request.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. static void bch_data_insert_start(struct closure *);
  23. /* Cgroup interface */
  24. #ifdef CONFIG_CGROUP_BCACHE
  25. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  26. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  27. {
  28. struct cgroup_subsys_state *css;
  29. return cgroup &&
  30. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  31. ? container_of(css, struct bch_cgroup, css)
  32. : &bcache_default_cgroup;
  33. }
  34. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  35. {
  36. struct cgroup_subsys_state *css = bio->bi_css
  37. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  38. : task_subsys_state(current, bcache_subsys_id);
  39. return css
  40. ? container_of(css, struct bch_cgroup, css)
  41. : &bcache_default_cgroup;
  42. }
  43. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  44. struct file *file,
  45. char __user *buf, size_t nbytes, loff_t *ppos)
  46. {
  47. char tmp[1024];
  48. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  49. cgroup_to_bcache(cgrp)->cache_mode + 1);
  50. if (len < 0)
  51. return len;
  52. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  53. }
  54. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  55. const char *buf)
  56. {
  57. int v = bch_read_string_list(buf, bch_cache_modes);
  58. if (v < 0)
  59. return v;
  60. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  61. return 0;
  62. }
  63. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  64. {
  65. return cgroup_to_bcache(cgrp)->verify;
  66. }
  67. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  68. {
  69. cgroup_to_bcache(cgrp)->verify = val;
  70. return 0;
  71. }
  72. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  73. {
  74. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  75. return atomic_read(&bcachecg->stats.cache_hits);
  76. }
  77. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  78. {
  79. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  80. return atomic_read(&bcachecg->stats.cache_misses);
  81. }
  82. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  83. struct cftype *cft)
  84. {
  85. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  86. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  87. }
  88. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  89. struct cftype *cft)
  90. {
  91. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  92. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  93. }
  94. static struct cftype bch_files[] = {
  95. {
  96. .name = "cache_mode",
  97. .read = cache_mode_read,
  98. .write_string = cache_mode_write,
  99. },
  100. {
  101. .name = "verify",
  102. .read_u64 = bch_verify_read,
  103. .write_u64 = bch_verify_write,
  104. },
  105. {
  106. .name = "cache_hits",
  107. .read_u64 = bch_cache_hits_read,
  108. },
  109. {
  110. .name = "cache_misses",
  111. .read_u64 = bch_cache_misses_read,
  112. },
  113. {
  114. .name = "cache_bypass_hits",
  115. .read_u64 = bch_cache_bypass_hits_read,
  116. },
  117. {
  118. .name = "cache_bypass_misses",
  119. .read_u64 = bch_cache_bypass_misses_read,
  120. },
  121. { } /* terminate */
  122. };
  123. static void init_bch_cgroup(struct bch_cgroup *cg)
  124. {
  125. cg->cache_mode = -1;
  126. }
  127. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  128. {
  129. struct bch_cgroup *cg;
  130. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  131. if (!cg)
  132. return ERR_PTR(-ENOMEM);
  133. init_bch_cgroup(cg);
  134. return &cg->css;
  135. }
  136. static void bcachecg_destroy(struct cgroup *cgroup)
  137. {
  138. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  139. free_css_id(&bcache_subsys, &cg->css);
  140. kfree(cg);
  141. }
  142. struct cgroup_subsys bcache_subsys = {
  143. .create = bcachecg_create,
  144. .destroy = bcachecg_destroy,
  145. .subsys_id = bcache_subsys_id,
  146. .name = "bcache",
  147. .module = THIS_MODULE,
  148. };
  149. EXPORT_SYMBOL_GPL(bcache_subsys);
  150. #endif
  151. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  152. {
  153. #ifdef CONFIG_CGROUP_BCACHE
  154. int r = bch_bio_to_cgroup(bio)->cache_mode;
  155. if (r >= 0)
  156. return r;
  157. #endif
  158. return BDEV_CACHE_MODE(&dc->sb);
  159. }
  160. static bool verify(struct cached_dev *dc, struct bio *bio)
  161. {
  162. #ifdef CONFIG_CGROUP_BCACHE
  163. if (bch_bio_to_cgroup(bio)->verify)
  164. return true;
  165. #endif
  166. return dc->verify;
  167. }
  168. static void bio_csum(struct bio *bio, struct bkey *k)
  169. {
  170. struct bio_vec *bv;
  171. uint64_t csum = 0;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. void *d = kmap(bv->bv_page) + bv->bv_offset;
  175. csum = bch_crc64_update(csum, d, bv->bv_len);
  176. kunmap(bv->bv_page);
  177. }
  178. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  179. }
  180. /* Insert data into cache */
  181. static void bch_data_insert_keys(struct closure *cl)
  182. {
  183. struct btree_op *op = container_of(cl, struct btree_op, cl);
  184. struct search *s = container_of(op, struct search, op);
  185. /*
  186. * If we're looping, might already be waiting on
  187. * another journal write - can't wait on more than one journal write at
  188. * a time
  189. *
  190. * XXX: this looks wrong
  191. */
  192. #if 0
  193. while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  194. closure_sync(&s->cl);
  195. #endif
  196. if (s->write)
  197. op->journal = bch_journal(op->c, &s->insert_keys,
  198. op->flush_journal
  199. ? &s->cl : NULL);
  200. if (bch_btree_insert(op, op->c, &s->insert_keys)) {
  201. s->error = -ENOMEM;
  202. op->insert_data_done = true;
