input.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. #include "input-compat.h"
  26. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  27. MODULE_DESCRIPTION("Input core");
  28. MODULE_LICENSE("GPL");
  29. #define INPUT_DEVICES 256
  30. /*
  31. * EV_ABS events which should not be cached are listed here.
  32. */
  33. static unsigned int input_abs_bypass_init_data[] __initdata = {
  34. ABS_MT_TOUCH_MAJOR,
  35. ABS_MT_TOUCH_MINOR,
  36. ABS_MT_WIDTH_MAJOR,
  37. ABS_MT_WIDTH_MINOR,
  38. ABS_MT_ORIENTATION,
  39. ABS_MT_POSITION_X,
  40. ABS_MT_POSITION_Y,
  41. ABS_MT_TOOL_TYPE,
  42. ABS_MT_BLOB_ID,
  43. ABS_MT_TRACKING_ID,
  44. 0
  45. };
  46. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  47. static LIST_HEAD(input_dev_list);
  48. static LIST_HEAD(input_handler_list);
  49. /*
  50. * input_mutex protects access to both input_dev_list and input_handler_list.
  51. * This also causes input_[un]register_device and input_[un]register_handler
  52. * be mutually exclusive which simplifies locking in drivers implementing
  53. * input handlers.
  54. */
  55. static DEFINE_MUTEX(input_mutex);
  56. static struct input_handler *input_table[8];
  57. static inline int is_event_supported(unsigned int code,
  58. unsigned long *bm, unsigned int max)
  59. {
  60. return code <= max && test_bit(code, bm);
  61. }
  62. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  63. {
  64. if (fuzz) {
  65. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  66. return old_val;
  67. if (value > old_val - fuzz && value < old_val + fuzz)
  68. return (old_val * 3 + value) / 4;
  69. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  70. return (old_val + value) / 2;
  71. }
  72. return value;
  73. }
  74. /*
  75. * Pass event first through all filters and then, if event has not been
  76. * filtered out, through all open handles. This function is called with
  77. * dev->event_lock held and interrupts disabled.
  78. */
  79. static void input_pass_event(struct input_dev *dev,
  80. unsigned int type, unsigned int code, int value)
  81. {
  82. struct input_handler *handler;
  83. struct input_handle *handle;
  84. rcu_read_lock();
  85. handle = rcu_dereference(dev->grab);
  86. if (handle)
  87. handle->handler->event(handle, type, code, value);
  88. else {
  89. bool filtered = false;
  90. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  91. if (!handle->open)
  92. continue;
  93. handler = handle->handler;
  94. if (!handler->filter) {
  95. if (filtered)
  96. break;
  97. handler->event(handle, type, code, value);
  98. } else if (handler->filter(handle, type, code, value))
  99. filtered = true;
  100. }
  101. }
  102. rcu_read_unlock();
  103. }
  104. /*
  105. * Generate software autorepeat event. Note that we take
  106. * dev->event_lock here to avoid racing with input_event
  107. * which may cause keys get "stuck".
  108. */
  109. static void input_repeat_key(unsigned long data)
  110. {
  111. struct input_dev *dev = (void *) data;
  112. unsigned long flags;
  113. spin_lock_irqsave(&dev->event_lock, flags);
  114. if (test_bit(dev->repeat_key, dev->key) &&
  115. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  116. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  117. if (dev->sync) {
  118. /*
  119. * Only send SYN_REPORT if we are not in a middle
  120. * of driver parsing a new hardware packet.
  121. * Otherwise assume that the driver will send
  122. * SYN_REPORT once it's done.
  123. */
  124. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  125. }
  126. if (dev->rep[REP_PERIOD])
  127. mod_timer(&dev->timer, jiffies +
  128. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  129. }
  130. spin_unlock_irqrestore(&dev->event_lock, flags);
  131. }
  132. static void input_start_autorepeat(struct input_dev *dev, int code)
  133. {
  134. if (test_bit(EV_REP, dev->evbit) &&
  135. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  136. dev->timer.data) {
  137. dev->repeat_key = code;
  138. mod_timer(&dev->timer,
  139. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  140. }
  141. }
  142. static void input_stop_autorepeat(struct input_dev *dev)
  143. {
  144. del_timer(&dev->timer);
  145. }
  146. #define INPUT_IGNORE_EVENT 0
  147. #define INPUT_PASS_TO_HANDLERS 1
  148. #define INPUT_PASS_TO_DEVICE 2
  149. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  150. static void input_handle_event(struct input_dev *dev,
  151. unsigned int type, unsigned int code, int value)
  152. {
  153. int disposition = INPUT_IGNORE_EVENT;
  154. switch (type) {
  155. case EV_SYN:
  156. switch (code) {
  157. case SYN_CONFIG:
  158. disposition = INPUT_PASS_TO_ALL;
  159. break;
  160. case SYN_REPORT:
  161. if (!dev->sync) {
  162. dev->sync = 1;
  163. disposition = INPUT_PASS_TO_HANDLERS;
  164. }
  165. break;
  166. case SYN_MT_REPORT:
  167. dev->sync = 0;
  168. disposition = INPUT_PASS_TO_HANDLERS;
  169. break;
  170. }
  171. break;
  172. case EV_KEY:
  173. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  174. !!test_bit(code, dev->key) != value) {
  175. if (value != 2) {
  176. __change_bit(code, dev->key);
  177. if (value)
  178. input_start_autorepeat(dev, code);
  179. else
  180. input_stop_autorepeat(dev);
  181. }
  182. disposition = INPUT_PASS_TO_HANDLERS;
  183. }
  184. break;
  185. case EV_SW:
  186. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  187. !!test_bit(code, dev->sw) != value) {
  188. __change_bit(code, dev->sw);
  189. disposition = INPUT_PASS_TO_HANDLERS;
  190. }
  191. break;
  192. case EV_ABS:
  193. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  194. if (test_bit(code, input_abs_bypass)) {
  195. disposition = INPUT_PASS_TO_HANDLERS;
  196. break;
  197. }
  198. value = input_defuzz_abs_event(value,
  199. dev->abs[code], dev->absfuzz[code]);
  200. if (dev->abs[code] != value) {
  201. dev->abs[code] = value;
  202. disposition = INPUT_PASS_TO_HANDLERS;
  203. }
  204. }
  205. break;
  206. case EV_REL:
  207. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  208. disposition = INPUT_PASS_TO_HANDLERS;
  209. break;
  210. case EV_MSC:
  211. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  212. disposition = INPUT_PASS_TO_ALL;
  213. break;
  214. case EV_LED:
  215. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  216. !!test_bit(code, dev->led) != value) {
  217. __change_bit(code, dev->led);
  218. disposition = INPUT_PASS_TO_ALL;
  219. }
  220. break;
  221. case EV_SND:
  222. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  223. if (!!test_bit(code, dev->snd) != !!value)
  224. __change_bit(code, dev->snd);
  225. disposition = INPUT_PASS_TO_ALL;
  226. }
  227. break;
  228. case EV_REP:
  229. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  230. dev->rep[code] = value;
  231. disposition = INPUT_PASS_TO_ALL;
  232. }
  233. break;
  234. case EV_FF:
  235. if (value >= 0)
  236. disposition = INPUT_PASS_TO_ALL;
  237. break;
  238. case EV_PWR:
  239. disposition = INPUT_PASS_TO_ALL;
  240. break;
  241. }
  242. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  243. dev->sync = 0;
  244. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  245. dev->event(dev, type, code, value);
  246. if (disposition & INPUT_PASS_TO_HANDLERS)
  247. input_pass_event(dev, type, code, value);
  248. }
  249. /**
  250. * input_event() - report new input event
  251. * @dev: device that generated the event
  252. * @type: type of the event
  253. * @code: event code
  254. * @value: value of the event
  255. *
  256. * This function should be used by drivers implementing various input
  257. * devices to report input events. See also input_inject_event().
