ctree.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_path *path, int level);
  25. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_key *ins_key,
  27. struct btrfs_path *path, int data_size, int extend);
  28. static int push_node_left(struct btrfs_trans_handle *trans,
  29. struct btrfs_root *root, struct extent_buffer *dst,
  30. struct extent_buffer *src);
  31. static int balance_node_right(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root,
  33. struct extent_buffer *dst_buf,
  34. struct extent_buffer *src_buf);
  35. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  36. struct btrfs_path *path, int level, int slot);
  37. inline void btrfs_init_path(struct btrfs_path *p)
  38. {
  39. memset(p, 0, sizeof(*p));
  40. }
  41. struct btrfs_path *btrfs_alloc_path(void)
  42. {
  43. struct btrfs_path *path;
  44. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  45. if (path) {
  46. btrfs_init_path(path);
  47. path->reada = 1;
  48. }
  49. return path;
  50. }
  51. void btrfs_free_path(struct btrfs_path *p)
  52. {
  53. btrfs_release_path(NULL, p);
  54. kmem_cache_free(btrfs_path_cachep, p);
  55. }
  56. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (!p->nodes[i])
  61. break;
  62. free_extent_buffer(p->nodes[i]);
  63. }
  64. memset(p, 0, sizeof(*p));
  65. }
  66. static void add_root_to_dirty_list(struct btrfs_root *root)
  67. {
  68. if (root->track_dirty && list_empty(&root->dirty_list)) {
  69. list_add(&root->dirty_list,
  70. &root->fs_info->dirty_cowonly_roots);
  71. }
  72. }
  73. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  74. struct btrfs_root *root,
  75. struct extent_buffer *buf,
  76. struct extent_buffer **cow_ret, u64 new_root_objectid)
  77. {
  78. struct extent_buffer *cow;
  79. u32 nritems;
  80. int ret = 0;
  81. int level;
  82. struct btrfs_key first_key;
  83. struct btrfs_root *new_root;
  84. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  85. if (!new_root)
  86. return -ENOMEM;
  87. memcpy(new_root, root, sizeof(*new_root));
  88. new_root->root_key.objectid = new_root_objectid;
  89. WARN_ON(root->ref_cows && trans->transid !=
  90. root->fs_info->running_transaction->transid);
  91. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  92. level = btrfs_header_level(buf);
  93. nritems = btrfs_header_nritems(buf);
  94. if (nritems) {
  95. if (level == 0)
  96. btrfs_item_key_to_cpu(buf, &first_key, 0);
  97. else
  98. btrfs_node_key_to_cpu(buf, &first_key, 0);
  99. } else {
  100. first_key.objectid = 0;
  101. }
  102. cow = __btrfs_alloc_free_block(trans, new_root, buf->len,
  103. new_root_objectid,
  104. trans->transid, first_key.objectid,
  105. level, buf->start, 0);
  106. if (IS_ERR(cow)) {
  107. kfree(new_root);
  108. return PTR_ERR(cow);
  109. }
  110. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  111. btrfs_set_header_bytenr(cow, cow->start);
  112. btrfs_set_header_generation(cow, trans->transid);
  113. btrfs_set_header_owner(cow, new_root_objectid);
  114. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  115. ret = btrfs_inc_ref(trans, new_root, buf);
  116. kfree(new_root);
  117. if (ret)
  118. return ret;
  119. btrfs_mark_buffer_dirty(cow);
  120. *cow_ret = cow;
  121. return 0;
  122. }
  123. int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  124. struct btrfs_root *root,
  125. struct extent_buffer *buf,
  126. struct extent_buffer *parent, int parent_slot,
  127. struct extent_buffer **cow_ret,
  128. u64 search_start, u64 empty_size)
  129. {
  130. u64 root_gen;
  131. struct extent_buffer *cow;
  132. u32 nritems;
  133. int ret = 0;
  134. int different_trans = 0;
  135. int level;
  136. struct btrfs_key first_key;
  137. if (root->ref_cows) {
  138. root_gen = trans->transid;
  139. } else {
  140. root_gen = 0;
  141. }
  142. WARN_ON(root->ref_cows && trans->transid !=
  143. root->fs_info->running_transaction->transid);
  144. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  145. level = btrfs_header_level(buf);
  146. nritems = btrfs_header_nritems(buf);
  147. if (nritems) {
  148. if (level == 0)
  149. btrfs_item_key_to_cpu(buf, &first_key, 0);
  150. else
  151. btrfs_node_key_to_cpu(buf, &first_key, 0);
  152. } else {
  153. first_key.objectid = 0;
  154. }
  155. cow = __btrfs_alloc_free_block(trans, root, buf->len,
  156. root->root_key.objectid,
  157. root_gen, first_key.objectid, level,
  158. search_start, empty_size);
  159. if (IS_ERR(cow))
  160. return PTR_ERR(cow);
  161. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  162. btrfs_set_header_bytenr(cow, cow->start);
  163. btrfs_set_header_generation(cow, trans->transid);
  164. btrfs_set_header_owner(cow, root->root_key.objectid);
  165. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  166. if (btrfs_header_generation(buf) != trans->transid) {
  167. different_trans = 1;
  168. ret = btrfs_inc_ref(trans, root, buf);
  169. if (ret)
  170. return ret;
  171. } else {
  172. clean_tree_block(trans, root, buf);
  173. }
  174. if (buf == root->node) {
  175. root_gen = btrfs_header_generation(buf);
  176. root->node = cow;
  177. extent_buffer_get(cow);
  178. if (buf != root->commit_root) {
  179. btrfs_free_extent(trans, root, buf->start,
  180. buf->len, root->root_key.objectid,
  181. root_gen, 0, 0, 1);
  182. }
  183. free_extent_buffer(buf);
  184. add_root_to_dirty_list(root);
  185. } else {
  186. root_gen = btrfs_header_generation(parent);
  187. btrfs_set_node_blockptr(parent, parent_slot,
  188. cow->start);
  189. WARN_ON(trans->transid == 0);
  190. btrfs_set_node_ptr_generation(parent, parent_slot,
  191. trans->transid);
  192. btrfs_mark_buffer_dirty(parent);
  193. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  194. btrfs_free_extent(trans, root, buf->start, buf->len,
  195. btrfs_header_owner(parent), root_gen,
  196. 0, 0, 1);
  197. }
  198. free_extent_buffer(buf);
  199. btrfs_mark_buffer_dirty(cow);
  200. *cow_ret = cow;
  201. return 0;
  202. }
  203. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  204. struct btrfs_root *root, struct extent_buffer *buf,
  205. struct extent_buffer *parent, int parent_slot,
  206. struct extent_buffer **cow_ret)
  207. {
  208. u64 search_start;
  209. u64 header_trans;
  210. int ret;
  211. if (trans->transaction != root->fs_info->running_transaction) {
  212. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  213. root->fs_info->running_transaction->transid);
  214. WARN_ON(1);
  215. }
  216. if (trans->transid != root->fs_info->generation) {
  217. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  218. root->fs_info->generation);
  219. WARN_ON(1);
  220. }
  221. header_trans = btrfs_header_generation(buf);
  222. if (header_trans == trans->transid) {
  223. *cow_ret = buf;
  224. return 0;
  225. }
  226. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  227. ret = __btrfs_cow_block(trans, root, buf, parent,
  228. parent_slot, cow_ret, search_start, 0);
  229. return ret;
  230. }
  231. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  232. {
  233. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  234. return 1;
  235. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  236. return 1;
  237. return 0;
  238. }
  239. /*
  240. * compare two keys in a memcmp fashion
  241. */
  242. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  243. {
  244. struct btrfs_key k1;
  245. btrfs_disk_key_to_cpu(&k1, disk);
  246. if (k1.objectid > k2->objectid)
  247. return 1;
  248. if (k1.objectid < k2->objectid)
  249. return -1;
  250. if (k1.type > k2->type)
  251. return 1;
  252. if (k1.type < k2->type)
  253. return -1;
  254. if (k1.offset > k2->offset)
  255. return 1;
  256. if (k1.offset < k2->offset)
  257. return -1;
  258. return 0;
  259. }
  260. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  261. struct btrfs_root *root, struct extent_buffer *parent,
  262. int start_slot, int cache_only, u64 *last_ret,
  263. struct btrfs_key *progress)
  264. {
  265. struct extent_buffer *cur;
  266. struct extent_buffer *tmp;
  267. u64 blocknr;
  268. u64 search_start = *last_ret;
  269. u64 last_block = 0;
  270. u64 other;
  271. u32 parent_nritems;
  272. int end_slot;
  273. int i;
  274. int err = 0;
  275. int parent_level;
  276. int uptodate;
  277. u32 blocksize;
  278. int progress_passed = 0;
  279. struct btrfs_disk_key disk_key;
  280. parent_level = btrfs_header_level(parent);
  281. if (cache_only && parent_level != 1)
  282. return 0;
  283. if (trans->transaction != root->fs_info->running_transaction) {
  284. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  285. root->fs_info->running_transaction->transid);
  286. WARN_ON(1);
  287. }
  288. if (trans->transid != root->fs_info->generation) {
  289. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  290. root->fs_info->generation);
  291. WARN_ON(1);
  292. }
  293. parent_nritems = btrfs_header_nritems(parent);
  294. blocksize = btrfs_level_size(root, parent_level - 1);
  295. end_slot = parent_nritems;
  296. if (parent_nritems == 1)
  297. return 0;
  298. for (i = start_slot; i < end_slot; i++) {
  299. int close = 1;
  300. if (!parent->map_token) {
  301. map_extent_buffer(parent,
  302. btrfs_node_key_ptr_offset(i),
  303. sizeof(struct btrfs_key_ptr),
  304. &parent->map_token, &parent->kaddr,
  305. &parent->map_start, &parent->map_len,
  306. KM_USER1);
  307. }
  308. btrfs_node_key(parent, &disk_key, i);
  309. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  310. continue;
  311. progress_passed = 1;
  312. blocknr = btrfs_node_blockptr(parent, i);
  313. if (last_block == 0)
  314. last_block = blocknr;
  315. if (i > 0) {
  316. other = btrfs_node_blockptr(parent, i - 1);
  317. close = close_blocks(blocknr, other, blocksize);
  318. }
  319. if (close && i < end_slot - 2) {
  320. other = btrfs_node_blockptr(parent, i + 1);
  321. close = close_blocks(blocknr, other, blocksize);
  322. }
  323. if (close) {
  324. last_block = blocknr;
  325. continue;
  326. }
  327. if (parent->map_token) {
  328. unmap_extent_buffer(parent, parent->map_token,
  329. KM_USER1);
  330. parent->map_token = NULL;
  331. }
  332. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  333. if (cur)
  334. uptodate = btrfs_buffer_uptodate(cur);
  335. else
  336. uptodate = 0;
  337. if (!cur || !uptodate) {
  338. if (cache_only) {
  339. free_extent_buffer(cur);
  340. continue;
  341. }
  342. if (!cur) {
  343. cur = read_tree_block(root, blocknr,
  344. blocksize);
  345. } else if (!uptodate) {
  346. btrfs_read_buffer(cur);
  347. }
  348. }
  349. if (search_start == 0)
  350. search_start = last_block;
  351. err = __btrfs_cow_block(trans, root, cur, parent, i,
  352. &tmp, search_start,
  353. min(16 * blocksize,
  354. (end_slot - i) * blocksize));
  355. if (err) {
  356. free_extent_buffer(cur);
  357. break;
  358. }
  359. search_start = tmp->start;
  360. last_block = tmp->start;
  361. *last_ret = search_start;
  362. if (parent_level == 1)
  363. btrfs_clear_buffer_defrag(tmp);
  364. free_extent_buffer(tmp);
  365. }
  366. if (parent->map_token) {
  367. unmap_extent_buffer(parent, parent->map_token,
  368. KM_USER1);
  369. parent->map_token = NULL;
  370. }
  371. return err;
  372. }
  373. /*
  374. * The leaf data grows from end-to-front in the node.
