CONTROL);
  718. pp |= EDP_BLC_ENABLE;
  719. I915_WRITE(PCH_PP_CONTROL, pp);
  720. }
  721. static void ironlake_edp_backlight_off (struct drm_device *dev)
  722. {
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. u32 pp;
  725. DRM_DEBUG_KMS("\n");
  726. pp = I915_READ(PCH_PP_CONTROL);
  727. pp &= ~EDP_BLC_ENABLE;
  728. I915_WRITE(PCH_PP_CONTROL, pp);
  729. }
  730. static void
  731. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  732. {
  733. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  734. struct drm_device *dev = encoder->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  737. if (mode != DRM_MODE_DPMS_ON) {
  738. if (dp_reg & DP_PORT_EN) {
  739. intel_dp_link_down(intel_dp);
  740. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  741. ironlake_edp_backlight_off(dev);
  742. ironlake_edp_panel_off(dev);
  743. }
  744. }
  745. } else {
  746. if (!(dp_reg & DP_PORT_EN)) {
  747. intel_dp_link_train(intel_dp);
  748. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  749. ironlake_edp_panel_on(dev);
  750. ironlake_edp_backlight_on(dev);
  751. }
  752. }
  753. }
  754. intel_dp->dpms_mode = mode;
  755. }
  756. /*
  757. * Fetch AUX CH registers 0x202 - 0x207 which contain
  758. * link status information
  759. */
  760. static bool
  761. intel_dp_get_link_status(struct intel_dp *intel_dp,
  762. uint8_t link_status[DP_LINK_STATUS_SIZE])
  763. {
  764. int ret;
  765. ret = intel_dp_aux_native_read(intel_dp,
  766. DP_LANE0_1_STATUS,
  767. link_status, DP_LINK_STATUS_SIZE);
  768. if (ret != DP_LINK_STATUS_SIZE)
  769. return false;
  770. return true;
  771. }
  772. static uint8_t
  773. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  774. int r)
  775. {
  776. return link_status[r - DP_LANE0_1_STATUS];
  777. }
  778. static uint8_t
  779. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  780. int lane)
  781. {
  782. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  783. int s = ((lane & 1) ?
  784. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  785. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  786. uint8_t l = intel_dp_link_status(link_status, i);
  787. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  788. }
  789. static uint8_t
  790. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  791. int lane)
  792. {
  793. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  794. int s = ((lane & 1) ?
  795. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  796. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  797. uint8_t l = intel_dp_link_status(link_status, i);
  798. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  799. }
  800. #if 0
  801. static char *voltage_names[] = {
  802. "0.4V", "0.6V", "0.8V", "1.2V"
  803. };
  804. static char *pre_emph_names[] = {
  805. "0dB", "3.5dB", "6dB", "9.5dB"
  806. };
  807. static char *link_train_names[] = {
  808. "pattern 1", "pattern 2", "idle", "off"
  809. };
  810. #endif
  811. /*
  812. * These are source-specific values; current Intel hardware supports
  813. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  814. */
  815. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  816. static uint8_t
  817. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  818. {
  819. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  820. case DP_TRAIN_VOLTAGE_SWING_400:
  821. return DP_TRAIN_PRE_EMPHASIS_6;
  822. case DP_TRAIN_VOLTAGE_SWING_600:
  823. return DP_TRAIN_PRE_EMPHASIS_6;
  824. case DP_TRAIN_VOLTAGE_SWING_800:
  825. return DP_TRAIN_PRE_EMPHASIS_3_5;
  826. case DP_TRAIN_VOLTAGE_SWING_1200:
  827. default:
  828. return DP_TRAIN_PRE_EMPHASIS_0;
  829. }
  830. }
  831. static void
  832. intel_get_adjust_train(struct intel_dp *intel_dp,
  833. uint8_t link_status[DP_LINK_STATUS_SIZE],
  834. int lane_count,
  835. uint8_t train_set[4])
  836. {
  837. uint8_t v = 0;
  838. uint8_t p = 0;
  839. int lane;
  840. for (lane = 0; lane < lane_count; lane++) {
  841. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  842. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  843. if (this_v > v)
  844. v = this_v;
  845. if (this_p > p)
  846. p = this_p;
  847. }
  848. if (v >= I830_DP_VOLTAGE_MAX)
  849. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  850. if (p >= intel_dp_pre_emphasis_max(v))
  851. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  852. for (lane = 0; lane < 4; lane++)
  853. train_set[lane] = v | p;
  854. }
  855. static uint32_t
  856. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  857. {
  858. uint32_t signal_levels = 0;
  859. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  860. case DP_TRAIN_VOLTAGE_SWING_400:
  861. default:
  862. signal_levels |= DP_VOLTAGE_0_4;
  863. break;
  864. case DP_TRAIN_VOLTAGE_SWING_600:
  865. signal_levels |= DP_VOLTAGE_0_6;
  866. break;
  867. case DP_TRAIN_VOLTAGE_SWING_800:
  868. signal_levels |= DP_VOLTAGE_0_8;
  869. break;
  870. case DP_TRAIN_VOLTAGE_SWING_1200:
  871. signal_levels |= DP_VOLTAGE_1_2;
  872. break;
  873. }
