spi-bfin-v3.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965
  1. /*
  2. * Analog Devices SPI3 controller driver
  3. *
  4. * Copyright (c) 2013 Analog Devices Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/errno.h>
  19. #include <linux/gpio.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/ioport.h>
  24. #include <linux/module.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/spi/spi.h>
  28. #include <linux/types.h>
  29. #include <asm/bfin_spi3.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/dma.h>
  32. #include <asm/portmux.h>
  33. enum bfin_spi_state {
  34. START_STATE,
  35. RUNNING_STATE,
  36. DONE_STATE,
  37. ERROR_STATE
  38. };
  39. struct bfin_spi_master;
  40. struct bfin_spi_transfer_ops {
  41. void (*write) (struct bfin_spi_master *);
  42. void (*read) (struct bfin_spi_master *);
  43. void (*duplex) (struct bfin_spi_master *);
  44. };
  45. /* runtime info for spi master */
  46. struct bfin_spi_master {
  47. /* SPI framework hookup */
  48. struct spi_master *master;
  49. /* Regs base of SPI controller */
  50. struct bfin_spi_regs __iomem *regs;
  51. /* Pin request list */
  52. u16 *pin_req;
  53. /* Message Transfer pump */
  54. struct tasklet_struct pump_transfers;
  55. /* Current message transfer state info */
  56. struct spi_message *cur_msg;
  57. struct spi_transfer *cur_transfer;
  58. struct bfin_spi_device *cur_chip;
  59. unsigned transfer_len;
  60. /* transfer buffer */
  61. void *tx;
  62. void *tx_end;
  63. void *rx;
  64. void *rx_end;
  65. /* dma info */
  66. unsigned int tx_dma;
  67. unsigned int rx_dma;
  68. dma_addr_t tx_dma_addr;
  69. dma_addr_t rx_dma_addr;
  70. unsigned long dummy_buffer; /* used in unidirectional transfer */
  71. unsigned long tx_dma_size;
  72. unsigned long rx_dma_size;
  73. int tx_num;
  74. int rx_num;
  75. /* store register value for suspend/resume */
  76. u32 control;
  77. u32 ssel;
  78. unsigned long sclk;
  79. enum bfin_spi_state state;
  80. const struct bfin_spi_transfer_ops *ops;
  81. };
  82. struct bfin_spi_device {
  83. u32 control;
  84. u32 clock;
  85. u32 ssel;
  86. u8 cs;
  87. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  88. u32 cs_gpio;
  89. u32 tx_dummy_val; /* tx value for rx only transfer */
  90. bool enable_dma;
  91. const struct bfin_spi_transfer_ops *ops;
  92. };
  93. static void bfin_spi_enable(struct bfin_spi_master *drv_data)
  94. {
  95. bfin_write_or(&drv_data->regs->control, SPI_CTL_EN);
  96. }
  97. static void bfin_spi_disable(struct bfin_spi_master *drv_data)
  98. {
  99. bfin_write_and(&drv_data->regs->control, ~SPI_CTL_EN);
  100. }
  101. /* Caculate the SPI_CLOCK register value based on input HZ */
  102. static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
  103. {
  104. u32 spi_clock = sclk / speed_hz;
  105. if (spi_clock)
  106. spi_clock--;
  107. return spi_clock;
  108. }
  109. static int bfin_spi_flush(struct bfin_spi_master *drv_data)
  110. {
  111. unsigned long limit = loops_per_jiffy << 1;
  112. /* wait for stop and clear stat */
  113. while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
  114. cpu_relax();
  115. bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
  116. return limit;
  117. }
  118. /* Chip select operation functions for cs_change flag */
  119. static void bfin_spi_cs_active(struct bfin_spi_master *drv_data, struct bfin_spi_device *chip)
  120. {
  121. if (likely(chip->cs < MAX_CTRL_CS))
  122. bfin_write_and(&drv_data->regs->ssel, ~chip->ssel);
  123. else
  124. gpio_set_value(chip->cs_gpio, 0);
  125. }