  258. *
  259. * NOTE: input_event() may be safely used right after input device was
  260. * allocated with input_allocate_device(), even before it is registered
  261. * with input_register_device(), but the event will not reach any of the
  262. * input handlers. Such early invocation of input_event() may be used
  263. * to 'seed' initial state of a switch or initial position of absolute
  264. * axis, etc.
  265. */
  266. void input_event(struct input_dev *dev,
  267. unsigned int type, unsigned int code, int value)
  268. {
  269. unsigned long flags;
  270. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  271. spin_lock_irqsave(&dev->event_lock, flags);
  272. add_input_randomness(type, code, value);
  273. input_handle_event(dev, type, code, value);
  274. spin_unlock_irqrestore(&dev->event_lock, flags);
  275. }
  276. }
  277. EXPORT_SYMBOL(input_event);
  278. /**
  279. * input_inject_event() - send input event from input handler
  280. * @handle: input handle to send event through
  281. * @type: type of the event
  282. * @code: event code
  283. * @value: value of the event
  284. *
  285. * Similar to input_event() but will ignore event if device is
  286. * "grabbed" and handle injecting event is not the one that owns
  287. * the device.
  288. */
  289. void input_inject_event(struct input_handle *handle,
  290. unsigned int type, unsigned int code, int value)
  291. {
  292. struct input_dev *dev = handle->dev;
  293. struct input_handle *grab;
  294. unsigned long flags;
  295. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  296. spin_lock_irqsave(&dev->event_lock, flags);
  297. rcu_read_lock();
  298. grab = rcu_dereference(dev->grab);
  299. if (!grab || grab == handle)
  300. input_handle_event(dev, type, code, value);
  301. rcu_read_unlock();
  302. spin_unlock_irqrestore(&dev->event_lock, flags);
  303. }
  304. }
  305. EXPORT_SYMBOL(input_inject_event);
  306. /**
  307. * input_grab_device - grabs device for exclusive use
  308. * @handle: input handle that wants to own the device
  309. *
  310. * When a device is grabbed by an input handle all events generated by
  311. * the device are delivered only to this handle. Also events injected
  312. * by other input handles are ignored while device is grabbed.
  313. */
  314. int input_grab_device(struct input_handle *handle)
  315. {
  316. struct input_dev *dev = handle->dev;
  317. int retval;
  318. retval = mutex_lock_interruptible(&dev->mutex);
  319. if (retval)
  320. return retval;
  321. if (dev->grab) {
  322. retval = -EBUSY;
  323. goto out;
  324. }
  325. rcu_assign_pointer(dev->grab, handle);
  326. synchronize_rcu();
  327. out:
  328. mutex_unlock(&dev->mutex);
  329. return retval;
  330. }
  331. EXPORT_SYMBOL(input_grab_device);
  332. static void __input_release_device(struct input_handle *handle)
  333. {
  334. struct input_dev *dev = handle->dev;
  335. if (dev->grab == handle) {
  336. rcu_assign_pointer(dev->grab, NULL);
  337. /* Make sure input_pass_event() notices that grab is gone */
  338. synchronize_rcu();
  339. list_for_each_entry(handle, &dev->h_list, d_node)
  340. if (handle->open && handle->handler->start)
  341. handle->handler->start(handle);
  342. }
  343. }
  344. /**
  345. * input_release_device - release previously grabbed device
  346. * @handle: input handle that owns the device
  347. *
  348. * Releases previously grabbed device so that other input handles can
  349. * start receiving input events. Upon release all handlers attached
  350. * to the device have their start() method called so they have a change
  351. * to synchronize device state with the rest of the system.
  352. */
  353. void input_release_device(struct input_handle *handle)
  354. {
  355. struct input_dev *dev = handle->dev;
  356. mutex_lock(&dev->mutex);
  357. __input_release_device(handle);
  358. mutex_unlock(&dev->mutex);
  359. }
  360. EXPORT_SYMBOL(input_release_device);
  361. /**
  362. * input_open_device - open input device
  363. * @handle: handle through which device is being accessed
  364. *
  365. * This function should be called by input handlers when they
  366. * want to start receive events from given input device.
  367. */
  368. int input_open_device(struct input_handle *handle)
  369. {
  370. struct input_dev *dev = handle->dev;
  371. int retval;
  372. retval = mutex_lock_interruptible(&dev->mutex);
  373. if (retval)
  374. return retval;
  375. if (dev->going_away) {
  376. retval = -ENODEV;
  377. goto out;
  378. }
  379. handle->open++;
  380. if (!dev->users++ && dev->open)
  381. retval = dev->open(dev);
  382. if (retval) {
  383. dev->users--;
  384. if (!--handle->open) {
  385. /*
  386. * Make sure we are not delivering any more events
  387. * through this handle
  388. */
  389. synchronize_rcu();
  390. }
  391. }
  392. out:
  393. mutex_unlock(&dev->mutex);
  394. return retval;
  395. }
  396. EXPORT_SYMBOL(input_open_device);
  397. int input_flush_device(struct input_handle *handle, struct file *file)
  398. {
  399. struct input_dev *dev = handle->dev;
  400. int retval;
  401. retval = mutex_lock_interruptible(&dev->mutex);
  402. if (retval)
  403. return retval;
  404. if (dev->flush)
  405. retval = dev->flush(dev, file);
  406. mutex_unlock(&dev->mutex);
  407. return retval;
  408. }
  409. EXPORT_SYMBOL(input_flush_device);
  410. /**
  411. * input_close_device - close input device
  412. * @handle: handle through which device is being accessed
  413. *
  414. * This function should be called by input handlers when they
  415. * want to stop receive events from given input device.
