btree.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "request.h"
  26. #include "writeback.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/hash.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/random.h>
  32. #include <linux/rcupdate.h>
  33. #include <trace/events/bcache.h>
  34. /*
  35. * Todo:
  36. * register_bcache: Return errors out to userspace correctly
  37. *
  38. * Writeback: don't undirty key until after a cache flush
  39. *
  40. * Create an iterator for key pointers
  41. *
  42. * On btree write error, mark bucket such that it won't be freed from the cache
  43. *
  44. * Journalling:
  45. * Check for bad keys in replay
  46. * Propagate barriers
  47. * Refcount journal entries in journal_replay
  48. *
  49. * Garbage collection:
  50. * Finish incremental gc
  51. * Gc should free old UUIDs, data for invalid UUIDs
  52. *
  53. * Provide a way to list backing device UUIDs we have data cached for, and
  54. * probably how long it's been since we've seen them, and a way to invalidate
  55. * dirty data for devices that will never be attached again
  56. *
  57. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  58. * that based on that and how much dirty data we have we can keep writeback
  59. * from being starved
  60. *
  61. * Add a tracepoint or somesuch to watch for writeback starvation
  62. *
  63. * When btree depth > 1 and splitting an interior node, we have to make sure
  64. * alloc_bucket() cannot fail. This should be true but is not completely
  65. * obvious.
  66. *
  67. * Make sure all allocations get charged to the root cgroup
  68. *
  69. * Plugging?
  70. *
  71. * If data write is less than hard sector size of ssd, round up offset in open
  72. * bucket to the next whole sector
  73. *
  74. * Also lookup by cgroup in get_open_bucket()
  75. *
  76. * Superblock needs to be fleshed out for multiple cache devices
  77. *
  78. * Add a sysfs tunable for the number of writeback IOs in flight
  79. *
  80. * Add a sysfs tunable for the number of open data buckets
  81. *
  82. * IO tracking: Can we track when one process is doing io on behalf of another?
  83. * IO tracking: Don't use just an average, weigh more recent stuff higher
  84. *
  85. * Test module load/unload
  86. */
  87. static const char * const op_types[] = {
  88. "insert", "replace"
  89. };
  90. static const char *op_type(struct btree_op *op)
  91. {
  92. return op_types[op->type];
  93. }
  94. #define MAX_NEED_GC 64
  95. #define MAX_SAVE_PRIO 72
  96. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  97. #define PTR_HASH(c, k) \
  98. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  99. struct workqueue_struct *bch_gc_wq;
  100. static struct workqueue_struct *btree_io_wq;
  101. void bch_btree_op_init_stack(struct btree_op *op)
  102. {
  103. memset(op, 0, sizeof(struct btree_op));
  104. closure_init_stack(&op->cl);
  105. op->lock = -1;
  106. }
  107. /* Btree key manipulation */
  108. void __bkey_put(struct cache_set *c, struct bkey *k)
  109. {
  110. unsigned i;
  111. for (i = 0; i < KEY_PTRS(k); i++)
  112. if (ptr_available(c, k, i))
  113. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  114. }
  115. static void bkey_put(struct cache_set *c, struct bkey *k, int level)
  116. {
  117. if ((level && KEY_OFFSET(k)) || !level)
  118. __bkey_put(c, k);
  119. }
  120. /* Btree IO */
  121. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  122. {
  123. uint64_t crc = b->key.ptr[0];
  124. void *data = (void *) i + 8, *end = end(i);
  125. crc = bch_crc64_update(crc, data, end - data);
  126. return crc ^ 0xffffffffffffffffULL;
  127. }
  128. static void bch_btree_node_read_done(struct btree *b)
  129. {
  130. const char *err = "bad btree header";
  131. struct bset *i = b->sets[0].data;
  132. struct btree_iter *iter;
  133. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  134. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  135. iter->used = 0;
  136. if (!i->seq)
  137. goto err;
  138. for (;
  139. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  140. i = write_block(b)) {
  141. err = "unsupported bset version";
  142. if (i->version > BCACHE_BSET_VERSION)
  143. goto err;
  144. err = "bad btree header";
  145. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  146. goto err;
  147. err = "bad magic";
  148. if (i->magic != bset_magic(b->c))
  149. goto err;
  150. err = "bad checksum";
  151. switch (i->version) {
  152. case 0:
  153. if (i->csum != csum_set(i))
  154. goto err;
  155. break;
  156. case BCACHE_BSET_VERSION:
  157. if (i->csum != btree_csum_set(b, i))
  158. goto err;
  159. break;
  160. }
  161. err = "empty set";
  162. if (i != b->sets[0].data && !i->keys)
  163. goto err;
  164. bch_btree_iter_push(iter, i->start, end(i));
  165. b->written += set_blocks(i, b->c);
  166. }
  167. err = "corrupted btree";
  168. for (i = write_block(b);
  169. index(i, b) < btree_blocks(b);
  170. i = ((void *) i) + block_bytes(b->c))
  171. if (i->seq == b->sets[0].data->seq)
  172. goto err;
  173. bch_btree_sort_and_fix_extents(b, iter);
  174. i = b->sets[0].data;
  175. err = "short btree key";
  176. if (b->sets[0].size &&
  177. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  178. goto err;
  179. if (b->written < btree_blocks(b))
  180. bch_bset_init_next(b);
  181. out:
  182. mempool_free(iter, b->c->fill_iter);
  183. return;
  184. err:
  185. set_btree_node_io_error(b);
  186. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  187. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  188. index(i, b), i->keys);
  189. goto out;
  190. }
  191. static void btree_node_read_endio(struct bio *bio, int error)
  192. {
  193. struct closure *cl = bio->bi_private;
  194. closure_put(cl);
  195. }
  196. void bch_btree_node_read(struct btree *b)
  197. {
  198. uint64_t start_time = local_clock();
  199. struct closure cl;
  200. struct bio *bio;
  201. trace_bcache_btree_read(b);
  202. closure_init_stack(&cl);
  203. bio = bch_bbio_alloc(b->c);
  204. bio->bi_rw = REQ_META|READ_SYNC;
  205. bio->bi_size = KEY_SIZE(&b->key) << 9;
  206. bio->bi_end_io = btree_node_read_endio;
  207. bio->bi_private = &cl;
  208. bch_bio_map(bio, b->sets[0].data);
  209. bch_submit_bbio(bio, b->c, &b->key, 0);
  210. closure_sync(&cl);
  211. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  212. set_btree_node_io_error(b);
  213. bch_bbio_free(bio, b->c);
  214. if (btree_node_io_error(b))
  215. goto err;
  216. bch_btree_node_read_done(b);
  217. spin_lock(&b->c->btree_read_time_lock);
  218. bch_time_stats_update(&b->c->btree_read_time, start_time);
  219. spin_unlock(&b->c->btree_read_time_lock);
  220. return;
  221. err:
  222. bch_cache_set_error(b->c, "io error reading bucket %zu",
  223. PTR_BUCKET_NR(b->c, &b->key, 0));
  224. }
  225. static void btree_complete_write(struct btree *b, struct btree_write *w)
  226. {
  227. if (w->prio_blocked &&
  228. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  229. wake_up_allocators(b->c);
  230. if (w->journal) {
  231. atomic_dec_bug(w->journal);
  232. __closure_wake_up(&b->c->journal.wait);
  233. }
  234. w->prio_blocked = 0;
  235. w->journal = NULL;
  236. }
  237. static void __btree_node_write_done(struct closure *cl)
  238. {
  239. struct btree *b = container_of(cl, struct btree, io.cl);
  240. struct btree_write *w = btree_prev_write(b);
  241. bch_bbio_free(b->bio, b->c);
  242. b->bio = NULL;
  243. btree_complete_write(b, w);
  244. if (btree_node_dirty(b))
  245. queue_delayed_work(btree_io_wq, &b->work,
  246. msecs_to_jiffies(30000));
  247. closure_return(cl);
  248. }
  249. static void btree_node_write_done(struct closure *cl)
  250. {
  251. struct btree *b = container_of(cl, struct btree, io.cl);
  252. struct bio_vec *bv;
  253. int n;
  254. __bio_for_each_segment(bv, b->bio, n, 0)
  255. __free_page(bv->bv_page);
  256. __btree_node_write_done(cl);
  257. }
  258. static void btree_node_write_endio(struct bio *bio, int error)
  259. {
  260. struct closure *cl = bio->bi_private;
  261. struct btree *b = container_of(cl, struct btree, io.cl);
  262. if (error)
  263. set_btree_node_io_error(b);
  264. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  265. closure_put(cl);
  266. }
  267. static void do_btree_node_write(struct btree *b)
  268. {
  269. struct closure *cl = &b->io.cl;
  270. struct bset *i = b->sets[b->nsets].data;
  271. BKEY_PADDED(key) k;
  272. i->version = BCACHE_BSET_VERSION;
  273. i->csum = btree_csum_set(b, i);
  274. BUG_ON(b->bio);
  275. b->bio = bch_bbio_alloc(b->c);
  276. b->bio->bi_end_io = btree_node_write_endio;
  277. b->bio->bi_private = &b->io.cl;
  278. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  279. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  280. bch_bio_map(b->bio, i);
  281. /*
  282. * If we're appending to a leaf node, we don't technically need FUA -
  283. * this write just needs to be persisted before the next journal write,
  284. * which will be marked FLUSH|FUA.