  203. }
  204. if (op->journal)
  205. atomic_dec_bug(op->journal);
  206. op->journal = NULL;
  207. if (!op->insert_data_done)
  208. continue_at(cl, bch_data_insert_start, bcache_wq);
  209. bch_keylist_free(&s->insert_keys);
  210. closure_return(cl);
  211. }
  212. struct open_bucket {
  213. struct list_head list;
  214. struct task_struct *last;
  215. unsigned sectors_free;
  216. BKEY_PADDED(key);
  217. };
  218. void bch_open_buckets_free(struct cache_set *c)
  219. {
  220. struct open_bucket *b;
  221. while (!list_empty(&c->data_buckets)) {
  222. b = list_first_entry(&c->data_buckets,
  223. struct open_bucket, list);
  224. list_del(&b->list);
  225. kfree(b);
  226. }
  227. }
  228. int bch_open_buckets_alloc(struct cache_set *c)
  229. {
  230. int i;
  231. spin_lock_init(&c->data_bucket_lock);
  232. for (i = 0; i < 6; i++) {
  233. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  234. if (!b)
  235. return -ENOMEM;
  236. list_add(&b->list, &c->data_buckets);
  237. }
  238. return 0;
  239. }
  240. /*
  241. * We keep multiple buckets open for writes, and try to segregate different
  242. * write streams for better cache utilization: first we look for a bucket where
  243. * the last write to it was sequential with the current write, and failing that
  244. * we look for a bucket that was last used by the same task.
  245. *
  246. * The ideas is if you've got multiple tasks pulling data into the cache at the
  247. * same time, you'll get better cache utilization if you try to segregate their
  248. * data and preserve locality.
  249. *
  250. * For example, say you've starting Firefox at the same time you're copying a
  251. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  252. * cache awhile, but the data you copied might not be; if you wrote all that
  253. * data to the same buckets it'd get invalidated at the same time.
  254. *
  255. * Both of those tasks will be doing fairly random IO so we can't rely on
  256. * detecting sequential IO to segregate their data, but going off of the task
  257. * should be a sane heuristic.
  258. */
  259. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  260. const struct bkey *search,
  261. struct task_struct *task,
  262. struct bkey *alloc)
  263. {
  264. struct open_bucket *ret, *ret_task = NULL;
  265. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  266. if (!bkey_cmp(&ret->key, search))
  267. goto found;
  268. else if (ret->last == task)
  269. ret_task = ret;
  270. ret = ret_task ?: list_first_entry(&c->data_buckets,
  271. struct open_bucket, list);
  272. found:
  273. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  274. ret->sectors_free = c->sb.bucket_size;
  275. bkey_copy(&ret->key, alloc);
  276. bkey_init(alloc);
  277. }
  278. if (!ret->sectors_free)
  279. ret = NULL;
  280. return ret;
  281. }
  282. /*
  283. * Allocates some space in the cache to write to, and k to point to the newly
  284. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  285. * end of the newly allocated space).
  286. *
  287. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  288. * sectors were actually allocated.
  289. *
  290. * If s->writeback is true, will not fail.
  291. */
  292. static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
  293. struct search *s)
  294. {
  295. struct cache_set *c = s->op.c;
  296. struct open_bucket *b;
  297. BKEY_PADDED(key) alloc;
  298. struct closure cl, *w = NULL;
  299. unsigned i;
  300. if (s->writeback) {
  301. closure_init_stack(&cl);
  302. w = &cl;
  303. }
  304. /*
  305. * We might have to allocate a new bucket, which we can't do with a
  306. * spinlock held. So if we have to allocate, we drop the lock, allocate
  307. * and then retry. KEY_PTRS() indicates whether alloc points to
  308. * allocated bucket(s).
  309. */
  310. bkey_init(&alloc.key);
  311. spin_lock(&c->data_bucket_lock);
  312. while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
  313. unsigned watermark = s->op.write_prio
  314. ? WATERMARK_MOVINGGC
  315. : WATERMARK_NONE;
  316. spin_unlock(&c->data_bucket_lock);
  317. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
  318. return false;
  319. spin_lock(&c->data_bucket_lock);
  320. }
  321. /*
  322. * If we had to allocate, we might race and not need to allocate the
  323. * second time we call find_data_bucket(). If we allocated a bucket but
  324. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  325. */
  326. if (KEY_PTRS(&alloc.key))
  327. __bkey_put(c, &alloc.key);
  328. for (i = 0; i < KEY_PTRS(&b->key); i++)
  329. EBUG_ON(ptr_stale(c, &b->key, i));
  330. /* Set up the pointer to the space we're allocating: */
  331. for (i = 0; i < KEY_PTRS(&b->key); i++)
  332. k->ptr[i] = b->key.ptr[i];
  333. sectors = min(sectors, b->sectors_free);
  334. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  335. SET_KEY_SIZE(k, sectors);
  336. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  337. /*
  338. * Move b to the end of the lru, and keep track of what this bucket was
  339. * last used for:
  340. */
  341. list_move_tail(&b->list, &c->data_buckets);
  342. bkey_copy_key(&b->key, k);
  343. b->last = s->task;
  344. b->sectors_free -= sectors;
  345. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  346. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  347. atomic_long_add(sectors,
  348. &PTR_CACHE(c, &b->key, i)->sectors_written);
  349. }
  350. if (b->sectors_free < c->sb.block_size)
  351. b->sectors_free = 0;
  352. /*
  353. * k takes refcounts on the buckets it points to until it's inserted
  354. * into the btree, but if we're done with this bucket we just transfer
  355. * get_data_bucket()'s refcount.
