kvm_main.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_exits", &kvm_stat.irq_exits },
  56. { 0, 0 }
  57. };
  58. static struct dentry *debugfs_dir;
  59. #define MAX_IO_MSRS 256
  60. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  61. #define LMSW_GUEST_MASK 0x0eULL
  62. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  63. #define CR8_RESEVED_BITS (~0x0fULL)
  64. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  65. #ifdef CONFIG_X86_64
  66. // LDT or TSS descriptor in the GDT. 16 bytes.
  67. struct segment_descriptor_64 {
  68. struct segment_descriptor s;
  69. u32 base_higher;
  70. u32 pad_zero;
  71. };
  72. #endif
  73. unsigned long segment_base(u16 selector)
  74. {
  75. struct descriptor_table gdt;
  76. struct segment_descriptor *d;
  77. unsigned long table_base;
  78. typedef unsigned long ul;
  79. unsigned long v;
  80. if (selector == 0)
  81. return 0;
  82. asm ("sgdt %0" : "=m"(gdt));
  83. table_base = gdt.base;
  84. if (selector & 4) { /* from ldt */
  85. u16 ldt_selector;
  86. asm ("sldt %0" : "=g"(ldt_selector));
  87. table_base = segment_base(ldt_selector);
  88. }
  89. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  90. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  91. #ifdef CONFIG_X86_64
  92. if (d->system == 0
  93. && (d->type == 2 || d->type == 9 || d->type == 11))
  94. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  95. #endif
  96. return v;
  97. }
  98. EXPORT_SYMBOL_GPL(segment_base);
  99. static inline int valid_vcpu(int n)
  100. {
  101. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  102. }
  103. int kvm_read_guest(struct kvm_vcpu *vcpu,
  104. gva_t addr,
  105. unsigned long size,
  106. void *dest)
  107. {
  108. unsigned char *host_buf = dest;
  109. unsigned long req_size = size;
  110. while (size) {
  111. hpa_t paddr;
  112. unsigned now;
  113. unsigned offset;
  114. hva_t guest_buf;
  115. paddr = gva_to_hpa(vcpu, addr);
  116. if (is_error_hpa(paddr))
  117. break;
  118. guest_buf = (hva_t)kmap_atomic(
  119. pfn_to_page(paddr >> PAGE_SHIFT),
  120. KM_USER0);
  121. offset = addr & ~PAGE_MASK;
  122. guest_buf |= offset;
  123. now = min(size, PAGE_SIZE - offset);
  124. memcpy(host_buf, (void*)guest_buf, now);
  125. host_buf += now;
  126. addr += now;
  127. size -= now;
  128. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  129. }
  130. return req_size - size;
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_read_guest);
  133. int kvm_write_guest(struct kvm_vcpu *vcpu,
  134. gva_t addr,
  135. unsigned long size,
  136. void *data)
  137. {
  138. unsigned char *host_buf = data;
  139. unsigned long req_size = size;
  140. while (size) {
  141. hpa_t paddr;
  142. unsigned now;
  143. unsigned offset;
  144. hva_t guest_buf;
  145. paddr = gva_to_hpa(vcpu, addr);
  146. if (is_error_hpa(paddr))
  147. break;
  148. guest_buf = (hva_t)kmap_atomic(
  149. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  150. offset = addr & ~PAGE_MASK;
  151. guest_buf |= offset;
  152. now = min(size, PAGE_SIZE - offset);
  153. memcpy((void*)guest_buf, host_buf, now);
  154. host_buf += now;
  155. addr += now;
  156. size -= now;
  157. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  158. }
  159. return req_size - size;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_write_guest);
  162. static int vcpu_slot(struct kvm_vcpu *vcpu)
  163. {
  164. return vcpu - vcpu->kvm->vcpus;
  165. }
  166. /*
  167. * Switches to specified vcpu, until a matching vcpu_put()
  168. */
  169. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  170. {
  171. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  172. mutex_lock(&vcpu->mutex);
  173. if (unlikely(!vcpu->vmcs)) {
  174. mutex_unlock(&vcpu->mutex);
  175. return 0;
  176. }
  177. return kvm_arch_ops->vcpu_load(vcpu);
  178. }
  179. static void vcpu_put(struct kvm_vcpu *vcpu)
  180. {
  181. kvm_arch_ops->vcpu_put(vcpu);
  182. mutex_unlock(&vcpu->mutex);
  183. }
  184. static int kvm_dev_open(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  187. int i;
  188. if (!kvm)
  189. return -ENOMEM;
  190. spin_lock_init(&kvm->lock);
  191. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  192. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  193. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  194. mutex_init(&vcpu->mutex);
  195. vcpu->mmu.root_hpa = INVALID_PAGE;
  196. INIT_LIST_HEAD(&vcpu->free_pages);
  197. }
  198. filp->private_data = kvm;
  199. return 0;
  200. }
  201. /*
  202. * Free any memory in @free but not in @dont.