  874. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  875. case DP_TRAIN_PRE_EMPHASIS_0:
  876. default:
  877. signal_levels |= DP_PRE_EMPHASIS_0;
  878. break;
  879. case DP_TRAIN_PRE_EMPHASIS_3_5:
  880. signal_levels |= DP_PRE_EMPHASIS_3_5;
  881. break;
  882. case DP_TRAIN_PRE_EMPHASIS_6:
  883. signal_levels |= DP_PRE_EMPHASIS_6;
  884. break;
  885. case DP_TRAIN_PRE_EMPHASIS_9_5:
  886. signal_levels |= DP_PRE_EMPHASIS_9_5;
  887. break;
  888. }
  889. return signal_levels;
  890. }
  891. /* Gen6's DP voltage swing and pre-emphasis control */
  892. static uint32_t
  893. intel_gen6_edp_signal_levels(uint8_t train_set)
  894. {
  895. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  896. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  897. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  898. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  899. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  900. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  901. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  902. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  903. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  904. default:
  905. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  906. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  907. }
  908. }
  909. static uint8_t
  910. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  911. int lane)
  912. {
  913. int i = DP_LANE0_1_STATUS + (lane >> 1);
  914. int s = (lane & 1) * 4;
  915. uint8_t l = intel_dp_link_status(link_status, i);
  916. return (l >> s) & 0xf;
  917. }
  918. /* Check for clock recovery is done on all channels */
  919. static bool
  920. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  921. {
  922. int lane;
  923. uint8_t lane_status;
  924. for (lane = 0; lane < lane_count; lane++) {
  925. lane_status = intel_get_lane_status(link_status, lane);
  926. if ((lane_status & DP_LANE_CR_DONE) == 0)
  927. return false;
  928. }
  929. return true;
  930. }
  931. /* Check to see if channel eq is done on all channels */
  932. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  933. DP_LANE_CHANNEL_EQ_DONE|\
  934. DP_LANE_SYMBOL_LOCKED)
  935. static bool
  936. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  937. {
  938. uint8_t lane_align;
  939. uint8_t lane_status;
  940. int lane;
  941. lane_align = intel_dp_link_status(link_status,
  942. DP_LANE_ALIGN_STATUS_UPDATED);
  943. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  944. return false;
  945. for (lane = 0; lane < lane_count; lane++) {
  946. lane_status = intel_get_lane_status(link_status, lane);
  947. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  948. return false;
  949. }
  950. return true;
  951. }
  952. static bool
  953. intel_dp_set_link_train(struct intel_dp *intel_dp,
  954. uint32_t dp_reg_value,
  955. uint8_t dp_train_pat,
  956. uint8_t train_set[4],
  957. bool first)
  958. {
  959. struct drm_device *dev = intel_dp->base.enc.dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. int ret;
  962. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  963. POSTING_READ(intel_dp->output_reg);
  964. if (first)
  965. intel_wait_for_vblank(dev);
  966. intel_dp_aux_native_write_1(intel_dp,
  967. DP_TRAINING_PATTERN_SET,
  968. dp_train_pat);
  969. ret = intel_dp_aux_native_write(intel_dp,
  970. DP_TRAINING_LANE0_SET, train_set, 4);
  971. if (ret != 4)
  972. return false;
  973. return true;
  974. }
  975. static void
  976. intel_dp_link_train(struct intel_dp *intel_dp)
  977. {
  978. struct drm_device *dev = intel_dp->base.enc.dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. uint8_t train_set[4];
  981. uint8_t link_status[DP_LINK_STATUS_SIZE];
  982. int i;
  983. uint8_t voltage;
  984. bool clock_recovery = false;
  985. bool channel_eq = false;
  986. bool first = true;
  987. int tries;
  988. u32 reg;
  989. uint32_t DP = intel_dp->DP;
  990. /* Write the link configuration data */
  991. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  992. intel_dp->link_configuration,
  993. DP_LINK_CONFIGURATION_SIZE);
  994. DP |= DP_PORT_EN;
  995. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  996. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  997. else
  998. DP &= ~DP_LINK_TRAIN_MASK;
  999. memset(train_set, 0, 4);
  1000. voltage = 0xff;
  1001. tries = 0;
  1002. clock_recovery = false;
  1003. for (;;) {
  1004. /* Use train_set[0] to set the voltage and pre emphasis values */
  1005. uint32_t signal_levels;
  1006. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1007. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1008. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1009. } else {
  1010. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1011. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1012. }
  1013. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1014. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1015. else
  1016. reg = DP | DP_LINK_TRAIN_PAT_1;
  1017. if (!intel_dp_set_link_train(intel_dp, reg,
  1018. DP_TRAINING_PATTERN_1, train_set, first))
  1019. break;