  356. */
  357. if (b->sectors_free)
  358. for (i = 0; i < KEY_PTRS(&b->key); i++)
  359. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  360. spin_unlock(&c->data_bucket_lock);
  361. return true;
  362. }
  363. static void bch_data_invalidate(struct closure *cl)
  364. {
  365. struct btree_op *op = container_of(cl, struct btree_op, cl);
  366. struct search *s = container_of(op, struct search, op);
  367. struct bio *bio = op->cache_bio;
  368. pr_debug("invalidating %i sectors from %llu",
  369. bio_sectors(bio), (uint64_t) bio->bi_sector);
  370. while (bio_sectors(bio)) {
  371. unsigned len = min(bio_sectors(bio), 1U << 14);
  372. if (bch_keylist_realloc(&s->insert_keys, 0, op->c))
  373. goto out;
  374. bio->bi_sector += len;
  375. bio->bi_size -= len << 9;
  376. bch_keylist_add(&s->insert_keys,
  377. &KEY(op->inode, bio->bi_sector, len));
  378. }
  379. op->insert_data_done = true;
  380. bio_put(bio);
  381. out:
  382. continue_at(cl, bch_data_insert_keys, bcache_wq);
  383. }
  384. static void bch_data_insert_error(struct closure *cl)
  385. {
  386. struct btree_op *op = container_of(cl, struct btree_op, cl);
  387. struct search *s = container_of(op, struct search, op);
  388. /*
  389. * Our data write just errored, which means we've got a bunch of keys to
  390. * insert that point to data that wasn't succesfully written.
  391. *
  392. * We don't have to insert those keys but we still have to invalidate
  393. * that region of the cache - so, if we just strip off all the pointers
  394. * from the keys we'll accomplish just that.
  395. */
  396. struct bkey *src = s->insert_keys.keys, *dst = s->insert_keys.keys;
  397. while (src != s->insert_keys.top) {
  398. struct bkey *n = bkey_next(src);
  399. SET_KEY_PTRS(src, 0);
  400. memmove(dst, src, bkey_bytes(src));
  401. dst = bkey_next(dst);
  402. src = n;
  403. }
  404. s->insert_keys.top = dst;
  405. bch_data_insert_keys(cl);
  406. }
  407. static void bch_data_insert_endio(struct bio *bio, int error)
  408. {
  409. struct closure *cl = bio->bi_private;
  410. struct btree_op *op = container_of(cl, struct btree_op, cl);
  411. struct search *s = container_of(op, struct search, op);
  412. if (error) {
  413. /* TODO: We could try to recover from this. */
  414. if (s->writeback)
  415. s->error = error;
  416. else if (s->write)
  417. set_closure_fn(cl, bch_data_insert_error, bcache_wq);
  418. else
  419. set_closure_fn(cl, NULL, NULL);
  420. }
  421. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  422. }
  423. static void bch_data_insert_start(struct closure *cl)
  424. {
  425. struct btree_op *op = container_of(cl, struct btree_op, cl);
  426. struct search *s = container_of(op, struct search, op);
  427. struct bio *bio = op->cache_bio, *n;
  428. if (op->bypass)
  429. return bch_data_invalidate(cl);
  430. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  431. set_gc_sectors(op->c);
  432. bch_queue_gc(op->c);
  433. }
  434. /*
  435. * Journal writes are marked REQ_FLUSH; if the original write was a
  436. * flush, it'll wait on the journal write.