  416. */
  417. void input_close_device(struct input_handle *handle)
  418. {
  419. struct input_dev *dev = handle->dev;
  420. mutex_lock(&dev->mutex);
  421. __input_release_device(handle);
  422. if (!--dev->users && dev->close)
  423. dev->close(dev);
  424. if (!--handle->open) {
  425. /*
  426. * synchronize_rcu() makes sure that input_pass_event()
  427. * completed and that no more input events are delivered
  428. * through this handle
  429. */
  430. synchronize_rcu();
  431. }
  432. mutex_unlock(&dev->mutex);
  433. }
  434. EXPORT_SYMBOL(input_close_device);
  435. /*
  436. * Prepare device for unregistering
  437. */
  438. static void input_disconnect_device(struct input_dev *dev)
  439. {
  440. struct input_handle *handle;
  441. int code;
  442. /*
  443. * Mark device as going away. Note that we take dev->mutex here
  444. * not to protect access to dev->going_away but rather to ensure
  445. * that there are no threads in the middle of input_open_device()
  446. */
  447. mutex_lock(&dev->mutex);
  448. dev->going_away = true;
  449. mutex_unlock(&dev->mutex);
  450. spin_lock_irq(&dev->event_lock);
  451. /*
  452. * Simulate keyup events for all pressed keys so that handlers
  453. * are not left with "stuck" keys. The driver may continue
  454. * generate events even after we done here but they will not
  455. * reach any handlers.
  456. */
  457. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  458. for (code = 0; code <= KEY_MAX; code++) {
  459. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  460. __test_and_clear_bit(code, dev->key)) {
  461. input_pass_event(dev, EV_KEY, code, 0);
  462. }
  463. }
  464. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  465. }
  466. list_for_each_entry(handle, &dev->h_list, d_node)
  467. handle->open = 0;
  468. spin_unlock_irq(&dev->event_lock);
  469. }
  470. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  471. {
  472. switch (dev->keycodesize) {
  473. case 1:
  474. return ((u8 *)dev->keycode)[scancode];
  475. case 2:
  476. return ((u16 *)dev->keycode)[scancode];
  477. default:
  478. return ((u32 *)dev->keycode)[scancode];
  479. }
  480. }
  481. static int input_default_getkeycode(struct input_dev *dev,
  482. int scancode, int *keycode)
  483. {
  484. if (!dev->keycodesize)
  485. return -EINVAL;
  486. if (scancode >= dev->keycodemax)
  487. return -EINVAL;
  488. *keycode = input_fetch_keycode(dev, scancode);
  489. return 0;
  490. }
  491. static int input_default_setkeycode(struct input_dev *dev,
  492. int scancode, int keycode)
  493. {
  494. int old_keycode;
  495. int i;
  496. if (scancode >= dev->keycodemax)
  497. return -EINVAL;
  498. if (!dev->keycodesize)
  499. return -EINVAL;
  500. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  501. return -EINVAL;
  502. switch (dev->keycodesize) {
  503. case 1: {
  504. u8 *k = (u8 *)dev->keycode;
  505. old_keycode = k[scancode];
  506. k[scancode] = keycode;
  507. break;
  508. }
  509. case 2: {
  510. u16 *k = (u16 *)dev->keycode;
  511. old_keycode = k[scancode];
  512. k[scancode] = keycode;
  513. break;
  514. }
  515. default: {
  516. u32 *k = (u32 *)dev->keycode;
  517. old_keycode = k[scancode];
  518. k[scancode] = keycode;
  519. break;
  520. }
  521. }
  522. __clear_bit(old_keycode, dev->keybit);
  523. __set_bit(keycode, dev->keybit);
  524. for (i = 0; i < dev->keycodemax; i++) {
  525. if (input_fetch_keycode(dev, i) == old_keycode) {
  526. __set_bit(old_keycode, dev->keybit);
  527. break; /* Setting the bit twice is useless, so break */
  528. }
  529. }
  530. return 0;
  531. }
  532. /**
  533. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  534. * @dev: input device which keymap is being queried
  535. * @scancode: scancode (or its equivalent for device in question) for which
  536. * keycode is needed
  537. * @keycode: result
  538. *
  539. * This function should be called by anyone interested in retrieving current
  540. * keymap. Presently keyboard and evdev handlers use it.
  541. */
  542. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  543. {
  544. if (scancode < 0)
  545. return -EINVAL;
  546. return dev->getkeycode(dev, scancode, keycode);
  547. }
  548. EXPORT_SYMBOL(input_get_keycode);
  549. /**
  550. * input_get_keycode - assign new keycode to a given scancode
  551. * @dev: input device which keymap is being updated
  552. * @scancode: scancode (or its equivalent for device in question)
  553. * @keycode: new keycode to be assigned to the scancode
  554. *
  555. * This function should be called by anyone needing to update current
  556. * keymap. Presently keyboard and evdev handlers use it.
  557. */
  558. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  559. {
  560. unsigned long flags;
  561. int old_keycode;
  562. int retval;
  563. if (scancode < 0)
  564. return -EINVAL;
  565. if (keycode < 0 || keycode > KEY_MAX)
  566. return -EINVAL;
  567. spin_lock_irqsave(&dev->event_lock, flags);
  568. retval = dev->getkeycode(dev, scancode, &old_keycode);
  569. if (retval)
  570. goto out;
  571. retval = dev->setkeycode(dev, scancode, keycode);
  572. if (retval)
  573. goto out;
  574. /* Make sure KEY_RESERVED did not get enabled. */
  575. __clear_bit(KEY_RESERVED, dev->keybit);
  576. /*
  577. * Simulate keyup event if keycode is not present
  578. * in the keymap anymore
  579. */
  580. if (test_bit(EV_KEY, dev->evbit) &&
  581. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  582. __test_and_clear_bit(old_keycode, dev->key)) {
  583. input_pass_event(dev, EV_KEY, old_keycode, 0);
  584. if (dev->sync)
  585. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  586. }
  587. out:
  588. spin_unlock_irqrestore(&dev->event_lock, flags);
  589. return retval;
  590. }
  591. EXPORT_SYMBOL(input_set_keycode);
  592. #define MATCH_BIT(bit, max) \
  593. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  594. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  595. break; \
  596. if (i != BITS_TO_LONGS(max)) \
  597. continue;
  598. static const struct input_device_id *input_match_device(struct input_handler *handler,
  599. struct input_dev *dev)
  600. {
  601. const struct input_device_id *id;
  602. int i;
  603. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  604. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  605. if (id->bustype != dev->id.bustype)
  606. continue;
  607. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  608. if (id->vendor != dev->id.vendor)
  609. continue;
  610. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  611. if (id->product != dev->id.product)
  612. continue;
  613. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  614. if (id->version != dev->id.version)
  615. continue;
  616. MATCH_BIT(evbit, EV_MAX);
  617. MATCH_BIT(keybit, KEY_MAX);
  618. MATCH_BIT(relbit, REL_MAX);
  619. MATCH_BIT(absbit, ABS_MAX);
  620. MATCH_BIT(mscbit, MSC_MAX);
  621. MATCH_BIT(ledbit, LED_MAX);
  622. MATCH_BIT(sndbit, SND_MAX);
  623. MATCH_BIT(ffbit, FF_MAX);
  624. MATCH_BIT(swbit, SW_MAX);
  625. if (!handler->match || handler->match(handler, dev))
  626. return id;
  627. }
  628. return NULL;
  629. }
  630. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  631. {
  632. const struct input_device_id *id;
  633. int error;
  634. id = input_match_device(handler, dev);
  635. if (!id)
  636. return -ENODEV;
  637. error = handler->connect(handler, dev, id);
  638. if (error && error != -ENODEV)
  639. printk(KERN_ERR
  640. "input: failed to attach handler %s to device %s, "
  641. "error: %d\n",
  642. handler->name, kobject_name(&dev->dev.kobj), error);
  643. return error;
  644. }
  645. #ifdef CONFIG_COMPAT
  646. static int input_bits_to_string(char *buf, int buf_size,
  647. unsigned long bits, bool skip_empty)
  648. {
  649. int len = 0;
  650. if (INPUT_COMPAT_TEST) {
  651. u32 dword = bits >> 32;
  652. if (dword || !skip_empty)
  653. len += snprintf(buf, buf_size, "%x ", dword);
  654. dword = bits & 0xffffffffUL;
  655. if (dword || !skip_empty || len)
  656. len += snprintf(buf + len, max(buf_size - len, 0),
  657. "%x", dword);
  658. } else {
  659. if (bits || !skip_empty)
  660. len += snprintf(buf, buf_size, "%lx", bits);
  661. }
  662. return len;
  663. }
  664. #else /* !CONFIG_COMPAT */
  665. static int input_bits_to_string(char *buf, int buf_size,
  666. unsigned long bits, bool skip_empty)
  667. {
  668. return bits || !skip_empty ?