  126. static void bfin_spi_cs_deactive(struct bfin_spi_master *drv_data,
  127. struct bfin_spi_device *chip)
  128. {
  129. if (likely(chip->cs < MAX_CTRL_CS))
  130. bfin_write_or(&drv_data->regs->ssel, chip->ssel);
  131. else
  132. gpio_set_value(chip->cs_gpio, 1);
  133. /* Move delay here for consistency */
  134. if (chip->cs_chg_udelay)
  135. udelay(chip->cs_chg_udelay);
  136. }
  137. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  138. static inline void bfin_spi_cs_enable(struct bfin_spi_master *drv_data,
  139. struct bfin_spi_device *chip)
  140. {
  141. if (chip->cs < MAX_CTRL_CS)
  142. bfin_write_or(&drv_data->regs->ssel, chip->ssel >> 8);
  143. }
  144. static inline void bfin_spi_cs_disable(struct bfin_spi_master *drv_data,
  145. struct bfin_spi_device *chip)
  146. {
  147. if (chip->cs < MAX_CTRL_CS)
  148. bfin_write_and(&drv_data->regs->ssel, ~(chip->ssel >> 8));
  149. }
  150. /* stop controller and re-config current chip*/
  151. static void bfin_spi_restore_state(struct bfin_spi_master *drv_data)
  152. {
  153. struct bfin_spi_device *chip = drv_data->cur_chip;
  154. /* Clear status and disable clock */
  155. bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
  156. bfin_write(&drv_data->regs->rx_control, 0x0);
  157. bfin_write(&drv_data->regs->tx_control, 0x0);
  158. bfin_spi_disable(drv_data);
  159. SSYNC();
  160. /* Load the registers */
  161. bfin_write(&drv_data->regs->control, chip->control);
  162. bfin_write(&drv_data->regs->clock, chip->clock);
  163. bfin_spi_enable(drv_data);
  164. drv_data->tx_num = drv_data->rx_num = 0;
  165. /* we always choose tx transfer initiate */
  166. bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN);
  167. bfin_write(&drv_data->regs->tx_control,
  168. SPI_TXCTL_TEN | SPI_TXCTL_TTI);
  169. bfin_spi_cs_active(drv_data, chip);
  170. }
  171. /* discard invalid rx data and empty rfifo */
  172. static inline void dummy_read(struct bfin_spi_master *drv_data)
  173. {
  174. while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_RFE))
  175. bfin_read(&drv_data->regs->rfifo);
  176. }
  177. static void bfin_spi_u8_write(struct bfin_spi_master *drv_data)
  178. {
  179. dummy_read(drv_data);
  180. while (drv_data->tx < drv_data->tx_end) {
  181. bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
  182. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  183. cpu_relax();
  184. bfin_read(&drv_data->regs->rfifo);
  185. }
  186. }
  187. static void bfin_spi_u8_read(struct bfin_spi_master *drv_data)
  188. {
  189. u32 tx_val = drv_data->cur_chip->tx_dummy_val;
  190. dummy_read(drv_data);
  191. while (drv_data->rx < drv_data->rx_end) {
  192. bfin_write(&drv_data->regs->tfifo, tx_val);
  193. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  194. cpu_relax();
  195. *(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
  196. }
  197. }
  198. static void bfin_spi_u8_duplex(struct bfin_spi_master *drv_data)
  199. {
  200. dummy_read(drv_data);
  201. while (drv_data->rx < drv_data->rx_end) {
  202. bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
  203. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  204. cpu_relax();
  205. *(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
  206. }
  207. }
  208. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
  209. .write = bfin_spi_u8_write,
  210. .read = bfin_spi_u8_read,
  211. .duplex = bfin_spi_u8_duplex,
  212. };
  213. static void bfin_spi_u16_write(struct bfin_spi_master *drv_data)
  214. {
  215. dummy_read(drv_data);
  216. while (drv_data->tx < drv_data->tx_end) {
