intr_remapping.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. #include <linux/interrupt.h>
  2. #include <linux/dmar.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/jiffies.h>
  5. #include <linux/pci.h>
  6. #include <linux/irq.h>
  7. #include <asm/io_apic.h>
  8. #include <linux/intel-iommu.h>
  9. #include "intr_remapping.h"
  10. static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  11. static int ir_ioapic_num;
  12. int intr_remapping_enabled;
  13. struct irq_2_iommu {
  14. struct intel_iommu *iommu;
  15. u16 irte_index;
  16. u16 sub_handle;
  17. u8 irte_mask;
  18. };
  19. #ifdef CONFIG_SPARSE_IRQ
  20. static struct irq_2_iommu *get_one_free_irq_2_iommu(int cpu)
  21. {
  22. struct irq_2_iommu *iommu;
  23. int node;
  24. node = cpu_to_node(cpu);
  25. iommu = kzalloc_node(sizeof(*iommu), GFP_ATOMIC, node);
  26. printk(KERN_DEBUG "alloc irq_2_iommu on cpu %d node %d\n", cpu, node);
  27. return iommu;
  28. }
  29. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  30. {
  31. struct irq_desc *desc;
  32. desc = irq_to_desc(irq);
  33. if (WARN_ON_ONCE(!desc))
  34. return NULL;
  35. return desc->irq_2_iommu;
  36. }
  37. static struct irq_2_iommu *irq_2_iommu_alloc_cpu(unsigned int irq, int cpu)
  38. {
  39. struct irq_desc *desc;
  40. struct irq_2_iommu *irq_iommu;
  41. /*
  42. * alloc irq desc if not allocated already.
  43. */
  44. desc = irq_to_desc_alloc_cpu(irq, cpu);
  45. if (!desc) {
  46. printk(KERN_INFO "can not get irq_desc for %d\n", irq);
  47. return NULL;
  48. }
  49. irq_iommu = desc->irq_2_iommu;
  50. if (!irq_iommu)
  51. desc->irq_2_iommu = get_one_free_irq_2_iommu(cpu);
  52. return desc->irq_2_iommu;
  53. }
  54. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  55. {
  56. return irq_2_iommu_alloc_cpu(irq, boot_cpu_id);
  57. }
  58. #else /* !CONFIG_SPARSE_IRQ */
  59. static struct irq_2_iommu irq_2_iommuX[NR_IRQS];
  60. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  61. {
  62. if (irq < nr_irqs)
  63. return &irq_2_iommuX[irq];
  64. return NULL;
  65. }
  66. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  67. {
  68. return irq_2_iommu(irq);
  69. }
  70. #endif
  71. static DEFINE_SPINLOCK(irq_2_ir_lock);
  72. static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq)
  73. {
  74. struct irq_2_iommu *irq_iommu;
  75. irq_iommu = irq_2_iommu(irq);
  76. if (!irq_iommu)
  77. return NULL;
  78. if (!irq_iommu->iommu)
  79. return NULL;
  80. return irq_iommu;
  81. }
  82. int irq_remapped(int irq)
  83. {
  84. return valid_irq_2_iommu(irq) != NULL;
  85. }
  86. int get_irte(int irq, struct irte *entry)
  87. {
  88. int index;
  89. struct irq_2_iommu *irq_iommu;
  90. if (!entry)
  91. return -1;
  92. spin_lock(&irq_2_ir_lock);
  93. irq_iommu = valid_irq_2_iommu(irq);
  94. if (!irq_iommu) {
  95. spin_unlock(&irq_2_ir_lock);
  96. return -1;
  97. }
  98. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  99. *entry = *(irq_iommu->iommu->ir_table->base + index);
  100. spin_unlock(&irq_2_ir_lock);
  101. return 0;
  102. }
  103. int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
  104. {
  105. struct ir_table *table = iommu->ir_table;
  106. struct irq_2_iommu *irq_iommu;
  107. u16 index, start_index;
  108. unsigned int mask = 0;
  109. int i;
  110. if (!count)
  111. return -1;
  112. #ifndef CONFIG_SPARSE_IRQ
  113. /* protect irq_2_iommu_alloc later */
  114. if (irq >= nr_irqs)
  115. return -1;
  116. #endif
  117. /*
  118. * start the IRTE search from index 0.