  375. * this returns the address of the start of the last item,
  376. * which is the stop of the leaf data stack
  377. */
  378. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  379. struct extent_buffer *leaf)
  380. {
  381. u32 nr = btrfs_header_nritems(leaf);
  382. if (nr == 0)
  383. return BTRFS_LEAF_DATA_SIZE(root);
  384. return btrfs_item_offset_nr(leaf, nr - 1);
  385. }
  386. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  387. int level)
  388. {
  389. struct extent_buffer *parent = NULL;
  390. struct extent_buffer *node = path->nodes[level];
  391. struct btrfs_disk_key parent_key;
  392. struct btrfs_disk_key node_key;
  393. int parent_slot;
  394. int slot;
  395. struct btrfs_key cpukey;
  396. u32 nritems = btrfs_header_nritems(node);
  397. if (path->nodes[level + 1])
  398. parent = path->nodes[level + 1];
  399. slot = path->slots[level];
  400. BUG_ON(nritems == 0);
  401. if (parent) {
  402. parent_slot = path->slots[level + 1];
  403. btrfs_node_key(parent, &parent_key, parent_slot);
  404. btrfs_node_key(node, &node_key, 0);
  405. BUG_ON(memcmp(&parent_key, &node_key,
  406. sizeof(struct btrfs_disk_key)));
  407. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  408. btrfs_header_bytenr(node));
  409. }
  410. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  411. if (slot != 0) {
  412. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  413. btrfs_node_key(node, &node_key, slot);
  414. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  415. }
  416. if (slot < nritems - 1) {
  417. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  418. btrfs_node_key(node, &node_key, slot);
  419. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  420. }
  421. return 0;
  422. }
  423. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  424. int level)
  425. {
  426. struct extent_buffer *leaf = path->nodes[level];
  427. struct extent_buffer *parent = NULL;
  428. int parent_slot;
  429. struct btrfs_key cpukey;
  430. struct btrfs_disk_key parent_key;
  431. struct btrfs_disk_key leaf_key;
  432. int slot = path->slots[0];
  433. u32 nritems = btrfs_header_nritems(leaf);
  434. if (path->nodes[level + 1])
  435. parent = path->nodes[level + 1];
  436. if (nritems == 0)
  437. return 0;
  438. if (parent) {
  439. parent_slot = path->slots[level + 1];
  440. btrfs_node_key(parent, &parent_key, parent_slot);
  441. btrfs_item_key(leaf, &leaf_key, 0);
  442. BUG_ON(memcmp(&parent_key, &leaf_key,
  443. sizeof(struct btrfs_disk_key)));
  444. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  445. btrfs_header_bytenr(leaf));
  446. }
  447. #if 0
  448. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  449. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  450. btrfs_item_key(leaf, &leaf_key, i);
  451. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  452. btrfs_print_leaf(root, leaf);
  453. printk("slot %d offset bad key\n", i);
  454. BUG_ON(1);
  455. }
  456. if (btrfs_item_offset_nr(leaf, i) !=
  457. btrfs_item_end_nr(leaf, i + 1)) {
  458. btrfs_print_leaf(root, leaf);
  459. printk("slot %d offset bad\n", i);
  460. BUG_ON(1);
  461. }
  462. if (i == 0) {
  463. if (btrfs_item_offset_nr(leaf, i) +
  464. btrfs_item_size_nr(leaf, i) !=
  465. BTRFS_LEAF_DATA_SIZE(root)) {
  466. btrfs_print_leaf(root, leaf);
  467. printk("slot %d first offset bad\n", i);
  468. BUG_ON(1);
  469. }
  470. }
  471. }
  472. if (nritems > 0) {
  473. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  474. btrfs_print_leaf(root, leaf);
  475. printk("slot %d bad size \n", nritems - 1);
  476. BUG_ON(1);
  477. }
  478. }
  479. #endif
  480. if (slot != 0 && slot < nritems - 1) {
  481. btrfs_item_key(leaf, &leaf_key, slot);
  482. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  483. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  484. btrfs_print_leaf(root, leaf);
  485. printk("slot %d offset bad key\n", slot);
  486. BUG_ON(1);
  487. }
  488. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  489. btrfs_item_end_nr(leaf, slot)) {
  490. btrfs_print_leaf(root, leaf);
  491. printk("slot %d offset bad\n", slot);
  492. BUG_ON(1);
  493. }
  494. }
  495. if (slot < nritems - 1) {
  496. btrfs_item_key(leaf, &leaf_key, slot);
  497. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  498. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  499. if (btrfs_item_offset_nr(leaf, slot) !=
  500. btrfs_item_end_nr(leaf, slot + 1)) {
  501. btrfs_print_leaf(root, leaf);
  502. printk("slot %d offset bad\n", slot);
  503. BUG_ON(1);
  504. }
  505. }
  506. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  507. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  508. return 0;
  509. }
  510. static int noinline check_block(struct btrfs_root *root,
  511. struct btrfs_path *path, int level)
  512. {
  513. return 0;
  514. #if 0
  515. struct extent_buffer *buf = path->nodes[level];
  516. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  517. (unsigned long)btrfs_header_fsid(buf),
  518. BTRFS_FSID_SIZE)) {
  519. printk("warning bad block %Lu\n", buf->start);
  520. return 1;
  521. }
  522. #endif
  523. if (level == 0)
  524. return check_leaf(root, path, level);
  525. return check_node(root, path, level);
  526. }
  527. /*
  528. * search for key in the extent_buffer. The items start at offset p,
  529. * and they are item_size apart. There are 'max' items in p.
  530. *
  531. * the slot in the array is returned via slot, and it points to
  532. * the place where you would insert key if it is not found in
  533. * the array.
  534. *
  535. * slot may point to max if the key is bigger than all of the keys
  536. */
  537. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  538. int item_size, struct btrfs_key *key,
  539. int max, int *slot)
  540. {
  541. int low = 0;
  542. int high = max;
  543. int mid;
  544. int ret;
  545. struct btrfs_disk_key *tmp = NULL;
  546. struct btrfs_disk_key unaligned;
  547. unsigned long offset;
  548. char *map_token = NULL;
  549. char *kaddr = NULL;
  550. unsigned long map_start = 0;
  551. unsigned long map_len = 0;
  552. int err;
  553. while(low < high) {
  554. mid = (low + high) / 2;
  555. offset = p + mid * item_size;
  556. if (!map_token || offset < map_start ||
  557. (offset + sizeof(struct btrfs_disk_key)) >
  558. map_start + map_len) {
  559. if (map_token) {
  560. unmap_extent_buffer(eb, map_token, KM_USER0);
  561. map_token = NULL;
  562. }
  563. err = map_extent_buffer(eb, offset,
  564. sizeof(struct btrfs_disk_key),
  565. &map_token, &kaddr,
  566. &map_start, &map_len, KM_USER0);
  567. if (!err) {
  568. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  569. map_start);
  570. } else {
  571. read_extent_buffer(eb, &unaligned,
  572. offset, sizeof(unaligned));
  573. tmp = &unaligned;
  574. }
  575. } else {
  576. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  577. map_start);
  578. }
  579. ret = comp_keys(tmp, key);
  580. if (ret < 0)
  581. low = mid + 1;
  582. else if (ret > 0)
  583. high = mid;
  584. else {
  585. *slot = mid;
  586. if (map_token)
  587. unmap_extent_buffer(eb, map_token, KM_USER0);
  588. return 0;
  589. }
  590. }
  591. *slot = low;
  592. if (map_token)
  593. unmap_extent_buffer(eb, map_token, KM_USER0);
  594. return 1;
  595. }
  596. /*
  597. * simple bin_search frontend that does the right thing for
  598. * leaves vs nodes
  599. */
  600. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  601. int level, int *slot)
  602. {
  603. if (level == 0) {
  604. return generic_bin_search(eb,
  605. offsetof(struct btrfs_leaf, items),
  606. sizeof(struct btrfs_item),
  607. key, btrfs_header_nritems(eb),
  608. slot);
  609. } else {
  610. return generic_bin_search(eb,
  611. offsetof(struct btrfs_node, ptrs),
  612. sizeof(struct btrfs_key_ptr),
  613. key, btrfs_header_nritems(eb),
  614. slot);
  615. }
  616. return -1;
  617. }
  618. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  619. struct extent_buffer *parent, int slot)
  620. {
  621. if (slot < 0)
  622. return NULL;
  623. if (slot >= btrfs_header_nritems(parent))
  624. return NULL;
  625. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  626. btrfs_level_size(root, btrfs_header_level(parent) - 1));
  627. }
  628. static int balance_level(struct btrfs_trans_handle *trans,
  629. struct btrfs_root *root,
  630. struct btrfs_path *path, int level)
  631. {
  632. struct extent_buffer *right = NULL;
  633. struct extent_buffer *mid;
  634. struct extent_buffer *left = NULL;
  635. struct extent_buffer *parent = NULL;
  636. int ret = 0;
  637. int wret;
  638. int pslot;
  639. int orig_slot = path->slots[level];
  640. int err_on_enospc = 0;
  641. u64 orig_ptr;
  642. if (level == 0)
  643. return 0;
  644. mid = path->nodes[level];
  645. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  646. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  647. if (level < BTRFS_MAX_LEVEL - 1)
  648. parent = path->nodes[level + 1];
  649. pslot = path->slots[level + 1];
  650. /*
  651. * deal with the case where there is only one pointer in the root
  652. * by promoting the node below to a root
  653. */
  654. if (!parent) {
  655. struct extent_buffer *child;
  656. if (btrfs_header_nritems(mid) != 1)
  657. return 0;
  658. /* promote the child to a root */
  659. child = read_node_slot(root, mid, 0);
  660. BUG_ON(!child);
  661. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  662. BUG_ON(ret);
  663. root->node = child;
  664. add_root_to_dirty_list(root);
  665. path->nodes[level] = NULL;
  666. clean_tree_block(trans, root, mid);
  667. wait_on_tree_block_writeback(root, mid);
  668. /* once for the path */
  669. free_extent_buffer(mid);
  670. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  671. root->root_key.objectid,
  672. btrfs_header_generation(mid), 0, 0, 1);
  673. /* once for the root ptr */
  674. free_extent_buffer(mid);
  675. return ret;
  676. }
  677. if (btrfs_header_nritems(mid) >
  678. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  679. return 0;
  680. if (btrfs_header_nritems(mid) < 2)
  681. err_on_enospc = 1;
  682. left = read_node_slot(root, parent, pslot - 1);
  683. if (left) {
  684. wret = btrfs_cow_block(trans, root, left,
  685. parent, pslot - 1, &left);
  686. if (wret) {
  687. ret = wret;
  688. goto enospc;
  689. }
  690. }
  691. right = read_node_slot(root, parent, pslot + 1);
  692. if (right) {
  693. wret = btrfs_cow_block(trans, root, right,
  694. parent, pslot + 1, &right);
  695. if (wret) {
  696. ret = wret;
  697. goto enospc;
  698. }
  699. }
  700. /* first, try to make some room in the middle buffer */
  701. if (left) {
  702. orig_slot += btrfs_header_nritems(left);
  703. wret = push_node_left(trans, root, left, mid);
  704. if (wret < 0)
  705. ret = wret;
  706. if (btrfs_header_nritems(mid) < 2)
  707. err_on_enospc = 1;
  708. }
  709. /*
  710. * then try to empty the right most buffer into the middle
  711. */
  712. if (right) {
  713. wret = push_node_left(trans, root, mid, right);
  714. if (wret < 0 && wret != -ENOSPC)
  715. ret = wret;
  716. if (btrfs_header_nritems(right) == 0) {
  717. u64 bytenr = right->start;
  718. u64 generation = btrfs_header_generation(parent);
  719. u32 blocksize = right->len;
  720. clean_tree_block(trans, root, right);
  721. wait_on_tree_block_writeback(root, right);
  722. free_extent_buffer(right);
  723. right = NULL;
  724. wret = del_ptr(trans, root, path, level + 1, pslot +
  725. 1);
  726. if (wret)
  727. ret = wret;
  728. wret = btrfs_free_extent(trans, root, bytenr,
  729. blocksize,
  730. btrfs_header_owner(parent),
  731. generation, 0, 0, 1);
  732. if (wret)
  733. ret = wret;
  734. } else {
  735. struct btrfs_disk_key right_key;
  736. btrfs_node_key(right, &right_key, 0);
  737. btrfs_set_node_key(parent, &right_key, pslot + 1);
  738. btrfs_mark_buffer_dirty(parent);
  739. }
  740. }
  741. if (btrfs_header_nritems(mid) == 1) {
  742. /*
  743. * we're not allowed to leave a node with one item in the
  744. * tree during a delete. A deletion from lower in the tree
  745. * could try to delete the only pointer in this node.