  217. bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
  218. drv_data->tx += 2;
  219. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  220. cpu_relax();
  221. bfin_read(&drv_data->regs->rfifo);
  222. }
  223. }
  224. static void bfin_spi_u16_read(struct bfin_spi_master *drv_data)
  225. {
  226. u32 tx_val = drv_data->cur_chip->tx_dummy_val;
  227. dummy_read(drv_data);
  228. while (drv_data->rx < drv_data->rx_end) {
  229. bfin_write(&drv_data->regs->tfifo, tx_val);
  230. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  231. cpu_relax();
  232. *(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
  233. drv_data->rx += 2;
  234. }
  235. }
  236. static void bfin_spi_u16_duplex(struct bfin_spi_master *drv_data)
  237. {
  238. dummy_read(drv_data);
  239. while (drv_data->rx < drv_data->rx_end) {
  240. bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
  241. drv_data->tx += 2;
  242. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  243. cpu_relax();
  244. *(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
  245. drv_data->rx += 2;
  246. }
  247. }
  248. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
  249. .write = bfin_spi_u16_write,
  250. .read = bfin_spi_u16_read,
  251. .duplex = bfin_spi_u16_duplex,
  252. };
  253. static void bfin_spi_u32_write(struct bfin_spi_master *drv_data)
  254. {
  255. dummy_read(drv_data);
  256. while (drv_data->tx < drv_data->tx_end) {
  257. bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
  258. drv_data->tx += 4;
  259. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  260. cpu_relax();
  261. bfin_read(&drv_data->regs->rfifo);
  262. }
  263. }
  264. static void bfin_spi_u32_read(struct bfin_spi_master *drv_data)
  265. {
  266. u32 tx_val = drv_data->cur_chip->tx_dummy_val;
  267. dummy_read(drv_data);
  268. while (drv_data->rx < drv_data->rx_end) {
  269. bfin_write(&drv_data->regs->tfifo, tx_val);
  270. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  271. cpu_relax();
  272. *(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
  273. drv_data->rx += 4;
  274. }
  275. }
  276. static void bfin_spi_u32_duplex(struct bfin_spi_master *drv_data)
  277. {
  278. dummy_read(drv_data);
  279. while (drv_data->rx < drv_data->rx_end) {
  280. bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
  281. drv_data->tx += 4;
  282. while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
  283. cpu_relax();
  284. *(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
  285. drv_data->rx += 4;
  286. }
  287. }
  288. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u32 = {
  289. .write = bfin_spi_u32_write,
  290. .read = bfin_spi_u32_read,
  291. .duplex = bfin_spi_u32_duplex,
  292. };
  293. /* test if there is more transfer to be done */
  294. static void bfin_spi_next_transfer(struct bfin_spi_master *drv)
  295. {
  296. struct spi_message *msg = drv->cur_msg;
  297. struct spi_transfer *t = drv->cur_transfer;
  298. /* Move to next transfer */
  299. if (t->transfer_list.next != &msg->transfers) {
  300. drv->cur_transfer = list_entry(t->transfer_list.next,
  301. struct spi_transfer, transfer_list);
  302. drv->state = RUNNING_STATE;
  303. } else {
  304. drv->state = DONE_STATE;
  305. drv->cur_transfer = NULL;
  306. }
  307. }
  308. static void bfin_spi_giveback(struct bfin_spi_master *drv_data)
  309. {
  310. struct bfin_spi_device *chip = drv_data->cur_chip;
  311. bfin_spi_cs_deactive(drv_data, chip);
  312. spi_finalize_current_message(drv_data->master);
  313. }
  314. static int bfin_spi_setup_transfer(struct bfin_spi_master *drv)