  285. *
  286. * Similarly if we're writing a new btree root - the pointer is going to
  287. * be in the next journal entry.
  288. *
  289. * But if we're writing a new btree node (that isn't a root) or
  290. * appending to a non leaf btree node, we need either FUA or a flush
  291. * when we write the parent with the new pointer. FUA is cheaper than a
  292. * flush, and writes appending to leaf nodes aren't blocking anything so
  293. * just make all btree node writes FUA to keep things sane.
  294. */
  295. bkey_copy(&k.key, &b->key);
  296. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  297. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  298. int j;
  299. struct bio_vec *bv;
  300. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  301. bio_for_each_segment(bv, b->bio, j)
  302. memcpy(page_address(bv->bv_page),
  303. base + j * PAGE_SIZE, PAGE_SIZE);
  304. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  305. continue_at(cl, btree_node_write_done, NULL);
  306. } else {
  307. b->bio->bi_vcnt = 0;
  308. bch_bio_map(b->bio, i);
  309. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  310. closure_sync(cl);
  311. __btree_node_write_done(cl);
  312. }
  313. }
  314. void bch_btree_node_write(struct btree *b, struct closure *parent)
  315. {
  316. struct bset *i = b->sets[b->nsets].data;
  317. trace_bcache_btree_write(b);
  318. BUG_ON(current->bio_list);
  319. BUG_ON(b->written >= btree_blocks(b));
  320. BUG_ON(b->written && !i->keys);
  321. BUG_ON(b->sets->data->seq != i->seq);
  322. bch_check_key_order(b, i);
  323. cancel_delayed_work(&b->work);
  324. /* If caller isn't waiting for write, parent refcount is cache set */
  325. closure_lock(&b->io, parent ?: &b->c->cl);
  326. clear_bit(BTREE_NODE_dirty, &b->flags);
  327. change_bit(BTREE_NODE_write_idx, &b->flags);
  328. do_btree_node_write(b);
  329. b->written += set_blocks(i, b->c);
  330. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  331. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  332. bch_btree_sort_lazy(b);
  333. if (b->written < btree_blocks(b))
  334. bch_bset_init_next(b);
  335. }
  336. static void btree_node_write_work(struct work_struct *w)
  337. {
  338. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  339. rw_lock(true, b, b->level);
  340. if (btree_node_dirty(b))
  341. bch_btree_node_write(b, NULL);
  342. rw_unlock(true, b);
  343. }
  344. static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
  345. {
  346. struct bset *i = b->sets[b->nsets].data;
  347. struct btree_write *w = btree_current_write(b);
  348. BUG_ON(!b->written);
  349. BUG_ON(!i->keys);
  350. if (!btree_node_dirty(b))
  351. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  352. set_btree_node_dirty(b);
  353. if (op && op->journal) {
  354. if (w->journal &&
  355. journal_pin_cmp(b->c, w, op)) {
  356. atomic_dec_bug(w->journal);
  357. w->journal = NULL;
  358. }
  359. if (!w->journal) {
  360. w->journal = op->journal;
  361. atomic_inc(w->journal);
  362. }
  363. }
  364. /* Force write if set is too big */
  365. if (set_bytes(i) > PAGE_SIZE - 48 &&
  366. !current->bio_list)
  367. bch_btree_node_write(b, NULL);
  368. }
  369. /*
  370. * Btree in memory cache - allocation/freeing
  371. * mca -> memory cache
  372. */
  373. static void mca_reinit(struct btree *b)
  374. {
  375. unsigned i;
  376. b->flags = 0;
  377. b->written = 0;
  378. b->nsets = 0;
  379. for (i = 0; i < MAX_BSETS; i++)
  380. b->sets[i].size = 0;
  381. /*
  382. * Second loop starts at 1 because b->sets[0]->data is the memory we
  383. * allocated
  384. */
  385. for (i = 1; i < MAX_BSETS; i++)
  386. b->sets[i].data = NULL;
  387. }
  388. #define mca_reserve(c) (((c->root && c->root->level) \
  389. ? c->root->level : 1) * 8 + 16)
  390. #define mca_can_free(c) \
  391. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  392. static void mca_data_free(struct btree *b)
  393. {
  394. struct bset_tree *t = b->sets;
  395. BUG_ON(!closure_is_unlocked(&b->io.cl));
  396. if (bset_prev_bytes(b) < PAGE_SIZE)
  397. kfree(t->prev);
  398. else
  399. free_pages((unsigned long) t->prev,
  400. get_order(bset_prev_bytes(b)));
  401. if (bset_tree_bytes(b) < PAGE_SIZE)
  402. kfree(t->tree);
  403. else
  404. free_pages((unsigned long) t->tree,
  405. get_order(bset_tree_bytes(b)));
  406. free_pages((unsigned long) t->data, b->page_order);
  407. t->prev = NULL;
  408. t->tree = NULL;
  409. t->data = NULL;
  410. list_move(&b->list, &b->c->btree_cache_freed);
  411. b->c->bucket_cache_used--;
  412. }
  413. static void mca_bucket_free(struct btree *b)
  414. {
  415. BUG_ON(btree_node_dirty(b));
  416. b->key.ptr[0] = 0;
  417. hlist_del_init_rcu(&b->hash);
  418. list_move(&b->list, &b->c->btree_cache_freeable);
  419. }
  420. static unsigned btree_order(struct bkey *k)
  421. {
  422. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  423. }
  424. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  425. {
  426. struct bset_tree *t = b->sets;
  427. BUG_ON(t->data);
  428. b->page_order = max_t(unsigned,
  429. ilog2(b->c->btree_pages),
  430. btree_order(k));
  431. t->data = (void *) __get_free_pages(gfp, b->page_order);
  432. if (!t->data)
  433. goto err;
  434. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  435. ? kmalloc(bset_tree_bytes(b), gfp)
  436. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  437. if (!t->tree)
  438. goto err;
  439. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  440. ? kmalloc(bset_prev_bytes(b), gfp)
  441. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  442. if (!t->prev)
  443. goto err;
  444. list_move(&b->list, &b->c->btree_cache);
  445. b->c->bucket_cache_used++;
  446. return;
  447. err:
  448. mca_data_free(b);
  449. }
  450. static struct btree *mca_bucket_alloc(struct cache_set *c,
  451. struct bkey *k, gfp_t gfp)
  452. {
  453. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  454. if (!b)
  455. return NULL;
  456. init_rwsem(&b->lock);
  457. lockdep_set_novalidate_class(&b->lock);
  458. INIT_LIST_HEAD(&b->list);
  459. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  460. b->c = c;
  461. closure_init_unlocked(&b->io);
  462. mca_data_alloc(b, k, gfp);
  463. return b;
  464. }
  465. static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
  466. {
  467. lockdep_assert_held(&b->c->bucket_lock);
  468. if (!down_write_trylock(&b->lock))
  469. return -ENOMEM;
  470. if (b->page_order < min_order) {
  471. rw_unlock(true, b);
  472. return -ENOMEM;
  473. }
  474. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  475. if (cl && btree_node_dirty(b))
  476. bch_btree_node_write(b, NULL);
  477. if (cl)
  478. closure_wait_event_async(&b->io.wait, cl,
  479. atomic_read(&b->io.cl.remaining) == -1);
  480. if (btree_node_dirty(b) ||
  481. !closure_is_unlocked(&b->io.cl) ||
  482. work_pending(&b->work.work)) {
  483. rw_unlock(true, b);
  484. return -EAGAIN;
  485. }
  486. return 0;
  487. }
  488. static unsigned long bch_mca_scan(struct shrinker *shrink,
  489. struct shrink_control *sc)
  490. {
  491. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  492. struct btree *b, *t;
  493. unsigned long i, nr = sc->nr_to_scan;
  494. unsigned long freed = 0;
  495. if (c->shrinker_disabled)
  496. return SHRINK_STOP;
  497. if (c->try_harder)
  498. return SHRINK_STOP;
  499. /* Return -1 if we can't do anything right now */
  500. if (sc->gfp_mask & __GFP_IO)
  501. mutex_lock(&c->bucket_lock);
  502. else if (!mutex_trylock(&c->bucket_lock))
  503. return -1;
  504. /*
  505. * It's _really_ critical that we don't free too many btree nodes - we
  506. * have to always leave ourselves a reserve. The reserve is how we