  746. * So, pull some keys from the left.
  747. * There has to be a left pointer at this point because
  748. * otherwise we would have pulled some pointers from the
  749. * right
  750. */
  751. BUG_ON(!left);
  752. wret = balance_node_right(trans, root, mid, left);
  753. if (wret < 0) {
  754. ret = wret;
  755. goto enospc;
  756. }
  757. BUG_ON(wret == 1);
  758. }
  759. if (btrfs_header_nritems(mid) == 0) {
  760. /* we've managed to empty the middle node, drop it */
  761. u64 root_gen = btrfs_header_generation(parent);
  762. u64 bytenr = mid->start;
  763. u32 blocksize = mid->len;
  764. clean_tree_block(trans, root, mid);
  765. wait_on_tree_block_writeback(root, mid);
  766. free_extent_buffer(mid);
  767. mid = NULL;
  768. wret = del_ptr(trans, root, path, level + 1, pslot);
  769. if (wret)
  770. ret = wret;
  771. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  772. btrfs_header_owner(parent),
  773. root_gen, 0, 0, 1);
  774. if (wret)
  775. ret = wret;
  776. } else {
  777. /* update the parent key to reflect our changes */
  778. struct btrfs_disk_key mid_key;
  779. btrfs_node_key(mid, &mid_key, 0);
  780. btrfs_set_node_key(parent, &mid_key, pslot);
  781. btrfs_mark_buffer_dirty(parent);
  782. }
  783. /* update the path */
  784. if (left) {
  785. if (btrfs_header_nritems(left) > orig_slot) {
  786. extent_buffer_get(left);
  787. path->nodes[level] = left;
  788. path->slots[level + 1] -= 1;
  789. path->slots[level] = orig_slot;
  790. if (mid)
  791. free_extent_buffer(mid);
  792. } else {
  793. orig_slot -= btrfs_header_nritems(left);
  794. path->slots[level] = orig_slot;
  795. }
  796. }
  797. /* double check we haven't messed things up */
  798. check_block(root, path, level);
  799. if (orig_ptr !=
  800. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  801. BUG();
  802. enospc:
  803. if (right)
  804. free_extent_buffer(right);
  805. if (left)
  806. free_extent_buffer(left);
  807. return ret;
  808. }
  809. /* returns zero if the push worked, non-zero otherwise */
  810. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  811. struct btrfs_root *root,
  812. struct btrfs_path *path, int level)
  813. {
  814. struct extent_buffer *right = NULL;
  815. struct extent_buffer *mid;
  816. struct extent_buffer *left = NULL;
  817. struct extent_buffer *parent = NULL;
  818. int ret = 0;
  819. int wret;
  820. int pslot;
  821. int orig_slot = path->slots[level];
  822. u64 orig_ptr;
  823. if (level == 0)
  824. return 1;
  825. mid = path->nodes[level];
  826. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  827. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  828. if (level < BTRFS_MAX_LEVEL - 1)
  829. parent = path->nodes[level + 1];
  830. pslot = path->slots[level + 1];
  831. if (!parent)
  832. return 1;
  833. left = read_node_slot(root, parent, pslot - 1);
  834. /* first, try to make some room in the middle buffer */
  835. if (left) {
  836. u32 left_nr;
  837. left_nr = btrfs_header_nritems(left);
  838. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  839. wret = 1;
  840. } else {
  841. ret = btrfs_cow_block(trans, root, left, parent,
  842. pslot - 1, &left);
  843. if (ret)
  844. wret = 1;
  845. else {
  846. wret = push_node_left(trans, root,
  847. left, mid);
  848. }
  849. }
  850. if (wret < 0)
  851. ret = wret;
  852. if (wret == 0) {
  853. struct btrfs_disk_key disk_key;
  854. orig_slot += left_nr;
  855. btrfs_node_key(mid, &disk_key, 0);
  856. btrfs_set_node_key(parent, &disk_key, pslot);
  857. btrfs_mark_buffer_dirty(parent);
  858. if (btrfs_header_nritems(left) > orig_slot) {
  859. path->nodes[level] = left;
  860. path->slots[level + 1] -= 1;
  861. path->slots[level] = orig_slot;
  862. free_extent_buffer(mid);
  863. } else {
  864. orig_slot -=
  865. btrfs_header_nritems(left);
  866. path->slots[level] = orig_slot;
  867. free_extent_buffer(left);
  868. }
  869. return 0;
  870. }
  871. free_extent_buffer(left);
  872. }
  873. right= read_node_slot(root, parent, pslot + 1);
  874. /*
  875. * then try to empty the right most buffer into the middle
  876. */
  877. if (right) {
  878. u32 right_nr;
  879. right_nr = btrfs_header_nritems(right);
  880. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  881. wret = 1;
  882. } else {
  883. ret = btrfs_cow_block(trans, root, right,
  884. parent, pslot + 1,
  885. &right);
  886. if (ret)
  887. wret = 1;
  888. else {
  889. wret = balance_node_right(trans, root,
  890. right, mid);
  891. }
  892. }
  893. if (wret < 0)
  894. ret = wret;
  895. if (wret == 0) {
  896. struct btrfs_disk_key disk_key;
  897. btrfs_node_key(right, &disk_key, 0);
  898. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  899. btrfs_mark_buffer_dirty(parent);
  900. if (btrfs_header_nritems(mid) <= orig_slot) {
  901. path->nodes[level] = right;
  902. path->slots[level + 1] += 1;
  903. path->slots[level] = orig_slot -
  904. btrfs_header_nritems(mid);
  905. free_extent_buffer(mid);
  906. } else {
  907. free_extent_buffer(right);
  908. }
  909. return 0;
  910. }
  911. free_extent_buffer(right);
  912. }
  913. return 1;
  914. }
  915. /*
  916. * readahead one full node of leaves
  917. */
  918. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  919. int level, int slot, u64 objectid)
  920. {
  921. struct extent_buffer *node;
  922. struct btrfs_disk_key disk_key;
  923. u32 nritems;
  924. u64 search;
  925. u64 lowest_read;
  926. u64 highest_read;
  927. u64 nread = 0;
  928. int direction = path->reada;
  929. struct extent_buffer *eb;
  930. u32 nr;
  931. u32 blocksize;
  932. u32 nscan = 0;
  933. if (level != 1)
  934. return;
  935. if (!path->nodes[level])
  936. return;
  937. node = path->nodes[level];
  938. search = btrfs_node_blockptr(node, slot);
  939. blocksize = btrfs_level_size(root, level - 1);
  940. eb = btrfs_find_tree_block(root, search, blocksize);
  941. if (eb) {
  942. free_extent_buffer(eb);
  943. return;
  944. }
  945. highest_read = search;
  946. lowest_read = search;
  947. nritems = btrfs_header_nritems(node);
  948. nr = slot;
  949. while(1) {
  950. if (direction < 0) {
  951. if (nr == 0)
  952. break;
  953. nr--;
  954. } else if (direction > 0) {
  955. nr++;
  956. if (nr >= nritems)
  957. break;
  958. }
  959. if (path->reada < 0 && objectid) {
  960. btrfs_node_key(node, &disk_key, nr);
  961. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  962. break;
  963. }
  964. search = btrfs_node_blockptr(node, nr);
  965. if ((search >= lowest_read && search <= highest_read) ||
  966. (search < lowest_read && lowest_read - search <= 32768) ||
  967. (search > highest_read && search - highest_read <= 32768)) {
  968. readahead_tree_block(root, search, blocksize);
  969. nread += blocksize;
  970. }
  971. nscan++;
  972. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  973. break;
  974. if(nread > (1024 * 1024) || nscan > 128)
  975. break;
  976. if (search < lowest_read)
  977. lowest_read = search;
  978. if (search > highest_read)
  979. highest_read = search;
  980. }
  981. }
  982. /*
  983. * look for key in the tree. path is filled in with nodes along the way
  984. * if key is found, we return zero and you can find the item in the leaf
  985. * level of the path (level 0)
  986. *
  987. * If the key isn't found, the path points to the slot where it should
  988. * be inserted, and 1 is returned. If there are other errors during the
  989. * search a negative error number is returned.