  1020. first = false;
  1021. /* Set training pattern 1 */
  1022. udelay(100);
  1023. if (!intel_dp_get_link_status(intel_dp, link_status))
  1024. break;
  1025. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1026. clock_recovery = true;
  1027. break;
  1028. }
  1029. /* Check to see if we've tried the max voltage */
  1030. for (i = 0; i < intel_dp->lane_count; i++)
  1031. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1032. break;
  1033. if (i == intel_dp->lane_count)
  1034. break;
  1035. /* Check to see if we've tried the same voltage 5 times */
  1036. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1037. ++tries;
  1038. if (tries == 5)
  1039. break;
  1040. } else
  1041. tries = 0;
  1042. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1043. /* Compute new train_set as requested by target */
  1044. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1045. }
  1046. /* channel equalization */
  1047. tries = 0;
  1048. channel_eq = false;
  1049. for (;;) {
  1050. /* Use train_set[0] to set the voltage and pre emphasis values */
  1051. uint32_t signal_levels;
  1052. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1053. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1054. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1055. } else {
  1056. signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
  1057. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1058. }
  1059. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1060. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1061. else
  1062. reg = DP | DP_LINK_TRAIN_PAT_2;
  1063. /* channel eq pattern */
  1064. if (!intel_dp_set_link_train(intel_dp, reg,
  1065. DP_TRAINING_PATTERN_2, train_set,
  1066. false))
  1067. break;
  1068. udelay(400);
  1069. if (!intel_dp_get_link_status(intel_dp, link_status))
  1070. break;
  1071. if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1072. channel_eq = true;
  1073. break;
  1074. }
  1075. /* Try 5 times */
  1076. if (tries > 5)
  1077. break;
  1078. /* Compute new train_set as requested by target */
  1079. intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
  1080. ++tries;
  1081. }
  1082. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1083. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1084. else
  1085. reg = DP | DP_LINK_TRAIN_OFF;
  1086. I915_WRITE(intel_dp->output_reg, reg);
  1087. POSTING_READ(intel_dp->output_reg);
  1088. intel_dp_aux_native_write_1(intel_dp,
  1089. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1090. }
  1091. static void
  1092. intel_dp_link_down(struct intel_dp *intel_dp)
  1093. {
  1094. struct drm_device *dev = intel_dp->base.enc.dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. uint32_t DP = intel_dp->DP;
  1097. DRM_DEBUG_KMS("\n");
  1098. if (IS_eDP(intel_dp)) {
  1099. DP &= ~DP_PLL_ENABLE;
  1100. I915_WRITE(intel_dp->output_reg, DP);
  1101. POSTING_READ(intel_dp->output_reg);
  1102. udelay(100);
  1103. }
  1104. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1105. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1106. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1107. POSTING_READ(intel_dp->output_reg);
  1108. } else {
  1109. DP &= ~DP_LINK_TRAIN_MASK;
  1110. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1111. POSTING_READ(intel_dp->output_reg);
  1112. }
  1113. udelay(17000);
  1114. if (IS_eDP(intel_dp))
  1115. DP |= DP_LINK_TRAIN_OFF;
  1116. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1117. POSTING_READ(intel_dp->output_reg);
  1118. }
  1119. /*
  1120. * According to DP spec
  1121. * 5.1.2:
  1122. * 1. Read DPCD
  1123. * 2. Configure link according to Receiver Capabilities
  1124. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1125. * 4. Check link status on receipt of hot-plug interrupt
  1126. */
  1127. static void
  1128. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1129. {
  1130. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1131. if (!intel_dp->base.enc.crtc)
  1132. return;
  1133. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1134. intel_dp_link_down(intel_dp);
  1135. return;
  1136. }
  1137. if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
  1138. intel_dp_link_train(intel_dp);
  1139. }
  1140. static enum drm_connector_status
  1141. ironlake_dp_detect(struct drm_connector *connector)
  1142. {
  1143. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1144. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1145. enum drm_connector_status status;
  1146. status = connector_status_disconnected;
  1147. if (intel_dp_aux_native_read(intel_dp,
  1148. 0x000, intel_dp->dpcd,
  1149. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1150. {
  1151. if (intel_dp->dpcd[0] != 0)
  1152. status = connector_status_connected;
  1153. }
  1154. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1155. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1156. return status;
  1157. }
  1158. /**
  1159. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1160. *
  1161. * \return true if DP port is connected.