  437. */
  438. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  439. do {
  440. unsigned i;
  441. struct bkey *k;
  442. struct bio_set *split = s->d
  443. ? s->d->bio_split : op->c->bio_split;
  444. /* 1 for the device pointer and 1 for the chksum */
  445. if (bch_keylist_realloc(&s->insert_keys,
  446. 1 + (op->csum ? 1 : 0),
  447. op->c))
  448. continue_at(cl, bch_data_insert_keys, bcache_wq);
  449. k = s->insert_keys.top;
  450. bkey_init(k);
  451. SET_KEY_INODE(k, op->inode);
  452. SET_KEY_OFFSET(k, bio->bi_sector);
  453. if (!bch_alloc_sectors(k, bio_sectors(bio), s))
  454. goto err;
  455. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  456. n->bi_end_io = bch_data_insert_endio;
  457. n->bi_private = cl;
  458. if (s->writeback) {
  459. SET_KEY_DIRTY(k, true);
  460. for (i = 0; i < KEY_PTRS(k); i++)
  461. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  462. GC_MARK_DIRTY);
  463. }
  464. SET_KEY_CSUM(k, op->csum);
  465. if (KEY_CSUM(k))
  466. bio_csum(n, k);
  467. trace_bcache_cache_insert(k);
  468. bch_keylist_push(&s->insert_keys);
  469. n->bi_rw |= REQ_WRITE;
  470. bch_submit_bbio(n, op->c, k, 0);
  471. } while (n != bio);
  472. op->insert_data_done = true;
  473. continue_at(cl, bch_data_insert_keys, bcache_wq);
  474. err:
  475. /* bch_alloc_sectors() blocks if s->writeback = true */
  476. BUG_ON(s->writeback);
  477. /*
  478. * But if it's not a writeback write we'd rather just bail out if
  479. * there aren't any buckets ready to write to - it might take awhile and
  480. * we might be starving btree writes for gc or something.
  481. */
  482. if (s->write) {
  483. /*
  484. * Writethrough write: We can't complete the write until we've
  485. * updated the index. But we don't want to delay the write while
  486. * we wait for buckets to be freed up, so just invalidate the
  487. * rest of the write.
  488. */
  489. op->bypass = true;
  490. return bch_data_invalidate(cl);
  491. } else {
  492. /*
  493. * From a cache miss, we can just insert the keys for the data
  494. * we have written or bail out if we didn't do anything.
  495. */
  496. op->insert_data_done = true;
  497. bio_put(bio);
  498. if (!bch_keylist_empty(&s->insert_keys))
  499. continue_at(cl, bch_data_insert_keys, bcache_wq);
  500. else
  501. closure_return(cl);
  502. }
  503. }
  504. /**
  505. * bch_data_insert - stick some data in the cache
  506. *
  507. * This is the starting point for any data to end up in a cache device; it could
  508. * be from a normal write, or a writeback write, or a write to a flash only
  509. * volume - it's also used by the moving garbage collector to compact data in
  510. * mostly empty buckets.
  511. *
  512. * It first writes the data to the cache, creating a list of keys to be inserted
  513. * (if the data had to be fragmented there will be multiple keys); after the
  514. * data is written it calls bch_journal, and after the keys have been added to
  515. * the next journal write they're inserted into the btree.
  516. *
  517. * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
  518. * and op->inode is used for the key inode.
  519. *
  520. * If op->bypass is true, instead of inserting the data it invalidates the
  521. * region of the cache represented by op->cache_bio and op->inode.
  522. */
  523. void bch_data_insert(struct closure *cl)
  524. {
  525. struct btree_op *op = container_of(cl, struct btree_op, cl);
  526. struct search *s = container_of(op, struct search, op);
  527. bch_keylist_init(&s->insert_keys);
  528. bio_get(op->cache_bio);
  529. bch_data_insert_start(cl);
  530. }
  531. /* Common code for the make_request functions */
  532. static void request_endio(struct bio *bio, int error)
  533. {
  534. struct closure *cl = bio->bi_private;
  535. if (error) {
  536. struct search *s = container_of(cl, struct search, cl);
  537. s->error = error;
  538. /* Only cache read errors are recoverable */
  539. s->recoverable = false;
  540. }
  541. bio_put(bio);
  542. closure_put(cl);
  543. }
  544. void bch_cache_read_endio(struct bio *bio, int error)
  545. {
  546. struct bbio *b = container_of(bio, struct bbio, bio);
  547. struct closure *cl = bio->bi_private;
  548. struct search *s = container_of(cl, struct search, cl);
  549. /*
  550. * If the bucket was reused while our bio was in flight, we might have
  551. * read the wrong data. Set s->error but not error so it doesn't get
  552. * counted against the cache device, but we'll still reread the data
  553. * from the backing device.