  669. snprintf(buf, buf_size, "%lx", bits) : 0;
  670. }
  671. #endif
  672. #ifdef CONFIG_PROC_FS
  673. static struct proc_dir_entry *proc_bus_input_dir;
  674. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  675. static int input_devices_state;
  676. static inline void input_wakeup_procfs_readers(void)
  677. {
  678. input_devices_state++;
  679. wake_up(&input_devices_poll_wait);
  680. }
  681. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  682. {
  683. poll_wait(file, &input_devices_poll_wait, wait);
  684. if (file->f_version != input_devices_state) {
  685. file->f_version = input_devices_state;
  686. return POLLIN | POLLRDNORM;
  687. }
  688. return 0;
  689. }
  690. union input_seq_state {
  691. struct {
  692. unsigned short pos;
  693. bool mutex_acquired;
  694. };
  695. void *p;
  696. };
  697. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  698. {
  699. union input_seq_state *state = (union input_seq_state *)&seq->private;
  700. int error;
  701. /* We need to fit into seq->private pointer */
  702. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  703. error = mutex_lock_interruptible(&input_mutex);
  704. if (error) {
  705. state->mutex_acquired = false;
  706. return ERR_PTR(error);
  707. }
  708. state->mutex_acquired = true;
  709. return seq_list_start(&input_dev_list, *pos);
  710. }
  711. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  712. {
  713. return seq_list_next(v, &input_dev_list, pos);
  714. }
  715. static void input_seq_stop(struct seq_file *seq, void *v)
  716. {
  717. union input_seq_state *state = (union input_seq_state *)&seq->private;
  718. if (state->mutex_acquired)
  719. mutex_unlock(&input_mutex);
  720. }
  721. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  722. unsigned long *bitmap, int max)
  723. {
  724. int i;
  725. bool skip_empty = true;
  726. char buf[18];
  727. seq_printf(seq, "B: %s=", name);
  728. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  729. if (input_bits_to_string(buf, sizeof(buf),
  730. bitmap[i], skip_empty)) {
  731. skip_empty = false;
  732. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  733. }
  734. }
  735. /*
  736. * If no output was produced print a single 0.
  737. */
  738. if (skip_empty)
  739. seq_puts(seq, "0");
  740. seq_putc(seq, '\n');
  741. }
  742. static int input_devices_seq_show(struct seq_file *seq, void *v)
  743. {
  744. struct input_dev *dev = container_of(v, struct input_dev, node);
  745. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  746. struct input_handle *handle;
  747. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  748. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  749. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  750. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  751. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  752. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  753. seq_printf(seq, "H: Handlers=");
  754. list_for_each_entry(handle, &dev->h_list, d_node)
  755. seq_printf(seq, "%s ", handle->name);
  756. seq_putc(seq, '\n');
  757. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  758. if (test_bit(EV_KEY, dev->evbit))
  759. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  760. if (test_bit(EV_REL, dev->evbit))
  761. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  762. if (test_bit(EV_ABS, dev->evbit))
  763. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  764. if (test_bit(EV_MSC, dev->evbit))
  765. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  766. if (test_bit(EV_LED, dev->evbit))
  767. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  768. if (test_bit(EV_SND, dev->evbit))
  769. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  770. if (test_bit(EV_FF, dev->evbit))
  771. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  772. if (test_bit(EV_SW, dev->evbit))
  773. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  774. seq_putc(seq, '\n');
  775. kfree(path);
  776. return 0;
  777. }
  778. static const struct seq_operations input_devices_seq_ops = {
  779. .start = input_devices_seq_start,
  780. .next = input_devices_seq_next,
  781. .stop = input_seq_stop,
  782. .show = input_devices_seq_show,
  783. };
  784. static int input_proc_devices_open(struct inode *inode, struct file *file)
  785. {
  786. return seq_open(file, &input_devices_seq_ops);
  787. }
  788. static const struct file_operations input_devices_fileops = {
  789. .owner = THIS_MODULE,
  790. .open = input_proc_devices_open,
  791. .poll = input_proc_devices_poll,
  792. .read = seq_read,
  793. .llseek = seq_lseek,
  794. .release = seq_release,
  795. };
  796. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  797. {
  798. union input_seq_state *state = (union input_seq_state *)&seq->private;
  799. int error;
  800. /* We need to fit into seq->private pointer */
  801. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  802. error = mutex_lock_interruptible(&input_mutex);
  803. if (error) {
  804. state->mutex_acquired = false;
  805. return ERR_PTR(error);
  806. }
  807. state->mutex_acquired = true;
  808. state->pos = *pos;
  809. return seq_list_start(&input_handler_list, *pos);
  810. }
  811. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  812. {
  813. union input_seq_state *state = (union input_seq_state *)&seq->private;
  814. state->pos = *pos + 1;
  815. return seq_list_next(v, &input_handler_list, pos);
  816. }
  817. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  818. {
  819. struct input_handler *handler = container_of(v, struct input_handler, node);
  820. union input_seq_state *state = (union input_seq_state *)&seq->private;
  821. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  822. if (handler->filter)
  823. seq_puts(seq, " (filter)");
  824. if (handler->fops)
  825. seq_printf(seq, " Minor=%d", handler->minor);
  826. seq_putc(seq, '\n');
  827. return 0;
  828. }