  119. */
  120. index = start_index = 0;
  121. if (count > 1) {
  122. count = __roundup_pow_of_two(count);
  123. mask = ilog2(count);
  124. }
  125. if (mask > ecap_max_handle_mask(iommu->ecap)) {
  126. printk(KERN_ERR
  127. "Requested mask %x exceeds the max invalidation handle"
  128. " mask value %Lx\n", mask,
  129. ecap_max_handle_mask(iommu->ecap));
  130. return -1;
  131. }
  132. spin_lock(&irq_2_ir_lock);
  133. do {
  134. for (i = index; i < index + count; i++)
  135. if (table->base[i].present)
  136. break;
  137. /* empty index found */
  138. if (i == index + count)
  139. break;
  140. index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
  141. if (index == start_index) {
  142. spin_unlock(&irq_2_ir_lock);
  143. printk(KERN_ERR "can't allocate an IRTE\n");
  144. return -1;
  145. }
  146. } while (1);
  147. for (i = index; i < index + count; i++)
  148. table->base[i].present = 1;
  149. irq_iommu = irq_2_iommu_alloc(irq);
  150. if (!irq_iommu) {
  151. spin_unlock(&irq_2_ir_lock);
  152. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  153. return -1;
  154. }
  155. irq_iommu->iommu = iommu;
  156. irq_iommu->irte_index = index;
  157. irq_iommu->sub_handle = 0;
  158. irq_iommu->irte_mask = mask;
  159. spin_unlock(&irq_2_ir_lock);
  160. return index;
  161. }
  162. static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
  163. {
  164. struct qi_desc desc;
  165. desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
  166. | QI_IEC_SELECTIVE;
  167. desc.high = 0;
  168. qi_submit_sync(&desc, iommu);
  169. }
  170. int map_irq_to_irte_handle(int irq, u16 *sub_handle)
  171. {
  172. int index;
  173. struct irq_2_iommu *irq_iommu;
  174. spin_lock(&irq_2_ir_lock);
  175. irq_iommu = valid_irq_2_iommu(irq);
  176. if (!irq_iommu) {
  177. spin_unlock(&irq_2_ir_lock);
  178. return -1;
  179. }
  180. *sub_handle = irq_iommu->sub_handle;
  181. index = irq_iommu->irte_index;
  182. spin_unlock(&irq_2_ir_lock);
  183. return index;
  184. }
  185. int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
  186. {
  187. struct irq_2_iommu *irq_iommu;
  188. spin_lock(&irq_2_ir_lock);
  189. irq_iommu = irq_2_iommu_alloc(irq);
  190. if (!irq_iommu) {
  191. spin_unlock(&irq_2_ir_lock);
  192. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  193. return -1;
  194. }
  195. irq_iommu->iommu = iommu;
  196. irq_iommu->irte_index = index;
  197. irq_iommu->sub_handle = subhandle;
  198. irq_iommu->irte_mask = 0;
  199. spin_unlock(&irq_2_ir_lock);
  200. return 0;
  201. }
  202. int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
  203. {
  204. struct irq_2_iommu *irq_iommu;
  205. spin_lock(&irq_2_ir_lock);
  206. irq_iommu = valid_irq_2_iommu(irq);
  207. if (!irq_iommu) {
  208. spin_unlock(&irq_2_ir_lock);
  209. return -1;
  210. }
  211. irq_iommu->iommu = NULL;
  212. irq_iommu->irte_index = 0;
  213. irq_iommu->sub_handle = 0;
  214. irq_2_iommu(irq)->irte_mask = 0;
  215. spin_unlock(&irq_2_ir_lock);
  216. return 0;
  217. }
  218. int modify_irte(int irq, struct irte *irte_modified)
  219. {
  220. int index;
  221. struct irte *irte;
  222. struct intel_iommu *iommu;