  315. {
  316. struct spi_transfer *t = drv->cur_transfer;
  317. u32 cr, cr_width;
  318. if (t->tx_buf) {
  319. drv->tx = (void *)t->tx_buf;
  320. drv->tx_end = drv->tx + t->len;
  321. } else {
  322. drv->tx = NULL;
  323. }
  324. if (t->rx_buf) {
  325. drv->rx = t->rx_buf;
  326. drv->rx_end = drv->rx + t->len;
  327. } else {
  328. drv->rx = NULL;
  329. }
  330. drv->transfer_len = t->len;
  331. /* bits per word setup */
  332. switch (t->bits_per_word) {
  333. case 8:
  334. cr_width = SPI_CTL_SIZE08;
  335. drv->ops = &bfin_bfin_spi_transfer_ops_u8;
  336. break;
  337. case 16:
  338. cr_width = SPI_CTL_SIZE16;
  339. drv->ops = &bfin_bfin_spi_transfer_ops_u16;
  340. break;
  341. case 32:
  342. cr_width = SPI_CTL_SIZE32;
  343. drv->ops = &bfin_bfin_spi_transfer_ops_u32;
  344. break;
  345. default:
  346. return -EINVAL;
  347. }
  348. cr = bfin_read(&drv->regs->control) & ~SPI_CTL_SIZE;
  349. cr |= cr_width;
  350. bfin_write(&drv->regs->control, cr);
  351. /* speed setup */
  352. bfin_write(&drv->regs->clock,
  353. hz_to_spi_clock(drv->sclk, t->speed_hz));
  354. return 0;
  355. }
  356. static int bfin_spi_dma_xfer(struct bfin_spi_master *drv_data)
  357. {
  358. struct spi_transfer *t = drv_data->cur_transfer;
  359. struct spi_message *msg = drv_data->cur_msg;
  360. struct bfin_spi_device *chip = drv_data->cur_chip;
  361. u32 dma_config;
  362. unsigned long word_count, word_size;
  363. void *tx_buf, *rx_buf;
  364. switch (t->bits_per_word) {
  365. case 8:
  366. dma_config = WDSIZE_8 | PSIZE_8;
  367. word_count = drv_data->transfer_len;
  368. word_size = 1;
  369. break;
  370. case 16:
  371. dma_config = WDSIZE_16 | PSIZE_16;
  372. word_count = drv_data->transfer_len / 2;
  373. word_size = 2;
  374. break;
  375. default:
  376. dma_config = WDSIZE_32 | PSIZE_32;
  377. word_count = drv_data->transfer_len / 4;
  378. word_size = 4;
  379. break;
  380. }
  381. if (!drv_data->rx) {
  382. tx_buf = drv_data->tx;
  383. rx_buf = &drv_data->dummy_buffer;
  384. drv_data->tx_dma_size = drv_data->transfer_len;
  385. drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
  386. set_dma_x_modify(drv_data->tx_dma, word_size);
  387. set_dma_x_modify(drv_data->rx_dma, 0);
  388. } else if (!drv_data->tx) {
  389. drv_data->dummy_buffer = chip->tx_dummy_val;
  390. tx_buf = &drv_data->dummy_buffer;
  391. rx_buf = drv_data->rx;
  392. drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
  393. drv_data->rx_dma_size = drv_data->transfer_len;
  394. set_dma_x_modify(drv_data->tx_dma, 0);
  395. set_dma_x_modify(drv_data->rx_dma, word_size);
  396. } else {
  397. tx_buf = drv_data->tx;
  398. rx_buf = drv_data->rx;
  399. drv_data->tx_dma_size = drv_data->rx_dma_size
  400. = drv_data->transfer_len;
  401. set_dma_x_modify(drv_data->tx_dma, word_size);
  402. set_dma_x_modify(drv_data->rx_dma, word_size);
  403. }
  404. drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
  405. (void *)tx_buf,
  406. drv_data->tx_dma_size,
  407. DMA_TO_DEVICE);
  408. if (dma_mapping_error(&msg->spi->dev,
  409. drv_data->tx_dma_addr))
  410. return -ENOMEM;
  411. drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
  412. (void *)rx_buf,
  413. drv_data->rx_dma_size,
  414. DMA_FROM_DEVICE);
  415. if (dma_mapping_error(&msg->spi->dev,
  416. drv_data->rx_dma_addr)) {
  417. dma_unmap_single(&msg->spi->dev,
  418. drv_data->tx_dma_addr,
  419. drv_data->tx_dma_size,
  420. DMA_TO_DEVICE);
  421. return -ENOMEM;
  422. }
  423. dummy_read(drv_data);
  424. set_dma_x_count(drv_data->tx_dma, word_count);