  507. * guarantee that allocating memory for a new btree node can always
  508. * succeed, so that inserting keys into the btree can always succeed and
  509. * IO can always make forward progress:
  510. */
  511. nr /= c->btree_pages;
  512. nr = min_t(unsigned long, nr, mca_can_free(c));
  513. i = 0;
  514. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  515. if (freed >= nr)
  516. break;
  517. if (++i > 3 &&
  518. !mca_reap(b, NULL, 0)) {
  519. mca_data_free(b);
  520. rw_unlock(true, b);
  521. freed++;
  522. }
  523. }
  524. /*
  525. * Can happen right when we first start up, before we've read in any
  526. * btree nodes
  527. */
  528. if (list_empty(&c->btree_cache))
  529. goto out;
  530. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  531. b = list_first_entry(&c->btree_cache, struct btree, list);
  532. list_rotate_left(&c->btree_cache);
  533. if (!b->accessed &&
  534. !mca_reap(b, NULL, 0)) {
  535. mca_bucket_free(b);
  536. mca_data_free(b);
  537. rw_unlock(true, b);
  538. freed++;
  539. } else
  540. b->accessed = 0;
  541. }
  542. out:
  543. mutex_unlock(&c->bucket_lock);
  544. return freed;
  545. }
  546. static unsigned long bch_mca_count(struct shrinker *shrink,
  547. struct shrink_control *sc)
  548. {
  549. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  550. if (c->shrinker_disabled)
  551. return 0;
  552. if (c->try_harder)
  553. return 0;
  554. return mca_can_free(c) * c->btree_pages;
  555. }
  556. void bch_btree_cache_free(struct cache_set *c)
  557. {
  558. struct btree *b;
  559. struct closure cl;
  560. closure_init_stack(&cl);
  561. if (c->shrink.list.next)
  562. unregister_shrinker(&c->shrink);
  563. mutex_lock(&c->bucket_lock);
  564. #ifdef CONFIG_BCACHE_DEBUG
  565. if (c->verify_data)
  566. list_move(&c->verify_data->list, &c->btree_cache);
  567. #endif
  568. list_splice(&c->btree_cache_freeable,
  569. &c->btree_cache);
  570. while (!list_empty(&c->btree_cache)) {
  571. b = list_first_entry(&c->btree_cache, struct btree, list);
  572. if (btree_node_dirty(b))
  573. btree_complete_write(b, btree_current_write(b));
  574. clear_bit(BTREE_NODE_dirty, &b->flags);
  575. mca_data_free(b);
  576. }
  577. while (!list_empty(&c->btree_cache_freed)) {
  578. b = list_first_entry(&c->btree_cache_freed,
  579. struct btree, list);
  580. list_del(&b->list);
  581. cancel_delayed_work_sync(&b->work);
  582. kfree(b);
  583. }
  584. mutex_unlock(&c->bucket_lock);
  585. }
  586. int bch_btree_cache_alloc(struct cache_set *c)
  587. {
  588. unsigned i;
  589. /* XXX: doesn't check for errors */
  590. closure_init_unlocked(&c->gc);
  591. for (i = 0; i < mca_reserve(c); i++)
  592. mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  593. list_splice_init(&c->btree_cache,
  594. &c->btree_cache_freeable);
  595. #ifdef CONFIG_BCACHE_DEBUG
  596. mutex_init(&c->verify_lock);
  597. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  598. if (c->verify_data &&
  599. c->verify_data->sets[0].data)
  600. list_del_init(&c->verify_data->list);
  601. else
  602. c->verify_data = NULL;
  603. #endif
  604. c->shrink.count_objects = bch_mca_count;
  605. c->shrink.scan_objects = bch_mca_scan;
  606. c->shrink.seeks = 4;
  607. c->shrink.batch = c->btree_pages * 2;
  608. register_shrinker(&c->shrink);
  609. return 0;
  610. }
  611. /* Btree in memory cache - hash table */
  612. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  613. {
  614. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  615. }
  616. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  617. {
  618. struct btree *b;
  619. rcu_read_lock();
  620. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  621. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  622. goto out;
  623. b = NULL;
  624. out:
  625. rcu_read_unlock();
  626. return b;
  627. }
  628. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
  629. int level, struct closure *cl)
  630. {
  631. int ret = -ENOMEM;
  632. struct btree *i;
  633. trace_bcache_btree_cache_cannibalize(c);
  634. if (!cl)
  635. return ERR_PTR(-ENOMEM);
  636. /*
  637. * Trying to free up some memory - i.e. reuse some btree nodes - may
  638. * require initiating IO to flush the dirty part of the node. If we're
  639. * running under generic_make_request(), that IO will never finish and
  640. * we would deadlock. Returning -EAGAIN causes the cache lookup code to
  641. * punt to workqueue and retry.
  642. */
  643. if (current->bio_list)
  644. return ERR_PTR(-EAGAIN);
  645. if (c->try_harder && c->try_harder != cl) {
  646. closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
  647. return ERR_PTR(-EAGAIN);
  648. }
  649. c->try_harder = cl;
  650. c->try_harder_start = local_clock();
  651. retry:
  652. list_for_each_entry_reverse(i, &c->btree_cache, list) {
  653. int r = mca_reap(i, cl, btree_order(k));
  654. if (!r)
  655. return i;
  656. if (r != -ENOMEM)
  657. ret = r;
  658. }
  659. if (ret == -EAGAIN &&
  660. closure_blocking(cl)) {
  661. mutex_unlock(&c->bucket_lock);
  662. closure_sync(cl);
  663. mutex_lock(&c->bucket_lock);
  664. goto retry;
  665. }
  666. return ERR_PTR(ret);
  667. }
  668. /*
  669. * We can only have one thread cannibalizing other cached btree nodes at a time,
  670. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  671. * cannibalize_bucket() will take. This means every time we unlock the root of
  672. * the btree, we need to release this lock if we have it held.
  673. */
  674. void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
  675. {
  676. if (c->try_harder == cl) {
  677. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  678. c->try_harder = NULL;
  679. __closure_wake_up(&c->try_wait);
  680. }
  681. }
  682. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
  683. int level, struct closure *cl)
  684. {
  685. struct btree *b;
  686. lockdep_assert_held(&c->bucket_lock);
  687. if (mca_find(c, k))
  688. return NULL;
  689. /* btree_free() doesn't free memory; it sticks the node on the end of
  690. * the list. Check if there's any freed nodes there:
  691. */
  692. list_for_each_entry(b, &c->btree_cache_freeable, list)
  693. if (!mca_reap(b, NULL, btree_order(k)))
  694. goto out;
  695. /* We never free struct btree itself, just the memory that holds the on
  696. * disk node. Check the freed list before allocating a new one:
  697. */
  698. list_for_each_entry(b, &c->btree_cache_freed, list)
  699. if (!mca_reap(b, NULL, 0)) {
  700. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  701. if (!b->sets[0].data)
  702. goto err;
  703. else
  704. goto out;
  705. }
  706. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  707. if (!b)
  708. goto err;
  709. BUG_ON(!down_write_trylock(&b->lock));
  710. if (!b->sets->data)
  711. goto err;
  712. out:
  713. BUG_ON(!closure_is_unlocked(&b->io.cl));
  714. bkey_copy(&b->key, k);
  715. list_move(&b->list, &c->btree_cache);
  716. hlist_del_init_rcu(&b->hash);
  717. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  718. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  719. b->level = level;
  720. b->parent = (void *) ~0UL;
  721. mca_reinit(b);
  722. return b;
  723. err:
  724. if (b)
  725. rw_unlock(true, b);
  726. b = mca_cannibalize(c, k, level, cl);
  727. if (!IS_ERR(b))
  728. goto out;
  729. return b;
  730. }
  731. /**
  732. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  733. * in from disk if necessary.
  734. *
  735. * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
  736. * if that closure is in non blocking mode, will return -EAGAIN.
  737. *
  738. * The btree node will have either a read or a write lock held, depending on
  739. * level and op->lock.