  203. */
  204. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  205. struct kvm_memory_slot *dont)
  206. {
  207. int i;
  208. if (!dont || free->phys_mem != dont->phys_mem)
  209. if (free->phys_mem) {
  210. for (i = 0; i < free->npages; ++i)
  211. __free_page(free->phys_mem[i]);
  212. vfree(free->phys_mem);
  213. }
  214. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  215. vfree(free->dirty_bitmap);
  216. free->phys_mem = 0;
  217. free->npages = 0;
  218. free->dirty_bitmap = 0;
  219. }
  220. static void kvm_free_physmem(struct kvm *kvm)
  221. {
  222. int i;
  223. for (i = 0; i < kvm->nmemslots; ++i)
  224. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  225. }
  226. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  227. {
  228. kvm_arch_ops->vcpu_free(vcpu);
  229. kvm_mmu_destroy(vcpu);
  230. }
  231. static void kvm_free_vcpus(struct kvm *kvm)
  232. {
  233. unsigned int i;
  234. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  235. kvm_free_vcpu(&kvm->vcpus[i]);
  236. }
  237. static int kvm_dev_release(struct inode *inode, struct file *filp)
  238. {
  239. struct kvm *kvm = filp->private_data;
  240. kvm_free_vcpus(kvm);
  241. kvm_free_physmem(kvm);
  242. kfree(kvm);
  243. return 0;
  244. }
  245. static void inject_gp(struct kvm_vcpu *vcpu)
  246. {
  247. kvm_arch_ops->inject_gp(vcpu, 0);
  248. }
  249. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  250. unsigned long cr3)
  251. {
  252. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  253. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  254. int i;
  255. u64 pdpte;
  256. u64 *pdpt;
  257. struct kvm_memory_slot *memslot;
  258. spin_lock(&vcpu->kvm->lock);
  259. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  260. /* FIXME: !memslot - emulate? 0xff? */
  261. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  262. for (i = 0; i < 4; ++i) {
  263. pdpte = pdpt[offset + i];
  264. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  265. break;
  266. }
  267. kunmap_atomic(pdpt, KM_USER0);
  268. spin_unlock(&vcpu->kvm->lock);
  269. return i != 4;
  270. }
  271. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  272. {
  273. if (cr0 & CR0_RESEVED_BITS) {
  274. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  275. cr0, vcpu->cr0);
  276. inject_gp(vcpu);
  277. return;
  278. }
  279. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  280. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  281. inject_gp(vcpu);
  282. return;
  283. }
  284. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  285. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  286. "and a clear PE flag\n");
  287. inject_gp(vcpu);
  288. return;
  289. }
  290. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  291. #ifdef CONFIG_X86_64
  292. if ((vcpu->shadow_efer & EFER_LME)) {
  293. int cs_db, cs_l;
  294. if (!is_pae(vcpu)) {
  295. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  296. "in long mode while PAE is disabled\n");
  297. inject_gp(vcpu);
  298. return;
  299. }
  300. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  301. if (cs_l) {
  302. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  303. "in long mode while CS.L == 1\n");
  304. inject_gp(vcpu);
  305. return;
  306. }
  307. } else
  308. #endif
  309. if (is_pae(vcpu) &&
  310. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  311. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  312. "reserved bits\n");
  313. inject_gp(vcpu);
  314. return;
  315. }
  316. }
  317. kvm_arch_ops->set_cr0(vcpu, cr0);
  318. vcpu->cr0 = cr0;
  319. spin_lock(&vcpu->kvm->lock);
  320. kvm_mmu_reset_context(vcpu);
  321. spin_unlock(&vcpu->kvm->lock);
  322. return;
  323. }
  324. EXPORT_SYMBOL_GPL(set_cr0);
  325. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  326. {
  327. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  328. }
  329. EXPORT_SYMBOL_GPL(lmsw);
  330. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  331. {
  332. if (cr4 & CR4_RESEVED_BITS) {
  333. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  334. inject_gp(vcpu);
  335. return;
  336. }
  337. if (kvm_arch_ops->is_long_mode(vcpu)) {
  338. if (!(cr4 & CR4_PAE_MASK)) {
  339. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  340. "in long mode\n");
  341. inject_gp(vcpu);
  342. return;
  343. }
  344. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  345. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  346. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  347. inject_gp(vcpu);
  348. }
  349. if (cr4 & CR4_VMXE_MASK) {
  350. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  351. inject_gp(vcpu);
  352. return;
  353. }
  354. kvm_arch_ops->set_cr4(vcpu, cr4);
  355. spin_lock(&vcpu->kvm->lock);
  356. kvm_mmu_reset_context(vcpu);
  357. spin_unlock(&vcpu->kvm->lock);
  358. }
  359. EXPORT_SYMBOL_GPL(set_cr4);
  360. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  361. {
  362. if (kvm_arch_ops->is_long_mode(vcpu)) {
  363. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  364. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  365. inject_gp(vcpu);
  366. return;
  367. }
  368. } else {
  369. if (cr3 & CR3_RESEVED_BITS) {
  370. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  371. inject_gp(vcpu);
  372. return;
  373. }
  374. if (is_paging(vcpu) && is_pae(vcpu) &&
  375. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  376. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  377. "reserved bits\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. }
  382. vcpu->cr3 = cr3;
  383. spin_lock(&vcpu->kvm->lock);
  384. vcpu->mmu.new_cr3(vcpu);
  385. spin_unlock(&vcpu->kvm->lock);
  386. }
  387. EXPORT_SYMBOL_GPL(set_cr3);
  388. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  389. {
  390. if ( cr8 & CR8_RESEVED_BITS) {
  391. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  392. inject_gp(vcpu);
  393. return;
  394. }
  395. vcpu->cr8 = cr8;
  396. }
  397. EXPORT_SYMBOL_GPL(set_cr8);
  398. void fx_init(struct kvm_vcpu *vcpu)
  399. {
  400. struct __attribute__ ((__packed__)) fx_image_s {
  401. u16 control; //fcw
  402. u16 status; //fsw
  403. u16 tag; // ftw
  404. u16 opcode; //fop
  405. u64 ip; // fpu ip
  406. u64 operand;// fpu dp
  407. u32 mxcsr;
  408. u32 mxcsr_mask;
  409. } *fx_image;
  410. fx_save(vcpu->host_fx_image);
  411. fpu_init();
  412. fx_save(vcpu->guest_fx_image);
  413. fx_restore(vcpu->host_fx_image);
  414. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  415. fx_image->mxcsr = 0x1f80;
  416. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  417. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  418. }
  419. EXPORT_SYMBOL_GPL(fx_init);
  420. /*
  421. * Creates some virtual cpus. Good luck creating more than one.
  422. */
  423. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  424. {
  425. int r;
  426. struct kvm_vcpu *vcpu;
  427. r = -EINVAL;
  428. if (!valid_vcpu(n))
  429. goto out;
  430. vcpu = &kvm->vcpus[n];
  431. mutex_lock(&vcpu->mutex);
  432. if (vcpu->vmcs) {
  433. mutex_unlock(&vcpu->mutex);
  434. return -EEXIST;
  435. }
  436. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  437. FX_IMAGE_ALIGN);
  438. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  439. vcpu->cpu = -1; /* First load will set up TR */
  440. vcpu->kvm = kvm;
  441. r = kvm_arch_ops->vcpu_create(vcpu);
  442. if (r < 0)
  443. goto out_free_vcpus;
  444. kvm_arch_ops->vcpu_load(vcpu);
  445. r = kvm_arch_ops->vcpu_setup(vcpu);
  446. if (r >= 0)
  447. r = kvm_mmu_init(vcpu);
  448. vcpu_put(vcpu);
  449. if (r < 0)
  450. goto out_free_vcpus;
  451. return 0;
  452. out_free_vcpus:
  453. kvm_free_vcpu(vcpu);
  454. mutex_unlock(&vcpu->mutex);
  455. out:
  456. return r;
  457. }
  458. /*
  459. * Allocate some memory and give it an address in the guest physical address
  460. * space.