  425. set_dma_x_count(drv_data->rx_dma, word_count);
  426. set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
  427. set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
  428. dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
  429. set_dma_config(drv_data->tx_dma, dma_config);
  430. set_dma_config(drv_data->rx_dma, dma_config | WNR);
  431. enable_dma(drv_data->tx_dma);
  432. enable_dma(drv_data->rx_dma);
  433. SSYNC();
  434. bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN | SPI_RXCTL_RDR_NE);
  435. SSYNC();
  436. bfin_write(&drv_data->regs->tx_control,
  437. SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF);
  438. return 0;
  439. }
  440. static int bfin_spi_pio_xfer(struct bfin_spi_master *drv_data)
  441. {
  442. struct spi_message *msg = drv_data->cur_msg;
  443. if (!drv_data->rx) {
  444. /* write only half duplex */
  445. drv_data->ops->write(drv_data);
  446. if (drv_data->tx != drv_data->tx_end)
  447. return -EIO;
  448. } else if (!drv_data->tx) {
  449. /* read only half duplex */
  450. drv_data->ops->read(drv_data);
  451. if (drv_data->rx != drv_data->rx_end)
  452. return -EIO;
  453. } else {
  454. /* full duplex mode */
  455. drv_data->ops->duplex(drv_data);
  456. if (drv_data->tx != drv_data->tx_end)
  457. return -EIO;
  458. }
  459. if (!bfin_spi_flush(drv_data))
  460. return -EIO;
  461. msg->actual_length += drv_data->transfer_len;
  462. tasklet_schedule(&drv_data->pump_transfers);
  463. return 0;
  464. }
  465. static void bfin_spi_pump_transfers(unsigned long data)
  466. {
  467. struct bfin_spi_master *drv_data = (struct bfin_spi_master *)data;
  468. struct spi_message *msg = NULL;
  469. struct spi_transfer *t = NULL;
  470. struct bfin_spi_device *chip = NULL;
  471. int ret;
  472. /* Get current state information */
  473. msg = drv_data->cur_msg;
  474. t = drv_data->cur_transfer;
  475. chip = drv_data->cur_chip;
  476. /* Handle for abort */
  477. if (drv_data->state == ERROR_STATE) {
  478. msg->status = -EIO;
  479. bfin_spi_giveback(drv_data);
  480. return;
  481. }
  482. if (drv_data->state == RUNNING_STATE) {
  483. if (t->delay_usecs)
  484. udelay(t->delay_usecs);
  485. if (t->cs_change)
  486. bfin_spi_cs_deactive(drv_data, chip);
  487. bfin_spi_next_transfer(drv_data);
  488. t = drv_data->cur_transfer;
  489. }
  490. /* Handle end of message */
  491. if (drv_data->state == DONE_STATE) {
  492. msg->status = 0;
  493. bfin_spi_giveback(drv_data);
  494. return;
  495. }
  496. if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
  497. /* Schedule next transfer tasklet */
  498. tasklet_schedule(&drv_data->pump_transfers);
  499. return;
  500. }
  501. ret = bfin_spi_setup_transfer(drv_data);
  502. if (ret) {
  503. msg->status = ret;
  504. bfin_spi_giveback(drv_data);
  505. }
  506. bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
  507. bfin_spi_cs_active(drv_data, chip);
  508. drv_data->state = RUNNING_STATE;
  509. if (chip->enable_dma)
  510. ret = bfin_spi_dma_xfer(drv_data);
  511. else
  512. ret = bfin_spi_pio_xfer(drv_data);
  513. if (ret) {
  514. msg->status = ret;
  515. bfin_spi_giveback(drv_data);
  516. }
  517. }
  518. static int bfin_spi_transfer_one_message(struct spi_master *master,
  519. struct spi_message *m)
  520. {
  521. struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
  522. drv_data->cur_msg = m;
  523. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  524. bfin_spi_restore_state(drv_data);
  525. drv_data->state = START_STATE;
  526. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  527. struct spi_transfer, transfer_list);