  990. *
  991. * if ins_len > 0, nodes and leaves will be split as we walk down the
  992. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  993. * possible)
  994. */
  995. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  996. *root, struct btrfs_key *key, struct btrfs_path *p, int
  997. ins_len, int cow)
  998. {
  999. struct extent_buffer *b;
  1000. u64 bytenr;
  1001. u64 ptr_gen;
  1002. int slot;
  1003. int ret;
  1004. int level;
  1005. int should_reada = p->reada;
  1006. u8 lowest_level = 0;
  1007. lowest_level = p->lowest_level;
  1008. WARN_ON(lowest_level && ins_len);
  1009. WARN_ON(p->nodes[0] != NULL);
  1010. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  1011. again:
  1012. b = root->node;
  1013. extent_buffer_get(b);
  1014. while (b) {
  1015. level = btrfs_header_level(b);
  1016. if (cow) {
  1017. int wret;
  1018. wret = btrfs_cow_block(trans, root, b,
  1019. p->nodes[level + 1],
  1020. p->slots[level + 1],
  1021. &b);
  1022. if (wret) {
  1023. free_extent_buffer(b);
  1024. return wret;
  1025. }
  1026. }
  1027. BUG_ON(!cow && ins_len);
  1028. if (level != btrfs_header_level(b))
  1029. WARN_ON(1);
  1030. level = btrfs_header_level(b);
  1031. p->nodes[level] = b;
  1032. ret = check_block(root, p, level);
  1033. if (ret)
  1034. return -1;
  1035. ret = bin_search(b, key, level, &slot);
  1036. if (level != 0) {
  1037. if (ret && slot > 0)
  1038. slot -= 1;
  1039. p->slots[level] = slot;
  1040. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1041. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1042. int sret = split_node(trans, root, p, level);
  1043. BUG_ON(sret > 0);
  1044. if (sret)
  1045. return sret;
  1046. b = p->nodes[level];
  1047. slot = p->slots[level];
  1048. } else if (ins_len < 0) {
  1049. int sret = balance_level(trans, root, p,
  1050. level);
  1051. if (sret)
  1052. return sret;
  1053. b = p->nodes[level];
  1054. if (!b) {
  1055. btrfs_release_path(NULL, p);
  1056. goto again;
  1057. }
  1058. slot = p->slots[level];
  1059. BUG_ON(btrfs_header_nritems(b) == 1);
  1060. }
  1061. /* this is only true while dropping a snapshot */
  1062. if (level == lowest_level)
  1063. break;
  1064. bytenr = btrfs_node_blockptr(b, slot);
  1065. ptr_gen = btrfs_node_ptr_generation(b, slot);
  1066. if (should_reada)
  1067. reada_for_search(root, p, level, slot,
  1068. key->objectid);
  1069. b = read_tree_block(root, bytenr,
  1070. btrfs_level_size(root, level - 1));
  1071. if (ptr_gen != btrfs_header_generation(b)) {
  1072. printk("block %llu bad gen wanted %llu "
  1073. "found %llu\n",
  1074. (unsigned long long)b->start,
  1075. (unsigned long long)ptr_gen,
  1076. (unsigned long long)btrfs_header_generation(b));
  1077. }
  1078. } else {
  1079. p->slots[level] = slot;
  1080. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1081. sizeof(struct btrfs_item) + ins_len) {
  1082. int sret = split_leaf(trans, root, key,
  1083. p, ins_len, ret == 0);
  1084. BUG_ON(sret > 0);
  1085. if (sret)
  1086. return sret;
  1087. }
  1088. return ret;
  1089. }
  1090. }
  1091. return 1;
  1092. }
  1093. /*
  1094. * adjust the pointers going up the tree, starting at level
  1095. * making sure the right key of each node is points to 'key'.
  1096. * This is used after shifting pointers to the left, so it stops
  1097. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1098. * higher levels
  1099. *
  1100. * If this fails to write a tree block, it returns -1, but continues
  1101. * fixing up the blocks in ram so the tree is consistent.
  1102. */
  1103. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1104. struct btrfs_root *root, struct btrfs_path *path,
  1105. struct btrfs_disk_key *key, int level)
  1106. {
  1107. int i;
  1108. int ret = 0;
  1109. struct extent_buffer *t;
  1110. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1111. int tslot = path->slots[i];
  1112. if (!path->nodes[i])
  1113. break;
  1114. t = path->nodes[i];
  1115. btrfs_set_node_key(t, key, tslot);
  1116. btrfs_mark_buffer_dirty(path->nodes[i]);
  1117. if (tslot != 0)
  1118. break;
  1119. }
  1120. return ret;
  1121. }
  1122. /*
  1123. * try to push data from one node into the next node left in the
  1124. * tree.
  1125. *
  1126. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1127. * error, and > 0 if there was no room in the left hand block.
  1128. */
  1129. static int push_node_left(struct btrfs_trans_handle *trans,
  1130. struct btrfs_root *root, struct extent_buffer *dst,
  1131. struct extent_buffer *src)
  1132. {
  1133. int push_items = 0;
  1134. int src_nritems;
  1135. int dst_nritems;
  1136. int ret = 0;
  1137. src_nritems = btrfs_header_nritems(src);
  1138. dst_nritems = btrfs_header_nritems(dst);
  1139. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1140. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1141. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1142. if (push_items <= 0) {
  1143. return 1;
  1144. }
  1145. if (src_nritems < push_items)
  1146. push_items = src_nritems;
  1147. copy_extent_buffer(dst, src,
  1148. btrfs_node_key_ptr_offset(dst_nritems),
  1149. btrfs_node_key_ptr_offset(0),
  1150. push_items * sizeof(struct btrfs_key_ptr));
  1151. if (push_items < src_nritems) {
  1152. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1153. btrfs_node_key_ptr_offset(push_items),
  1154. (src_nritems - push_items) *
  1155. sizeof(struct btrfs_key_ptr));
  1156. }
  1157. btrfs_set_header_nritems(src, src_nritems - push_items);
  1158. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1159. btrfs_mark_buffer_dirty(src);
  1160. btrfs_mark_buffer_dirty(dst);
  1161. return ret;
  1162. }
  1163. /*
  1164. * try to push data from one node into the next node right in the
  1165. * tree.
  1166. *
  1167. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1168. * error, and > 0 if there was no room in the right hand block.
  1169. *
  1170. * this will only push up to 1/2 the contents of the left node over
  1171. */
  1172. static int balance_node_right(struct btrfs_trans_handle *trans,
  1173. struct btrfs_root *root,
  1174. struct extent_buffer *dst,
  1175. struct extent_buffer *src)
  1176. {
  1177. int push_items = 0;
  1178. int max_push;
  1179. int src_nritems;
  1180. int dst_nritems;
  1181. int ret = 0;
  1182. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1183. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1184. src_nritems = btrfs_header_nritems(src);
  1185. dst_nritems = btrfs_header_nritems(dst);
  1186. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1187. if (push_items <= 0)
  1188. return 1;
  1189. max_push = src_nritems / 2 + 1;
  1190. /* don't try to empty the node */
  1191. if (max_push >= src_nritems)
  1192. return 1;
  1193. if (max_push < push_items)
  1194. push_items = max_push;
  1195. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1196. btrfs_node_key_ptr_offset(0),
  1197. (dst_nritems) *
  1198. sizeof(struct btrfs_key_ptr));
  1199. copy_extent_buffer(dst, src,
  1200. btrfs_node_key_ptr_offset(0),
  1201. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1202. push_items * sizeof(struct btrfs_key_ptr));
  1203. btrfs_set_header_nritems(src, src_nritems - push_items);
  1204. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1205. btrfs_mark_buffer_dirty(src);
  1206. btrfs_mark_buffer_dirty(dst);
  1207. return ret;
  1208. }
  1209. /*
  1210. * helper function to insert a new root level in the tree.
  1211. * A new node is allocated, and a single item is inserted to
  1212. * point to the existing root
  1213. *
  1214. * returns zero on success or < 0 on failure.
  1215. */
  1216. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1217. struct btrfs_root *root,
  1218. struct btrfs_path *path, int level)
  1219. {
  1220. u64 root_gen;
  1221. u64 lower_gen;
  1222. struct extent_buffer *lower;
  1223. struct extent_buffer *c;
  1224. struct btrfs_disk_key lower_key;
  1225. BUG_ON(path->nodes[level]);
  1226. BUG_ON(path->nodes[level-1] != root->node);
  1227. if (root->ref_cows)
  1228. root_gen = trans->transid;
  1229. else
  1230. root_gen = 0;
  1231. lower = path->nodes[level-1];
  1232. if (level == 1)
  1233. btrfs_item_key(lower, &lower_key, 0);
  1234. else
  1235. btrfs_node_key(lower, &lower_key, 0);
  1236. c = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1237. root->root_key.objectid,
  1238. root_gen, lower_key.objectid, level,
  1239. root->node->start, 0);
  1240. if (IS_ERR(c))
  1241. return PTR_ERR(c);
  1242. memset_extent_buffer(c, 0, 0, root->nodesize);
  1243. btrfs_set_header_nritems(c, 1);
  1244. btrfs_set_header_level(c, level);
  1245. btrfs_set_header_bytenr(c, c->start);
  1246. btrfs_set_header_generation(c, trans->transid);
  1247. btrfs_set_header_owner(c, root->root_key.objectid);
  1248. write_extent_buffer(c, root->fs_info->fsid,
  1249. (unsigned long)btrfs_header_fsid(c),
  1250. BTRFS_FSID_SIZE);
  1251. btrfs_set_node_key(c, &lower_key, 0);
  1252. btrfs_set_node_blockptr(c, 0, lower->start);
  1253. lower_gen = btrfs_header_generation(lower);
  1254. WARN_ON(lower_gen == 0);
  1255. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1256. btrfs_mark_buffer_dirty(c);
  1257. /* the super has an extra ref to root->node */
  1258. free_extent_buffer(root->node);
  1259. root->node = c;
  1260. add_root_to_dirty_list(root);
  1261. extent_buffer_get(c);
  1262. path->nodes[level] = c;
  1263. path->slots[level] = 0;
  1264. if (root->ref_cows && lower_gen != trans->transid) {
  1265. struct btrfs_path *back_path = btrfs_alloc_path();
  1266. int ret;
  1267. ret = btrfs_insert_extent_backref(trans,
  1268. root->fs_info->extent_root,
  1269. path, lower->start,
  1270. root->root_key.objectid,
  1271. trans->transid, 0, 0);
  1272. BUG_ON(ret);
  1273. btrfs_free_path(back_path);
  1274. }
  1275. return 0;
  1276. }
  1277. /*
  1278. * worker function to insert a single pointer in a node.
  1279. * the node should have enough room for the pointer already
  1280. *
  1281. * slot and level indicate where you want the key to go, and
  1282. * blocknr is the block the key points to.
  1283. *
  1284. * returns zero on success and < 0 on any error
  1285. */
  1286. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1287. *root, struct btrfs_path *path, struct btrfs_disk_key
  1288. *key, u64 bytenr, int slot, int level)
  1289. {
  1290. struct extent_buffer *lower;
  1291. int nritems;
  1292. BUG_ON(!path->nodes[level]);
  1293. lower = path->nodes[level];
  1294. nritems = btrfs_header_nritems(lower);
  1295. if (slot > nritems)
  1296. BUG();
  1297. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1298. BUG();
  1299. if (slot != nritems) {
  1300. memmove_extent_buffer(lower,
  1301. btrfs_node_key_ptr_offset(slot + 1),
  1302. btrfs_node_key_ptr_offset(slot),
  1303. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1304. }
  1305. btrfs_set_node_key(lower, key, slot);
  1306. btrfs_set_node_blockptr(lower, slot, bytenr);
  1307. WARN_ON(trans->transid == 0);
  1308. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1309. btrfs_set_header_nritems(lower, nritems + 1);
  1310. btrfs_mark_buffer_dirty(lower);
  1311. return 0;
  1312. }
  1313. /*
  1314. * split the node at the specified level in path in two.