  1162. * \return false if DP port is disconnected.
  1163. */
  1164. static enum drm_connector_status
  1165. intel_dp_detect(struct drm_connector *connector)
  1166. {
  1167. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1168. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1169. struct drm_device *dev = intel_dp->base.enc.dev;
  1170. struct drm_i915_private *dev_priv = dev->dev_private;
  1171. uint32_t temp, bit;
  1172. enum drm_connector_status status;
  1173. intel_dp->has_audio = false;
  1174. if (HAS_PCH_SPLIT(dev))
  1175. return ironlake_dp_detect(connector);
  1176. switch (intel_dp->output_reg) {
  1177. case DP_B:
  1178. bit = DPB_HOTPLUG_INT_STATUS;
  1179. break;
  1180. case DP_C:
  1181. bit = DPC_HOTPLUG_INT_STATUS;
  1182. break;
  1183. case DP_D:
  1184. bit = DPD_HOTPLUG_INT_STATUS;
  1185. break;
  1186. default:
  1187. return connector_status_unknown;
  1188. }
  1189. temp = I915_READ(PORT_HOTPLUG_STAT);
  1190. if ((temp & bit) == 0)
  1191. return connector_status_disconnected;
  1192. status = connector_status_disconnected;
  1193. if (intel_dp_aux_native_read(intel_dp,
  1194. 0x000, intel_dp->dpcd,
  1195. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1196. {
  1197. if (intel_dp->dpcd[0] != 0)
  1198. status = connector_status_connected;
  1199. }
  1200. return status;
  1201. }
  1202. static int intel_dp_get_modes(struct drm_connector *connector)
  1203. {
  1204. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1205. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1206. struct drm_device *dev = intel_dp->base.enc.dev;
  1207. struct drm_i915_private *dev_priv = dev->dev_private;
  1208. int ret;
  1209. /* We should parse the EDID data and find out if it has an audio sink
  1210. */
  1211. ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
  1212. if (ret) {
  1213. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1214. !dev_priv->panel_fixed_mode) {
  1215. struct drm_display_mode *newmode;
  1216. list_for_each_entry(newmode, &connector->probed_modes,
  1217. head) {
  1218. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1219. dev_priv->panel_fixed_mode =
  1220. drm_mode_duplicate(dev, newmode);
  1221. break;
  1222. }
  1223. }
  1224. }
  1225. return ret;
  1226. }
  1227. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1228. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1229. if (dev_priv->panel_fixed_mode != NULL) {
  1230. struct drm_display_mode *mode;
  1231. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1232. drm_mode_probed_add(connector, mode);
  1233. return 1;
  1234. }
  1235. }
  1236. return 0;
  1237. }
  1238. static void
  1239. intel_dp_destroy (struct drm_connector *connector)
  1240. {
  1241. drm_sysfs_connector_remove(connector);
  1242. drm_connector_cleanup(connector);
  1243. kfree(connector);
  1244. }
  1245. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1246. .dpms = intel_dp_dpms,
  1247. .mode_fixup = intel_dp_mode_fixup,
  1248. .prepare = intel_encoder_prepare,
  1249. .mode_set = intel_dp_mode_set,
  1250. .commit = intel_encoder_commit,
  1251. };
  1252. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1253. .dpms = drm_helper_connector_dpms,
  1254. .detect = intel_dp_detect,
  1255. .fill_modes = drm_helper_probe_single_connector_modes,
  1256. .destroy = intel_dp_destroy,
  1257. };
  1258. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1259. .get_modes = intel_dp_get_modes,
  1260. .mode_valid = intel_dp_mode_valid,
  1261. .best_encoder = intel_attached_encoder,
  1262. };
  1263. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1264. .destroy = intel_encoder_destroy,
  1265. };
  1266. void
  1267. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1268. {
  1269. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1270. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1271. intel_dp_check_link_status(intel_dp);
  1272. }
  1273. /* Return which DP Port should be selected for Transcoder DP control */
  1274. int
  1275. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1276. {
  1277. struct drm_device *dev = crtc->dev;
  1278. struct drm_mode_config *mode_config = &dev->mode_config;
  1279. struct drm_encoder *encoder;
  1280. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1281. struct intel_dp *intel_dp;
  1282. if (encoder->crtc != crtc)
  1283. continue;
  1284. intel_dp = enc_to_intel_dp(encoder);
  1285. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1286. return intel_dp->output_reg;