  528. tasklet_schedule(&drv_data->pump_transfers);
  529. return 0;
  530. }
  531. #define MAX_SPI_SSEL 7
  532. static const u16 ssel[][MAX_SPI_SSEL] = {
  533. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  534. P_SPI0_SSEL4, P_SPI0_SSEL5,
  535. P_SPI0_SSEL6, P_SPI0_SSEL7},
  536. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  537. P_SPI1_SSEL4, P_SPI1_SSEL5,
  538. P_SPI1_SSEL6, P_SPI1_SSEL7},
  539. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  540. P_SPI2_SSEL4, P_SPI2_SSEL5,
  541. P_SPI2_SSEL6, P_SPI2_SSEL7},
  542. };
  543. static int bfin_spi_setup(struct spi_device *spi)
  544. {
  545. struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
  546. struct bfin_spi_device *chip = spi_get_ctldata(spi);
  547. u32 bfin_ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
  548. int ret = -EINVAL;
  549. if (!chip) {
  550. struct bfin_spi3_chip *chip_info = spi->controller_data;
  551. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  552. if (!chip) {
  553. dev_err(&spi->dev, "can not allocate chip data\n");
  554. return -ENOMEM;
  555. }
  556. if (chip_info) {
  557. if (chip_info->control & ~bfin_ctl_reg) {
  558. dev_err(&spi->dev,
  559. "do not set bits that the SPI framework manages\n");
  560. goto error;
  561. }
  562. chip->control = chip_info->control;
  563. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  564. chip->tx_dummy_val = chip_info->tx_dummy_val;
  565. chip->enable_dma = chip_info->enable_dma;
  566. }
  567. chip->cs = spi->chip_select;
  568. if (chip->cs < MAX_CTRL_CS) {
  569. chip->ssel = (1 << chip->cs) << 8;
  570. ret = peripheral_request(ssel[spi->master->bus_num]
  571. [chip->cs-1], dev_name(&spi->dev));
  572. if (ret) {
  573. dev_err(&spi->dev, "peripheral_request() error\n");
  574. goto error;
  575. }
  576. } else {
  577. chip->cs_gpio = chip->cs - MAX_CTRL_CS;
  578. ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
  579. dev_name(&spi->dev));
  580. if (ret) {
  581. dev_err(&spi->dev, "gpio_request_one() error\n");
  582. goto error;
  583. }
  584. }
  585. spi_set_ctldata(spi, chip);
  586. }
  587. /* force a default base state */
  588. chip->control &= bfin_ctl_reg;
  589. if (spi->mode & SPI_CPOL)
  590. chip->control |= SPI_CTL_CPOL;
  591. if (spi->mode & SPI_CPHA)
  592. chip->control |= SPI_CTL_CPHA;
  593. if (spi->mode & SPI_LSB_FIRST)
  594. chip->control |= SPI_CTL_LSBF;
  595. chip->control |= SPI_CTL_MSTR;
  596. /* we choose software to controll cs */
  597. chip->control &= ~SPI_CTL_ASSEL;
  598. chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
  599. bfin_spi_cs_enable(drv_data, chip);
  600. bfin_spi_cs_deactive(drv_data, chip);
  601. return 0;
  602. error:
  603. if (chip) {
  604. kfree(chip);
  605. spi_set_ctldata(spi, NULL);
  606. }
  607. return ret;
  608. }
  609. static void bfin_spi_cleanup(struct spi_device *spi)
  610. {
  611. struct bfin_spi_device *chip = spi_get_ctldata(spi);
  612. struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
  613. if (!chip)
  614. return;
  615. if (chip->cs < MAX_CTRL_CS) {
  616. peripheral_free(ssel[spi->master->bus_num]
  617. [chip->cs-1]);
  618. bfin_spi_cs_disable(drv_data, chip);
  619. } else {
  620. gpio_free(chip->cs_gpio);
  621. }
  622. kfree(chip);
  623. spi_set_ctldata(spi, NULL);
  624. }
  625. static irqreturn_t bfin_spi_tx_dma_isr(int irq, void *dev_id)
  626. {
  627. struct bfin_spi_master *drv_data = dev_id;
  628. u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
  629. clear_dma_irqstat(drv_data->tx_dma);
