mmu.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 1;
  57. #endif
  58. #ifndef MMU_DEBUG
  59. #define ASSERT(x) do { } while (0)
  60. #else
  61. #define ASSERT(x) \
  62. if (!(x)) { \
  63. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  64. __FILE__, __LINE__, #x); \
  65. }
  66. #endif
  67. #define PT64_PT_BITS 9
  68. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  69. #define PT32_PT_BITS 10
  70. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  71. #define PT_WRITABLE_SHIFT 1
  72. #define PT_PRESENT_MASK (1ULL << 0)
  73. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  74. #define PT_USER_MASK (1ULL << 2)
  75. #define PT_PWT_MASK (1ULL << 3)
  76. #define PT_PCD_MASK (1ULL << 4)
  77. #define PT_ACCESSED_MASK (1ULL << 5)
  78. #define PT_DIRTY_MASK (1ULL << 6)
  79. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  80. #define PT_PAT_MASK (1ULL << 7)
  81. #define PT_GLOBAL_MASK (1ULL << 8)
  82. #define PT64_NX_SHIFT 63
  83. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  84. #define PT_PAT_SHIFT 7
  85. #define PT_DIR_PAT_SHIFT 12
  86. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  87. #define PT32_DIR_PSE36_SIZE 4
  88. #define PT32_DIR_PSE36_SHIFT 13
  89. #define PT32_DIR_PSE36_MASK \
  90. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  91. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  92. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  93. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  94. #define PT64_LEVEL_BITS 9
  95. #define PT64_LEVEL_SHIFT(level) \
  96. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  97. #define PT64_LEVEL_MASK(level) \
  98. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  99. #define PT64_INDEX(address, level)\
  100. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  101. #define PT32_LEVEL_BITS 10
  102. #define PT32_LEVEL_SHIFT(level) \
  103. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  104. #define PT32_LEVEL_MASK(level) \
  105. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  106. #define PT32_INDEX(address, level)\
  107. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  108. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  109. #define PT64_DIR_BASE_ADDR_MASK \
  110. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  111. #define PT32_BASE_ADDR_MASK PAGE_MASK
  112. #define PT32_DIR_BASE_ADDR_MASK \
  113. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  114. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  115. | PT64_NX_MASK)
  116. #define PFERR_PRESENT_MASK (1U << 0)
  117. #define PFERR_WRITE_MASK (1U << 1)
  118. #define PFERR_USER_MASK (1U << 2)
  119. #define PFERR_FETCH_MASK (1U << 4)
  120. #define PT64_ROOT_LEVEL 4
  121. #define PT32_ROOT_LEVEL 2
  122. #define PT32E_ROOT_LEVEL 3
  123. #define PT_DIRECTORY_LEVEL 2
  124. #define PT_PAGE_TABLE_LEVEL 1
  125. #define RMAP_EXT 4
  126. #define ACC_EXEC_MASK 1
  127. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  128. #define ACC_USER_MASK PT_USER_MASK
  129. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  130. struct kvm_pv_mmu_op_buffer {
  131. void *ptr;
  132. unsigned len;
  133. unsigned processed;
  134. char buf[512] __aligned(sizeof(long));
  135. };
  136. struct kvm_rmap_desc {
  137. u64 *shadow_ptes[RMAP_EXT];
  138. struct kvm_rmap_desc *more;
  139. };
  140. static struct kmem_cache *pte_chain_cache;
  141. static struct kmem_cache *rmap_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static u64 __read_mostly shadow_trap_nonpresent_pte;
  144. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  145. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  146. {
  147. shadow_trap_nonpresent_pte = trap_pte;
  148. shadow_notrap_nonpresent_pte = notrap_pte;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  151. static int is_write_protection(struct kvm_vcpu *vcpu)
  152. {
  153. return vcpu->arch.cr0 & X86_CR0_WP;
  154. }
  155. static int is_cpuid_PSE36(void)
  156. {
  157. return 1;
  158. }
  159. static int is_nx(struct kvm_vcpu *vcpu)
  160. {
  161. return vcpu->arch.shadow_efer & EFER_NX;
  162. }
  163. static int is_present_pte(unsigned long pte)
  164. {
  165. return pte & PT_PRESENT_MASK;
  166. }
  167. static int is_shadow_present_pte(u64 pte)
  168. {
  169. return pte != shadow_trap_nonpresent_pte
  170. && pte != shadow_notrap_nonpresent_pte;
  171. }
  172. static int is_large_pte(u64 pte)
  173. {
  174. return pte & PT_PAGE_SIZE_MASK;
  175. }
  176. static int is_writeble_pte(unsigned long pte)
  177. {
  178. return pte & PT_WRITABLE_MASK;
  179. }
  180. static int is_dirty_pte(unsigned long pte)
  181. {
  182. return pte & PT_DIRTY_MASK;
  183. }
  184. static int is_rmap_pte(u64 pte)
  185. {
  186. return is_shadow_present_pte(pte);
  187. }
  188. static struct page *spte_to_page(u64 pte)
  189. {
  190. hfn_t hfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  191. return pfn_to_page(hfn);
  192. }
  193. static gfn_t pse36_gfn_delta(u32 gpte)
  194. {
  195. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  196. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  197. }
  198. static void set_shadow_pte(u64 *sptep, u64 spte)
  199. {
  200. #ifdef CONFIG_X86_64
  201. set_64bit((unsigned long *)sptep, spte);
  202. #else
  203. set_64bit((unsigned long long *)sptep, spte);
  204. #endif
  205. }