  829. static const struct seq_operations input_handlers_seq_ops = {
  830. .start = input_handlers_seq_start,
  831. .next = input_handlers_seq_next,
  832. .stop = input_seq_stop,
  833. .show = input_handlers_seq_show,
  834. };
  835. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  836. {
  837. return seq_open(file, &input_handlers_seq_ops);
  838. }
  839. static const struct file_operations input_handlers_fileops = {
  840. .owner = THIS_MODULE,
  841. .open = input_proc_handlers_open,
  842. .read = seq_read,
  843. .llseek = seq_lseek,
  844. .release = seq_release,
  845. };
  846. static int __init input_proc_init(void)
  847. {
  848. struct proc_dir_entry *entry;
  849. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  850. if (!proc_bus_input_dir)
  851. return -ENOMEM;
  852. entry = proc_create("devices", 0, proc_bus_input_dir,
  853. &input_devices_fileops);
  854. if (!entry)
  855. goto fail1;
  856. entry = proc_create("handlers", 0, proc_bus_input_dir,
  857. &input_handlers_fileops);
  858. if (!entry)
  859. goto fail2;
  860. return 0;
  861. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  862. fail1: remove_proc_entry("bus/input", NULL);
  863. return -ENOMEM;
  864. }
  865. static void input_proc_exit(void)
  866. {
  867. remove_proc_entry("devices", proc_bus_input_dir);
  868. remove_proc_entry("handlers", proc_bus_input_dir);
  869. remove_proc_entry("bus/input", NULL);
  870. }
  871. #else /* !CONFIG_PROC_FS */
  872. static inline void input_wakeup_procfs_readers(void) { }
  873. static inline int input_proc_init(void) { return 0; }
  874. static inline void input_proc_exit(void) { }
  875. #endif
  876. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  877. static ssize_t input_dev_show_##name(struct device *dev, \
  878. struct device_attribute *attr, \
  879. char *buf) \
  880. { \
  881. struct input_dev *input_dev = to_input_dev(dev); \
  882. \
  883. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  884. input_dev->name ? input_dev->name : ""); \
  885. } \
  886. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  887. INPUT_DEV_STRING_ATTR_SHOW(name);
  888. INPUT_DEV_STRING_ATTR_SHOW(phys);
  889. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  890. static int input_print_modalias_bits(char *buf, int size,
  891. char name, unsigned long *bm,
  892. unsigned int min_bit, unsigned int max_bit)
  893. {
  894. int len = 0, i;
  895. len += snprintf(buf, max(size, 0), "%c", name);
  896. for (i = min_bit; i < max_bit; i++)
  897. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  898. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  899. return len;
  900. }
  901. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  902. int add_cr)
  903. {
  904. int len;
  905. len = snprintf(buf, max(size, 0),
  906. "input:b%04Xv%04Xp%04Xe%04X-",
  907. id->id.bustype, id->id.vendor,
  908. id->id.product, id->id.version);
  909. len += input_print_modalias_bits(buf + len, size - len,
  910. 'e', id->evbit, 0, EV_MAX);
  911. len += input_print_modalias_bits(buf + len, size - len,
  912. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  913. len += input_print_modalias_bits(buf + len, size - len,
  914. 'r', id->relbit, 0, REL_MAX);
  915. len += input_print_modalias_bits(buf + len, size - len,
  916. 'a', id->absbit, 0, ABS_MAX);
  917. len += input_print_modalias_bits(buf + len, size - len,
  918. 'm', id->mscbit, 0, MSC_MAX);
  919. len += input_print_modalias_bits(buf + len, size - len,
  920. 'l', id->ledbit, 0, LED_MAX);
  921. len += input_print_modalias_bits(buf + len, size - len,
  922. 's', id->sndbit, 0, SND_MAX);
  923. len += input_print_modalias_bits(buf + len, size - len,
  924. 'f', id->ffbit, 0, FF_MAX);
  925. len += input_print_modalias_bits(buf + len, size - len,
  926. 'w', id->swbit, 0, SW_MAX);
  927. if (add_cr)
  928. len += snprintf(buf + len, max(size - len, 0), "\n");
  929. return len;
  930. }
  931. static ssize_t input_dev_show_modalias(struct device *dev,
  932. struct device_attribute *attr,
  933. char *buf)
  934. {
  935. struct input_dev *id = to_input_dev(dev);
  936. ssize_t len;
  937. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  938. return min_t(int, len, PAGE_SIZE);
  939. }
  940. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  941. static struct attribute *input_dev_attrs[] = {
  942. &dev_attr_name.attr,
  943. &dev_attr_phys.attr,
  944. &dev_attr_uniq.attr,
  945. &dev_attr_modalias.attr,
  946. NULL
  947. };
  948. static struct attribute_group input_dev_attr_group = {
  949. .attrs = input_dev_attrs,
  950. };
  951. #define INPUT_DEV_ID_ATTR(name) \
  952. static ssize_t input_dev_show_id_##name(struct device *dev, \
  953. struct device_attribute *attr, \
  954. char *buf) \
  955. { \
  956. struct input_dev *input_dev = to_input_dev(dev); \
  957. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  958. } \
  959. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  960. INPUT_DEV_ID_ATTR(bustype);
  961. INPUT_DEV_ID_ATTR(vendor);
  962. INPUT_DEV_ID_ATTR(product);
  963. INPUT_DEV_ID_ATTR(version);
  964. static struct attribute *input_dev_id_attrs[] = {
  965. &dev_attr_bustype.attr,
  966. &dev_attr_vendor.attr,
  967. &dev_attr_product.attr,
  968. &dev_attr_version.attr,
  969. NULL
  970. };
  971. static struct attribute_group input_dev_id_attr_group = {
  972. .name = "id",
  973. .attrs = input_dev_id_attrs,
  974. };
  975. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  976. int max, int add_cr)
  977. {
  978. int i;
  979. int len = 0;
  980. bool skip_empty = true;
  981. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  982. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  983. bitmap[i], skip_empty);
  984. if (len) {
  985. skip_empty = false;
  986. if (i > 0)
  987. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  988. }
  989. }
  990. /*
  991. * If no output was produced print a single 0.