  630. if (dma_stat & DMA_DONE) {
  631. drv_data->tx_num++;
  632. } else {
  633. dev_err(&drv_data->master->dev,
  634. "spi tx dma error: %d\n", dma_stat);
  635. if (drv_data->tx)
  636. drv_data->state = ERROR_STATE;
  637. }
  638. bfin_write_and(&drv_data->regs->tx_control, ~SPI_TXCTL_TDR_NF);
  639. return IRQ_HANDLED;
  640. }
  641. static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
  642. {
  643. struct bfin_spi_master *drv_data = dev_id;
  644. struct spi_message *msg = drv_data->cur_msg;
  645. u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
  646. clear_dma_irqstat(drv_data->rx_dma);
  647. if (dma_stat & DMA_DONE) {
  648. drv_data->rx_num++;
  649. /* we may fail on tx dma */
  650. if (drv_data->state != ERROR_STATE)
  651. msg->actual_length += drv_data->transfer_len;
  652. } else {
  653. drv_data->state = ERROR_STATE;
  654. dev_err(&drv_data->master->dev,
  655. "spi rx dma error: %d\n", dma_stat);
  656. }
  657. bfin_write(&drv_data->regs->tx_control, 0);
  658. bfin_write(&drv_data->regs->rx_control, 0);
  659. if (drv_data->rx_num != drv_data->tx_num)
  660. dev_dbg(&drv_data->master->dev,
  661. "dma interrupt missing: tx=%d,rx=%d\n",
  662. drv_data->tx_num, drv_data->rx_num);
  663. tasklet_schedule(&drv_data->pump_transfers);
  664. return IRQ_HANDLED;
  665. }
  666. static int bfin_spi_probe(struct platform_device *pdev)
  667. {
  668. struct device *dev = &pdev->dev;
  669. struct bfin_spi3_master *info = dev_get_platdata(dev);
  670. struct spi_master *master;
  671. struct bfin_spi_master *drv_data;
  672. struct resource *mem, *res;
  673. unsigned int tx_dma, rx_dma;
  674. unsigned long sclk;
  675. int ret;
  676. if (!info) {
  677. dev_err(dev, "platform data missing!\n");
  678. return -ENODEV;
  679. }
  680. sclk = get_sclk1();
  681. if (!sclk) {
  682. dev_err(dev, "can not get sclk1\n");
  683. return -ENXIO;
  684. }
  685. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  686. if (!res) {
  687. dev_err(dev, "can not get tx dma resource\n");
  688. return -ENXIO;
  689. }
  690. tx_dma = res->start;
  691. res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  692. if (!res) {
  693. dev_err(dev, "can not get rx dma resource\n");
  694. return -ENXIO;
  695. }
  696. rx_dma = res->start;
  697. /* allocate master with space for drv_data */
  698. master = spi_alloc_master(dev, sizeof(*drv_data));
  699. if (!master) {
  700. dev_err(dev, "can not alloc spi_master\n");
  701. return -ENOMEM;
  702. }
  703. platform_set_drvdata(pdev, master);
  704. /* the mode bits supported by this driver */
  705. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  706. master->bus_num = pdev->id;
  707. master->num_chipselect = info->num_chipselect;
  708. master->cleanup = bfin_spi_cleanup;
  709. master->setup = bfin_spi_setup;
  710. master->transfer_one_message = bfin_spi_transfer_one_message;
  711. master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);
  712. drv_data = spi_master_get_devdata(master);
  713. drv_data->master = master;
  714. drv_data->tx_dma = tx_dma;
  715. drv_data->rx_dma = rx_dma;
  716. drv_data->pin_req = info->pin_req;
  717. drv_data->sclk = sclk;
  718. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  719. drv_data->regs = devm_ioremap_resource(dev, mem);
  720. if (IS_ERR(drv_data->regs)) {
  721. ret = PTR_ERR(drv_data->regs);
  722. goto err_put_master;
  723. }
  724. /* request tx and rx dma */
  725. ret = request_dma(tx_dma, "SPI_TX_DMA");
  726. if (ret) {
  727. dev_err(dev, "can not request SPI TX DMA channel\n");
  728. goto err_put_master;
  729. }