  206. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  207. struct kmem_cache *base_cache, int min)
  208. {
  209. void *obj;
  210. if (cache->nobjs >= min)
  211. return 0;
  212. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  213. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  214. if (!obj)
  215. return -ENOMEM;
  216. cache->objects[cache->nobjs++] = obj;
  217. }
  218. return 0;
  219. }
  220. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  221. {
  222. while (mc->nobjs)
  223. kfree(mc->objects[--mc->nobjs]);
  224. }
  225. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  226. int min)
  227. {
  228. struct page *page;
  229. if (cache->nobjs >= min)
  230. return 0;
  231. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  232. page = alloc_page(GFP_KERNEL);
  233. if (!page)
  234. return -ENOMEM;
  235. set_page_private(page, 0);
  236. cache->objects[cache->nobjs++] = page_address(page);
  237. }
  238. return 0;
  239. }
  240. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  241. {
  242. while (mc->nobjs)
  243. free_page((unsigned long)mc->objects[--mc->nobjs]);
  244. }
  245. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  246. {
  247. int r;
  248. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  249. pte_chain_cache, 4);
  250. if (r)
  251. goto out;
  252. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  253. rmap_desc_cache, 1);
  254. if (r)
  255. goto out;
  256. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  257. if (r)
  258. goto out;
  259. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  260. mmu_page_header_cache, 4);
  261. out:
  262. return r;
  263. }
  264. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  265. {
  266. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  267. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  268. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  269. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  270. }
  271. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  272. size_t size)
  273. {
  274. void *p;
  275. BUG_ON(!mc->nobjs);
  276. p = mc->objects[--mc->nobjs];
  277. memset(p, 0, size);
  278. return p;
  279. }
  280. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  281. {
  282. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  283. sizeof(struct kvm_pte_chain));
  284. }
  285. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  286. {
  287. kfree(pc);
  288. }
  289. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  290. {
  291. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  292. sizeof(struct kvm_rmap_desc));
  293. }
  294. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  295. {
  296. kfree(rd);
  297. }
  298. /*
  299. * Return the pointer to the largepage write count for a given
  300. * gfn, handling slots that are not large page aligned.
  301. */
  302. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  303. {
  304. unsigned long idx;
  305. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  306. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  307. return &slot->lpage_info[idx].write_count;
  308. }
  309. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  310. {
  311. int *write_count;
  312. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  313. *write_count += 1;
  314. WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
  315. }
  316. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  317. {
  318. int *write_count;
  319. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  320. *write_count -= 1;
  321. WARN_ON(*write_count < 0);
  322. }
  323. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  324. {
  325. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  326. int *largepage_idx;
  327. if (slot) {
  328. largepage_idx = slot_largepage_idx(gfn, slot);
  329. return *largepage_idx;
  330. }
  331. return 1;
  332. }
  333. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  334. {
  335. struct vm_area_struct *vma;
  336. unsigned long addr;
  337. addr = gfn_to_hva(kvm, gfn);
  338. if (kvm_is_error_hva(addr))
  339. return 0;
  340. vma = find_vma(current->mm, addr);
  341. if (vma && is_vm_hugetlb_page(vma))
  342. return 1;
  343. return 0;
  344. }
  345. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  346. {
  347. struct kvm_memory_slot *slot;
  348. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  349. return 0;
  350. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  351. return 0;
  352. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  353. if (slot && slot->dirty_bitmap)
  354. return 0;
  355. return 1;
  356. }
  357. /*
  358. * Take gfn and return the reverse mapping to it.
  359. * Note: gfn must be unaliased before this function get called
  360. */
  361. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  362. {
  363. struct kvm_memory_slot *slot;
  364. unsigned long idx;
  365. slot = gfn_to_memslot(kvm, gfn);
  366. if (!lpage)
  367. return &slot->rmap[gfn - slot->base_gfn];
  368. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  369. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  370. return &slot->lpage_info[idx].rmap_pde;
  371. }
  372. /*
  373. * Reverse mapping data structures:
  374. *
  375. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  376. * that points to page_address(page).
  377. *
  378. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  379. * containing more mappings.
