bnx2x_init.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. /* bnx2x_init.h: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Eliezer Tamir <eliezert@broadcom.com>
  10. */
  11. #ifndef BNX2X_INIT_H
  12. #define BNX2X_INIT_H
  13. #define COMMON 0x1
  14. #define PORT0 0x2
  15. #define PORT1 0x4
  16. #define INIT_EMULATION 0x1
  17. #define INIT_FPGA 0x2
  18. #define INIT_ASIC 0x4
  19. #define INIT_HARDWARE 0x7
  20. #define STORM_INTMEM_SIZE (0x5800 / 4)
  21. #define TSTORM_INTMEM_ADDR 0x1a0000
  22. #define CSTORM_INTMEM_ADDR 0x220000
  23. #define XSTORM_INTMEM_ADDR 0x2a0000
  24. #define USTORM_INTMEM_ADDR 0x320000
  25. /* Init operation types and structures */
  26. #define OP_RD 0x1 /* read single register */
  27. #define OP_WR 0x2 /* write single register */
  28. #define OP_IW 0x3 /* write single register using mailbox */
  29. #define OP_SW 0x4 /* copy a string to the device */
  30. #define OP_SI 0x5 /* copy a string using mailbox */
  31. #define OP_ZR 0x6 /* clear memory */
  32. #define OP_ZP 0x7 /* unzip then copy with DMAE */
  33. #define OP_WB 0x8 /* copy a string using DMAE */
  34. struct raw_op {
  35. u32 op :8;
  36. u32 offset :24;
  37. u32 raw_data;
  38. };
  39. struct op_read {
  40. u32 op :8;
  41. u32 offset :24;
  42. u32 pad;
  43. };
  44. struct op_write {
  45. u32 op :8;
  46. u32 offset :24;
  47. u32 val;
  48. };
  49. struct op_string_write {
  50. u32 op :8;
  51. u32 offset :24;
  52. #ifdef __LITTLE_ENDIAN
  53. u16 data_off;
  54. u16 data_len;
  55. #else /* __BIG_ENDIAN */
  56. u16 data_len;
  57. u16 data_off;
  58. #endif
  59. };
  60. struct op_zero {
  61. u32 op :8;
  62. u32 offset :24;
  63. u32 len;
  64. };
  65. union init_op {
  66. struct op_read read;
  67. struct op_write write;
  68. struct op_string_write str_wr;
  69. struct op_zero zero;
  70. struct raw_op raw;
  71. };
  72. #include "bnx2x_init_values.h"
  73. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
  74. static void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr,
  75. u32 dst_addr, u32 len32);
  76. static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
  77. static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  78. u32 len)
  79. {
  80. int i;
  81. for (i = 0; i < len; i++) {
  82. REG_WR(bp, addr + i*4, data[i]);
  83. if (!(i % 10000)) {
  84. touch_softlockup_watchdog();
  85. cpu_relax();
  86. }
  87. }
  88. }
  89. #define INIT_MEM_WR(reg, data, reg_off, len) \
  90. bnx2x_init_str_wr(bp, reg + reg_off*4, data, len)
  91. static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  92. u16 len)
  93. {
  94. int i;
  95. for (i = 0; i < len; i++) {
  96. REG_WR_IND(bp, addr + i*4, data[i]);
  97. if (!(i % 10000)) {
  98. touch_softlockup_watchdog();
  99. cpu_relax();
  100. }
  101. }
  102. }
  103. static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
  104. u32 len, int gunzip)
  105. {
  106. int offset = 0;
  107. if (gunzip) {
  108. int rc;
  109. #ifdef __BIG_ENDIAN
  110. int i, size;
  111. u32 *temp;
  112. temp = kmalloc(len, GFP_KERNEL);
  113. size = (len / 4) + ((len % 4) ? 1 : 0);
  114. for (i = 0; i < size; i++)
  115. temp[i] = swab32(data[i]);
  116. data = temp;
  117. #endif