  461. *
  462. * Discontiguous memory is allowed, mostly for framebuffers.
  463. */
  464. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  465. struct kvm_memory_region *mem)
  466. {
  467. int r;
  468. gfn_t base_gfn;
  469. unsigned long npages;
  470. unsigned long i;
  471. struct kvm_memory_slot *memslot;
  472. struct kvm_memory_slot old, new;
  473. int memory_config_version;
  474. r = -EINVAL;
  475. /* General sanity checks */
  476. if (mem->memory_size & (PAGE_SIZE - 1))
  477. goto out;
  478. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  479. goto out;
  480. if (mem->slot >= KVM_MEMORY_SLOTS)
  481. goto out;
  482. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  483. goto out;
  484. memslot = &kvm->memslots[mem->slot];
  485. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  486. npages = mem->memory_size >> PAGE_SHIFT;
  487. if (!npages)
  488. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  489. raced:
  490. spin_lock(&kvm->lock);
  491. memory_config_version = kvm->memory_config_version;
  492. new = old = *memslot;
  493. new.base_gfn = base_gfn;
  494. new.npages = npages;
  495. new.flags = mem->flags;
  496. /* Disallow changing a memory slot's size. */
  497. r = -EINVAL;
  498. if (npages && old.npages && npages != old.npages)
  499. goto out_unlock;
  500. /* Check for overlaps */
  501. r = -EEXIST;
  502. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  503. struct kvm_memory_slot *s = &kvm->memslots[i];
  504. if (s == memslot)
  505. continue;
  506. if (!((base_gfn + npages <= s->base_gfn) ||
  507. (base_gfn >= s->base_gfn + s->npages)))
  508. goto out_unlock;
  509. }
  510. /*
  511. * Do memory allocations outside lock. memory_config_version will
  512. * detect any races.
  513. */
  514. spin_unlock(&kvm->lock);
  515. /* Deallocate if slot is being removed */
  516. if (!npages)
  517. new.phys_mem = 0;
  518. /* Free page dirty bitmap if unneeded */
  519. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  520. new.dirty_bitmap = 0;
  521. r = -ENOMEM;
  522. /* Allocate if a slot is being created */
  523. if (npages && !new.phys_mem) {
  524. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  525. if (!new.phys_mem)
  526. goto out_free;
  527. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  528. for (i = 0; i < npages; ++i) {
  529. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  530. | __GFP_ZERO);
  531. if (!new.phys_mem[i])
  532. goto out_free;
  533. }
  534. }
  535. /* Allocate page dirty bitmap if needed */
  536. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  537. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  538. new.dirty_bitmap = vmalloc(dirty_bytes);
  539. if (!new.dirty_bitmap)
  540. goto out_free;
  541. memset(new.dirty_bitmap, 0, dirty_bytes);
  542. }
  543. spin_lock(&kvm->lock);
  544. if (memory_config_version != kvm->memory_config_version) {
  545. spin_unlock(&kvm->lock);
  546. kvm_free_physmem_slot(&new, &old);
  547. goto raced;
  548. }
  549. r = -EAGAIN;
  550. if (kvm->busy)
  551. goto out_unlock;
  552. if (mem->slot >= kvm->nmemslots)
  553. kvm->nmemslots = mem->slot + 1;
  554. *memslot = new;
  555. ++kvm->memory_config_version;
  556. spin_unlock(&kvm->lock);
  557. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  558. struct kvm_vcpu *vcpu;
  559. vcpu = vcpu_load(kvm, i);
  560. if (!vcpu)
  561. continue;
  562. kvm_mmu_reset_context(vcpu);
  563. vcpu_put(vcpu);
  564. }
  565. kvm_free_physmem_slot(&old, &new);
  566. return 0;
  567. out_unlock:
  568. spin_unlock(&kvm->lock);
  569. out_free:
  570. kvm_free_physmem_slot(&new, &old);
  571. out:
  572. return r;
  573. }
  574. /*
  575. * Get (and clear) the dirty memory log for a memory slot.
  576. */
  577. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  578. struct kvm_dirty_log *log)
  579. {
  580. struct kvm_memory_slot *memslot;
  581. int r, i;
  582. int n;
  583. unsigned long any = 0;
  584. spin_lock(&kvm->lock);
  585. /*
  586. * Prevent changes to guest memory configuration even while the lock
  587. * is not taken.