  1287. }
  1288. return -1;
  1289. }
  1290. /* check the VBT to see whether the eDP is on DP-D port */
  1291. bool intel_dpd_is_edp(struct drm_device *dev)
  1292. {
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. struct child_device_config *p_child;
  1295. int i;
  1296. if (!dev_priv->child_dev_num)
  1297. return false;
  1298. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1299. p_child = dev_priv->child_dev + i;
  1300. if (p_child->dvo_port == PORT_IDPD &&
  1301. p_child->device_type == DEVICE_TYPE_eDP)
  1302. return true;
  1303. }
  1304. return false;
  1305. }
  1306. void
  1307. intel_dp_init(struct drm_device *dev, int output_reg)
  1308. {
  1309. struct drm_i915_private *dev_priv = dev->dev_private;
  1310. struct drm_connector *connector;
  1311. struct intel_dp *intel_dp;
  1312. struct intel_encoder *intel_encoder;
  1313. struct intel_connector *intel_connector;
  1314. const char *name = NULL;
  1315. int type;
  1316. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1317. if (!intel_dp)
  1318. return;
  1319. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1320. if (!intel_connector) {
  1321. kfree(intel_dp);
  1322. return;
  1323. }
  1324. intel_encoder = &intel_dp->base;
  1325. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1326. if (intel_dpd_is_edp(dev))
  1327. intel_dp->is_pch_edp = true;
  1328. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1329. type = DRM_MODE_CONNECTOR_eDP;
  1330. intel_encoder->type = INTEL_OUTPUT_EDP;
  1331. } else {
  1332. type = DRM_MODE_CONNECTOR_DisplayPort;
  1333. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1334. }
  1335. connector = &intel_connector->base;
  1336. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1337. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1338. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1339. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1340. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1341. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1342. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1343. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1344. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1345. if (IS_eDP(intel_dp))
  1346. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1347. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1348. connector->interlace_allowed = true;
  1349. connector->doublescan_allowed = 0;
  1350. intel_dp->output_reg = output_reg;
  1351. intel_dp->has_audio = false;
  1352. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1353. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1354. DRM_MODE_ENCODER_TMDS);
  1355. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1356. drm_mode_connector_attach_encoder(&intel_connector->base,
  1357. &intel_encoder->enc);
  1358. drm_sysfs_connector_add(connector);
  1359. /* Set up the DDC bus. */
  1360. switch (output_reg) {
  1361. case DP_A:
  1362. name = "DPDDC-A";
  1363. break;
  1364. case DP_B:
  1365. case PCH_DP_B:
  1366. dev_priv->hotplug_supported_mask |=
  1367. HDMIB_HOTPLUG_INT_STATUS;
  1368. name = "DPDDC-B";
  1369. break;
  1370. case DP_C:
  1371. case PCH_DP_C:
  1372. dev_priv->hotplug_supported_mask |=
  1373. HDMIC_HOTPLUG_INT_STATUS;
  1374. name = "DPDDC-C";
  1375. break;
  1376. case DP_D:
  1377. case PCH_DP_D:
  1378. dev_priv->hotplug_supported_mask |=
  1379. HDMID_HOTPLUG_INT_STATUS;
  1380. name = "DPDDC-D";
  1381. break;
  1382. }
  1383. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1384. intel_encoder->ddc_bus = &intel_dp->adapter;
  1385. intel_encoder->hot_plug = intel_dp_hot_plug;
  1386. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1387. /* initialize panel mode from VBT if available for eDP */
  1388. if (dev_priv->lfp_lvds_vbt_mode) {
  1389. dev_priv->panel_fixed_mode =
  1390. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1391. if (dev_priv->panel_fixed_mode) {
  1392. dev_priv->panel_fixed_mode->type |=
  1393. DRM_MODE_TYPE_PREFERRED;
  1394. }
  1395. }
  1396. }
  1397. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1398. * 0xd. Failure to do so will result in spurious interrupts being
  1399. * generated on the port when a cable is not attached.
  1400. */
  1401. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1402. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1403. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1404. }
  1405. }