  1315. * The path is corrected to point to the appropriate node after the split
  1316. *
  1317. * Before splitting this tries to make some room in the node by pushing
  1318. * left and right, if either one works, it returns right away.
  1319. *
  1320. * returns 0 on success and < 0 on failure
  1321. */
  1322. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1323. *root, struct btrfs_path *path, int level)
  1324. {
  1325. u64 root_gen;
  1326. struct extent_buffer *c;
  1327. struct extent_buffer *split;
  1328. struct btrfs_disk_key disk_key;
  1329. int mid;
  1330. int ret;
  1331. int wret;
  1332. u32 c_nritems;
  1333. c = path->nodes[level];
  1334. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1335. if (c == root->node) {
  1336. /* trying to split the root, lets make a new one */
  1337. ret = insert_new_root(trans, root, path, level + 1);
  1338. if (ret)
  1339. return ret;
  1340. } else {
  1341. ret = push_nodes_for_insert(trans, root, path, level);
  1342. c = path->nodes[level];
  1343. if (!ret && btrfs_header_nritems(c) <
  1344. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1345. return 0;
  1346. if (ret < 0)
  1347. return ret;
  1348. }
  1349. c_nritems = btrfs_header_nritems(c);
  1350. if (root->ref_cows)
  1351. root_gen = trans->transid;
  1352. else
  1353. root_gen = 0;
  1354. btrfs_node_key(c, &disk_key, 0);
  1355. split = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1356. root->root_key.objectid,
  1357. root_gen,
  1358. btrfs_disk_key_objectid(&disk_key),
  1359. level, c->start, 0);
  1360. if (IS_ERR(split))
  1361. return PTR_ERR(split);
  1362. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1363. btrfs_set_header_level(split, btrfs_header_level(c));
  1364. btrfs_set_header_bytenr(split, split->start);
  1365. btrfs_set_header_generation(split, trans->transid);
  1366. btrfs_set_header_owner(split, root->root_key.objectid);
  1367. write_extent_buffer(split, root->fs_info->fsid,
  1368. (unsigned long)btrfs_header_fsid(split),
  1369. BTRFS_FSID_SIZE);
  1370. mid = (c_nritems + 1) / 2;
  1371. copy_extent_buffer(split, c,
  1372. btrfs_node_key_ptr_offset(0),
  1373. btrfs_node_key_ptr_offset(mid),
  1374. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1375. btrfs_set_header_nritems(split, c_nritems - mid);
  1376. btrfs_set_header_nritems(c, mid);
  1377. ret = 0;
  1378. btrfs_mark_buffer_dirty(c);
  1379. btrfs_mark_buffer_dirty(split);
  1380. btrfs_node_key(split, &disk_key, 0);
  1381. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1382. path->slots[level + 1] + 1,
  1383. level + 1);
  1384. if (wret)
  1385. ret = wret;
  1386. if (path->slots[level] >= mid) {
  1387. path->slots[level] -= mid;
  1388. free_extent_buffer(c);
  1389. path->nodes[level] = split;
  1390. path->slots[level + 1] += 1;
  1391. } else {
  1392. free_extent_buffer(split);
  1393. }
  1394. return ret;
  1395. }
  1396. /*
  1397. * how many bytes are required to store the items in a leaf. start
  1398. * and nr indicate which items in the leaf to check. This totals up the
  1399. * space used both by the item structs and the item data
  1400. */
  1401. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1402. {
  1403. int data_len;
  1404. int nritems = btrfs_header_nritems(l);
  1405. int end = min(nritems, start + nr) - 1;
  1406. if (!nr)
  1407. return 0;
  1408. data_len = btrfs_item_end_nr(l, start);
  1409. data_len = data_len - btrfs_item_offset_nr(l, end);
  1410. data_len += sizeof(struct btrfs_item) * nr;
  1411. WARN_ON(data_len < 0);
  1412. return data_len;
  1413. }
  1414. /*
  1415. * The space between the end of the leaf items and
  1416. * the start of the leaf data. IOW, how much room
  1417. * the leaf has left for both items and data
  1418. */
  1419. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1420. {
  1421. int nritems = btrfs_header_nritems(leaf);
  1422. int ret;
  1423. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1424. if (ret < 0) {
  1425. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1426. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1427. leaf_space_used(leaf, 0, nritems), nritems);
  1428. }
  1429. return ret;
  1430. }
  1431. /*
  1432. * push some data in the path leaf to the right, trying to free up at
  1433. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1434. *
  1435. * returns 1 if the push failed because the other node didn't have enough
  1436. * room, 0 if everything worked out and < 0 if there were major errors.
  1437. */
  1438. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1439. *root, struct btrfs_path *path, int data_size,
  1440. int empty)
  1441. {
  1442. struct extent_buffer *left = path->nodes[0];
  1443. struct extent_buffer *right;
  1444. struct extent_buffer *upper;
  1445. struct btrfs_disk_key disk_key;
  1446. int slot;
  1447. u32 i;
  1448. int free_space;
  1449. int push_space = 0;
  1450. int push_items = 0;
  1451. struct btrfs_item *item;
  1452. u32 left_nritems;
  1453. u32 nr;
  1454. u32 right_nritems;
  1455. u32 data_end;
  1456. u32 this_item_size;
  1457. int ret;
  1458. slot = path->slots[1];
  1459. if (!path->nodes[1]) {
  1460. return 1;
  1461. }
  1462. upper = path->nodes[1];
  1463. if (slot >= btrfs_header_nritems(upper) - 1)
  1464. return 1;
  1465. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
  1466. root->leafsize);
  1467. free_space = btrfs_leaf_free_space(root, right);
  1468. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1469. free_extent_buffer(right);
  1470. return 1;
  1471. }
  1472. /* cow and double check */
  1473. ret = btrfs_cow_block(trans, root, right, upper,
  1474. slot + 1, &right);
  1475. if (ret) {
  1476. free_extent_buffer(right);
  1477. return 1;
  1478. }
  1479. free_space = btrfs_leaf_free_space(root, right);
  1480. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1481. free_extent_buffer(right);
  1482. return 1;
  1483. }
  1484. left_nritems = btrfs_header_nritems(left);
  1485. if (left_nritems == 0) {
  1486. free_extent_buffer(right);
  1487. return 1;
  1488. }
  1489. if (empty)
  1490. nr = 0;
  1491. else
  1492. nr = 1;
  1493. i = left_nritems - 1;
  1494. while (i >= nr) {
  1495. item = btrfs_item_nr(left, i);
  1496. if (path->slots[0] == i)
  1497. push_space += data_size + sizeof(*item);
  1498. if (!left->map_token) {
  1499. map_extent_buffer(left, (unsigned long)item,
  1500. sizeof(struct btrfs_item),
  1501. &left->map_token, &left->kaddr,
  1502. &left->map_start, &left->map_len,
  1503. KM_USER1);
  1504. }
  1505. this_item_size = btrfs_item_size(left, item);
  1506. if (this_item_size + sizeof(*item) + push_space > free_space)
  1507. break;
  1508. push_items++;
  1509. push_space += this_item_size + sizeof(*item);
  1510. if (i == 0)
  1511. break;
  1512. i--;
  1513. }
  1514. if (left->map_token) {
  1515. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1516. left->map_token = NULL;
  1517. }
  1518. if (push_items == 0) {
  1519. free_extent_buffer(right);
  1520. return 1;
  1521. }
  1522. if (!empty && push_items == left_nritems)
  1523. WARN_ON(1);
  1524. /* push left to right */
  1525. right_nritems = btrfs_header_nritems(right);
  1526. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1527. push_space -= leaf_data_end(root, left);
  1528. /* make room in the right data area */
  1529. data_end = leaf_data_end(root, right);
  1530. memmove_extent_buffer(right,
  1531. btrfs_leaf_data(right) + data_end - push_space,
  1532. btrfs_leaf_data(right) + data_end,
  1533. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1534. /* copy from the left data area */
  1535. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1536. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1537. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1538. push_space);
  1539. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1540. btrfs_item_nr_offset(0),
  1541. right_nritems * sizeof(struct btrfs_item));
  1542. /* copy the items from left to right */
  1543. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1544. btrfs_item_nr_offset(left_nritems - push_items),
  1545. push_items * sizeof(struct btrfs_item));
  1546. /* update the item pointers */
  1547. right_nritems += push_items;
  1548. btrfs_set_header_nritems(right, right_nritems);
  1549. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1550. for (i = 0; i < right_nritems; i++) {
  1551. item = btrfs_item_nr(right, i);
  1552. if (!right->map_token) {
  1553. map_extent_buffer(right, (unsigned long)item,
  1554. sizeof(struct btrfs_item),
  1555. &right->map_token, &right->kaddr,
  1556. &right->map_start, &right->map_len,
  1557. KM_USER1);
  1558. }
  1559. push_space -= btrfs_item_size(right, item);
  1560. btrfs_set_item_offset(right, item, push_space);
  1561. }
  1562. if (right->map_token) {
  1563. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1564. right->map_token = NULL;
  1565. }
  1566. left_nritems -= push_items;
  1567. btrfs_set_header_nritems(left, left_nritems);
  1568. if (left_nritems)
  1569. btrfs_mark_buffer_dirty(left);
  1570. btrfs_mark_buffer_dirty(right);
  1571. btrfs_item_key(right, &disk_key, 0);
  1572. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1573. btrfs_mark_buffer_dirty(upper);
  1574. /* then fixup the leaf pointer in the path */
  1575. if (path->slots[0] >= left_nritems) {
  1576. path->slots[0] -= left_nritems;
  1577. free_extent_buffer(path->nodes[0]);
  1578. path->nodes[0] = right;
  1579. path->slots[1] += 1;
  1580. } else {
  1581. free_extent_buffer(right);
  1582. }
  1583. return 0;
  1584. }
  1585. /*
  1586. * push some data in the path leaf to the left, trying to free up at
  1587. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1588. */
  1589. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1590. *root, struct btrfs_path *path, int data_size,
  1591. int empty)
  1592. {
  1593. struct btrfs_disk_key disk_key;
  1594. struct extent_buffer *right = path->nodes[0];
  1595. struct extent_buffer *left;
  1596. int slot;
  1597. int i;
  1598. int free_space;
  1599. int push_space = 0;
  1600. int push_items = 0;
  1601. struct btrfs_item *item;
  1602. u32 old_left_nritems;
  1603. u32 right_nritems;
  1604. u32 nr;
  1605. int ret = 0;
  1606. int wret;
  1607. u32 this_item_size;
  1608. u32 old_left_item_size;
  1609. slot = path->slots[1];
  1610. if (slot == 0)