  588. */
  589. ++kvm->busy;
  590. spin_unlock(&kvm->lock);
  591. r = -EINVAL;
  592. if (log->slot >= KVM_MEMORY_SLOTS)
  593. goto out;
  594. memslot = &kvm->memslots[log->slot];
  595. r = -ENOENT;
  596. if (!memslot->dirty_bitmap)
  597. goto out;
  598. n = ALIGN(memslot->npages, 8) / 8;
  599. for (i = 0; !any && i < n; ++i)
  600. any = memslot->dirty_bitmap[i];
  601. r = -EFAULT;
  602. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  603. goto out;
  604. if (any) {
  605. spin_lock(&kvm->lock);
  606. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  607. spin_unlock(&kvm->lock);
  608. memset(memslot->dirty_bitmap, 0, n);
  609. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  610. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  611. if (!vcpu)
  612. continue;
  613. kvm_arch_ops->tlb_flush(vcpu);
  614. vcpu_put(vcpu);
  615. }
  616. }
  617. r = 0;
  618. out:
  619. spin_lock(&kvm->lock);
  620. --kvm->busy;
  621. spin_unlock(&kvm->lock);
  622. return r;
  623. }
  624. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  625. {
  626. int i;
  627. for (i = 0; i < kvm->nmemslots; ++i) {
  628. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  629. if (gfn >= memslot->base_gfn
  630. && gfn < memslot->base_gfn + memslot->npages)
  631. return memslot;
  632. }
  633. return 0;
  634. }
  635. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  636. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  637. {
  638. int i;
  639. struct kvm_memory_slot *memslot = 0;
  640. unsigned long rel_gfn;
  641. for (i = 0; i < kvm->nmemslots; ++i) {
  642. memslot = &kvm->memslots[i];
  643. if (gfn >= memslot->base_gfn
  644. && gfn < memslot->base_gfn + memslot->npages) {
  645. if (!memslot || !memslot->dirty_bitmap)
  646. return;
  647. rel_gfn = gfn - memslot->base_gfn;
  648. /* avoid RMW */
  649. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  650. set_bit(rel_gfn, memslot->dirty_bitmap);
  651. return;
  652. }
  653. }
  654. }
  655. static int emulator_read_std(unsigned long addr,
  656. unsigned long *val,
  657. unsigned int bytes,
  658. struct x86_emulate_ctxt *ctxt)
  659. {
  660. struct kvm_vcpu *vcpu = ctxt->vcpu;
  661. void *data = val;
  662. while (bytes) {
  663. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  664. unsigned offset = addr & (PAGE_SIZE-1);
  665. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  666. unsigned long pfn;
  667. struct kvm_memory_slot *memslot;
  668. void *page;
  669. if (gpa == UNMAPPED_GVA)
  670. return X86EMUL_PROPAGATE_FAULT;
  671. pfn = gpa >> PAGE_SHIFT;
  672. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  673. if (!memslot)
  674. return X86EMUL_UNHANDLEABLE;
  675. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  676. memcpy(data, page + offset, tocopy);
  677. kunmap_atomic(page, KM_USER0);
  678. bytes -= tocopy;
  679. data += tocopy;
  680. addr += tocopy;
  681. }
  682. return X86EMUL_CONTINUE;
  683. }
  684. static int emulator_write_std(unsigned long addr,
  685. unsigned long val,
  686. unsigned int bytes,
  687. struct x86_emulate_ctxt *ctxt)
  688. {
  689. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  690. addr, bytes);
  691. return X86EMUL_UNHANDLEABLE;
  692. }
  693. static int emulator_read_emulated(unsigned long addr,
  694. unsigned long *val,
  695. unsigned int bytes,
  696. struct x86_emulate_ctxt *ctxt)
  697. {
  698. struct kvm_vcpu *vcpu = ctxt->vcpu;
  699. if (vcpu->mmio_read_completed) {
  700. memcpy(val, vcpu->mmio_data, bytes);
  701. vcpu->mmio_read_completed = 0;
  702. return X86EMUL_CONTINUE;
  703. } else if (emulator_read_std(addr, val, bytes, ctxt)
  704. == X86EMUL_CONTINUE)
  705. return X86EMUL_CONTINUE;
  706. else {
  707. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  708. if (gpa == UNMAPPED_GVA)
  709. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  710. vcpu->mmio_needed = 1;
  711. vcpu->mmio_phys_addr = gpa;
  712. vcpu->mmio_size = bytes;
  713. vcpu->mmio_is_write = 0;
  714. return X86EMUL_UNHANDLEABLE;
  715. }
  716. }
  717. static int emulator_write_emulated(unsigned long addr,
  718. unsigned long val,
  719. unsigned int bytes,
  720. struct x86_emulate_ctxt *ctxt)
  721. {
  722. struct kvm_vcpu *vcpu = ctxt->vcpu;
  723. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  724. if (gpa == UNMAPPED_GVA)
  725. return X86EMUL_PROPAGATE_FAULT;
  726. vcpu->mmio_needed = 1;
  727. vcpu->mmio_phys_addr = gpa;
  728. vcpu->mmio_size = bytes;
  729. vcpu->mmio_is_write = 1;
  730. memcpy(vcpu->mmio_data, &val, bytes);
  731. return X86EMUL_CONTINUE;
  732. }
  733. static int emulator_cmpxchg_emulated(unsigned long addr,
  734. unsigned long old,
  735. unsigned long new,
  736. unsigned int bytes,
  737. struct x86_emulate_ctxt *ctxt)
  738. {
  739. static int reported;
  740. if (!reported) {
  741. reported = 1;
  742. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  743. }
  744. return emulator_write_emulated(addr, new, bytes, ctxt);
  745. }
  746. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  747. {
  748. return kvm_arch_ops->get_segment_base(vcpu, seg);
  749. }
  750. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  751. {
  752. spin_lock(&vcpu->kvm->lock);
  753. vcpu->mmu.inval_page(vcpu, address);
  754. spin_unlock(&vcpu->kvm->lock);
  755. kvm_arch_ops->invlpg(vcpu, address);
  756. return X86EMUL_CONTINUE;
  757. }
  758. int emulate_clts(struct kvm_vcpu *vcpu)
  759. {
  760. unsigned long cr0 = vcpu->cr0;
  761. cr0 &= ~CR0_TS_MASK;
  762. kvm_arch_ops->set_cr0(vcpu, cr0);
  763. return X86EMUL_CONTINUE;
  764. }
  765. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  766. {
  767. struct kvm_vcpu *vcpu = ctxt->vcpu;
  768. switch (dr) {
  769. case 0 ... 3:
  770. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  771. return X86EMUL_CONTINUE;
  772. default:
  773. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  774. __FUNCTION__, dr);
  775. return X86EMUL_UNHANDLEABLE;
  776. }
  777. }
  778. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  779. {
  780. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  781. int exception;
  782. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  783. if (exception) {
  784. /* FIXME: better handling */
  785. return X86EMUL_UNHANDLEABLE;
  786. }
  787. return X86EMUL_CONTINUE;
  788. }
  789. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  790. {
  791. static int reported;
  792. u8 opcodes[4];
  793. unsigned long rip = ctxt->vcpu->rip;
  794. unsigned long rip_linear;
  795. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  796. if (reported)
  797. return;
  798. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  799. printk(KERN_ERR "emulation failed but !mmio_needed?"