  740. */
  741. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  742. int level, struct btree_op *op)
  743. {
  744. int i = 0;
  745. bool write = level <= op->lock;
  746. struct btree *b;
  747. BUG_ON(level < 0);
  748. retry:
  749. b = mca_find(c, k);
  750. if (!b) {
  751. if (current->bio_list)
  752. return ERR_PTR(-EAGAIN);
  753. mutex_lock(&c->bucket_lock);
  754. b = mca_alloc(c, k, level, &op->cl);
  755. mutex_unlock(&c->bucket_lock);
  756. if (!b)
  757. goto retry;
  758. if (IS_ERR(b))
  759. return b;
  760. bch_btree_node_read(b);
  761. if (!write)
  762. downgrade_write(&b->lock);
  763. } else {
  764. rw_lock(write, b, level);
  765. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  766. rw_unlock(write, b);
  767. goto retry;
  768. }
  769. BUG_ON(b->level != level);
  770. }
  771. b->accessed = 1;
  772. for (; i <= b->nsets && b->sets[i].size; i++) {
  773. prefetch(b->sets[i].tree);
  774. prefetch(b->sets[i].data);
  775. }
  776. for (; i <= b->nsets; i++)
  777. prefetch(b->sets[i].data);
  778. if (btree_node_io_error(b)) {
  779. rw_unlock(write, b);
  780. return ERR_PTR(-EIO);
  781. }
  782. BUG_ON(!b->written);
  783. return b;
  784. }
  785. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  786. {
  787. struct btree *b;
  788. mutex_lock(&c->bucket_lock);
  789. b = mca_alloc(c, k, level, NULL);
  790. mutex_unlock(&c->bucket_lock);
  791. if (!IS_ERR_OR_NULL(b)) {
  792. bch_btree_node_read(b);
  793. rw_unlock(true, b);
  794. }
  795. }
  796. /* Btree alloc */
  797. static void btree_node_free(struct btree *b, struct btree_op *op)
  798. {
  799. unsigned i;
  800. trace_bcache_btree_node_free(b);
  801. /*
  802. * The BUG_ON() in btree_node_get() implies that we must have a write
  803. * lock on parent to free or even invalidate a node
  804. */
  805. BUG_ON(op->lock <= b->level);
  806. BUG_ON(b == b->c->root);
  807. if (btree_node_dirty(b))
  808. btree_complete_write(b, btree_current_write(b));
  809. clear_bit(BTREE_NODE_dirty, &b->flags);
  810. cancel_delayed_work(&b->work);
  811. mutex_lock(&b->c->bucket_lock);
  812. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  813. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  814. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  815. PTR_BUCKET(b->c, &b->key, i));
  816. }
  817. bch_bucket_free(b->c, &b->key);
  818. mca_bucket_free(b);
  819. mutex_unlock(&b->c->bucket_lock);
  820. }
  821. struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
  822. struct closure *cl)
  823. {
  824. BKEY_PADDED(key) k;
  825. struct btree *b = ERR_PTR(-EAGAIN);
  826. mutex_lock(&c->bucket_lock);
  827. retry:
  828. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
  829. goto err;
  830. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  831. b = mca_alloc(c, &k.key, level, cl);
  832. if (IS_ERR(b))
  833. goto err_free;
  834. if (!b) {
  835. cache_bug(c,
  836. "Tried to allocate bucket that was in btree cache");
  837. __bkey_put(c, &k.key);
  838. goto retry;
  839. }
  840. b->accessed = 1;
  841. bch_bset_init_next(b);
  842. mutex_unlock(&c->bucket_lock);
  843. trace_bcache_btree_node_alloc(b);
  844. return b;
  845. err_free:
  846. bch_bucket_free(c, &k.key);
  847. __bkey_put(c, &k.key);
  848. err:
  849. mutex_unlock(&c->bucket_lock);
  850. trace_bcache_btree_node_alloc_fail(b);
  851. return b;
  852. }
  853. static struct btree *btree_node_alloc_replacement(struct btree *b,
  854. struct closure *cl)
  855. {
  856. struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
  857. if (!IS_ERR_OR_NULL(n))
  858. bch_btree_sort_into(b, n);
  859. return n;
  860. }
  861. /* Garbage collection */
  862. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  863. {
  864. uint8_t stale = 0;
  865. unsigned i;
  866. struct bucket *g;
  867. /*
  868. * ptr_invalid() can't return true for the keys that mark btree nodes as
  869. * freed, but since ptr_bad() returns true we'll never actually use them
  870. * for anything and thus we don't want mark their pointers here
  871. */
  872. if (!bkey_cmp(k, &ZERO_KEY))
  873. return stale;
  874. for (i = 0; i < KEY_PTRS(k); i++) {
  875. if (!ptr_available(c, k, i))
  876. continue;
  877. g = PTR_BUCKET(c, k, i);
  878. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  879. g->gc_gen = PTR_GEN(k, i);
  880. if (ptr_stale(c, k, i)) {
  881. stale = max(stale, ptr_stale(c, k, i));
  882. continue;
  883. }
  884. cache_bug_on(GC_MARK(g) &&
  885. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  886. c, "inconsistent ptrs: mark = %llu, level = %i",
  887. GC_MARK(g), level);
  888. if (level)
  889. SET_GC_MARK(g, GC_MARK_METADATA);
  890. else if (KEY_DIRTY(k))
  891. SET_GC_MARK(g, GC_MARK_DIRTY);
  892. /* guard against overflow */
  893. SET_GC_SECTORS_USED(g, min_t(unsigned,
  894. GC_SECTORS_USED(g) + KEY_SIZE(k),
  895. (1 << 14) - 1));
  896. BUG_ON(!GC_SECTORS_USED(g));
  897. }
  898. return stale;
  899. }
  900. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  901. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  902. struct gc_stat *gc)
  903. {
  904. uint8_t stale = 0;
  905. unsigned last_dev = -1;
  906. struct bcache_device *d = NULL;
  907. struct bkey *k;
  908. struct btree_iter iter;
  909. struct bset_tree *t;
  910. gc->nodes++;
  911. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  912. if (last_dev != KEY_INODE(k)) {
  913. last_dev = KEY_INODE(k);
  914. d = KEY_INODE(k) < b->c->nr_uuids
  915. ? b->c->devices[last_dev]
  916. : NULL;
  917. }
  918. stale = max(stale, btree_mark_key(b, k));
  919. if (bch_ptr_bad(b, k))
  920. continue;
  921. *keys += bkey_u64s(k);
  922. gc->key_bytes += bkey_u64s(k);
  923. gc->nkeys++;
  924. gc->data += KEY_SIZE(k);
  925. if (KEY_DIRTY(k))
  926. gc->dirty += KEY_SIZE(k);
  927. }
  928. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  929. btree_bug_on(t->size &&
  930. bset_written(b, t) &&
  931. bkey_cmp(&b->key, &t->end) < 0,
  932. b, "found short btree key in gc");
  933. return stale;
  934. }
  935. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
  936. struct btree_op *op)
  937. {
  938. /*
  939. * We block priorities from being written for the duration of garbage
  940. * collection, so we can't sleep in btree_alloc() ->
  941. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  942. * our closure.
  943. */
  944. struct btree *n = btree_node_alloc_replacement(b, NULL);
  945. if (!IS_ERR_OR_NULL(n)) {
  946. swap(b, n);
  947. __bkey_put(b->c, &b->key);
  948. memcpy(k->ptr, b->key.ptr,
  949. sizeof(uint64_t) * KEY_PTRS(&b->key));
  950. btree_node_free(n, op);
  951. up_write(&n->lock);
  952. }
  953. return b;
  954. }
  955. /*
  956. * Leaving this at 2 until we've got incremental garbage collection done; it
  957. * could be higher (and has been tested with 4) except that garbage collection
  958. * could take much longer, adversely affecting latency.