  1611. return 1;
  1612. if (!path->nodes[1])
  1613. return 1;
  1614. right_nritems = btrfs_header_nritems(right);
  1615. if (right_nritems == 0) {
  1616. return 1;
  1617. }
  1618. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1619. slot - 1), root->leafsize);
  1620. free_space = btrfs_leaf_free_space(root, left);
  1621. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1622. free_extent_buffer(left);
  1623. return 1;
  1624. }
  1625. /* cow and double check */
  1626. ret = btrfs_cow_block(trans, root, left,
  1627. path->nodes[1], slot - 1, &left);
  1628. if (ret) {
  1629. /* we hit -ENOSPC, but it isn't fatal here */
  1630. free_extent_buffer(left);
  1631. return 1;
  1632. }
  1633. free_space = btrfs_leaf_free_space(root, left);
  1634. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1635. free_extent_buffer(left);
  1636. return 1;
  1637. }
  1638. if (empty)
  1639. nr = right_nritems;
  1640. else
  1641. nr = right_nritems - 1;
  1642. for (i = 0; i < nr; i++) {
  1643. item = btrfs_item_nr(right, i);
  1644. if (!right->map_token) {
  1645. map_extent_buffer(right, (unsigned long)item,
  1646. sizeof(struct btrfs_item),
  1647. &right->map_token, &right->kaddr,
  1648. &right->map_start, &right->map_len,
  1649. KM_USER1);
  1650. }
  1651. if (path->slots[0] == i)
  1652. push_space += data_size + sizeof(*item);
  1653. this_item_size = btrfs_item_size(right, item);
  1654. if (this_item_size + sizeof(*item) + push_space > free_space)
  1655. break;
  1656. push_items++;
  1657. push_space += this_item_size + sizeof(*item);
  1658. }
  1659. if (right->map_token) {
  1660. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1661. right->map_token = NULL;
  1662. }
  1663. if (push_items == 0) {
  1664. free_extent_buffer(left);
  1665. return 1;
  1666. }
  1667. if (!empty && push_items == btrfs_header_nritems(right))
  1668. WARN_ON(1);
  1669. /* push data from right to left */
  1670. copy_extent_buffer(left, right,
  1671. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1672. btrfs_item_nr_offset(0),
  1673. push_items * sizeof(struct btrfs_item));
  1674. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1675. btrfs_item_offset_nr(right, push_items -1);
  1676. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1677. leaf_data_end(root, left) - push_space,
  1678. btrfs_leaf_data(right) +
  1679. btrfs_item_offset_nr(right, push_items - 1),
  1680. push_space);
  1681. old_left_nritems = btrfs_header_nritems(left);
  1682. BUG_ON(old_left_nritems < 0);
  1683. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1684. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1685. u32 ioff;
  1686. item = btrfs_item_nr(left, i);
  1687. if (!left->map_token) {
  1688. map_extent_buffer(left, (unsigned long)item,
  1689. sizeof(struct btrfs_item),
  1690. &left->map_token, &left->kaddr,
  1691. &left->map_start, &left->map_len,
  1692. KM_USER1);
  1693. }
  1694. ioff = btrfs_item_offset(left, item);
  1695. btrfs_set_item_offset(left, item,
  1696. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1697. }
  1698. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1699. if (left->map_token) {
  1700. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1701. left->map_token = NULL;
  1702. }
  1703. /* fixup right node */
  1704. if (push_items > right_nritems) {
  1705. printk("push items %d nr %u\n", push_items, right_nritems);
  1706. WARN_ON(1);
  1707. }
  1708. if (push_items < right_nritems) {
  1709. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1710. leaf_data_end(root, right);
  1711. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1712. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1713. btrfs_leaf_data(right) +
  1714. leaf_data_end(root, right), push_space);
  1715. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1716. btrfs_item_nr_offset(push_items),
  1717. (btrfs_header_nritems(right) - push_items) *
  1718. sizeof(struct btrfs_item));
  1719. }
  1720. right_nritems -= push_items;
  1721. btrfs_set_header_nritems(right, right_nritems);
  1722. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1723. for (i = 0; i < right_nritems; i++) {
  1724. item = btrfs_item_nr(right, i);
  1725. if (!right->map_token) {
  1726. map_extent_buffer(right, (unsigned long)item,
  1727. sizeof(struct btrfs_item),
  1728. &right->map_token, &right->kaddr,
  1729. &right->map_start, &right->map_len,
  1730. KM_USER1);
  1731. }
  1732. push_space = push_space - btrfs_item_size(right, item);
  1733. btrfs_set_item_offset(right, item, push_space);
  1734. }
  1735. if (right->map_token) {
  1736. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1737. right->map_token = NULL;
  1738. }
  1739. btrfs_mark_buffer_dirty(left);
  1740. if (right_nritems)
  1741. btrfs_mark_buffer_dirty(right);
  1742. btrfs_item_key(right, &disk_key, 0);
  1743. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1744. if (wret)
  1745. ret = wret;
  1746. /* then fixup the leaf pointer in the path */
  1747. if (path->slots[0] < push_items) {
  1748. path->slots[0] += old_left_nritems;
  1749. free_extent_buffer(path->nodes[0]);
  1750. path->nodes[0] = left;
  1751. path->slots[1] -= 1;
  1752. } else {
  1753. free_extent_buffer(left);
  1754. path->slots[0] -= push_items;
  1755. }
  1756. BUG_ON(path->slots[0] < 0);
  1757. return ret;
  1758. }
  1759. /*
  1760. * split the path's leaf in two, making sure there is at least data_size
  1761. * available for the resulting leaf level of the path.
  1762. *
  1763. * returns 0 if all went well and < 0 on failure.
  1764. */
  1765. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1766. *root, struct btrfs_key *ins_key,
  1767. struct btrfs_path *path, int data_size, int extend)
  1768. {
  1769. u64 root_gen;
  1770. struct extent_buffer *l;
  1771. u32 nritems;
  1772. int mid;
  1773. int slot;
  1774. struct extent_buffer *right;
  1775. int space_needed = data_size + sizeof(struct btrfs_item);
  1776. int data_copy_size;
  1777. int rt_data_off;
  1778. int i;
  1779. int ret = 0;
  1780. int wret;
  1781. int double_split;
  1782. int num_doubles = 0;
  1783. struct btrfs_disk_key disk_key;
  1784. if (extend)
  1785. space_needed = data_size;
  1786. if (root->ref_cows)
  1787. root_gen = trans->transid;
  1788. else
  1789. root_gen = 0;
  1790. /* first try to make some room by pushing left and right */
  1791. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  1792. wret = push_leaf_right(trans, root, path, data_size, 0);
  1793. if (wret < 0) {
  1794. return wret;
  1795. }
  1796. if (wret) {
  1797. wret = push_leaf_left(trans, root, path, data_size, 0);
  1798. if (wret < 0)
  1799. return wret;
  1800. }
  1801. l = path->nodes[0];
  1802. /* did the pushes work? */
  1803. if (btrfs_leaf_free_space(root, l) >= space_needed)
  1804. return 0;
  1805. }
  1806. if (!path->nodes[1]) {
  1807. ret = insert_new_root(trans, root, path, 1);
  1808. if (ret)
  1809. return ret;
  1810. }
  1811. again:
  1812. double_split = 0;
  1813. l = path->nodes[0];
  1814. slot = path->slots[0];
  1815. nritems = btrfs_header_nritems(l);
  1816. mid = (nritems + 1)/ 2;
  1817. btrfs_item_key(l, &disk_key, 0);
  1818. right = __btrfs_alloc_free_block(trans, root, root->leafsize,
  1819. root->root_key.objectid,
  1820. root_gen, disk_key.objectid, 0,
  1821. l->start, 0);
  1822. if (IS_ERR(right))
  1823. return PTR_ERR(right);
  1824. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1825. btrfs_set_header_bytenr(right, right->start);
  1826. btrfs_set_header_generation(right, trans->transid);
  1827. btrfs_set_header_owner(right, root->root_key.objectid);
  1828. btrfs_set_header_level(right, 0);
  1829. write_extent_buffer(right, root->fs_info->fsid,
  1830. (unsigned long)btrfs_header_fsid(right),
  1831. BTRFS_FSID_SIZE);
  1832. if (mid <= slot) {
  1833. if (nritems == 1 ||
  1834. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1835. BTRFS_LEAF_DATA_SIZE(root)) {
  1836. if (slot >= nritems) {
  1837. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1838. btrfs_set_header_nritems(right, 0);
  1839. wret = insert_ptr(trans, root, path,
  1840. &disk_key, right->start,
  1841. path->slots[1] + 1, 1);
  1842. if (wret)
  1843. ret = wret;
  1844. free_extent_buffer(path->nodes[0]);
  1845. path->nodes[0] = right;
  1846. path->slots[0] = 0;
  1847. path->slots[1] += 1;
  1848. return ret;
  1849. }
  1850. mid = slot;
  1851. if (mid != nritems &&
  1852. leaf_space_used(l, mid, nritems - mid) +
  1853. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1854. double_split = 1;
  1855. }
  1856. }
  1857. } else {
  1858. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1859. BTRFS_LEAF_DATA_SIZE(root)) {
  1860. if (!extend && slot == 0) {
  1861. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1862. btrfs_set_header_nritems(right, 0);
  1863. wret = insert_ptr(trans, root, path,
  1864. &disk_key,
  1865. right->start,
  1866. path->slots[1], 1);
  1867. if (wret)
  1868. ret = wret;
  1869. free_extent_buffer(path->nodes[0]);
  1870. path->nodes[0] = right;
  1871. path->slots[0] = 0;
  1872. if (path->slots[1] == 0) {
  1873. wret = fixup_low_keys(trans, root,
  1874. path, &disk_key, 1);
  1875. if (wret)
  1876. ret = wret;
  1877. }
  1878. return ret;
  1879. } else if (extend && slot == 0) {
  1880. mid = 1;
  1881. } else {
  1882. mid = slot;
  1883. if (mid != nritems &&
  1884. leaf_space_used(l, mid, nritems - mid) +
  1885. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1886. double_split = 1;
  1887. }
  1888. }
  1889. }
  1890. }
  1891. nritems = nritems - mid;
  1892. btrfs_set_header_nritems(right, nritems);
  1893. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1894. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1895. btrfs_item_nr_offset(mid),
  1896. nritems * sizeof(struct btrfs_item));
  1897. copy_extent_buffer(right, l,
  1898. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1899. data_copy_size, btrfs_leaf_data(l) +
  1900. leaf_data_end(root, l), data_copy_size);
  1901. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1902. btrfs_item_end_nr(l, mid);
  1903. for (i = 0; i < nritems; i++) {
  1904. struct btrfs_item *item = btrfs_item_nr(right, i);
  1905. u32 ioff;
  1906. if (!right->map_token) {
  1907. map_extent_buffer(right, (unsigned long)item,
  1908. sizeof(struct btrfs_item),