  800. " rip %lx %02x %02x %02x %02x\n",
  801. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  802. reported = 1;
  803. }
  804. struct x86_emulate_ops emulate_ops = {
  805. .read_std = emulator_read_std,
  806. .write_std = emulator_write_std,
  807. .read_emulated = emulator_read_emulated,
  808. .write_emulated = emulator_write_emulated,
  809. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  810. };
  811. int emulate_instruction(struct kvm_vcpu *vcpu,
  812. struct kvm_run *run,
  813. unsigned long cr2,
  814. u16 error_code)
  815. {
  816. struct x86_emulate_ctxt emulate_ctxt;
  817. int r;
  818. int cs_db, cs_l;
  819. kvm_arch_ops->cache_regs(vcpu);
  820. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  821. emulate_ctxt.vcpu = vcpu;
  822. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  823. emulate_ctxt.cr2 = cr2;
  824. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  825. ? X86EMUL_MODE_REAL : cs_l
  826. ? X86EMUL_MODE_PROT64 : cs_db
  827. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  828. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  829. emulate_ctxt.cs_base = 0;
  830. emulate_ctxt.ds_base = 0;
  831. emulate_ctxt.es_base = 0;
  832. emulate_ctxt.ss_base = 0;
  833. } else {
  834. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  835. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  836. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  837. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  838. }
  839. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  840. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  841. vcpu->mmio_is_write = 0;
  842. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  843. if ((r || vcpu->mmio_is_write) && run) {
  844. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  845. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  846. run->mmio.len = vcpu->mmio_size;
  847. run->mmio.is_write = vcpu->mmio_is_write;
  848. }
  849. if (r) {
  850. if (!vcpu->mmio_needed) {
  851. report_emulation_failure(&emulate_ctxt);
  852. return EMULATE_FAIL;
  853. }
  854. return EMULATE_DO_MMIO;
  855. }
  856. kvm_arch_ops->decache_regs(vcpu);
  857. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  858. if (vcpu->mmio_is_write)
  859. return EMULATE_DO_MMIO;
  860. return EMULATE_DONE;
  861. }
  862. EXPORT_SYMBOL_GPL(emulate_instruction);
  863. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  864. {
  865. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  866. }
  867. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  868. {
  869. struct descriptor_table dt = { limit, base };
  870. kvm_arch_ops->set_gdt(vcpu, &dt);
  871. }
  872. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  873. {
  874. struct descriptor_table dt = { limit, base };
  875. kvm_arch_ops->set_idt(vcpu, &dt);
  876. }
  877. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  878. unsigned long *rflags)
  879. {
  880. lmsw(vcpu, msw);
  881. *rflags = kvm_arch_ops->get_rflags(vcpu);
  882. }
  883. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  884. {
  885. switch (cr) {
  886. case 0:
  887. return vcpu->cr0;
  888. case 2:
  889. return vcpu->cr2;
  890. case 3:
  891. return vcpu->cr3;
  892. case 4:
  893. return vcpu->cr4;
  894. default:
  895. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  896. return 0;
  897. }
  898. }
  899. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  900. unsigned long *rflags)
  901. {
  902. switch (cr) {
  903. case 0:
  904. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  905. *rflags = kvm_arch_ops->get_rflags(vcpu);
  906. break;
  907. case 2:
  908. vcpu->cr2 = val;
  909. break;
  910. case 3:
  911. set_cr3(vcpu, val);
  912. break;
  913. case 4:
  914. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  915. break;
  916. default:
  917. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  918. }
  919. }
  920. /*
  921. * Reads an msr value (of 'msr_index') into 'pdata'.
  922. * Returns 0 on success, non-0 otherwise.
  923. * Assumes vcpu_load() was already called.
  924. */
  925. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  926. {
  927. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  928. }
  929. #ifdef CONFIG_X86_64
  930. void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  931. {
  932. if (efer & EFER_RESERVED_BITS) {
  933. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  934. efer);
  935. inject_gp(vcpu);
  936. return;
  937. }
  938. if (is_paging(vcpu)
  939. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  940. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  941. inject_gp(vcpu);
  942. return;
  943. }
  944. kvm_arch_ops->set_efer(vcpu, efer);
  945. efer &= ~EFER_LMA;
  946. efer |= vcpu->shadow_efer & EFER_LMA;
  947. vcpu->shadow_efer = efer;
  948. }
  949. EXPORT_SYMBOL_GPL(set_efer);
  950. #endif
  951. /*
  952. * Writes msr value into into the appropriate "register".
  953. * Returns 0 on success, non-0 otherwise.
  954. * Assumes vcpu_load() was already called.
  955. */
  956. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  957. {
  958. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  959. }
  960. void kvm_resched(struct kvm_vcpu *vcpu)
  961. {
  962. vcpu_put(vcpu);
  963. cond_resched();
  964. /* Cannot fail - no vcpu unplug yet. */
  965. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  966. }
  967. EXPORT_SYMBOL_GPL(kvm_resched);
  968. void load_msrs(struct vmx_msr_entry *e, int n)
  969. {
  970. int i;
  971. for (i = 0; i < n; ++i)
  972. wrmsrl(e[i].index, e[i].data);
  973. }
  974. EXPORT_SYMBOL_GPL(load_msrs);
  975. void save_msrs(struct vmx_msr_entry *e, int n)
  976. {
  977. int i;
  978. for (i = 0; i < n; ++i)
  979. rdmsrl(e[i].index, e[i].data);
  980. }
  981. EXPORT_SYMBOL_GPL(save_msrs);
  982. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  983. {
  984. struct kvm_vcpu *vcpu;
  985. int r;
  986. if (!valid_vcpu(kvm_run->vcpu))
  987. return -EINVAL;
  988. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  989. if (!vcpu)
  990. return -ENOENT;
  991. if (kvm_run->emulated) {
  992. kvm_arch_ops->skip_emulated_instruction(vcpu);
  993. kvm_run->emulated = 0;
  994. }
  995. if (kvm_run->mmio_completed) {
  996. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  997. vcpu->mmio_read_completed = 1;
  998. }
  999. vcpu->mmio_needed = 0;
  1000. r = kvm_arch_ops->run(vcpu, kvm_run);
  1001. vcpu_put(vcpu);
  1002. return r;
  1003. }
  1004. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1005. {
  1006. struct kvm_vcpu *vcpu;
  1007. if (!valid_vcpu(regs->vcpu))
  1008. return -EINVAL;
  1009. vcpu = vcpu_load(kvm, regs->vcpu);
  1010. if (!vcpu)
  1011. return -ENOENT;
  1012. kvm_arch_ops->cache_regs(vcpu);
  1013. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1014. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1015. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1016. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1017. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1018. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1019. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1020. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1021. #ifdef CONFIG_X86_64
  1022. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1023. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1024. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1025. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1026. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1027. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1028. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1029. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1030. #endif