  118. rc = bnx2x_gunzip(bp, (u8 *)data, len);
  119. if (rc) {
  120. DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc);
  121. return;
  122. }
  123. len = bp->gunzip_outlen;
  124. #ifdef __BIG_ENDIAN
  125. kfree(temp);
  126. for (i = 0; i < len; i++)
  127. ((u32 *)bp->gunzip_buf)[i] =
  128. swab32(((u32 *)bp->gunzip_buf)[i]);
  129. #endif
  130. } else {
  131. if ((len * 4) > FW_BUF_SIZE) {
  132. BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4);
  133. return;
  134. }
  135. memcpy(bp->gunzip_buf, data, len * 4);
  136. }
  137. while (len > DMAE_LEN32_MAX) {
  138. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
  139. addr + offset, DMAE_LEN32_MAX);
  140. offset += DMAE_LEN32_MAX * 4;
  141. len -= DMAE_LEN32_MAX;
  142. }
  143. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
  144. }
  145. #define INIT_MEM_WB(reg, data, reg_off, len) \
  146. bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0)
  147. #define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \
  148. bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1)
  149. static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  150. {
  151. int offset = 0;
  152. if ((len * 4) > FW_BUF_SIZE) {
  153. BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4);
  154. return;
  155. }
  156. memset(bp->gunzip_buf, fill, len * 4);
  157. while (len > DMAE_LEN32_MAX) {
  158. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
  159. addr + offset, DMAE_LEN32_MAX);
  160. offset += DMAE_LEN32_MAX * 4;
  161. len -= DMAE_LEN32_MAX;
  162. }
  163. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
  164. }
  165. static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
  166. {
  167. int i;
  168. union init_op *op;
  169. u32 op_type, addr, len;
  170. const u32 *data;
  171. for (i = op_start; i < op_end; i++) {
  172. op = (union init_op *)&(init_ops[i]);
  173. op_type = op->str_wr.op;
  174. addr = op->str_wr.offset;
  175. len = op->str_wr.data_len;
  176. data = init_data + op->str_wr.data_off;
  177. switch (op_type) {
  178. case OP_RD:
  179. REG_RD(bp, addr);
  180. break;
  181. case OP_WR:
  182. REG_WR(bp, addr, op->write.val);
  183. break;
  184. case OP_SW:
  185. bnx2x_init_str_wr(bp, addr, data, len);
  186. break;
  187. case OP_WB:
  188. bnx2x_init_wr_wb(bp, addr, data, len, 0);
  189. break;
  190. case OP_SI:
  191. bnx2x_init_ind_wr(bp, addr, data, len);
  192. break;
  193. case OP_ZR:
  194. bnx2x_init_fill(bp, addr, 0, op->zero.len);
  195. break;
  196. case OP_ZP:
  197. bnx2x_init_wr_wb(bp, addr, data, len, 1);
  198. break;
  199. default:
  200. BNX2X_ERR("BAD init operation!\n");
  201. }
  202. }
  203. }
  204. /****************************************************************************
  205. * PXP
  206. ****************************************************************************/
  207. /*
  208. * This code configures the PCI read/write arbiter
  209. * which implements a wighted round robin
  210. * between the virtual queues in the chip.
  211. *
  212. * The values were derived for each PCI max payload and max request size.
  213. * since max payload and max request size are only known at run time,
  214. * this is done as a separate init stage.