  1909. &right->map_token, &right->kaddr,
  1910. &right->map_start, &right->map_len,
  1911. KM_USER1);
  1912. }
  1913. ioff = btrfs_item_offset(right, item);
  1914. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1915. }
  1916. if (right->map_token) {
  1917. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1918. right->map_token = NULL;
  1919. }
  1920. btrfs_set_header_nritems(l, mid);
  1921. ret = 0;
  1922. btrfs_item_key(right, &disk_key, 0);
  1923. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  1924. path->slots[1] + 1, 1);
  1925. if (wret)
  1926. ret = wret;
  1927. btrfs_mark_buffer_dirty(right);
  1928. btrfs_mark_buffer_dirty(l);
  1929. BUG_ON(path->slots[0] != slot);
  1930. if (mid <= slot) {
  1931. free_extent_buffer(path->nodes[0]);
  1932. path->nodes[0] = right;
  1933. path->slots[0] -= mid;
  1934. path->slots[1] += 1;
  1935. } else
  1936. free_extent_buffer(right);
  1937. BUG_ON(path->slots[0] < 0);
  1938. if (double_split) {
  1939. BUG_ON(num_doubles != 0);
  1940. num_doubles++;
  1941. goto again;
  1942. }
  1943. return ret;
  1944. }
  1945. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1946. struct btrfs_root *root,
  1947. struct btrfs_path *path,
  1948. u32 new_size, int from_end)
  1949. {
  1950. int ret = 0;
  1951. int slot;
  1952. int slot_orig;
  1953. struct extent_buffer *leaf;
  1954. struct btrfs_item *item;
  1955. u32 nritems;
  1956. unsigned int data_end;
  1957. unsigned int old_data_start;
  1958. unsigned int old_size;
  1959. unsigned int size_diff;
  1960. int i;
  1961. slot_orig = path->slots[0];
  1962. leaf = path->nodes[0];
  1963. slot = path->slots[0];
  1964. old_size = btrfs_item_size_nr(leaf, slot);
  1965. if (old_size == new_size)
  1966. return 0;
  1967. nritems = btrfs_header_nritems(leaf);
  1968. data_end = leaf_data_end(root, leaf);
  1969. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1970. size_diff = old_size - new_size;
  1971. BUG_ON(slot < 0);
  1972. BUG_ON(slot >= nritems);
  1973. /*
  1974. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1975. */
  1976. /* first correct the data pointers */
  1977. for (i = slot; i < nritems; i++) {
  1978. u32 ioff;
  1979. item = btrfs_item_nr(leaf, i);
  1980. if (!leaf->map_token) {
  1981. map_extent_buffer(leaf, (unsigned long)item,
  1982. sizeof(struct btrfs_item),
  1983. &leaf->map_token, &leaf->kaddr,
  1984. &leaf->map_start, &leaf->map_len,
  1985. KM_USER1);
  1986. }
  1987. ioff = btrfs_item_offset(leaf, item);
  1988. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1989. }
  1990. if (leaf->map_token) {
  1991. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1992. leaf->map_token = NULL;
  1993. }
  1994. /* shift the data */
  1995. if (from_end) {
  1996. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1997. data_end + size_diff, btrfs_leaf_data(leaf) +
  1998. data_end, old_data_start + new_size - data_end);
  1999. } else {
  2000. struct btrfs_disk_key disk_key;
  2001. u64 offset;
  2002. btrfs_item_key(leaf, &disk_key, slot);
  2003. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2004. unsigned long ptr;
  2005. struct btrfs_file_extent_item *fi;
  2006. fi = btrfs_item_ptr(leaf, slot,
  2007. struct btrfs_file_extent_item);
  2008. fi = (struct btrfs_file_extent_item *)(
  2009. (unsigned long)fi - size_diff);
  2010. if (btrfs_file_extent_type(leaf, fi) ==
  2011. BTRFS_FILE_EXTENT_INLINE) {
  2012. ptr = btrfs_item_ptr_offset(leaf, slot);
  2013. memmove_extent_buffer(leaf, ptr,
  2014. (unsigned long)fi,
  2015. offsetof(struct btrfs_file_extent_item,
  2016. disk_bytenr));
  2017. }
  2018. }
  2019. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2020. data_end + size_diff, btrfs_leaf_data(leaf) +
  2021. data_end, old_data_start - data_end);
  2022. offset = btrfs_disk_key_offset(&disk_key);
  2023. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2024. btrfs_set_item_key(leaf, &disk_key, slot);
  2025. if (slot == 0)
  2026. fixup_low_keys(trans, root, path, &disk_key, 1);
  2027. }
  2028. item = btrfs_item_nr(leaf, slot);
  2029. btrfs_set_item_size(leaf, item, new_size);
  2030. btrfs_mark_buffer_dirty(leaf);
  2031. ret = 0;
  2032. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2033. btrfs_print_leaf(root, leaf);
  2034. BUG();
  2035. }
  2036. return ret;
  2037. }
  2038. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2039. struct btrfs_root *root, struct btrfs_path *path,
  2040. u32 data_size)
  2041. {
  2042. int ret = 0;
  2043. int slot;
  2044. int slot_orig;
  2045. struct extent_buffer *leaf;
  2046. struct btrfs_item *item;
  2047. u32 nritems;
  2048. unsigned int data_end;
  2049. unsigned int old_data;
  2050. unsigned int old_size;
  2051. int i;
  2052. slot_orig = path->slots[0];
  2053. leaf = path->nodes[0];
  2054. nritems = btrfs_header_nritems(leaf);
  2055. data_end = leaf_data_end(root, leaf);
  2056. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2057. btrfs_print_leaf(root, leaf);
  2058. BUG();
  2059. }
  2060. slot = path->slots[0];
  2061. old_data = btrfs_item_end_nr(leaf, slot);
  2062. BUG_ON(slot < 0);
  2063. if (slot >= nritems) {
  2064. btrfs_print_leaf(root, leaf);
  2065. printk("slot %d too large, nritems %d\n", slot, nritems);
  2066. BUG_ON(1);
  2067. }
  2068. /*
  2069. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2070. */
  2071. /* first correct the data pointers */
  2072. for (i = slot; i < nritems; i++) {
  2073. u32 ioff;
  2074. item = btrfs_item_nr(leaf, i);
  2075. if (!leaf->map_token) {
  2076. map_extent_buffer(leaf, (unsigned long)item,
  2077. sizeof(struct btrfs_item),
  2078. &leaf->map_token, &leaf->kaddr,
  2079. &leaf->map_start, &leaf->map_len,
  2080. KM_USER1);
  2081. }
  2082. ioff = btrfs_item_offset(leaf, item);
  2083. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2084. }
  2085. if (leaf->map_token) {
  2086. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2087. leaf->map_token = NULL;
  2088. }
  2089. /* shift the data */
  2090. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2091. data_end - data_size, btrfs_leaf_data(leaf) +
  2092. data_end, old_data - data_end);
  2093. data_end = old_data;
  2094. old_size = btrfs_item_size_nr(leaf, slot);
  2095. item = btrfs_item_nr(leaf, slot);
  2096. btrfs_set_item_size(leaf, item, old_size + data_size);
  2097. btrfs_mark_buffer_dirty(leaf);
  2098. ret = 0;
  2099. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2100. btrfs_print_leaf(root, leaf);
  2101. BUG();
  2102. }
  2103. return ret;
  2104. }
  2105. /*
  2106. * Given a key and some data, insert an item into the tree.
  2107. * This does all the path init required, making room in the tree if needed.
  2108. */
  2109. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2110. struct btrfs_root *root,
  2111. struct btrfs_path *path,
  2112. struct btrfs_key *cpu_key, u32 *data_size,
  2113. int nr)
  2114. {
  2115. struct extent_buffer *leaf;
  2116. struct btrfs_item *item;
  2117. int ret = 0;
  2118. int slot;
  2119. int slot_orig;
  2120. int i;
  2121. u32 nritems;
  2122. u32 total_size = 0;
  2123. u32 total_data = 0;
  2124. unsigned int data_end;
  2125. struct btrfs_disk_key disk_key;
  2126. for (i = 0; i < nr; i++) {
  2127. total_data += data_size[i];
  2128. }
  2129. /* create a root if there isn't one */
  2130. if (!root->node)
  2131. BUG();
  2132. total_size = total_data + (nr - 1) * sizeof(struct btrfs_item);
  2133. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2134. if (ret == 0) {
  2135. return -EEXIST;
  2136. }
  2137. if (ret < 0)
  2138. goto out;
  2139. slot_orig = path->slots[0];
  2140. leaf = path->nodes[0];
  2141. nritems = btrfs_header_nritems(leaf);
  2142. data_end = leaf_data_end(root, leaf);
  2143. if (btrfs_leaf_free_space(root, leaf) <
  2144. sizeof(struct btrfs_item) + total_size) {
  2145. btrfs_print_leaf(root, leaf);
  2146. printk("not enough freespace need %u have %d\n",
  2147. total_size, btrfs_leaf_free_space(root, leaf));
  2148. BUG();
  2149. }
  2150. slot = path->slots[0];
  2151. BUG_ON(slot < 0);
  2152. if (slot != nritems) {
  2153. int i;
  2154. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2155. if (old_data < data_end) {
  2156. btrfs_print_leaf(root, leaf);
  2157. printk("slot %d old_data %d data_end %d\n",
  2158. slot, old_data, data_end);
  2159. BUG_ON(1);
  2160. }
  2161. /*
  2162. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2163. */
  2164. /* first correct the data pointers */
  2165. WARN_ON(leaf->map_token);
  2166. for (i = slot; i < nritems; i++) {
  2167. u32 ioff;
  2168. item = btrfs_item_nr(leaf, i);
  2169. if (!leaf->map_token) {
  2170. map_extent_buffer(leaf, (unsigned long)item,
  2171. sizeof(struct btrfs_item),
  2172. &leaf->map_token, &leaf->kaddr,
  2173. &leaf->map_start, &leaf->map_len,
  2174. KM_USER1);
  2175. }
  2176. ioff = btrfs_item_offset(leaf, item);
  2177. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2178. }
  2179. if (leaf->map_token) {
  2180. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2181. leaf->map_token = NULL;
  2182. }
  2183. /* shift the items */
  2184. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2185. btrfs_item_nr_offset(slot),
  2186. (nritems - slot) * sizeof(struct btrfs_item));
  2187. /* shift the data */
  2188. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2189. data_end - total_data, btrfs_leaf_data(leaf) +
  2190. data_end, old_data - data_end);
  2191. data_end = old_data;
  2192. }
  2193. /* setup the item for the new data */
  2194. for (i = 0; i < nr; i++) {
  2195. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2196. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2197. item = btrfs_item_nr(leaf, slot + i);
  2198. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2199. data_end -= data_size[i];
  2200. btrfs_set_item_size(leaf, item, data_size[i]);
  2201. }
  2202. btrfs_set_header_nritems(leaf, nritems + nr);
  2203. btrfs_mark_buffer_dirty(leaf);
  2204. ret = 0;
  2205. if (slot == 0) {
  2206. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2207. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2208. }
  2209. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2210. btrfs_print_leaf(root, leaf);
  2211. BUG();
  2212. }
  2213. out:
  2214. return ret;
  2215. }
  2216. /*
  2217. * Given a key and some data, insert an item into the tree.