  554. */
  555. if (error)
  556. s->error = error;
  557. else if (ptr_stale(s->op.c, &b->key, 0)) {
  558. atomic_long_inc(&s->op.c->cache_read_races);
  559. s->error = -EINTR;
  560. }
  561. bch_bbio_endio(s->op.c, bio, error, "reading from cache");
  562. }
  563. static void bio_complete(struct search *s)
  564. {
  565. if (s->orig_bio) {
  566. int cpu, rw = bio_data_dir(s->orig_bio);
  567. unsigned long duration = jiffies - s->start_time;
  568. cpu = part_stat_lock();
  569. part_round_stats(cpu, &s->d->disk->part0);
  570. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  571. part_stat_unlock();
  572. trace_bcache_request_end(s, s->orig_bio);
  573. bio_endio(s->orig_bio, s->error);
  574. s->orig_bio = NULL;
  575. }
  576. }
  577. static void do_bio_hook(struct search *s)
  578. {
  579. struct bio *bio = &s->bio.bio;
  580. memcpy(bio, s->orig_bio, sizeof(struct bio));
  581. bio->bi_end_io = request_endio;
  582. bio->bi_private = &s->cl;
  583. atomic_set(&bio->bi_cnt, 3);
  584. }
  585. static void search_free(struct closure *cl)
  586. {
  587. struct search *s = container_of(cl, struct search, cl);
  588. bio_complete(s);
  589. if (s->op.cache_bio)
  590. bio_put(s->op.cache_bio);
  591. if (s->unaligned_bvec)
  592. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  593. closure_debug_destroy(cl);
  594. mempool_free(s, s->d->c->search);
  595. }
  596. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  597. {
  598. struct search *s;
  599. struct bio_vec *bv;
  600. s = mempool_alloc(d->c->search, GFP_NOIO);
  601. memset(s, 0, offsetof(struct search, insert_keys));
  602. __closure_init(&s->cl, NULL);
  603. s->op.inode = d->id;
  604. s->op.c = d->c;
  605. s->d = d;
  606. s->op.lock = -1;
  607. s->task = current;
  608. s->orig_bio = bio;
  609. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  610. s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  611. s->recoverable = 1;
  612. s->start_time = jiffies;
  613. do_bio_hook(s);
  614. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  615. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  616. memcpy(bv, bio_iovec(bio),
  617. sizeof(struct bio_vec) * bio_segments(bio));
  618. s->bio.bio.bi_io_vec = bv;
  619. s->unaligned_bvec = 1;
  620. }
  621. return s;
  622. }
  623. static void btree_read_async(struct closure *cl)
  624. {
  625. struct btree_op *op = container_of(cl, struct btree_op, cl);
  626. int ret = btree_root(search_recurse, op->c, op);
  627. if (ret == -EAGAIN)
  628. continue_at(cl, btree_read_async, bcache_wq);
  629. closure_return(cl);
  630. }
  631. /* Cached devices */
  632. static void cached_dev_bio_complete(struct closure *cl)
  633. {
  634. struct search *s = container_of(cl, struct search, cl);
  635. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  636. search_free(cl);
  637. cached_dev_put(dc);
  638. }
  639. unsigned bch_get_congested(struct cache_set *c)
  640. {
  641. int i;
  642. long rand;
  643. if (!c->congested_read_threshold_us &&
  644. !c->congested_write_threshold_us)
  645. return 0;
  646. i = (local_clock_us() - c->congested_last_us) / 1024;
  647. if (i < 0)
  648. return 0;
  649. i += atomic_read(&c->congested);
  650. if (i >= 0)
  651. return 0;
  652. i += CONGESTED_MAX;
  653. if (i > 0)
  654. i = fract_exp_two(i, 6);
  655. rand = get_random_int();
  656. i -= bitmap_weight(&rand, BITS_PER_LONG);
  657. return i > 0 ? i : 1;
  658. }
  659. static void add_sequential(struct task_struct *t)
  660. {
  661. ewma_add(t->sequential_io_avg,
  662. t->sequential_io, 8, 0);
  663. t->sequential_io = 0;
  664. }
  665. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  666. {
  667. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  668. }
  669. static bool check_should_bypass(struct cached_dev *dc, struct search *s)
  670. {
  671. struct cache_set *c = s->op.c;
  672. struct bio *bio = &s->bio.bio;
  673. unsigned mode = cache_mode(dc, bio);
  674. unsigned sectors, congested = bch_get_congested(c);
  675. if (atomic_read(&dc->disk.detaching) ||
  676. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  677. (bio->bi_rw & REQ_DISCARD))
  678. goto skip;
  679. if (mode == CACHE_MODE_NONE ||
  680. (mode == CACHE_MODE_WRITEAROUND &&
  681. (bio->bi_rw & REQ_WRITE)))
  682. goto skip;
  683. if (bio->bi_sector & (c->sb.block_size - 1) ||
  684. bio_sectors(bio) & (c->sb.block_size - 1)) {
  685. pr_debug("skipping unaligned io");
  686. goto skip;
  687. }
  688. if (!congested && !dc->sequential_cutoff)
  689. goto rescale;
  690. if (!congested &&
  691. mode == CACHE_MODE_WRITEBACK &&
  692. (bio->bi_rw & REQ_WRITE) &&
  693. (bio->bi_rw & REQ_SYNC))
  694. goto rescale;
  695. if (dc->sequential_merge) {
  696. struct io *i;
  697. spin_lock(&dc->io_lock);
  698. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  699. if (i->last == bio->bi_sector &&
  700. time_before(jiffies, i->jiffies))
  701. goto found;
  702. i = list_first_entry(&dc->io_lru, struct io, lru);
  703. add_sequential(s->task);
  704. i->sequential = 0;
  705. found:
  706. if (i->sequential + bio->bi_size > i->sequential)