  959. */
  960. #define GC_MERGE_NODES 2U
  961. struct gc_merge_info {
  962. struct btree *b;
  963. struct bkey *k;
  964. unsigned keys;
  965. };
  966. static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
  967. struct gc_stat *gc, struct gc_merge_info *r)
  968. {
  969. unsigned nodes = 0, keys = 0, blocks;
  970. int i;
  971. while (nodes < GC_MERGE_NODES && r[nodes].b)
  972. keys += r[nodes++].keys;
  973. blocks = btree_default_blocks(b->c) * 2 / 3;
  974. if (nodes < 2 ||
  975. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  976. return;
  977. for (i = nodes - 1; i >= 0; --i) {
  978. if (r[i].b->written)
  979. r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
  980. if (r[i].b->written)
  981. return;
  982. }
  983. for (i = nodes - 1; i > 0; --i) {
  984. struct bset *n1 = r[i].b->sets->data;
  985. struct bset *n2 = r[i - 1].b->sets->data;
  986. struct bkey *k, *last = NULL;
  987. keys = 0;
  988. if (i == 1) {
  989. /*
  990. * Last node we're not getting rid of - we're getting
  991. * rid of the node at r[0]. Have to try and fit all of
  992. * the remaining keys into this node; we can't ensure
  993. * they will always fit due to rounding and variable
  994. * length keys (shouldn't be possible in practice,
  995. * though)
  996. */
  997. if (__set_blocks(n1, n1->keys + r->keys,
  998. b->c) > btree_blocks(r[i].b))
  999. return;
  1000. keys = n2->keys;
  1001. last = &r->b->key;
  1002. } else
  1003. for (k = n2->start;
  1004. k < end(n2);
  1005. k = bkey_next(k)) {
  1006. if (__set_blocks(n1, n1->keys + keys +
  1007. bkey_u64s(k), b->c) > blocks)
  1008. break;
  1009. last = k;
  1010. keys += bkey_u64s(k);
  1011. }
  1012. BUG_ON(__set_blocks(n1, n1->keys + keys,
  1013. b->c) > btree_blocks(r[i].b));
  1014. if (last) {
  1015. bkey_copy_key(&r[i].b->key, last);
  1016. bkey_copy_key(r[i].k, last);
  1017. }
  1018. memcpy(end(n1),
  1019. n2->start,
  1020. (void *) node(n2, keys) - (void *) n2->start);
  1021. n1->keys += keys;
  1022. memmove(n2->start,
  1023. node(n2, keys),
  1024. (void *) end(n2) - (void *) node(n2, keys));
  1025. n2->keys -= keys;
  1026. r[i].keys = n1->keys;
  1027. r[i - 1].keys = n2->keys;
  1028. }
  1029. btree_node_free(r->b, op);
  1030. up_write(&r->b->lock);
  1031. trace_bcache_btree_gc_coalesce(nodes);
  1032. gc->nodes--;
  1033. nodes--;
  1034. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1035. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1036. }
  1037. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1038. struct closure *writes, struct gc_stat *gc)
  1039. {
  1040. void write(struct btree *r)
  1041. {
  1042. if (!r->written)
  1043. bch_btree_node_write(r, &op->cl);
  1044. else if (btree_node_dirty(r))
  1045. bch_btree_node_write(r, writes);
  1046. up_write(&r->lock);
  1047. }
  1048. int ret = 0, stale;
  1049. unsigned i;
  1050. struct gc_merge_info r[GC_MERGE_NODES];
  1051. memset(r, 0, sizeof(r));
  1052. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1053. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
  1054. if (IS_ERR(r->b)) {
  1055. ret = PTR_ERR(r->b);
  1056. break;
  1057. }
  1058. r->keys = 0;
  1059. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1060. if (!b->written &&
  1061. (r->b->level || stale > 10 ||
  1062. b->c->gc_always_rewrite))
  1063. r->b = btree_gc_alloc(r->b, r->k, op);
  1064. if (r->b->level)
  1065. ret = btree_gc_recurse(r->b, op, writes, gc);
  1066. if (ret) {
  1067. write(r->b);
  1068. break;
  1069. }
  1070. bkey_copy_key(&b->c->gc_done, r->k);
  1071. if (!b->written)
  1072. btree_gc_coalesce(b, op, gc, r);
  1073. if (r[GC_MERGE_NODES - 1].b)
  1074. write(r[GC_MERGE_NODES - 1].b);
  1075. memmove(&r[1], &r[0],
  1076. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1077. /* When we've got incremental GC working, we'll want to do
  1078. * if (should_resched())
  1079. * return -EAGAIN;
  1080. */
  1081. cond_resched();
  1082. #if 0
  1083. if (need_resched()) {
  1084. ret = -EAGAIN;
  1085. break;
  1086. }
  1087. #endif
  1088. }
  1089. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1090. write(r[i].b);
  1091. /* Might have freed some children, must remove their keys */
  1092. if (!b->written)
  1093. bch_btree_sort(b);
  1094. return ret;
  1095. }
  1096. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1097. struct closure *writes, struct gc_stat *gc)
  1098. {
  1099. struct btree *n = NULL;
  1100. unsigned keys = 0;
  1101. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1102. if (b->level || stale > 10)
  1103. n = btree_node_alloc_replacement(b, NULL);
  1104. if (!IS_ERR_OR_NULL(n))
  1105. swap(b, n);
  1106. if (b->level)
  1107. ret = btree_gc_recurse(b, op, writes, gc);
  1108. if (!b->written || btree_node_dirty(b)) {
  1109. bch_btree_node_write(b, n ? &op->cl : NULL);
  1110. }
  1111. if (!IS_ERR_OR_NULL(n)) {
  1112. closure_sync(&op->cl);
  1113. bch_btree_set_root(b);
  1114. btree_node_free(n, op);
  1115. rw_unlock(true, b);
  1116. }
  1117. return ret;
  1118. }
  1119. static void btree_gc_start(struct cache_set *c)
  1120. {
  1121. struct cache *ca;
  1122. struct bucket *b;
  1123. unsigned i;
  1124. if (!c->gc_mark_valid)
  1125. return;
  1126. mutex_lock(&c->bucket_lock);
  1127. c->gc_mark_valid = 0;
  1128. c->gc_done = ZERO_KEY;
  1129. for_each_cache(ca, c, i)
  1130. for_each_bucket(b, ca) {
  1131. b->gc_gen = b->gen;
  1132. if (!atomic_read(&b->pin)) {
  1133. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1134. SET_GC_SECTORS_USED(b, 0);
  1135. }
  1136. }
  1137. mutex_unlock(&c->bucket_lock);
  1138. }
  1139. size_t bch_btree_gc_finish(struct cache_set *c)
  1140. {
  1141. size_t available = 0;
  1142. struct bucket *b;
  1143. struct cache *ca;
  1144. unsigned i;
  1145. mutex_lock(&c->bucket_lock);
  1146. set_gc_sectors(c);
  1147. c->gc_mark_valid = 1;
  1148. c->need_gc = 0;
  1149. if (c->root)
  1150. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1151. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1152. GC_MARK_METADATA);
  1153. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1154. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1155. GC_MARK_METADATA);
  1156. for_each_cache(ca, c, i) {
  1157. uint64_t *i;
  1158. ca->invalidate_needs_gc = 0;
  1159. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1160. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1161. for (i = ca->prio_buckets;
  1162. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1163. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1164. for_each_bucket(b, ca) {
  1165. b->last_gc = b->gc_gen;
  1166. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1167. if (!atomic_read(&b->pin) &&
  1168. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1169. available++;
  1170. if (!GC_SECTORS_USED(b))
  1171. bch_bucket_add_unused(ca, b);
  1172. }
  1173. }
  1174. }
  1175. mutex_unlock(&c->bucket_lock);
  1176. return available;
  1177. }
  1178. static void bch_btree_gc(struct closure *cl)
  1179. {
  1180. struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
  1181. int ret;
  1182. unsigned long available;
  1183. struct gc_stat stats;
  1184. struct closure writes;
  1185. struct btree_op op;
  1186. uint64_t start_time = local_clock();
  1187. trace_bcache_gc_start(c);
  1188. memset(&stats, 0, sizeof(struct gc_stat));
  1189. closure_init_stack(&writes);
  1190. bch_btree_op_init_stack(&op);
  1191. op.lock = SHRT_MAX;
  1192. btree_gc_start(c);
  1193. atomic_inc(&c->prio_blocked);
  1194. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1195. closure_sync(&op.cl);
  1196. closure_sync(&writes);
  1197. if (ret) {
  1198. pr_warn("gc failed!");
  1199. continue_at(cl, bch_btree_gc, bch_gc_wq);
  1200. }
  1201. /* Possibly wait for new UUIDs or whatever to hit disk */
  1202. bch_journal_meta(c, &op.cl);
  1203. closure_sync(&op.cl);
  1204. available = bch_btree_gc_finish(c);
  1205. atomic_dec(&c->prio_blocked);
  1206. wake_up_allocators(c);
  1207. bch_time_stats_update(&c->btree_gc_time, start_time);
  1208. stats.key_bytes *= sizeof(uint64_t);
  1209. stats.dirty <<= 9;
  1210. stats.data <<= 9;
  1211. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1212. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1213. trace_bcache_gc_end(c);
  1214. continue_at(cl, bch_moving_gc, bch_gc_wq);
  1215. }
  1216. void bch_queue_gc(struct cache_set *c)
  1217. {
  1218. closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
  1219. }
  1220. /* Initial partial gc */
  1221. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1222. unsigned long **seen)
  1223. {
  1224. int ret;
  1225. unsigned i;
  1226. struct bkey *k;
  1227. struct bucket *g;
  1228. struct btree_iter iter;
  1229. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1230. for (i = 0; i < KEY_PTRS(k); i++) {
  1231. if (!ptr_available(b->c, k, i))
  1232. continue;
  1233. g = PTR_BUCKET(b->c, k, i);
  1234. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1235. seen[PTR_DEV(k, i)]) ||
  1236. !ptr_stale(b->c, k, i)) {
  1237. g->gen = PTR_GEN(k, i);
  1238. if (b->level)
  1239. g->prio = BTREE_PRIO;
  1240. else if (g->prio == BTREE_PRIO)
  1241. g->prio = INITIAL_PRIO;
  1242. }
  1243. }
  1244. btree_mark_key(b, k);
  1245. }
  1246. if (b->level) {
  1247. k = bch_next_recurse_key(b, &ZERO_KEY);
  1248. while (k) {
  1249. struct bkey *p = bch_next_recurse_key(b, k);
  1250. if (p)
  1251. btree_node_prefetch(b->c, p, b->level - 1);
  1252. ret = btree(check_recurse, k, b, op, seen);
  1253. if (ret)
  1254. return ret;
  1255. k = p;
  1256. }
  1257. }
  1258. return 0;
  1259. }
  1260. int bch_btree_check(struct cache_set *c, struct btree_op *op)
  1261. {
  1262. int ret = -ENOMEM;
  1263. unsigned i;
  1264. unsigned long *seen[MAX_CACHES_PER_SET];
  1265. memset(seen, 0, sizeof(seen));
  1266. for (i = 0; c->cache[i]; i++) {
  1267. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1268. seen[i] = kmalloc(n, GFP_KERNEL);
  1269. if (!seen[i])
  1270. goto err;
  1271. /* Disables the seen array until prio_read() uses it too */
  1272. memset(seen[i], 0xFF, n);
  1273. }
  1274. ret = btree_root(check_recurse, c, op, seen);
  1275. err:
  1276. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1277. kfree(seen[i]);
  1278. return ret;
  1279. }
  1280. /* Btree insertion */
  1281. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1282. {
  1283. struct bset *i = b->sets[b->nsets].data;
  1284. memmove((uint64_t *) where + bkey_u64s(insert),
  1285. where,
  1286. (void *) end(i) - (void *) where);
  1287. i->keys += bkey_u64s(insert);
  1288. bkey_copy(where, insert);
  1289. bch_bset_fix_lookup_table(b, where);
  1290. }
  1291. static bool fix_overlapping_extents(struct btree *b,
  1292. struct bkey *insert,
  1293. struct btree_iter *iter,
  1294. struct btree_op *op)
  1295. {
  1296. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1297. {
  1298. if (KEY_DIRTY(k))
  1299. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1300. offset, -sectors);
  1301. }
  1302. uint64_t old_offset;
  1303. unsigned old_size, sectors_found = 0;
  1304. while (1) {
  1305. struct bkey *k = bch_btree_iter_next(iter);
  1306. if (!k ||
  1307. bkey_cmp(&START_KEY(k), insert) >= 0)
  1308. break;
  1309. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1310. continue;
  1311. old_offset = KEY_START(k);
  1312. old_size = KEY_SIZE(k);
  1313. /*
  1314. * We might overlap with 0 size extents; we can't skip these
  1315. * because if they're in the set we're inserting to we have to
  1316. * adjust them so they don't overlap with the key we're
  1317. * inserting. But we don't want to check them for BTREE_REPLACE
  1318. * operations.