  992. */
  993. if (len == 0)
  994. len = snprintf(buf, buf_size, "%d", 0);
  995. if (add_cr)
  996. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  997. return len;
  998. }
  999. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1000. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1001. struct device_attribute *attr, \
  1002. char *buf) \
  1003. { \
  1004. struct input_dev *input_dev = to_input_dev(dev); \
  1005. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1006. input_dev->bm##bit, ev##_MAX, \
  1007. true); \
  1008. return min_t(int, len, PAGE_SIZE); \
  1009. } \
  1010. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1011. INPUT_DEV_CAP_ATTR(EV, ev);
  1012. INPUT_DEV_CAP_ATTR(KEY, key);
  1013. INPUT_DEV_CAP_ATTR(REL, rel);
  1014. INPUT_DEV_CAP_ATTR(ABS, abs);
  1015. INPUT_DEV_CAP_ATTR(MSC, msc);
  1016. INPUT_DEV_CAP_ATTR(LED, led);
  1017. INPUT_DEV_CAP_ATTR(SND, snd);
  1018. INPUT_DEV_CAP_ATTR(FF, ff);
  1019. INPUT_DEV_CAP_ATTR(SW, sw);
  1020. static struct attribute *input_dev_caps_attrs[] = {
  1021. &dev_attr_ev.attr,
  1022. &dev_attr_key.attr,
  1023. &dev_attr_rel.attr,
  1024. &dev_attr_abs.attr,
  1025. &dev_attr_msc.attr,
  1026. &dev_attr_led.attr,
  1027. &dev_attr_snd.attr,
  1028. &dev_attr_ff.attr,
  1029. &dev_attr_sw.attr,
  1030. NULL
  1031. };
  1032. static struct attribute_group input_dev_caps_attr_group = {
  1033. .name = "capabilities",
  1034. .attrs = input_dev_caps_attrs,
  1035. };
  1036. static const struct attribute_group *input_dev_attr_groups[] = {
  1037. &input_dev_attr_group,
  1038. &input_dev_id_attr_group,
  1039. &input_dev_caps_attr_group,
  1040. NULL
  1041. };
  1042. static void input_dev_release(struct device *device)
  1043. {
  1044. struct input_dev *dev = to_input_dev(device);
  1045. input_ff_destroy(dev);
  1046. kfree(dev);
  1047. module_put(THIS_MODULE);
  1048. }
  1049. /*
  1050. * Input uevent interface - loading event handlers based on
  1051. * device bitfields.
  1052. */
  1053. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1054. const char *name, unsigned long *bitmap, int max)
  1055. {
  1056. int len;
  1057. if (add_uevent_var(env, "%s=", name))
  1058. return -ENOMEM;
  1059. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1060. sizeof(env->buf) - env->buflen,
  1061. bitmap, max, false);
  1062. if (len >= (sizeof(env->buf) - env->buflen))
  1063. return -ENOMEM;
  1064. env->buflen += len;
  1065. return 0;
  1066. }
  1067. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1068. struct input_dev *dev)
  1069. {
  1070. int len;
  1071. if (add_uevent_var(env, "MODALIAS="))
  1072. return -ENOMEM;
  1073. len = input_print_modalias(&env->buf[env->buflen - 1],
  1074. sizeof(env->buf) - env->buflen,
  1075. dev, 0);
  1076. if (len >= (sizeof(env->buf) - env->buflen))
  1077. return -ENOMEM;
  1078. env->buflen += len;
  1079. return 0;
  1080. }
  1081. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1082. do { \
  1083. int err = add_uevent_var(env, fmt, val); \
  1084. if (err) \
  1085. return err; \
  1086. } while (0)
  1087. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1088. do { \
  1089. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1090. if (err) \
  1091. return err; \
  1092. } while (0)
  1093. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1094. do { \
  1095. int err = input_add_uevent_modalias_var(env, dev); \
  1096. if (err) \
  1097. return err; \
  1098. } while (0)
  1099. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1100. {
  1101. struct input_dev *dev = to_input_dev(device);
  1102. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1103. dev->id.bustype, dev->id.vendor,
  1104. dev->id.product, dev->id.version);
  1105. if (dev->name)
  1106. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1107. if (dev->phys)
  1108. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1109. if (dev->uniq)
  1110. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1111. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1112. if (test_bit(EV_KEY, dev->evbit))
  1113. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1114. if (test_bit(EV_REL, dev->evbit))
  1115. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1116. if (test_bit(EV_ABS, dev->evbit))
  1117. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1118. if (test_bit(EV_MSC, dev->evbit))
  1119. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1120. if (test_bit(EV_LED, dev->evbit))
  1121. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1122. if (test_bit(EV_SND, dev->evbit))
  1123. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1124. if (test_bit(EV_FF, dev->evbit))
  1125. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1126. if (test_bit(EV_SW, dev->evbit))
  1127. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1128. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1129. return 0;
  1130. }
  1131. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1132. do { \
  1133. int i; \
  1134. bool active; \
  1135. \
  1136. if (!test_bit(EV_##type, dev->evbit)) \
  1137. break; \
  1138. \
  1139. for (i = 0; i < type##_MAX; i++) { \
  1140. if (!test_bit(i, dev->bits##bit)) \
  1141. continue; \
  1142. \
  1143. active = test_bit(i, dev->bits); \
  1144. if (!active && !on) \
  1145. continue; \
  1146. \
  1147. dev->event(dev, EV_##type, i, on ? active : 0); \
  1148. } \
  1149. } while (0)
  1150. #ifdef CONFIG_PM
  1151. static void input_dev_reset(struct input_dev *dev, bool activate)
  1152. {
  1153. if (!dev->event)
  1154. return;
  1155. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1156. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1157. if (activate && test_bit(EV_REP, dev->evbit)) {
  1158. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1159. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1160. }
  1161. }
  1162. static int input_dev_suspend(struct device *dev)
  1163. {
  1164. struct input_dev *input_dev = to_input_dev(dev);
  1165. mutex_lock(&input_dev->mutex);
  1166. input_dev_reset(input_dev, false);
  1167. mutex_unlock(&input_dev->mutex);
  1168. return 0;
  1169. }
  1170. static int input_dev_resume(struct device *dev)
  1171. {
  1172. struct input_dev *input_dev = to_input_dev(dev);
  1173. mutex_lock(&input_dev->mutex);
  1174. input_dev_reset(input_dev, true);
  1175. mutex_unlock(&input_dev->mutex);
  1176. return 0;
  1177. }
  1178. static const struct dev_pm_ops input_dev_pm_ops = {
  1179. .suspend = input_dev_suspend,
  1180. .resume = input_dev_resume,
  1181. .poweroff = input_dev_suspend,
  1182. .restore = input_dev_resume,
  1183. };
  1184. #endif /* CONFIG_PM */
  1185. static struct device_type input_dev_type = {
  1186. .groups = input_dev_attr_groups,
  1187. .release = input_dev_release,
  1188. .uevent = input_dev_uevent,
  1189. #ifdef CONFIG_PM
  1190. .pm = &input_dev_pm_ops,
  1191. #endif
  1192. };
  1193. static char *input_devnode(struct device *dev, mode_t *mode)
  1194. {
  1195. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1196. }
  1197. struct class input_class = {
  1198. .name = "input",
  1199. .devnode = input_devnode,
  1200. };
  1201. EXPORT_SYMBOL_GPL(input_class);
  1202. /**
  1203. * input_allocate_device - allocate memory for new input device
  1204. *
  1205. * Returns prepared struct input_dev or NULL.
  1206. *
  1207. * NOTE: Use input_free_device() to free devices that have not been
  1208. * registered; input_unregister_device() should be used for already
  1209. * registered devices.