  707. i->sequential += bio->bi_size;
  708. i->last = bio_end_sector(bio);
  709. i->jiffies = jiffies + msecs_to_jiffies(5000);
  710. s->task->sequential_io = i->sequential;
  711. hlist_del(&i->hash);
  712. hlist_add_head(&i->hash, iohash(dc, i->last));
  713. list_move_tail(&i->lru, &dc->io_lru);
  714. spin_unlock(&dc->io_lock);
  715. } else {
  716. s->task->sequential_io = bio->bi_size;
  717. add_sequential(s->task);
  718. }
  719. sectors = max(s->task->sequential_io,
  720. s->task->sequential_io_avg) >> 9;
  721. if (dc->sequential_cutoff &&
  722. sectors >= dc->sequential_cutoff >> 9) {
  723. trace_bcache_bypass_sequential(s->orig_bio);
  724. goto skip;
  725. }
  726. if (congested && sectors >= congested) {
  727. trace_bcache_bypass_congested(s->orig_bio);
  728. goto skip;
  729. }
  730. rescale:
  731. bch_rescale_priorities(c, bio_sectors(bio));
  732. return false;
  733. skip:
  734. bch_mark_sectors_bypassed(s, bio_sectors(bio));
  735. return true;
  736. }
  737. /* Process reads */
  738. static void cached_dev_cache_miss_done(struct closure *cl)
  739. {
  740. struct search *s = container_of(cl, struct search, cl);
  741. if (s->op.insert_collision)
  742. bch_mark_cache_miss_collision(s);
  743. if (s->op.cache_bio) {
  744. int i;
  745. struct bio_vec *bv;
  746. __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
  747. __free_page(bv->bv_page);
  748. }
  749. cached_dev_bio_complete(cl);
  750. }
  751. static void cached_dev_read_error(struct closure *cl)
  752. {
  753. struct search *s = container_of(cl, struct search, cl);
  754. struct bio *bio = &s->bio.bio;
  755. struct bio_vec *bv;
  756. int i;
  757. if (s->recoverable) {
  758. /* Retry from the backing device: */
  759. trace_bcache_read_retry(s->orig_bio);
  760. s->error = 0;
  761. bv = s->bio.bio.bi_io_vec;
  762. do_bio_hook(s);
  763. s->bio.bio.bi_io_vec = bv;
  764. if (!s->unaligned_bvec)
  765. bio_for_each_segment(bv, s->orig_bio, i)
  766. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  767. else
  768. memcpy(s->bio.bio.bi_io_vec,
  769. bio_iovec(s->orig_bio),
  770. sizeof(struct bio_vec) *
  771. bio_segments(s->orig_bio));
  772. /* XXX: invalidate cache */
  773. closure_bio_submit(bio, cl, s->d);
  774. }
  775. continue_at(cl, cached_dev_cache_miss_done, NULL);
  776. }
  777. static void cached_dev_read_done(struct closure *cl)
  778. {
  779. struct search *s = container_of(cl, struct search, cl);
  780. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  781. /*
  782. * We had a cache miss; cache_bio now contains data ready to be inserted
  783. * into the cache.
  784. *
  785. * First, we copy the data we just read from cache_bio's bounce buffers
  786. * to the buffers the original bio pointed to:
  787. */
  788. if (s->op.cache_bio) {
  789. bio_reset(s->op.cache_bio);
  790. s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
  791. s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
  792. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  793. bch_bio_map(s->op.cache_bio, NULL);
  794. bio_copy_data(s->cache_miss, s->op.cache_bio);
  795. bio_put(s->cache_miss);
  796. s->cache_miss = NULL;
  797. }
  798. if (verify(dc, &s->bio.bio) && s->recoverable)
  799. bch_data_verify(s);
  800. bio_complete(s);
  801. if (s->op.cache_bio &&
  802. !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
  803. s->op.type = BTREE_REPLACE;
  804. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  805. }
  806. continue_at(cl, cached_dev_cache_miss_done, NULL);
  807. }
  808. static void cached_dev_read_done_bh(struct closure *cl)
  809. {
  810. struct search *s = container_of(cl, struct search, cl);
  811. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  812. bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
  813. trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
  814. if (s->error)
  815. continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
  816. else if (s->op.cache_bio || verify(dc, &s->bio.bio))
  817. continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
  818. else
  819. continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
  820. }
  821. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  822. struct bio *bio, unsigned sectors)
  823. {
  824. int ret = 0;
  825. unsigned reada = 0;
  826. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  827. struct bio *miss, *cache_bio;
  828. if (s->cache_miss || s->op.bypass) {
  829. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  830. if (miss == bio)
  831. s->op.lookup_done = true;
  832. goto out_submit;
  833. }
  834. if (!(bio->bi_rw & REQ_RAHEAD) &&
  835. !(bio->bi_rw & REQ_META) &&
  836. s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
  837. reada = min_t(sector_t, dc->readahead >> 9,
  838. bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
  839. s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
  840. s->op.replace = KEY(s->op.inode, bio->bi_sector +
  841. s->cache_bio_sectors, s->cache_bio_sectors);
  842. ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
  843. if (ret)
  844. return ret;