  1319. */
  1320. if (op->type == BTREE_REPLACE &&
  1321. KEY_SIZE(k)) {
  1322. /*
  1323. * k might have been split since we inserted/found the
  1324. * key we're replacing
  1325. */
  1326. unsigned i;
  1327. uint64_t offset = KEY_START(k) -
  1328. KEY_START(&op->replace);
  1329. /* But it must be a subset of the replace key */
  1330. if (KEY_START(k) < KEY_START(&op->replace) ||
  1331. KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
  1332. goto check_failed;
  1333. /* We didn't find a key that we were supposed to */
  1334. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1335. goto check_failed;
  1336. if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
  1337. goto check_failed;
  1338. /* skip past gen */
  1339. offset <<= 8;
  1340. BUG_ON(!KEY_PTRS(&op->replace));
  1341. for (i = 0; i < KEY_PTRS(&op->replace); i++)
  1342. if (k->ptr[i] != op->replace.ptr[i] + offset)
  1343. goto check_failed;
  1344. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1345. }
  1346. if (bkey_cmp(insert, k) < 0 &&
  1347. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1348. /*
  1349. * We overlapped in the middle of an existing key: that
  1350. * means we have to split the old key. But we have to do
  1351. * slightly different things depending on whether the
  1352. * old key has been written out yet.
  1353. */
  1354. struct bkey *top;
  1355. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1356. if (bkey_written(b, k)) {
  1357. /*
  1358. * We insert a new key to cover the top of the
  1359. * old key, and the old key is modified in place
  1360. * to represent the bottom split.
  1361. *
  1362. * It's completely arbitrary whether the new key
  1363. * is the top or the bottom, but it has to match
  1364. * up with what btree_sort_fixup() does - it
  1365. * doesn't check for this kind of overlap, it
  1366. * depends on us inserting a new key for the top
  1367. * here.
  1368. */
  1369. top = bch_bset_search(b, &b->sets[b->nsets],
  1370. insert);
  1371. shift_keys(b, top, k);
  1372. } else {
  1373. BKEY_PADDED(key) temp;
  1374. bkey_copy(&temp.key, k);
  1375. shift_keys(b, k, &temp.key);
  1376. top = bkey_next(k);
  1377. }
  1378. bch_cut_front(insert, top);
  1379. bch_cut_back(&START_KEY(insert), k);
  1380. bch_bset_fix_invalidated_key(b, k);
  1381. return false;
  1382. }
  1383. if (bkey_cmp(insert, k) < 0) {
  1384. bch_cut_front(insert, k);
  1385. } else {
  1386. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1387. old_offset = KEY_START(insert);
  1388. if (bkey_written(b, k) &&
  1389. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1390. /*
  1391. * Completely overwrote, so we don't have to
  1392. * invalidate the binary search tree
  1393. */
  1394. bch_cut_front(k, k);
  1395. } else {
  1396. __bch_cut_back(&START_KEY(insert), k);
  1397. bch_bset_fix_invalidated_key(b, k);
  1398. }
  1399. }
  1400. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1401. }
  1402. check_failed:
  1403. if (op->type == BTREE_REPLACE) {
  1404. if (!sectors_found) {
  1405. op->insert_collision = true;
  1406. return true;
  1407. } else if (sectors_found < KEY_SIZE(insert)) {
  1408. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1409. (KEY_SIZE(insert) - sectors_found));
  1410. SET_KEY_SIZE(insert, sectors_found);
  1411. }
  1412. }
  1413. return false;
  1414. }
  1415. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1416. struct bkey *k)
  1417. {
  1418. struct bset *i = b->sets[b->nsets].data;
  1419. struct bkey *m, *prev;
  1420. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1421. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1422. BUG_ON(b->level && !KEY_PTRS(k));
  1423. BUG_ON(!b->level && !KEY_OFFSET(k));
  1424. if (!b->level) {
  1425. struct btree_iter iter;
  1426. struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
  1427. /*
  1428. * bset_search() returns the first key that is strictly greater
  1429. * than the search key - but for back merging, we want to find
  1430. * the first key that is greater than or equal to KEY_START(k) -
  1431. * unless KEY_START(k) is 0.