  223. struct irq_2_iommu *irq_iommu;
  224. spin_lock(&irq_2_ir_lock);
  225. irq_iommu = valid_irq_2_iommu(irq);
  226. if (!irq_iommu) {
  227. spin_unlock(&irq_2_ir_lock);
  228. return -1;
  229. }
  230. iommu = irq_iommu->iommu;
  231. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  232. irte = &iommu->ir_table->base[index];
  233. set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
  234. __iommu_flush_cache(iommu, irte, sizeof(*irte));
  235. qi_flush_iec(iommu, index, 0);
  236. spin_unlock(&irq_2_ir_lock);
  237. return 0;
  238. }
  239. int flush_irte(int irq)
  240. {
  241. int index;
  242. struct intel_iommu *iommu;
  243. struct irq_2_iommu *irq_iommu;
  244. spin_lock(&irq_2_ir_lock);
  245. irq_iommu = valid_irq_2_iommu(irq);
  246. if (!irq_iommu) {
  247. spin_unlock(&irq_2_ir_lock);
  248. return -1;
  249. }
  250. iommu = irq_iommu->iommu;
  251. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  252. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  253. spin_unlock(&irq_2_ir_lock);
  254. return 0;
  255. }
  256. struct intel_iommu *map_ioapic_to_ir(int apic)
  257. {
  258. int i;
  259. for (i = 0; i < MAX_IO_APICS; i++)
  260. if (ir_ioapic[i].id == apic)
  261. return ir_ioapic[i].iommu;
  262. return NULL;
  263. }
  264. struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
  265. {
  266. struct dmar_drhd_unit *drhd;
  267. drhd = dmar_find_matched_drhd_unit(dev);
  268. if (!drhd)
  269. return NULL;
  270. return drhd->iommu;
  271. }
  272. int free_irte(int irq)
  273. {
  274. int index, i;
  275. struct irte *irte;
  276. struct intel_iommu *iommu;
  277. struct irq_2_iommu *irq_iommu;
  278. spin_lock(&irq_2_ir_lock);
  279. irq_iommu = valid_irq_2_iommu(irq);
  280. if (!irq_iommu) {
  281. spin_unlock(&irq_2_ir_lock);
  282. return -1;
  283. }
  284. iommu = irq_iommu->iommu;
  285. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  286. irte = &iommu->ir_table->base[index];
  287. if (!irq_iommu->sub_handle) {
  288. for (i = 0; i < (1 << irq_iommu->irte_mask); i++)
  289. set_64bit((unsigned long *)irte, 0);
  290. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  291. }
  292. irq_iommu->iommu = NULL;
  293. irq_iommu->irte_index = 0;
  294. irq_iommu->sub_handle = 0;
  295. irq_iommu->irte_mask = 0;
  296. spin_unlock(&irq_2_ir_lock);
  297. return 0;
  298. }
  299. static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
  300. {
  301. u64 addr;
  302. u32 cmd, sts;
  303. unsigned long flags;
  304. addr = virt_to_phys((void *)iommu->ir_table->base);
  305. spin_lock_irqsave(&iommu->register_lock, flags);
  306. dmar_writeq(iommu->reg + DMAR_IRTA_REG,
  307. (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
  308. /* Set interrupt-remapping table pointer */
  309. cmd = iommu->gcmd | DMA_GCMD_SIRTP;
  310. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  311. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  312. readl, (sts & DMA_GSTS_IRTPS), sts);
  313. spin_unlock_irqrestore(&iommu->register_lock, flags);
  314. /*
  315. * global invalidation of interrupt entry cache before enabling
  316. * interrupt-remapping.