  845. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  846. if (miss == bio)
  847. s->op.lookup_done = true;
  848. else
  849. /* btree_search_recurse()'s btree iterator is no good anymore */
  850. ret = -EINTR;
  851. cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  852. DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
  853. dc->disk.bio_split);
  854. if (!cache_bio)
  855. goto out_submit;
  856. cache_bio->bi_sector = miss->bi_sector;
  857. cache_bio->bi_bdev = miss->bi_bdev;
  858. cache_bio->bi_size = s->cache_bio_sectors << 9;
  859. cache_bio->bi_end_io = request_endio;
  860. cache_bio->bi_private = &s->cl;
  861. bch_bio_map(cache_bio, NULL);
  862. if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
  863. goto out_put;
  864. s->cache_miss = miss;
  865. s->op.cache_bio = cache_bio;
  866. bio_get(cache_bio);
  867. closure_bio_submit(cache_bio, &s->cl, s->d);
  868. return ret;
  869. out_put:
  870. bio_put(cache_bio);
  871. out_submit:
  872. miss->bi_end_io = request_endio;
  873. miss->bi_private = &s->cl;
  874. closure_bio_submit(miss, &s->cl, s->d);
  875. return ret;
  876. }
  877. static void cached_dev_read(struct cached_dev *dc, struct search *s)
  878. {
  879. struct closure *cl = &s->cl;
  880. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  881. continue_at(cl, cached_dev_read_done_bh, NULL);
  882. }
  883. /* Process writes */
  884. static void cached_dev_write_complete(struct closure *cl)
  885. {
  886. struct search *s = container_of(cl, struct search, cl);
  887. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  888. up_read_non_owner(&dc->writeback_lock);
  889. cached_dev_bio_complete(cl);
  890. }
  891. static void cached_dev_write(struct cached_dev *dc, struct search *s)
  892. {
  893. struct closure *cl = &s->cl;
  894. struct bio *bio = &s->bio.bio;
  895. struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
  896. struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  897. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
  898. down_read_non_owner(&dc->writeback_lock);
  899. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  900. /*
  901. * We overlap with some dirty data undergoing background
  902. * writeback, force this write to writeback
  903. */
  904. s->op.bypass = false;
  905. s->writeback = true;
  906. }
  907. /*
  908. * Discards aren't _required_ to do anything, so skipping if
  909. * check_overlapping returned true is ok
  910. *
  911. * But check_overlapping drops dirty keys for which io hasn't started,
  912. * so we still want to call it.
  913. */
  914. if (bio->bi_rw & REQ_DISCARD)
  915. s->op.bypass = true;
  916. if (should_writeback(dc, s->orig_bio,
  917. cache_mode(dc, bio),
  918. s->op.bypass)) {
  919. s->op.bypass = false;
  920. s->writeback = true;
  921. }
  922. trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
  923. if (s->op.bypass) {
  924. s->op.cache_bio = s->orig_bio;
  925. bio_get(s->op.cache_bio);
  926. if (!(bio->bi_rw & REQ_DISCARD) ||
  927. blk_queue_discard(bdev_get_queue(dc->bdev)))
  928. closure_bio_submit(bio, cl, s->d);
  929. } else if (s->writeback) {
  930. bch_writeback_add(dc);
  931. s->op.cache_bio = bio;
  932. if (bio->bi_rw & REQ_FLUSH) {
  933. /* Also need to send a flush to the backing device */
  934. struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
  935. dc->disk.bio_split);
  936. flush->bi_rw = WRITE_FLUSH;
  937. flush->bi_bdev = bio->bi_bdev;
  938. flush->bi_end_io = request_endio;
  939. flush->bi_private = cl;
  940. closure_bio_submit(flush, cl, s->d);
  941. }
  942. } else {
  943. s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
  944. dc->disk.bio_split);
  945. closure_bio_submit(bio, cl, s->d);
  946. }
  947. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  948. continue_at(cl, cached_dev_write_complete, NULL);
  949. }
  950. static void cached_dev_nodata(struct closure *cl)
  951. {
  952. struct search *s = container_of(cl, struct search, cl);
  953. struct bio *bio = &s->bio.bio;
  954. if (s->op.flush_journal)
  955. bch_journal_meta(s->op.c, cl);
  956. /* If it's a flush, we send the flush to the backing device too */
  957. closure_bio_submit(bio, cl, s->d);
  958. continue_at(cl, cached_dev_bio_complete, NULL);
  959. }
  960. /* Cached devices - read & write stuff */
  961. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  962. {
  963. struct search *s;
  964. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  965. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  966. int cpu, rw = bio_data_dir(bio);
  967. cpu = part_stat_lock();
  968. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  969. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  970. part_stat_unlock();
  971. bio->bi_bdev = dc->bdev;
  972. bio->bi_sector += dc->sb.data_offset;
  973. if (cached_dev_get(dc)) {
  974. s = search_alloc(bio, d);
  975. trace_bcache_request_start(s, bio);
  976. if (!bio->bi_size) {
  977. /*
  978. * can't call bch_journal_meta from under
  979. * generic_make_request
  980. */
  981. continue_at_nobarrier(&s->cl,
  982. cached_dev_nodata,
  983. bcache_wq);