  1432. */
  1433. if (KEY_OFFSET(&search))
  1434. SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
  1435. prev = NULL;
  1436. m = bch_btree_iter_init(b, &iter, &search);
  1437. if (fix_overlapping_extents(b, k, &iter, op))
  1438. return false;
  1439. if (KEY_DIRTY(k))
  1440. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1441. KEY_START(k), KEY_SIZE(k));
  1442. while (m != end(i) &&
  1443. bkey_cmp(k, &START_KEY(m)) > 0)
  1444. prev = m, m = bkey_next(m);
  1445. if (key_merging_disabled(b->c))
  1446. goto insert;
  1447. /* prev is in the tree, if we merge we're done */
  1448. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1449. if (prev &&
  1450. bch_bkey_try_merge(b, prev, k))
  1451. goto merged;
  1452. status = BTREE_INSERT_STATUS_OVERWROTE;
  1453. if (m != end(i) &&
  1454. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1455. goto copy;
  1456. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1457. if (m != end(i) &&
  1458. bch_bkey_try_merge(b, k, m))
  1459. goto copy;
  1460. } else
  1461. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1462. insert: shift_keys(b, m, k);
  1463. copy: bkey_copy(m, k);
  1464. merged:
  1465. bch_check_keys(b, "%u for %s", status, op_type(op));
  1466. if (b->level && !KEY_OFFSET(k))
  1467. btree_current_write(b)->prio_blocked++;
  1468. trace_bcache_btree_insert_key(b, k, op->type, status);
  1469. return true;
  1470. }
  1471. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1472. struct keylist *insert_keys)
  1473. {
  1474. bool ret = false;
  1475. unsigned oldsize = bch_count_data(b);
  1476. while (!bch_keylist_empty(insert_keys)) {
  1477. struct bset *i = write_block(b);
  1478. struct bkey *k = insert_keys->keys;
  1479. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1480. > btree_blocks(b))
  1481. break;
  1482. if (bkey_cmp(k, &b->key) <= 0) {
  1483. bkey_put(b->c, k, b->level);
  1484. ret |= btree_insert_key(b, op, k);
  1485. bch_keylist_pop_front(insert_keys);
  1486. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1487. #if 0
  1488. if (op->type == BTREE_REPLACE) {
  1489. bkey_put(b->c, k, b->level);
  1490. bch_keylist_pop_front(insert_keys);
  1491. op->insert_collision = true;
  1492. break;
  1493. }
  1494. #endif
  1495. BKEY_PADDED(key) temp;
  1496. bkey_copy(&temp.key, insert_keys->keys);
  1497. bch_cut_back(&b->key, &temp.key);
  1498. bch_cut_front(&b->key, insert_keys->keys);
  1499. ret |= btree_insert_key(b, op, &temp.key);
  1500. break;
  1501. } else {
  1502. break;
  1503. }
  1504. }
  1505. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1506. BUG_ON(bch_count_data(b) < oldsize);
  1507. return ret;
  1508. }
  1509. static int btree_split(struct btree *b, struct btree_op *op,
  1510. struct keylist *insert_keys,
  1511. struct keylist *parent_keys)
  1512. {
  1513. bool split;
  1514. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1515. uint64_t start_time = local_clock();
  1516. if (b->level)
  1517. set_closure_blocking(&op->cl);
  1518. n1 = btree_node_alloc_replacement(b, &op->cl);
  1519. if (IS_ERR(n1))
  1520. goto err;
  1521. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1522. if (split) {
  1523. unsigned keys = 0;
  1524. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1525. n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
  1526. if (IS_ERR(n2))
  1527. goto err_free1;
  1528. if (!b->parent) {
  1529. n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
  1530. if (IS_ERR(n3))
  1531. goto err_free2;
  1532. }
  1533. bch_btree_insert_keys(n1, op, insert_keys);
  1534. /*
  1535. * Has to be a linear search because we don't have an auxiliary
  1536. * search tree yet
  1537. */
  1538. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1539. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1540. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1541. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1542. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1543. n1->sets[0].data->keys = keys;
  1544. memcpy(n2->sets[0].data->start,
  1545. end(n1->sets[0].data),
  1546. n2->sets[0].data->keys * sizeof(uint64_t));
  1547. bkey_copy_key(&n2->key, &b->key);
  1548. bch_keylist_add(parent_keys, &n2->key);
  1549. bch_btree_node_write(n2, &op->cl);
  1550. rw_unlock(true, n2);
  1551. } else {
  1552. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1553. bch_btree_insert_keys(n1, op, insert_keys);
  1554. }
  1555. bch_keylist_add(parent_keys, &n1->key);
  1556. bch_btree_node_write(n1, &op->cl);
  1557. if (n3) {
  1558. /* Depth increases, make a new root */
  1559. bkey_copy_key(&n3->key, &MAX_KEY);
  1560. bch_btree_insert_keys(n3, op, parent_keys);
  1561. bch_btree_node_write(n3, &op->cl);
  1562. closure_sync(&op->cl);
  1563. bch_btree_set_root(n3);
  1564. rw_unlock(true, n3);
  1565. } else if (!b->parent) {
  1566. /* Root filled up but didn't need to be split */
  1567. bch_keylist_reset(parent_keys);
  1568. closure_sync(&op->cl);
  1569. bch_btree_set_root(n1);
  1570. } else {
  1571. unsigned i;
  1572. bkey_copy(parent_keys->top, &b->key);
  1573. bkey_copy_key(parent_keys->top, &ZERO_KEY);
  1574. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  1575. uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
  1576. SET_PTR_GEN(parent_keys->top, i, g);
  1577. }
  1578. bch_keylist_push(parent_keys);
  1579. closure_sync(&op->cl);
  1580. atomic_inc(&b->c->prio_blocked);
  1581. }
  1582. rw_unlock(true, n1);
  1583. btree_node_free(b, op);
  1584. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1585. return 0;
  1586. err_free2:
  1587. __bkey_put(n2->c, &n2->key);
  1588. btree_node_free(n2, op);
  1589. rw_unlock(true, n2);
  1590. err_free1:
  1591. __bkey_put(n1->c, &n1->key);
  1592. btree_node_free(n1, op);
  1593. rw_unlock(true, n1);
  1594. err:
  1595. if (n3 == ERR_PTR(-EAGAIN) ||
  1596. n2 == ERR_PTR(-EAGAIN) ||
  1597. n1 == ERR_PTR(-EAGAIN))
  1598. return -EAGAIN;
  1599. pr_warn("couldn't split");
  1600. return -ENOMEM;
  1601. }
  1602. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1603. struct keylist *insert_keys)
  1604. {
  1605. int ret = 0;
  1606. struct keylist split_keys;
  1607. bch_keylist_init(&split_keys);
  1608. BUG_ON(b->level);
  1609. do {
  1610. if (should_split(b)) {
  1611. if (current->bio_list) {
  1612. op->lock = b->c->root->level + 1;
  1613. ret = -EAGAIN;
  1614. } else if (op->lock <= b->c->root->level) {
  1615. op->lock = b->c->root->level + 1;
  1616. ret = -EINTR;
  1617. } else {
  1618. struct btree *parent = b->parent;
  1619. ret = btree_split(b, op, insert_keys,
  1620. &split_keys);
  1621. insert_keys = &split_keys;
  1622. b = parent;
  1623. if (!ret)
  1624. ret = -EINTR;
  1625. }
  1626. } else {
  1627. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1628. if (bch_btree_insert_keys(b, op, insert_keys)) {
  1629. if (!b->level)
  1630. bch_btree_leaf_dirty(b, op);
  1631. else
  1632. bch_btree_node_write(b, &op->cl);
  1633. }
  1634. }
  1635. } while (!bch_keylist_empty(&split_keys));
  1636. return ret;
  1637. }
  1638. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1639. struct bkey *check_key)
  1640. {
  1641. int ret = -EINTR;
  1642. uint64_t btree_ptr = b->key.ptr[0];
  1643. unsigned long seq = b->seq;
  1644. struct keylist insert;
  1645. bool upgrade = op->lock == -1;
  1646. bch_keylist_init(&insert);
  1647. if (upgrade) {
  1648. rw_unlock(false, b);
  1649. rw_lock(true, b, b->level);
  1650. if (b->key.ptr[0] != btree_ptr ||
  1651. b->seq != seq + 1)
  1652. goto out;
  1653. }
  1654. SET_KEY_PTRS(check_key, 1);
  1655. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1656. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1657. bch_keylist_add(&insert, check_key);
  1658. BUG_ON(op->type != BTREE_INSERT);
  1659. ret = bch_btree_insert_node(b, op, &insert);
  1660. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1661. out:
  1662. if (upgrade)
  1663. downgrade_write(&b->lock);
  1664. return ret;
  1665. }
  1666. static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
  1667. struct keylist *keys)
  1668. {
  1669. if (bch_keylist_empty(keys))
  1670. return 0;
  1671. if (b->level) {
  1672. struct bkey *k;
  1673. k = bch_next_recurse_key(b, &START_KEY(keys->keys));
  1674. if (!k) {
  1675. btree_bug(b, "no key to recurse on at level %i/%i",
  1676. b->level, b->c->root->level);
  1677. bch_keylist_reset(keys);
  1678. return -EIO;
  1679. }
  1680. return btree(insert_recurse, k, b, op, keys);
  1681. } else {
  1682. return bch_btree_insert_node(b, op, keys);
  1683. }
  1684. }
  1685. int bch_btree_insert(struct btree_op *op, struct cache_set *c,
  1686. struct keylist *keys)
  1687. {
  1688. int ret = 0;
  1689. /*
  1690. * Don't want to block with the btree locked unless we have to,
  1691. * otherwise we get deadlocks with try_harder and between split/gc
  1692. */
  1693. clear_closure_blocking(&op->cl);
  1694. BUG_ON(bch_keylist_empty(keys));
  1695. while (!bch_keylist_empty(keys)) {
  1696. op->lock = 0;
  1697. ret = btree_root(insert_recurse, c, op, keys);
  1698. if (ret == -EAGAIN) {
  1699. ret = 0;
  1700. closure_sync(&op->cl);
  1701. } else if (ret) {
  1702. struct bkey *k;
  1703. pr_err("error %i trying to insert key for %s",
  1704. ret, op_type(op));
  1705. while ((k = bch_keylist_pop(keys)))
  1706. bkey_put(c, k, 0);
  1707. }
  1708. }
  1709. return ret;
  1710. }
  1711. void bch_btree_set_root(struct btree *b)
  1712. {
  1713. unsigned i;
  1714. struct closure cl;
  1715. closure_init_stack(&cl);
  1716. trace_bcache_btree_set_root(b);
  1717. BUG_ON(!b->written);
  1718. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1719. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1720. mutex_lock(&b->c->bucket_lock);
  1721. list_del_init(&b->list);
  1722. mutex_unlock(&b->c->bucket_lock);
  1723. b->c->root = b;
  1724. __bkey_put(b->c, &b->key);
  1725. bch_journal_meta(b->c, &cl);
  1726. closure_sync(&cl);
  1727. }
  1728. /* Cache lookup */
  1729. static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
  1730. struct bkey *k)
  1731. {
  1732. struct search *s = container_of(op, struct search, op);
  1733. struct bio *bio = &s->bio.bio;
  1734. int ret = 0;
  1735. while (!ret &&
  1736. !op->lookup_done) {
  1737. unsigned sectors = INT_MAX;
  1738. if (KEY_INODE(k) == op->inode) {
  1739. if (KEY_START(k) <= bio->bi_sector)
  1740. break;
  1741. sectors = min_t(uint64_t, sectors,
  1742. KEY_START(k) - bio->bi_sector);
  1743. }
  1744. ret = s->d->cache_miss(b, s, bio, sectors);
  1745. }
  1746. return ret;
  1747. }
  1748. /*
  1749. * Read from a single key, handling the initial cache miss if the key starts in
  1750. * the middle of the bio
  1751. */
  1752. static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
  1753. struct bkey *k)
  1754. {
  1755. struct search *s = container_of(op, struct search, op);
  1756. struct bio *bio = &s->bio.bio;
  1757. unsigned ptr;
  1758. struct bio *n;
  1759. int ret = submit_partial_cache_miss(b, op, k);
  1760. if (ret || op->lookup_done)
  1761. return ret;
  1762. /* XXX: figure out best pointer - for multiple cache devices */
  1763. ptr = 0;
  1764. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  1765. while (!op->lookup_done &&
  1766. KEY_INODE(k) == op->inode &&
  1767. bio->bi_sector < KEY_OFFSET(k)) {
  1768. struct bkey *bio_key;
  1769. sector_t sector = PTR_OFFSET(k, ptr) +
  1770. (bio->bi_sector - KEY_START(k));
  1771. unsigned sectors = min_t(uint64_t, INT_MAX,
  1772. KEY_OFFSET(k) - bio->bi_sector);
  1773. n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  1774. if (n == bio)
  1775. op->lookup_done = true;
  1776. bio_key = &container_of(n, struct bbio, bio)->key;
  1777. /*
  1778. * The bucket we're reading from might be reused while our bio
  1779. * is in flight, and we could then end up reading the wrong
  1780. * data.