  215. */
  216. #define NUM_WR_Q 13
  217. #define NUM_RD_Q 29
  218. #define MAX_RD_ORD 3
  219. #define MAX_WR_ORD 2
  220. /* configuration for one arbiter queue */
  221. struct arb_line {
  222. int l;
  223. int add;
  224. int ubound;
  225. };
  226. /* derived configuration for each read queue for each max request size */
  227. static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
  228. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
  229. {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
  230. {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
  231. {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
  232. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
  233. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  234. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  235. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  236. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  237. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  238. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  239. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  240. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  241. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  242. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  243. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  244. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  245. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  246. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  247. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  248. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  249. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  250. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  251. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  252. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  253. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  254. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  255. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  256. {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
  257. };
  258. /* derived configuration for each write queue for each max request size */
  259. static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
  260. {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
  261. {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
  262. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  263. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  264. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  265. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  266. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
  267. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  268. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  269. {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
  270. {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
  271. {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
  272. {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
  273. };
  274. /* register adresses for read queues */
  275. static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
  276. {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
  277. PXP2_REG_RQ_BW_RD_UBOUND0},
  278. {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  279. PXP2_REG_PSWRQ_BW_UB1},
  280. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  281. PXP2_REG_PSWRQ_BW_UB2},
  282. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  283. PXP2_REG_PSWRQ_BW_UB3},
  284. {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
  285. PXP2_REG_RQ_BW_RD_UBOUND4},
  286. {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
  287. PXP2_REG_RQ_BW_RD_UBOUND5},
  288. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  289. PXP2_REG_PSWRQ_BW_UB6},
  290. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  291. PXP2_REG_PSWRQ_BW_UB7},
  292. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  293. PXP2_REG_PSWRQ_BW_UB8},
  294. {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  295. PXP2_REG_PSWRQ_BW_UB9},
  296. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  297. PXP2_REG_PSWRQ_BW_UB10},
  298. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  299. PXP2_REG_PSWRQ_BW_UB11},
  300. {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
  301. PXP2_REG_RQ_BW_RD_UBOUND12},
  302. {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
  303. PXP2_REG_RQ_BW_RD_UBOUND13},
  304. {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
  305. PXP2_REG_RQ_BW_RD_UBOUND14},
  306. {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
  307. PXP2_REG_RQ_BW_RD_UBOUND15},
  308. {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
  309. PXP2_REG_RQ_BW_RD_UBOUND16},
  310. {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
  311. PXP2_REG_RQ_BW_RD_UBOUND17},
  312. {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
  313. PXP2_REG_RQ_BW_RD_UBOUND18},
  314. {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
  315. PXP2_REG_RQ_BW_RD_UBOUND19},
  316. {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
  317. PXP2_REG_RQ_BW_RD_UBOUND20},
  318. {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
  319. PXP2_REG_RQ_BW_RD_UBOUND22},
  320. {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
  321. PXP2_REG_RQ_BW_RD_UBOUND23},
  322. {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
  323. PXP2_REG_RQ_BW_RD_UBOUND24},
  324. {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
  325. PXP2_REG_RQ_BW_RD_UBOUND25},
  326. {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
  327. PXP2_REG_RQ_BW_RD_UBOUND26},
  328. {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
  329. PXP2_REG_RQ_BW_RD_UBOUND27},
  330. {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  331. PXP2_REG_PSWRQ_BW_UB28}
  332. };
  333. /* register adresses for wrtie queues */
  334. static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
  335. {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  336. PXP2_REG_PSWRQ_BW_UB1},
  337. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  338. PXP2_REG_PSWRQ_BW_UB2},
  339. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  340. PXP2_REG_PSWRQ_BW_UB3},
  341. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  342. PXP2_REG_PSWRQ_BW_UB6},
  343. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  344. PXP2_REG_PSWRQ_BW_UB7},