  984. } else {
  985. s->op.bypass = check_should_bypass(dc, s);
  986. if (rw)
  987. cached_dev_write(dc, s);
  988. else
  989. cached_dev_read(dc, s);
  990. }
  991. } else {
  992. if ((bio->bi_rw & REQ_DISCARD) &&
  993. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  994. bio_endio(bio, 0);
  995. else
  996. bch_generic_make_request(bio, &d->bio_split_hook);
  997. }
  998. }
  999. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1000. unsigned int cmd, unsigned long arg)
  1001. {
  1002. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1003. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  1004. }
  1005. static int cached_dev_congested(void *data, int bits)
  1006. {
  1007. struct bcache_device *d = data;
  1008. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1009. struct request_queue *q = bdev_get_queue(dc->bdev);
  1010. int ret = 0;
  1011. if (bdi_congested(&q->backing_dev_info, bits))
  1012. return 1;
  1013. if (cached_dev_get(dc)) {
  1014. unsigned i;
  1015. struct cache *ca;
  1016. for_each_cache(ca, d->c, i) {
  1017. q = bdev_get_queue(ca->bdev);
  1018. ret |= bdi_congested(&q->backing_dev_info, bits);
  1019. }
  1020. cached_dev_put(dc);
  1021. }
  1022. return ret;
  1023. }
  1024. void bch_cached_dev_request_init(struct cached_dev *dc)
  1025. {
  1026. struct gendisk *g = dc->disk.disk;
  1027. g->queue->make_request_fn = cached_dev_make_request;
  1028. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  1029. dc->disk.cache_miss = cached_dev_cache_miss;
  1030. dc->disk.ioctl = cached_dev_ioctl;
  1031. }
  1032. /* Flash backed devices */
  1033. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  1034. struct bio *bio, unsigned sectors)
  1035. {
  1036. struct bio_vec *bv;
  1037. int i;
  1038. /* Zero fill bio */
  1039. bio_for_each_segment(bv, bio, i) {
  1040. unsigned j = min(bv->bv_len >> 9, sectors);
  1041. void *p = kmap(bv->bv_page);
  1042. memset(p + bv->bv_offset, 0, j << 9);
  1043. kunmap(bv->bv_page);
  1044. sectors -= j;
  1045. }
  1046. bio_advance(bio, min(sectors << 9, bio->bi_size));
  1047. if (!bio->bi_size)
  1048. s->op.lookup_done = true;
  1049. return 0;
  1050. }
  1051. static void flash_dev_nodata(struct closure *cl)
  1052. {
  1053. struct search *s = container_of(cl, struct search, cl);
  1054. if (s->op.flush_journal)
  1055. bch_journal_meta(s->op.c, cl);
  1056. continue_at(cl, search_free, NULL);
  1057. }
  1058. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  1059. {
  1060. struct search *s;
  1061. struct closure *cl;
  1062. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1063. int cpu, rw = bio_data_dir(bio);
  1064. cpu = part_stat_lock();
  1065. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1066. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1067. part_stat_unlock();
  1068. s = search_alloc(bio, d);
  1069. cl = &s->cl;
  1070. bio = &s->bio.bio;
  1071. trace_bcache_request_start(s, bio);
  1072. if (!bio->bi_size) {
  1073. /*
  1074. * can't call bch_journal_meta from under
  1075. * generic_make_request
  1076. */
  1077. continue_at_nobarrier(&s->cl,
  1078. flash_dev_nodata,
  1079. bcache_wq);
  1080. } else if (rw) {
  1081. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
  1082. &KEY(d->id, bio->bi_sector, 0),
  1083. &KEY(d->id, bio_end_sector(bio), 0));
  1084. s->op.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
  1085. s->writeback = true;
  1086. s->op.cache_bio = bio;
  1087. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  1088. } else {
  1089. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  1090. }
  1091. continue_at(cl, search_free, NULL);
  1092. }
  1093. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1094. unsigned int cmd, unsigned long arg)
  1095. {
  1096. return -ENOTTY;
  1097. }
  1098. static int flash_dev_congested(void *data, int bits)
  1099. {
  1100. struct bcache_device *d = data;
  1101. struct request_queue *q;
  1102. struct cache *ca;
  1103. unsigned i;
  1104. int ret = 0;
  1105. for_each_cache(ca, d->c, i) {
  1106. q = bdev_get_queue(ca->bdev);
  1107. ret |= bdi_congested(&q->backing_dev_info, bits);
  1108. }
  1109. return ret;
  1110. }
  1111. void bch_flash_dev_request_init(struct bcache_device *d)
  1112. {
  1113. struct gendisk *g = d->disk;
  1114. g->queue->make_request_fn = flash_dev_make_request;
  1115. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1116. d->cache_miss = flash_dev_cache_miss;
  1117. d->ioctl = flash_dev_ioctl;
  1118. }
  1119. void bch_request_exit(void)
  1120. {
  1121. #ifdef CONFIG_CGROUP_BCACHE
  1122. cgroup_unload_subsys(&bcache_subsys);
  1123. #endif
  1124. if (bch_search_cache)
  1125. kmem_cache_destroy(bch_search_cache);
  1126. }
  1127. int __init bch_request_init(void)
  1128. {
  1129. bch_search_cache = KMEM_CACHE(search, 0);
  1130. if (!bch_search_cache)
  1131. return -ENOMEM;
  1132. #ifdef CONFIG_CGROUP_BCACHE
  1133. cgroup_load_subsys(&bcache_subsys);
  1134. init_bch_cgroup(&bcache_default_cgroup);
  1135. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1136. #endif
  1137. return 0;
  1138. }