  2218. * This does all the path init required, making room in the tree if needed.
  2219. */
  2220. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2221. *root, struct btrfs_key *cpu_key, void *data, u32
  2222. data_size)
  2223. {
  2224. int ret = 0;
  2225. struct btrfs_path *path;
  2226. struct extent_buffer *leaf;
  2227. unsigned long ptr;
  2228. path = btrfs_alloc_path();
  2229. BUG_ON(!path);
  2230. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2231. if (!ret) {
  2232. leaf = path->nodes[0];
  2233. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2234. write_extent_buffer(leaf, data, ptr, data_size);
  2235. btrfs_mark_buffer_dirty(leaf);
  2236. }
  2237. btrfs_free_path(path);
  2238. return ret;
  2239. }
  2240. /*
  2241. * delete the pointer from a given node.
  2242. *
  2243. * If the delete empties a node, the node is removed from the tree,
  2244. * continuing all the way the root if required. The root is converted into
  2245. * a leaf if all the nodes are emptied.
  2246. */
  2247. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2248. struct btrfs_path *path, int level, int slot)
  2249. {
  2250. struct extent_buffer *parent = path->nodes[level];
  2251. u32 nritems;
  2252. int ret = 0;
  2253. int wret;
  2254. nritems = btrfs_header_nritems(parent);
  2255. if (slot != nritems -1) {
  2256. memmove_extent_buffer(parent,
  2257. btrfs_node_key_ptr_offset(slot),
  2258. btrfs_node_key_ptr_offset(slot + 1),
  2259. sizeof(struct btrfs_key_ptr) *
  2260. (nritems - slot - 1));
  2261. }
  2262. nritems--;
  2263. btrfs_set_header_nritems(parent, nritems);
  2264. if (nritems == 0 && parent == root->node) {
  2265. BUG_ON(btrfs_header_level(root->node) != 1);
  2266. /* just turn the root into a leaf and break */
  2267. btrfs_set_header_level(root->node, 0);
  2268. } else if (slot == 0) {
  2269. struct btrfs_disk_key disk_key;
  2270. btrfs_node_key(parent, &disk_key, 0);
  2271. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2272. if (wret)
  2273. ret = wret;
  2274. }
  2275. btrfs_mark_buffer_dirty(parent);
  2276. return ret;
  2277. }
  2278. /*
  2279. * delete the item at the leaf level in path. If that empties
  2280. * the leaf, remove it from the tree
  2281. */
  2282. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2283. struct btrfs_path *path, int slot, int nr)
  2284. {
  2285. struct extent_buffer *leaf;
  2286. struct btrfs_item *item;
  2287. int last_off;
  2288. int dsize = 0;
  2289. int ret = 0;
  2290. int wret;
  2291. int i;
  2292. u32 nritems;
  2293. leaf = path->nodes[0];
  2294. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  2295. for (i = 0; i < nr; i++)
  2296. dsize += btrfs_item_size_nr(leaf, slot + i);
  2297. nritems = btrfs_header_nritems(leaf);
  2298. if (slot + nr != nritems) {
  2299. int i;
  2300. int data_end = leaf_data_end(root, leaf);
  2301. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2302. data_end + dsize,
  2303. btrfs_leaf_data(leaf) + data_end,
  2304. last_off - data_end);
  2305. for (i = slot + nr; i < nritems; i++) {
  2306. u32 ioff;
  2307. item = btrfs_item_nr(leaf, i);
  2308. if (!leaf->map_token) {
  2309. map_extent_buffer(leaf, (unsigned long)item,
  2310. sizeof(struct btrfs_item),
  2311. &leaf->map_token, &leaf->kaddr,
  2312. &leaf->map_start, &leaf->map_len,
  2313. KM_USER1);
  2314. }
  2315. ioff = btrfs_item_offset(leaf, item);
  2316. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2317. }
  2318. if (leaf->map_token) {
  2319. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2320. leaf->map_token = NULL;
  2321. }
  2322. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2323. btrfs_item_nr_offset(slot + nr),
  2324. sizeof(struct btrfs_item) *
  2325. (nritems - slot - nr));
  2326. }
  2327. btrfs_set_header_nritems(leaf, nritems - nr);
  2328. nritems -= nr;
  2329. /* delete the leaf if we've emptied it */
  2330. if (nritems == 0) {
  2331. if (leaf == root->node) {
  2332. btrfs_set_header_level(leaf, 0);
  2333. } else {
  2334. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2335. clean_tree_block(trans, root, leaf);
  2336. wait_on_tree_block_writeback(root, leaf);
  2337. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2338. if (wret)
  2339. ret = wret;
  2340. wret = btrfs_free_extent(trans, root,
  2341. leaf->start, leaf->len,
  2342. btrfs_header_owner(path->nodes[1]),
  2343. root_gen, 0, 0, 1);
  2344. if (wret)
  2345. ret = wret;
  2346. }
  2347. } else {
  2348. int used = leaf_space_used(leaf, 0, nritems);
  2349. if (slot == 0) {
  2350. struct btrfs_disk_key disk_key;
  2351. btrfs_item_key(leaf, &disk_key, 0);
  2352. wret = fixup_low_keys(trans, root, path,
  2353. &disk_key, 1);
  2354. if (wret)
  2355. ret = wret;
  2356. }
  2357. /* delete the leaf if it is mostly empty */
  2358. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  2359. /* push_leaf_left fixes the path.
  2360. * make sure the path still points to our leaf
  2361. * for possible call to del_ptr below
  2362. */
  2363. slot = path->slots[1];
  2364. extent_buffer_get(leaf);
  2365. wret = push_leaf_left(trans, root, path, 1, 1);
  2366. if (wret < 0 && wret != -ENOSPC)
  2367. ret = wret;
  2368. if (path->nodes[0] == leaf &&
  2369. btrfs_header_nritems(leaf)) {
  2370. wret = push_leaf_right(trans, root, path, 1, 1);
  2371. if (wret < 0 && wret != -ENOSPC)
  2372. ret = wret;
  2373. }
  2374. if (btrfs_header_nritems(leaf) == 0) {
  2375. u64 root_gen;
  2376. u64 bytenr = leaf->start;
  2377. u32 blocksize = leaf->len;
  2378. root_gen = btrfs_header_generation(
  2379. path->nodes[1]);
  2380. clean_tree_block(trans, root, leaf);
  2381. wait_on_tree_block_writeback(root, leaf);
  2382. wret = del_ptr(trans, root, path, 1, slot);
  2383. if (wret)
  2384. ret = wret;
  2385. free_extent_buffer(leaf);
  2386. wret = btrfs_free_extent(trans, root, bytenr,
  2387. blocksize,
  2388. btrfs_header_owner(path->nodes[1]),
  2389. root_gen, 0, 0, 1);
  2390. if (wret)
  2391. ret = wret;
  2392. } else {
  2393. btrfs_mark_buffer_dirty(leaf);
  2394. free_extent_buffer(leaf);
  2395. }
  2396. } else {
  2397. btrfs_mark_buffer_dirty(leaf);
  2398. }
  2399. }
  2400. return ret;
  2401. }
  2402. /*
  2403. * walk up the tree as far as required to find the previous leaf.
  2404. * returns 0 if it found something or 1 if there are no lesser leaves.
  2405. * returns < 0 on io errors.
  2406. */
  2407. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2408. {
  2409. u64 bytenr;
  2410. int slot;
  2411. int level = 1;
  2412. struct extent_buffer *c;
  2413. struct extent_buffer *next = NULL;
  2414. while(level < BTRFS_MAX_LEVEL) {
  2415. if (!path->nodes[level])
  2416. return 1;
  2417. slot = path->slots[level];
  2418. c = path->nodes[level];
  2419. if (slot == 0) {
  2420. level++;
  2421. if (level == BTRFS_MAX_LEVEL)
  2422. return 1;
  2423. continue;
  2424. }
  2425. slot--;
  2426. bytenr = btrfs_node_blockptr(c, slot);
  2427. if (next)
  2428. free_extent_buffer(next);
  2429. next = read_tree_block(root, bytenr,
  2430. btrfs_level_size(root, level - 1));
  2431. break;
  2432. }
  2433. path->slots[level] = slot;
  2434. while(1) {
  2435. level--;
  2436. c = path->nodes[level];
  2437. free_extent_buffer(c);
  2438. slot = btrfs_header_nritems(next);
  2439. if (slot != 0)
  2440. slot--;
  2441. path->nodes[level] = next;
  2442. path->slots[level] = slot;
  2443. if (!level)
  2444. break;
  2445. next = read_tree_block(root, btrfs_node_blockptr(next, slot),
  2446. btrfs_level_size(root, level - 1));
  2447. }
  2448. return 0;
  2449. }
  2450. /*
  2451. * walk up the tree as far as required to find the next leaf.
  2452. * returns 0 if it found something or 1 if there are no greater leaves.
  2453. * returns < 0 on io errors.
  2454. */
  2455. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2456. {
  2457. int slot;
  2458. int level = 1;
  2459. u64 bytenr;
  2460. struct extent_buffer *c;
  2461. struct extent_buffer *next = NULL;
  2462. while(level < BTRFS_MAX_LEVEL) {
  2463. if (!path->nodes[level])
  2464. return 1;
  2465. slot = path->slots[level] + 1;
  2466. c = path->nodes[level];
  2467. if (slot >= btrfs_header_nritems(c)) {
  2468. level++;
  2469. if (level == BTRFS_MAX_LEVEL)
  2470. return 1;
  2471. continue;
  2472. }
  2473. bytenr = btrfs_node_blockptr(c, slot);
  2474. if (next)
  2475. free_extent_buffer(next);
  2476. if (path->reada)
  2477. reada_for_search(root, path, level, slot, 0);
  2478. next = read_tree_block(root, bytenr,
  2479. btrfs_level_size(root, level -1));
  2480. break;
  2481. }
  2482. path->slots[level] = slot;
  2483. while(1) {
  2484. level--;
  2485. c = path->nodes[level];
  2486. free_extent_buffer(c);
  2487. path->nodes[level] = next;
  2488. path->slots[level] = 0;
  2489. if (!level)
  2490. break;
  2491. if (path->reada)
  2492. reada_for_search(root, path, level, 0, 0);
  2493. next = read_tree_block(root, btrfs_node_blockptr(next, 0),
  2494. btrfs_level_size(root, level - 1));
  2495. }
  2496. return 0;
  2497. }
  2498. int btrfs_previous_item(struct btrfs_root *root,
  2499. struct btrfs_path *path, u64 min_objectid,
  2500. int type)
  2501. {
  2502. struct btrfs_key found_key;
  2503. struct extent_buffer *leaf;
  2504. int ret;
  2505. while(1) {
  2506. if (path->slots[0] == 0) {
  2507. ret = btrfs_prev_leaf(root, path);
  2508. if (ret != 0)
  2509. return ret;
  2510. } else {
  2511. path->slots[0]--;
  2512. }
  2513. leaf = path->nodes[0];
  2514. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2515. if (found_key.type == type)
  2516. return 0;
  2517. }
  2518. return 1;
  2519. }