  730. set_dma_callback(tx_dma, bfin_spi_tx_dma_isr, drv_data);
  731. ret = request_dma(rx_dma, "SPI_RX_DMA");
  732. if (ret) {
  733. dev_err(dev, "can not request SPI RX DMA channel\n");
  734. goto err_free_tx_dma;
  735. }
  736. set_dma_callback(drv_data->rx_dma, bfin_spi_rx_dma_isr, drv_data);
  737. /* request CLK, MOSI and MISO */
  738. ret = peripheral_request_list(drv_data->pin_req, "bfin-spi3");
  739. if (ret < 0) {
  740. dev_err(dev, "can not request spi pins\n");
  741. goto err_free_rx_dma;
  742. }
  743. bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
  744. bfin_write(&drv_data->regs->ssel, 0x0000FE00);
  745. bfin_write(&drv_data->regs->delay, 0x0);
  746. tasklet_init(&drv_data->pump_transfers,
  747. bfin_spi_pump_transfers, (unsigned long)drv_data);
  748. /* register with the SPI framework */
  749. ret = spi_register_master(master);
  750. if (ret) {
  751. dev_err(dev, "can not register spi master\n");
  752. goto err_free_peripheral;
  753. }
  754. return ret;
  755. err_free_peripheral:
  756. peripheral_free_list(drv_data->pin_req);
  757. err_free_rx_dma:
  758. free_dma(rx_dma);
  759. err_free_tx_dma:
  760. free_dma(tx_dma);
  761. err_put_master:
  762. spi_master_put(master);
  763. return ret;
  764. }
  765. static int bfin_spi_remove(struct platform_device *pdev)
  766. {
  767. struct spi_master *master = platform_get_drvdata(pdev);
  768. struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
  769. bfin_spi_disable(drv_data);
  770. peripheral_free_list(drv_data->pin_req);
  771. free_dma(drv_data->rx_dma);
  772. free_dma(drv_data->tx_dma);
  773. spi_unregister_master(drv_data->master);
  774. return 0;
  775. }
  776. #ifdef CONFIG_PM
  777. static int bfin_spi_suspend(struct device *dev)
  778. {
  779. struct spi_master *master = dev_get_drvdata(dev);
  780. struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
  781. spi_master_suspend(master);
  782. drv_data->control = bfin_read(&drv_data->regs->control);
  783. drv_data->ssel = bfin_read(&drv_data->regs->ssel);
  784. bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
  785. bfin_write(&drv_data->regs->ssel, 0x0000FE00);
  786. dma_disable_irq(drv_data->rx_dma);
  787. dma_disable_irq(drv_data->tx_dma);
  788. return 0;
  789. }
  790. static int bfin_spi_resume(struct device *dev)
  791. {
  792. struct spi_master *master = dev_get_drvdata(dev);
  793. struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
  794. int ret = 0;
  795. /* bootrom may modify spi and dma status when resume in spi boot mode */
  796. disable_dma(drv_data->rx_dma);
  797. dma_enable_irq(drv_data->rx_dma);
  798. dma_enable_irq(drv_data->tx_dma);
  799. bfin_write(&drv_data->regs->control, drv_data->control);
  800. bfin_write(&drv_data->regs->ssel, drv_data->ssel);
  801. ret = spi_master_resume(master);
  802. if (ret) {
  803. free_dma(drv_data->rx_dma);
  804. free_dma(drv_data->tx_dma);
  805. }
  806. return ret;
  807. }
  808. #endif
  809. static const struct dev_pm_ops bfin_spi_pm_ops = {
  810. SET_SYSTEM_SLEEP_PM_OPS(bfin_spi_suspend, bfin_spi_resume)
  811. };
  812. MODULE_ALIAS("platform:bfin-spi3");
  813. static struct platform_driver bfin_spi_driver = {
  814. .driver = {
  815. .name = "bfin-spi3",
  816. .owner = THIS_MODULE,
  817. .pm = &bfin_spi_pm_ops,
  818. },
  819. .remove = bfin_spi_remove,
  820. };
  821. module_platform_driver_probe(bfin_spi_driver, bfin_spi_probe);
  822. MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
  823. MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
  824. MODULE_LICENSE("GPL v2");