  1781. *
  1782. * We guard against this by checking (in cache_read_endio()) if
  1783. * the pointer is stale again; if so, we treat it as an error
  1784. * and reread from the backing device (but we don't pass that
  1785. * error up anywhere).
  1786. */
  1787. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  1788. SET_PTR_OFFSET(bio_key, 0, sector);
  1789. n->bi_end_io = bch_cache_read_endio;
  1790. n->bi_private = &s->cl;
  1791. __bch_submit_bbio(n, b->c);
  1792. }
  1793. return 0;
  1794. }
  1795. int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
  1796. {
  1797. struct search *s = container_of(op, struct search, op);
  1798. struct bio *bio = &s->bio.bio;
  1799. int ret = 0;
  1800. struct bkey *k;
  1801. struct btree_iter iter;
  1802. bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
  1803. do {
  1804. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1805. if (!k) {
  1806. /*
  1807. * b->key would be exactly what we want, except that
  1808. * pointers to btree nodes have nonzero size - we
  1809. * wouldn't go far enough
  1810. */
  1811. ret = submit_partial_cache_miss(b, op,
  1812. &KEY(KEY_INODE(&b->key),
  1813. KEY_OFFSET(&b->key), 0));
  1814. break;
  1815. }
  1816. ret = b->level
  1817. ? btree(search_recurse, k, b, op)
  1818. : submit_partial_cache_hit(b, op, k);
  1819. } while (!ret &&
  1820. !op->lookup_done);
  1821. return ret;
  1822. }
  1823. /* Keybuf code */
  1824. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1825. {
  1826. /* Overlapping keys compare equal */
  1827. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1828. return -1;
  1829. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1830. return 1;
  1831. return 0;
  1832. }
  1833. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1834. struct keybuf_key *r)
  1835. {
  1836. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1837. }
  1838. static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
  1839. struct keybuf *buf, struct bkey *end,
  1840. keybuf_pred_fn *pred)
  1841. {
  1842. struct btree_iter iter;
  1843. bch_btree_iter_init(b, &iter, &buf->last_scanned);
  1844. while (!array_freelist_empty(&buf->freelist)) {
  1845. struct bkey *k = bch_btree_iter_next_filter(&iter, b,
  1846. bch_ptr_bad);
  1847. if (!b->level) {
  1848. if (!k) {
  1849. buf->last_scanned = b->key;
  1850. break;
  1851. }
  1852. buf->last_scanned = *k;
  1853. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1854. break;
  1855. if (pred(buf, k)) {
  1856. struct keybuf_key *w;
  1857. spin_lock(&buf->lock);
  1858. w = array_alloc(&buf->freelist);
  1859. w->private = NULL;
  1860. bkey_copy(&w->key, k);
  1861. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1862. array_free(&buf->freelist, w);
  1863. spin_unlock(&buf->lock);
  1864. }
  1865. } else {
  1866. if (!k)
  1867. break;
  1868. btree(refill_keybuf, k, b, op, buf, end, pred);
  1869. /*
  1870. * Might get an error here, but can't really do anything
  1871. * and it'll get logged elsewhere. Just read what we
  1872. * can.
  1873. */
  1874. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1875. break;
  1876. cond_resched();
  1877. }
  1878. }
  1879. return 0;
  1880. }
  1881. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1882. struct bkey *end, keybuf_pred_fn *pred)
  1883. {
  1884. struct bkey start = buf->last_scanned;
  1885. struct btree_op op;
  1886. bch_btree_op_init_stack(&op);
  1887. cond_resched();
  1888. btree_root(refill_keybuf, c, &op, buf, end, pred);
  1889. closure_sync(&op.cl);
  1890. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1891. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1892. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1893. KEY_INODE(&start), KEY_OFFSET(&start),
  1894. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1895. spin_lock(&buf->lock);
  1896. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1897. struct keybuf_key *w;
  1898. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1899. buf->start = START_KEY(&w->key);
  1900. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1901. buf->end = w->key;
  1902. } else {
  1903. buf->start = MAX_KEY;
  1904. buf->end = MAX_KEY;
  1905. }
  1906. spin_unlock(&buf->lock);
  1907. }
  1908. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1909. {
  1910. rb_erase(&w->node, &buf->keys);
  1911. array_free(&buf->freelist, w);
  1912. }
  1913. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1914. {
  1915. spin_lock(&buf->lock);
  1916. __bch_keybuf_del(buf, w);
  1917. spin_unlock(&buf->lock);
  1918. }
  1919. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1920. struct bkey *end)
  1921. {
  1922. bool ret = false;
  1923. struct keybuf_key *p, *w, s;
  1924. s.key = *start;
  1925. if (bkey_cmp(end, &buf->start) <= 0 ||
  1926. bkey_cmp(start, &buf->end) >= 0)
  1927. return false;
  1928. spin_lock(&buf->lock);
  1929. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1930. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1931. p = w;
  1932. w = RB_NEXT(w, node);
  1933. if (p->private)
  1934. ret = true;
  1935. else
  1936. __bch_keybuf_del(buf, p);
  1937. }
  1938. spin_unlock(&buf->lock);
  1939. return ret;
  1940. }
  1941. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1942. {
  1943. struct keybuf_key *w;
  1944. spin_lock(&buf->lock);
  1945. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1946. while (w && w->private)
  1947. w = RB_NEXT(w, node);
  1948. if (w)
  1949. w->private = ERR_PTR(-EINTR);
  1950. spin_unlock(&buf->lock);
  1951. return w;
  1952. }
  1953. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1954. struct keybuf *buf,
  1955. struct bkey *end,
  1956. keybuf_pred_fn *pred)
  1957. {
  1958. struct keybuf_key *ret;
  1959. while (1) {
  1960. ret = bch_keybuf_next(buf);
  1961. if (ret)
  1962. break;
  1963. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1964. pr_debug("scan finished");
  1965. break;
  1966. }
  1967. bch_refill_keybuf(c, buf, end, pred);
  1968. }
  1969. return ret;
  1970. }
  1971. void bch_keybuf_init(struct keybuf *buf)
  1972. {
  1973. buf->last_scanned = MAX_KEY;
  1974. buf->keys = RB_ROOT;
  1975. spin_lock_init(&buf->lock);
  1976. array_allocator_init(&buf->freelist);
  1977. }
  1978. void bch_btree_exit(void)
  1979. {
  1980. if (btree_io_wq)
  1981. destroy_workqueue(btree_io_wq);
  1982. if (bch_gc_wq)
  1983. destroy_workqueue(bch_gc_wq);
  1984. }
  1985. int __init bch_btree_init(void)
  1986. {
  1987. if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
  1988. !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
  1989. return -ENOMEM;
  1990. return 0;
  1991. }