  345. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  346. PXP2_REG_PSWRQ_BW_UB8},
  347. {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  348. PXP2_REG_PSWRQ_BW_UB9},
  349. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  350. PXP2_REG_PSWRQ_BW_UB10},
  351. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  352. PXP2_REG_PSWRQ_BW_UB11},
  353. {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  354. PXP2_REG_PSWRQ_BW_UB28},
  355. {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
  356. PXP2_REG_RQ_BW_WR_UBOUND29},
  357. {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
  358. PXP2_REG_RQ_BW_WR_UBOUND30}
  359. };
  360. static void bnx2x_init_pxp(struct bnx2x *bp)
  361. {
  362. int r_order, w_order;
  363. u32 val, i;
  364. pci_read_config_word(bp->pdev,
  365. bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val);
  366. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", val);
  367. w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  368. r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12);
  369. if (r_order > MAX_RD_ORD) {
  370. DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
  371. r_order, MAX_RD_ORD);
  372. r_order = MAX_RD_ORD;
  373. }
  374. if (w_order > MAX_WR_ORD) {
  375. DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
  376. w_order, MAX_WR_ORD);
  377. w_order = MAX_WR_ORD;
  378. }
  379. DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
  380. for (i = 0; i < NUM_RD_Q-1; i++) {
  381. REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
  382. REG_WR(bp, read_arb_addr[i].add,
  383. read_arb_data[i][r_order].add);
  384. REG_WR(bp, read_arb_addr[i].ubound,
  385. read_arb_data[i][r_order].ubound);
  386. }
  387. for (i = 0; i < NUM_WR_Q-1; i++) {
  388. if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
  389. (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
  390. REG_WR(bp, write_arb_addr[i].l,
  391. write_arb_data[i][w_order].l);
  392. REG_WR(bp, write_arb_addr[i].add,
  393. write_arb_data[i][w_order].add);
  394. REG_WR(bp, write_arb_addr[i].ubound,
  395. write_arb_data[i][w_order].ubound);
  396. } else {
  397. val = REG_RD(bp, write_arb_addr[i].l);
  398. REG_WR(bp, write_arb_addr[i].l,
  399. val | (write_arb_data[i][w_order].l << 10));
  400. val = REG_RD(bp, write_arb_addr[i].add);
  401. REG_WR(bp, write_arb_addr[i].add,
  402. val | (write_arb_data[i][w_order].add << 10));
  403. val = REG_RD(bp, write_arb_addr[i].ubound);
  404. REG_WR(bp, write_arb_addr[i].ubound,
  405. val | (write_arb_data[i][w_order].ubound << 7));
  406. }
  407. }
  408. val = write_arb_data[NUM_WR_Q-1][w_order].add;
  409. val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
  410. val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
  411. REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
  412. val = read_arb_data[NUM_RD_Q-1][r_order].add;
  413. val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
  414. val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
  415. REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
  416. REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
  417. REG_WR(bp, PXP2_REG_RQ_WR_MBS0 + 8, w_order);
  418. REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
  419. REG_WR(bp, PXP2_REG_RQ_RD_MBS0 + 8, r_order);
  420. REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16);
  421. }
  422. /****************************************************************************
  423. * CDU
  424. ****************************************************************************/
  425. #define CDU_REGION_NUMBER_XCM_AG 2
  426. #define CDU_REGION_NUMBER_UCM_AG 4
  427. /**
  428. * String-to-compress [31:8] = CID (all 24 bits)
  429. * String-to-compress [7:4] = Region
  430. * String-to-compress [3:0] = Type
  431. */
  432. #define CDU_VALID_DATA(_cid, _region, _type) \
  433. (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
  434. #define CDU_CRC8(_cid, _region, _type) \
  435. calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
  436. #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
  437. (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
  438. #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
  439. (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
  440. #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
  441. /*****************************************************************************
  442. * Description:
  443. * Calculates crc 8 on a word value: polynomial 0-1-2-8
  444. * Code was translated from Verilog.
  445. ****************************************************************************/
  446. static u8 calc_crc8(u32 data, u8 crc)
  447. {
  448. u8 D[32];
  449. u8 NewCRC[8];
  450. u8 C[8];
  451. u8 crc_res;
  452. u8 i;
  453. /* split the data into 31 bits */
  454. for (i = 0; i < 32; i++) {
  455. D[i] = data & 1;
  456. data = data >> 1;
  457. }
  458. /* split the crc into 8 bits */
  459. for (i = 0; i < 8; i++) {
  460. C[i] = crc & 1;
  461. crc = crc >> 1;
  462. }
  463. NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
  464. D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
  465. C[6] ^ C[7];
  466. NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
  467. D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
  468. D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
  469. NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
  470. D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
  471. C[0] ^ C[1] ^ C[4] ^ C[5];
  472. NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
  473. D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
  474. C[1] ^ C[2] ^ C[5] ^ C[6];
  475. NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
  476. D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
  477. C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
  478. NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
  479. D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
  480. C[3] ^ C[4] ^ C[7];
  481. NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
  482. D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
  483. C[5];
  484. NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
  485. D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
  486. C[6];
  487. crc_res = 0;
  488. for (i = 0; i < 8; i++)
  489. crc_res |= (NewCRC[i] << i);
  490. return crc_res;
  491. }
  492. #endif /* BNX2X_INIT_H */