  1031. regs->rip = vcpu->rip;
  1032. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1033. /*
  1034. * Don't leak debug flags in case they were set for guest debugging
  1035. */
  1036. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1037. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1038. vcpu_put(vcpu);
  1039. return 0;
  1040. }
  1041. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1042. {
  1043. struct kvm_vcpu *vcpu;
  1044. if (!valid_vcpu(regs->vcpu))
  1045. return -EINVAL;
  1046. vcpu = vcpu_load(kvm, regs->vcpu);
  1047. if (!vcpu)
  1048. return -ENOENT;
  1049. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1050. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1051. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1052. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1053. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1054. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1055. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1056. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1057. #ifdef CONFIG_X86_64
  1058. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1059. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1060. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1061. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1062. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1063. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1064. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1065. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1066. #endif
  1067. vcpu->rip = regs->rip;
  1068. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1069. kvm_arch_ops->decache_regs(vcpu);
  1070. vcpu_put(vcpu);
  1071. return 0;
  1072. }
  1073. static void get_segment(struct kvm_vcpu *vcpu,
  1074. struct kvm_segment *var, int seg)
  1075. {
  1076. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1077. }
  1078. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1079. {
  1080. struct kvm_vcpu *vcpu;
  1081. struct descriptor_table dt;
  1082. if (!valid_vcpu(sregs->vcpu))
  1083. return -EINVAL;
  1084. vcpu = vcpu_load(kvm, sregs->vcpu);
  1085. if (!vcpu)
  1086. return -ENOENT;
  1087. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1088. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1089. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1090. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1091. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1092. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1093. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1094. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1095. kvm_arch_ops->get_idt(vcpu, &dt);
  1096. sregs->idt.limit = dt.limit;
  1097. sregs->idt.base = dt.base;
  1098. kvm_arch_ops->get_gdt(vcpu, &dt);
  1099. sregs->gdt.limit = dt.limit;
  1100. sregs->gdt.base = dt.base;
  1101. sregs->cr0 = vcpu->cr0;
  1102. sregs->cr2 = vcpu->cr2;
  1103. sregs->cr3 = vcpu->cr3;
  1104. sregs->cr4 = vcpu->cr4;
  1105. sregs->cr8 = vcpu->cr8;
  1106. sregs->efer = vcpu->shadow_efer;
  1107. sregs->apic_base = vcpu->apic_base;
  1108. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1109. sizeof sregs->interrupt_bitmap);
  1110. vcpu_put(vcpu);
  1111. return 0;
  1112. }
  1113. static void set_segment(struct kvm_vcpu *vcpu,
  1114. struct kvm_segment *var, int seg)
  1115. {
  1116. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1117. }
  1118. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1119. {
  1120. struct kvm_vcpu *vcpu;
  1121. int mmu_reset_needed = 0;
  1122. int i;
  1123. struct descriptor_table dt;
  1124. if (!valid_vcpu(sregs->vcpu))
  1125. return -EINVAL;
  1126. vcpu = vcpu_load(kvm, sregs->vcpu);
  1127. if (!vcpu)
  1128. return -ENOENT;
  1129. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1130. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1131. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1132. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1133. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1134. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1135. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1136. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1137. dt.limit = sregs->idt.limit;
  1138. dt.base = sregs->idt.base;
  1139. kvm_arch_ops->set_idt(vcpu, &dt);
  1140. dt.limit = sregs->gdt.limit;
  1141. dt.base = sregs->gdt.base;
  1142. kvm_arch_ops->set_gdt(vcpu, &dt);
  1143. vcpu->cr2 = sregs->cr2;
  1144. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1145. vcpu->cr3 = sregs->cr3;
  1146. vcpu->cr8 = sregs->cr8;
  1147. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1148. #ifdef CONFIG_X86_64
  1149. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1150. #endif
  1151. vcpu->apic_base = sregs->apic_base;
  1152. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1153. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1154. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1155. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1156. if (mmu_reset_needed)
  1157. kvm_mmu_reset_context(vcpu);
  1158. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1159. sizeof vcpu->irq_pending);
  1160. vcpu->irq_summary = 0;
  1161. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1162. if (vcpu->irq_pending[i])
  1163. __set_bit(i, &vcpu->irq_summary);
  1164. vcpu_put(vcpu);
  1165. return 0;
  1166. }
  1167. /*
  1168. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1169. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1170. *
  1171. * This list is modified at module load time to reflect the
  1172. * capabilities of the host cpu.
  1173. */
  1174. static u32 msrs_to_save[] = {
  1175. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1176. MSR_K6_STAR,
  1177. #ifdef CONFIG_X86_64
  1178. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1179. #endif
  1180. MSR_IA32_TIME_STAMP_COUNTER,
  1181. };
  1182. static unsigned num_msrs_to_save;
  1183. static __init void kvm_init_msr_list(void)
  1184. {
  1185. u32 dummy[2];
  1186. unsigned i, j;
  1187. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1188. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1189. continue;
  1190. if (j < i)
  1191. msrs_to_save[j] = msrs_to_save[i];
  1192. j++;
  1193. }
  1194. num_msrs_to_save = j;
  1195. }
  1196. /*
  1197. * Adapt set_msr() to msr_io()'s calling convention
  1198. */
  1199. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1200. {
  1201. return set_msr(vcpu, index, *data);
  1202. }
  1203. /*
  1204. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1205. *
  1206. * @return number of msrs set successfully.
  1207. */
  1208. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1209. struct kvm_msr_entry *entries,
  1210. int (*do_msr)(struct kvm_vcpu *vcpu,
  1211. unsigned index, u64 *data))
  1212. {
  1213. struct kvm_vcpu *vcpu;
  1214. int i;
  1215. if (!valid_vcpu(msrs->vcpu))
  1216. return -EINVAL;
  1217. vcpu = vcpu_load(kvm, msrs->vcpu);
  1218. if (!vcpu)
  1219. return -ENOENT;
  1220. for (i = 0; i < msrs->nmsrs; ++i)
  1221. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1222. break;
  1223. vcpu_put(vcpu);
  1224. return i;
  1225. }
  1226. /*
  1227. * Read or write a bunch of msrs. Parameters are user addresses.