  317. */
  318. qi_global_iec(iommu);
  319. spin_lock_irqsave(&iommu->register_lock, flags);
  320. /* Enable interrupt-remapping */
  321. cmd = iommu->gcmd | DMA_GCMD_IRE;
  322. iommu->gcmd |= DMA_GCMD_IRE;
  323. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  324. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  325. readl, (sts & DMA_GSTS_IRES), sts);
  326. spin_unlock_irqrestore(&iommu->register_lock, flags);
  327. }
  328. static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
  329. {
  330. struct ir_table *ir_table;
  331. struct page *pages;
  332. ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
  333. GFP_KERNEL);
  334. if (!iommu->ir_table)
  335. return -ENOMEM;
  336. pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
  337. if (!pages) {
  338. printk(KERN_ERR "failed to allocate pages of order %d\n",
  339. INTR_REMAP_PAGE_ORDER);
  340. kfree(iommu->ir_table);
  341. return -ENOMEM;
  342. }
  343. ir_table->base = page_address(pages);
  344. iommu_set_intr_remapping(iommu, mode);
  345. return 0;
  346. }
  347. int __init enable_intr_remapping(int eim)
  348. {
  349. struct dmar_drhd_unit *drhd;
  350. int setup = 0;
  351. /*
  352. * check for the Interrupt-remapping support
  353. */
  354. for_each_drhd_unit(drhd) {
  355. struct intel_iommu *iommu = drhd->iommu;
  356. if (!ecap_ir_support(iommu->ecap))
  357. continue;
  358. if (eim && !ecap_eim_support(iommu->ecap)) {
  359. printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
  360. " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
  361. return -1;
  362. }
  363. }
  364. /*
  365. * Enable queued invalidation for all the DRHD's.
  366. */
  367. for_each_drhd_unit(drhd) {
  368. int ret;
  369. struct intel_iommu *iommu = drhd->iommu;
  370. ret = dmar_enable_qi(iommu);
  371. if (ret) {
  372. printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
  373. " invalidation, ecap %Lx, ret %d\n",
  374. drhd->reg_base_addr, iommu->ecap, ret);
  375. return -1;
  376. }
  377. }
  378. /*
  379. * Setup Interrupt-remapping for all the DRHD's now.
  380. */
  381. for_each_drhd_unit(drhd) {
  382. struct intel_iommu *iommu = drhd->iommu;
  383. if (!ecap_ir_support(iommu->ecap))
  384. continue;
  385. if (setup_intr_remapping(iommu, eim))
  386. goto error;
  387. setup = 1;
  388. }
  389. if (!setup)
  390. goto error;
  391. intr_remapping_enabled = 1;
  392. return 0;
  393. error:
  394. /*
  395. * handle error condition gracefully here!
  396. */
  397. return -1;
  398. }
  399. static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
  400. struct intel_iommu *iommu)
  401. {
  402. struct acpi_dmar_hardware_unit *drhd;
  403. struct acpi_dmar_device_scope *scope;
  404. void *start, *end;
  405. drhd = (struct acpi_dmar_hardware_unit *)header;
  406. start = (void *)(drhd + 1);
  407. end = ((void *)drhd) + header->length;
  408. while (start < end) {
  409. scope = start;
  410. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
  411. if (ir_ioapic_num == MAX_IO_APICS) {
  412. printk(KERN_WARNING "Exceeded Max IO APICS\n");
  413. return -1;
  414. }
  415. printk(KERN_INFO "IOAPIC id %d under DRHD base"
  416. " 0x%Lx\n", scope->enumeration_id,
  417. drhd->address);
  418. ir_ioapic[ir_ioapic_num].iommu = iommu;
  419. ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
  420. ir_ioapic_num++;
  421. }
  422. start += scope->length;
  423. }
  424. return 0;
  425. }
  426. /*
  427. * Finds the assocaition between IOAPIC's and its Interrupt-remapping
  428. * hardware unit.
  429. */
  430. int __init parse_ioapics_under_ir(void)
  431. {
  432. struct dmar_drhd_unit *drhd;
  433. int ir_supported = 0;
  434. for_each_drhd_unit(drhd) {
  435. struct intel_iommu *iommu = drhd->iommu;
  436. if (ecap_ir_support(iommu->ecap)) {
  437. if (ir_parse_ioapic_scope(drhd->hdr, iommu))
  438. return -1;
  439. ir_supported = 1;
  440. }
  441. }
  442. if (ir_supported && ir_ioapic_num != nr_ioapics) {
  443. printk(KERN_WARNING
  444. "Not all IO-APIC's listed under remapping hardware\n");
  445. return -1;
  446. }
  447. return ir_supported;
  448. }