  1210. */
  1211. struct input_dev *input_allocate_device(void)
  1212. {
  1213. struct input_dev *dev;
  1214. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1215. if (dev) {
  1216. dev->dev.type = &input_dev_type;
  1217. dev->dev.class = &input_class;
  1218. device_initialize(&dev->dev);
  1219. mutex_init(&dev->mutex);
  1220. spin_lock_init(&dev->event_lock);
  1221. INIT_LIST_HEAD(&dev->h_list);
  1222. INIT_LIST_HEAD(&dev->node);
  1223. __module_get(THIS_MODULE);
  1224. }
  1225. return dev;
  1226. }
  1227. EXPORT_SYMBOL(input_allocate_device);
  1228. /**
  1229. * input_free_device - free memory occupied by input_dev structure
  1230. * @dev: input device to free
  1231. *
  1232. * This function should only be used if input_register_device()
  1233. * was not called yet or if it failed. Once device was registered
  1234. * use input_unregister_device() and memory will be freed once last
  1235. * reference to the device is dropped.
  1236. *
  1237. * Device should be allocated by input_allocate_device().
  1238. *
  1239. * NOTE: If there are references to the input device then memory
  1240. * will not be freed until last reference is dropped.
  1241. */
  1242. void input_free_device(struct input_dev *dev)
  1243. {
  1244. if (dev)
  1245. input_put_device(dev);
  1246. }
  1247. EXPORT_SYMBOL(input_free_device);
  1248. /**
  1249. * input_set_capability - mark device as capable of a certain event
  1250. * @dev: device that is capable of emitting or accepting event
  1251. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1252. * @code: event code
  1253. *
  1254. * In addition to setting up corresponding bit in appropriate capability
  1255. * bitmap the function also adjusts dev->evbit.
  1256. */
  1257. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1258. {
  1259. switch (type) {
  1260. case EV_KEY:
  1261. __set_bit(code, dev->keybit);
  1262. break;
  1263. case EV_REL:
  1264. __set_bit(code, dev->relbit);
  1265. break;
  1266. case EV_ABS:
  1267. __set_bit(code, dev->absbit);
  1268. break;
  1269. case EV_MSC:
  1270. __set_bit(code, dev->mscbit);
  1271. break;
  1272. case EV_SW:
  1273. __set_bit(code, dev->swbit);
  1274. break;
  1275. case EV_LED:
  1276. __set_bit(code, dev->ledbit);
  1277. break;
  1278. case EV_SND:
  1279. __set_bit(code, dev->sndbit);
  1280. break;
  1281. case EV_FF:
  1282. __set_bit(code, dev->ffbit);
  1283. break;
  1284. case EV_PWR:
  1285. /* do nothing */
  1286. break;
  1287. default:
  1288. printk(KERN_ERR
  1289. "input_set_capability: unknown type %u (code %u)\n",
  1290. type, code);
  1291. dump_stack();
  1292. return;
  1293. }
  1294. __set_bit(type, dev->evbit);
  1295. }
  1296. EXPORT_SYMBOL(input_set_capability);
  1297. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1298. do { \
  1299. if (!test_bit(EV_##type, dev->evbit)) \
  1300. memset(dev->bits##bit, 0, \
  1301. sizeof(dev->bits##bit)); \
  1302. } while (0)
  1303. static void input_cleanse_bitmasks(struct input_dev *dev)
  1304. {
  1305. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1306. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1307. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1308. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1309. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1310. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1311. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1312. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1313. }
  1314. /**
  1315. * input_register_device - register device with input core
  1316. * @dev: device to be registered
  1317. *
  1318. * This function registers device with input core. The device must be
  1319. * allocated with input_allocate_device() and all it's capabilities
  1320. * set up before registering.
  1321. * If function fails the device must be freed with input_free_device().
  1322. * Once device has been successfully registered it can be unregistered
  1323. * with input_unregister_device(); input_free_device() should not be
  1324. * called in this case.
  1325. */
  1326. int input_register_device(struct input_dev *dev)
  1327. {
  1328. static atomic_t input_no = ATOMIC_INIT(0);
  1329. struct input_handler *handler;
  1330. const char *path;
  1331. int error;
  1332. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1333. __set_bit(EV_SYN, dev->evbit);
  1334. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1335. __clear_bit(KEY_RESERVED, dev->keybit);
  1336. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1337. input_cleanse_bitmasks(dev);
  1338. /*
  1339. * If delay and period are pre-set by the driver, then autorepeating
  1340. * is handled by the driver itself and we don't do it in input.c.
  1341. */
  1342. init_timer(&dev->timer);
  1343. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1344. dev->timer.data = (long) dev;
  1345. dev->timer.function = input_repeat_key;
  1346. dev->rep[REP_DELAY] = 250;
  1347. dev->rep[REP_PERIOD] = 33;
  1348. }
  1349. if (!dev->getkeycode)
  1350. dev->getkeycode = input_default_getkeycode;
  1351. if (!dev->setkeycode)
  1352. dev->setkeycode = input_default_setkeycode;
  1353. dev_set_name(&dev->dev, "input%ld",
  1354. (unsigned long) atomic_inc_return(&input_no) - 1);
  1355. error = device_add(&dev->dev);
  1356. if (error)
  1357. return error;
  1358. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1359. printk(KERN_INFO "input: %s as %s\n",
  1360. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1361. kfree(path);
  1362. error = mutex_lock_interruptible(&input_mutex);
  1363. if (error) {
  1364. device_del(&dev->dev);
  1365. return error;
  1366. }
  1367. list_add_tail(&dev->node, &input_dev_list);
  1368. list_for_each_entry(handler, &input_handler_list, node)
  1369. input_attach_handler(dev, handler);
  1370. input_wakeup_procfs_readers();
  1371. mutex_unlock(&input_mutex);
  1372. return 0;
  1373. }
  1374. EXPORT_SYMBOL(input_register_device);
  1375. /**
  1376. * input_unregister_device - unregister previously registered device
  1377. * @dev: device to be unregistered
  1378. *
  1379. * This function unregisters an input device. Once device is unregistered
  1380. * the caller should not try to access it as it may get freed at any moment.
  1381. */
  1382. void input_unregister_device(struct input_dev *dev)
  1383. {
  1384. struct input_handle *handle, *next;
  1385. input_disconnect_device(dev);
  1386. mutex_lock(&input_mutex);
  1387. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1388. handle->handler->disconnect(handle);
  1389. WARN_ON(!list_empty(&dev->h_list));
  1390. del_timer_sync(&dev->timer);
  1391. list_del_init(&dev->node);
  1392. input_wakeup_procfs_readers();
  1393. mutex_unlock(&input_mutex);
  1394. device_unregister(&dev->dev);
  1395. }
  1396. EXPORT_SYMBOL(input_unregister_device);
  1397. /**
  1398. * input_register_handler - register a new input handler
  1399. * @handler: handler to be registered
  1400. *
  1401. * This function registers a new input handler (interface) for input
  1402. * devices in the system and attaches it to all input devices that
  1403. * are compatible with the handler.