  1228. *
  1229. * @return number of msrs set successfully.
  1230. */
  1231. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1232. int (*do_msr)(struct kvm_vcpu *vcpu,
  1233. unsigned index, u64 *data),
  1234. int writeback)
  1235. {
  1236. struct kvm_msrs msrs;
  1237. struct kvm_msr_entry *entries;
  1238. int r, n;
  1239. unsigned size;
  1240. r = -EFAULT;
  1241. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1242. goto out;
  1243. r = -E2BIG;
  1244. if (msrs.nmsrs >= MAX_IO_MSRS)
  1245. goto out;
  1246. r = -ENOMEM;
  1247. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1248. entries = vmalloc(size);
  1249. if (!entries)
  1250. goto out;
  1251. r = -EFAULT;
  1252. if (copy_from_user(entries, user_msrs->entries, size))
  1253. goto out_free;
  1254. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1255. if (r < 0)
  1256. goto out_free;
  1257. r = -EFAULT;
  1258. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1259. goto out_free;
  1260. r = n;
  1261. out_free:
  1262. vfree(entries);
  1263. out:
  1264. return r;
  1265. }
  1266. /*
  1267. * Translate a guest virtual address to a guest physical address.
  1268. */
  1269. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1270. {
  1271. unsigned long vaddr = tr->linear_address;
  1272. struct kvm_vcpu *vcpu;
  1273. gpa_t gpa;
  1274. vcpu = vcpu_load(kvm, tr->vcpu);
  1275. if (!vcpu)
  1276. return -ENOENT;
  1277. spin_lock(&kvm->lock);
  1278. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1279. tr->physical_address = gpa;
  1280. tr->valid = gpa != UNMAPPED_GVA;
  1281. tr->writeable = 1;
  1282. tr->usermode = 0;
  1283. spin_unlock(&kvm->lock);
  1284. vcpu_put(vcpu);
  1285. return 0;
  1286. }
  1287. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1288. {
  1289. struct kvm_vcpu *vcpu;
  1290. if (!valid_vcpu(irq->vcpu))
  1291. return -EINVAL;
  1292. if (irq->irq < 0 || irq->irq >= 256)
  1293. return -EINVAL;
  1294. vcpu = vcpu_load(kvm, irq->vcpu);
  1295. if (!vcpu)
  1296. return -ENOENT;
  1297. set_bit(irq->irq, vcpu->irq_pending);
  1298. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1299. vcpu_put(vcpu);
  1300. return 0;
  1301. }
  1302. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1303. struct kvm_debug_guest *dbg)
  1304. {
  1305. struct kvm_vcpu *vcpu;
  1306. int r;
  1307. if (!valid_vcpu(dbg->vcpu))
  1308. return -EINVAL;
  1309. vcpu = vcpu_load(kvm, dbg->vcpu);
  1310. if (!vcpu)
  1311. return -ENOENT;
  1312. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1313. vcpu_put(vcpu);
  1314. return r;
  1315. }
  1316. static long kvm_dev_ioctl(struct file *filp,
  1317. unsigned int ioctl, unsigned long arg)
  1318. {
  1319. struct kvm *kvm = filp->private_data;
  1320. int r = -EINVAL;
  1321. switch (ioctl) {
  1322. case KVM_GET_API_VERSION:
  1323. r = KVM_API_VERSION;
  1324. break;
  1325. case KVM_CREATE_VCPU: {
  1326. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1327. if (r)
  1328. goto out;
  1329. break;
  1330. }
  1331. case KVM_RUN: {
  1332. struct kvm_run kvm_run;
  1333. r = -EFAULT;
  1334. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1335. goto out;
  1336. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1337. if (r < 0)
  1338. goto out;
  1339. r = -EFAULT;
  1340. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
  1341. goto out;
  1342. r = 0;
  1343. break;
  1344. }
  1345. case KVM_GET_REGS: {
  1346. struct kvm_regs kvm_regs;
  1347. r = -EFAULT;
  1348. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1349. goto out;
  1350. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1351. if (r)
  1352. goto out;
  1353. r = -EFAULT;
  1354. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1355. goto out;
  1356. r = 0;
  1357. break;
  1358. }
  1359. case KVM_SET_REGS: {
  1360. struct kvm_regs kvm_regs;
  1361. r = -EFAULT;
  1362. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1363. goto out;
  1364. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1365. if (r)
  1366. goto out;
  1367. r = 0;
  1368. break;
  1369. }
  1370. case KVM_GET_SREGS: {
  1371. struct kvm_sregs kvm_sregs;
  1372. r = -EFAULT;
  1373. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1374. goto out;
  1375. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1376. if (r)
  1377. goto out;
  1378. r = -EFAULT;
  1379. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1380. goto out;
  1381. r = 0;
  1382. break;
  1383. }
  1384. case KVM_SET_SREGS: {
  1385. struct kvm_sregs kvm_sregs;
  1386. r = -EFAULT;
  1387. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1388. goto out;
  1389. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1390. if (r)
  1391. goto out;
  1392. r = 0;
  1393. break;
  1394. }
  1395. case KVM_TRANSLATE: {
  1396. struct kvm_translation tr;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1399. goto out;
  1400. r = kvm_dev_ioctl_translate(kvm, &tr);
  1401. if (r)
  1402. goto out;
  1403. r = -EFAULT;
  1404. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1405. goto out;
  1406. r = 0;
  1407. break;
  1408. }
  1409. case KVM_INTERRUPT: {
  1410. struct kvm_interrupt irq;
  1411. r = -EFAULT;
  1412. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1413. goto out;
  1414. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1415. if (r)
  1416. goto out;
  1417. r = 0;
  1418. break;
  1419. }
  1420. case KVM_DEBUG_GUEST: {
  1421. struct kvm_debug_guest dbg;
  1422. r = -EFAULT;
  1423. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1424. goto out;
  1425. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1426. if (r)
  1427. goto out;
  1428. r = 0;
  1429. break;
  1430. }
  1431. case KVM_SET_MEMORY_REGION: {
  1432. struct kvm_memory_region kvm_mem;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1435. goto out;
  1436. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1437. if (r)
  1438. goto out;
  1439. break;
  1440. }
  1441. case KVM_GET_DIRTY_LOG: {
  1442. struct kvm_dirty_log log;
  1443. r = -EFAULT;
  1444. if (copy_from_user(&log, (void *)arg, sizeof log))
  1445. goto out;
  1446. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1447. if (r)
  1448. goto out;
  1449. break;
  1450. }
  1451. case KVM_GET_MSRS:
  1452. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1453. break;
  1454. case KVM_SET_MSRS:
  1455. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1456. break;
  1457. case KVM_GET_MSR_INDEX_LIST: {
  1458. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1459. struct kvm_msr_list msr_list;
  1460. unsigned n;
  1461. r = -EFAULT;
  1462. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1463. goto out;
  1464. n = msr_list.nmsrs;
  1465. msr_list.nmsrs = num_msrs_to_save;
  1466. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1467. goto out;
  1468. r = -E2BIG;
  1469. if (n < num_msrs_to_save)
  1470. goto out;
  1471. r = -EFAULT;
  1472. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1473. num_msrs_to_save * sizeof(u32)))
  1474. goto out;
  1475. r = 0;
  1476. }
  1477. default:
  1478. ;
  1479. }
  1480. out:
  1481. return r;
  1482. }
  1483. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1484. unsigned long address,
  1485. int *type)
  1486. {
  1487. struct kvm *kvm = vma->vm_file->private_data;
  1488. unsigned long pgoff;
  1489. struct kvm_memory_slot *slot;
  1490. struct page *page;
  1491. *type = VM_FAULT_MINOR;
  1492. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1493. slot = gfn_to_memslot(kvm, pgoff);
  1494. if (!slot)
  1495. return NOPAGE_SIGBUS;
  1496. page = gfn_to_page(slot, pgoff);
  1497. if (!page)
  1498. return NOPAGE_SIGBUS;
  1499. get_page(page);
  1500. return page;
  1501. }
  1502. static struct vm_operations_struct kvm_dev_vm_ops = {
  1503. .nopage = kvm_dev_nopage,
  1504. };
  1505. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1506. {
  1507. vma->vm_ops = &kvm_dev_vm_ops;
  1508. return 0;
  1509. }
  1510. static struct file_operations kvm_chardev_ops = {
  1511. .open = kvm_dev_open,
  1512. .release = kvm_dev_release,
  1513. .unlocked_ioctl = kvm_dev_ioctl,
  1514. .compat_ioctl = kvm_dev_ioctl,
  1515. .mmap = kvm_dev_mmap,
  1516. };
  1517. static struct miscdevice kvm_dev = {
  1518. MISC_DYNAMIC_MINOR,
  1519. "kvm",
  1520. &kvm_chardev_ops,
  1521. };
  1522. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1523. void *v)
  1524. {
  1525. if (val == SYS_RESTART) {
  1526. /*
  1527. * Some (well, at least mine) BIOSes hang on reboot if
  1528. * in vmx root mode.
  1529. */
  1530. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1531. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1532. }
  1533. return NOTIFY_OK;
  1534. }
  1535. static struct notifier_block kvm_reboot_notifier = {
  1536. .notifier_call = kvm_reboot,
  1537. .priority = 0,
  1538. };
  1539. static __init void kvm_init_debug(void)
  1540. {
  1541. struct kvm_stats_debugfs_item *p;
  1542. debugfs_dir = debugfs_create_dir("kvm", 0);
  1543. for (p = debugfs_entries; p->name; ++p)
  1544. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1545. p->data);
  1546. }
  1547. static void kvm_exit_debug(void)
  1548. {
  1549. struct kvm_stats_debugfs_item *p;
  1550. for (p = debugfs_entries; p->name; ++p)
  1551. debugfs_remove(p->dentry);
  1552. debugfs_remove(debugfs_dir);
  1553. }
  1554. hpa_t bad_page_address;
  1555. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1556. {
  1557. int r;
  1558. kvm_arch_ops = ops;
  1559. if (!kvm_arch_ops->cpu_has_kvm_support()) {
  1560. printk(KERN_ERR "kvm: no hardware support\n");
  1561. return -EOPNOTSUPP;
  1562. }
  1563. if (kvm_arch_ops->disabled_by_bios()) {
  1564. printk(KERN_ERR "kvm: disabled by bios\n");
  1565. return -EOPNOTSUPP;
  1566. }
  1567. r = kvm_arch_ops->hardware_setup();
  1568. if (r < 0)
  1569. return r;
  1570. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1571. register_reboot_notifier(&kvm_reboot_notifier);
  1572. kvm_chardev_ops.owner = module;
  1573. r = misc_register(&kvm_dev);
  1574. if (r) {
  1575. printk (KERN_ERR "kvm: misc device register failed\n");
  1576. goto out_free;
  1577. }
  1578. return r;
  1579. out_free:
  1580. unregister_reboot_notifier(&kvm_reboot_notifier);
  1581. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1582. kvm_arch_ops->hardware_unsetup();
  1583. return r;
  1584. }
  1585. void kvm_exit_arch(void)
  1586. {
  1587. misc_deregister(&kvm_dev);
  1588. unregister_reboot_notifier(&kvm_reboot_notifier);
  1589. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1590. kvm_arch_ops->hardware_unsetup();
  1591. }
  1592. static __init int kvm_init(void)
  1593. {
  1594. static struct page *bad_page;
  1595. int r = 0;
  1596. kvm_init_debug();
  1597. kvm_init_msr_list();
  1598. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1599. r = -ENOMEM;
  1600. goto out;
  1601. }
  1602. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1603. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1604. return r;
  1605. out:
  1606. kvm_exit_debug();
  1607. return r;
  1608. }
  1609. static __exit void kvm_exit(void)
  1610. {
  1611. kvm_exit_debug();
  1612. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1613. }
  1614. module_init(kvm_init)
  1615. module_exit(kvm_exit)
  1616. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1617. EXPORT_SYMBOL_GPL(kvm_exit_arch);