  1404. */
  1405. int input_register_handler(struct input_handler *handler)
  1406. {
  1407. struct input_dev *dev;
  1408. int retval;
  1409. retval = mutex_lock_interruptible(&input_mutex);
  1410. if (retval)
  1411. return retval;
  1412. INIT_LIST_HEAD(&handler->h_list);
  1413. if (handler->fops != NULL) {
  1414. if (input_table[handler->minor >> 5]) {
  1415. retval = -EBUSY;
  1416. goto out;
  1417. }
  1418. input_table[handler->minor >> 5] = handler;
  1419. }
  1420. list_add_tail(&handler->node, &input_handler_list);
  1421. list_for_each_entry(dev, &input_dev_list, node)
  1422. input_attach_handler(dev, handler);
  1423. input_wakeup_procfs_readers();
  1424. out:
  1425. mutex_unlock(&input_mutex);
  1426. return retval;
  1427. }
  1428. EXPORT_SYMBOL(input_register_handler);
  1429. /**
  1430. * input_unregister_handler - unregisters an input handler
  1431. * @handler: handler to be unregistered
  1432. *
  1433. * This function disconnects a handler from its input devices and
  1434. * removes it from lists of known handlers.
  1435. */
  1436. void input_unregister_handler(struct input_handler *handler)
  1437. {
  1438. struct input_handle *handle, *next;
  1439. mutex_lock(&input_mutex);
  1440. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1441. handler->disconnect(handle);
  1442. WARN_ON(!list_empty(&handler->h_list));
  1443. list_del_init(&handler->node);
  1444. if (handler->fops != NULL)
  1445. input_table[handler->minor >> 5] = NULL;
  1446. input_wakeup_procfs_readers();
  1447. mutex_unlock(&input_mutex);
  1448. }
  1449. EXPORT_SYMBOL(input_unregister_handler);
  1450. /**
  1451. * input_handler_for_each_handle - handle iterator
  1452. * @handler: input handler to iterate
  1453. * @data: data for the callback
  1454. * @fn: function to be called for each handle
  1455. *
  1456. * Iterate over @bus's list of devices, and call @fn for each, passing
  1457. * it @data and stop when @fn returns a non-zero value. The function is
  1458. * using RCU to traverse the list and therefore may be usind in atonic
  1459. * contexts. The @fn callback is invoked from RCU critical section and
  1460. * thus must not sleep.
  1461. */
  1462. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1463. int (*fn)(struct input_handle *, void *))
  1464. {
  1465. struct input_handle *handle;
  1466. int retval = 0;
  1467. rcu_read_lock();
  1468. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1469. retval = fn(handle, data);
  1470. if (retval)
  1471. break;
  1472. }
  1473. rcu_read_unlock();
  1474. return retval;
  1475. }
  1476. EXPORT_SYMBOL(input_handler_for_each_handle);
  1477. /**
  1478. * input_register_handle - register a new input handle
  1479. * @handle: handle to register
  1480. *
  1481. * This function puts a new input handle onto device's
  1482. * and handler's lists so that events can flow through
  1483. * it once it is opened using input_open_device().
  1484. *
  1485. * This function is supposed to be called from handler's
  1486. * connect() method.
  1487. */
  1488. int input_register_handle(struct input_handle *handle)
  1489. {
  1490. struct input_handler *handler = handle->handler;
  1491. struct input_dev *dev = handle->dev;
  1492. int error;
  1493. /*
  1494. * We take dev->mutex here to prevent race with
  1495. * input_release_device().
  1496. */
  1497. error = mutex_lock_interruptible(&dev->mutex);
  1498. if (error)
  1499. return error;
  1500. /*
  1501. * Filters go to the head of the list, normal handlers
  1502. * to the tail.
  1503. */
  1504. if (handler->filter)
  1505. list_add_rcu(&handle->d_node, &dev->h_list);
  1506. else
  1507. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1508. mutex_unlock(&dev->mutex);
  1509. /*
  1510. * Since we are supposed to be called from ->connect()
  1511. * which is mutually exclusive with ->disconnect()
  1512. * we can't be racing with input_unregister_handle()
  1513. * and so separate lock is not needed here.
  1514. */
  1515. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1516. if (handler->start)
  1517. handler->start(handle);
  1518. return 0;
  1519. }
  1520. EXPORT_SYMBOL(input_register_handle);
  1521. /**
  1522. * input_unregister_handle - unregister an input handle
  1523. * @handle: handle to unregister
  1524. *
  1525. * This function removes input handle from device's
  1526. * and handler's lists.
  1527. *
  1528. * This function is supposed to be called from handler's
  1529. * disconnect() method.
  1530. */
  1531. void input_unregister_handle(struct input_handle *handle)
  1532. {
  1533. struct input_dev *dev = handle->dev;
  1534. list_del_rcu(&handle->h_node);
  1535. /*
  1536. * Take dev->mutex to prevent race with input_release_device().
  1537. */
  1538. mutex_lock(&dev->mutex);
  1539. list_del_rcu(&handle->d_node);
  1540. mutex_unlock(&dev->mutex);
  1541. synchronize_rcu();
  1542. }
  1543. EXPORT_SYMBOL(input_unregister_handle);
  1544. static int input_open_file(struct inode *inode, struct file *file)
  1545. {
  1546. struct input_handler *handler;
  1547. const struct file_operations *old_fops, *new_fops = NULL;
  1548. int err;
  1549. lock_kernel();
  1550. /* No load-on-demand here? */
  1551. handler = input_table[iminor(inode) >> 5];
  1552. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1553. err = -ENODEV;
  1554. goto out;
  1555. }
  1556. /*
  1557. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1558. * not "no device". Oh, well...
  1559. */
  1560. if (!new_fops->open) {
  1561. fops_put(new_fops);
  1562. err = -ENODEV;
  1563. goto out;
  1564. }
  1565. old_fops = file->f_op;
  1566. file->f_op = new_fops;
  1567. err = new_fops->open(inode, file);
  1568. if (err) {
  1569. fops_put(file->f_op);
  1570. file->f_op = fops_get(old_fops);
  1571. }
  1572. fops_put(old_fops);
  1573. out:
  1574. unlock_kernel();
  1575. return err;
  1576. }
  1577. static const struct file_operations input_fops = {
  1578. .owner = THIS_MODULE,
  1579. .open = input_open_file,
  1580. };
  1581. static void __init input_init_abs_bypass(void)
  1582. {
  1583. const unsigned int *p;
  1584. for (p = input_abs_bypass_init_data; *p; p++)
  1585. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1586. }
  1587. static int __init input_init(void)
  1588. {
  1589. int err;
  1590. input_init_abs_bypass();
  1591. err = class_register(&input_class);
  1592. if (err) {
  1593. printk(KERN_ERR "input: unable to register input_dev class\n");
  1594. return err;
  1595. }
  1596. err = input_proc_init();
  1597. if (err)
  1598. goto fail1;
  1599. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1600. if (err) {
  1601. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1602. goto fail2;
  1603. }
  1604. return 0;
  1605. fail2: input_proc_exit();
  1606. fail1: class_unregister(&input_class);
  1607. return err;
  1608. }
  1609. static void __exit input_exit(void)
  1610. {
  1611. input_proc_exit();
  1612. unregister_chrdev(INPUT_MAJOR, "input");
  1613. class_unregister(&input_class);
  1614. }
  1615. subsys_initcall(input_init);
  1616. module_exit(input_exit);