  380. */
  381. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  382. {
  383. struct kvm_mmu_page *sp;
  384. struct kvm_rmap_desc *desc;
  385. unsigned long *rmapp;
  386. int i;
  387. if (!is_rmap_pte(*spte))
  388. return;
  389. gfn = unalias_gfn(vcpu->kvm, gfn);
  390. sp = page_header(__pa(spte));
  391. sp->gfns[spte - sp->spt] = gfn;
  392. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  393. if (!*rmapp) {
  394. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  395. *rmapp = (unsigned long)spte;
  396. } else if (!(*rmapp & 1)) {
  397. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  398. desc = mmu_alloc_rmap_desc(vcpu);
  399. desc->shadow_ptes[0] = (u64 *)*rmapp;
  400. desc->shadow_ptes[1] = spte;
  401. *rmapp = (unsigned long)desc | 1;
  402. } else {
  403. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  404. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  405. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  406. desc = desc->more;
  407. if (desc->shadow_ptes[RMAP_EXT-1]) {
  408. desc->more = mmu_alloc_rmap_desc(vcpu);
  409. desc = desc->more;
  410. }
  411. for (i = 0; desc->shadow_ptes[i]; ++i)
  412. ;
  413. desc->shadow_ptes[i] = spte;
  414. }
  415. }
  416. static void rmap_desc_remove_entry(unsigned long *rmapp,
  417. struct kvm_rmap_desc *desc,
  418. int i,
  419. struct kvm_rmap_desc *prev_desc)
  420. {
  421. int j;
  422. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  423. ;
  424. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  425. desc->shadow_ptes[j] = NULL;
  426. if (j != 0)
  427. return;
  428. if (!prev_desc && !desc->more)
  429. *rmapp = (unsigned long)desc->shadow_ptes[0];
  430. else
  431. if (prev_desc)
  432. prev_desc->more = desc->more;
  433. else
  434. *rmapp = (unsigned long)desc->more | 1;
  435. mmu_free_rmap_desc(desc);
  436. }
  437. static void rmap_remove(struct kvm *kvm, u64 *spte)
  438. {
  439. struct kvm_rmap_desc *desc;
  440. struct kvm_rmap_desc *prev_desc;
  441. struct kvm_mmu_page *sp;
  442. struct page *page;
  443. unsigned long *rmapp;
  444. int i;
  445. if (!is_rmap_pte(*spte))
  446. return;
  447. sp = page_header(__pa(spte));
  448. page = spte_to_page(*spte);
  449. mark_page_accessed(page);
  450. if (is_writeble_pte(*spte))
  451. kvm_release_page_dirty(page);
  452. else
  453. kvm_release_page_clean(page);
  454. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  455. if (!*rmapp) {
  456. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  457. BUG();
  458. } else if (!(*rmapp & 1)) {
  459. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  460. if ((u64 *)*rmapp != spte) {
  461. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  462. spte, *spte);
  463. BUG();
  464. }
  465. *rmapp = 0;
  466. } else {
  467. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  468. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  469. prev_desc = NULL;
  470. while (desc) {
  471. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  472. if (desc->shadow_ptes[i] == spte) {
  473. rmap_desc_remove_entry(rmapp,
  474. desc, i,
  475. prev_desc);
  476. return;
  477. }
  478. prev_desc = desc;
  479. desc = desc->more;
  480. }
  481. BUG();
  482. }
  483. }
  484. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  485. {
  486. struct kvm_rmap_desc *desc;
  487. struct kvm_rmap_desc *prev_desc;
  488. u64 *prev_spte;
  489. int i;
  490. if (!*rmapp)
  491. return NULL;
  492. else if (!(*rmapp & 1)) {
  493. if (!spte)
  494. return (u64 *)*rmapp;
  495. return NULL;
  496. }
  497. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  498. prev_desc = NULL;
  499. prev_spte = NULL;
  500. while (desc) {
  501. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  502. if (prev_spte == spte)
  503. return desc->shadow_ptes[i];
  504. prev_spte = desc->shadow_ptes[i];
  505. }
  506. desc = desc->more;
  507. }
  508. return NULL;
  509. }
  510. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  511. {
  512. unsigned long *rmapp;
  513. u64 *spte;
  514. int write_protected = 0;
  515. gfn = unalias_gfn(kvm, gfn);
  516. rmapp = gfn_to_rmap(kvm, gfn, 0);
  517. spte = rmap_next(kvm, rmapp, NULL);
  518. while (spte) {
  519. BUG_ON(!spte);
  520. BUG_ON(!(*spte & PT_PRESENT_MASK));
  521. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  522. if (is_writeble_pte(*spte)) {
  523. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  524. write_protected = 1;
  525. }
  526. spte = rmap_next(kvm, rmapp, spte);
  527. }
  528. if (write_protected) {
  529. struct page *page;
  530. spte = rmap_next(kvm, rmapp, NULL);
  531. page = spte_to_page(*spte);
  532. SetPageDirty(page);
  533. }
  534. /* check for huge page mappings */
  535. rmapp = gfn_to_rmap(kvm, gfn, 1);
  536. spte = rmap_next(kvm, rmapp, NULL);
  537. while (spte) {
  538. BUG_ON(!spte);
  539. BUG_ON(!(*spte & PT_PRESENT_MASK));
  540. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  541. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  542. if (is_writeble_pte(*spte)) {
  543. rmap_remove(kvm, spte);
  544. --kvm->stat.lpages;
  545. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  546. write_protected = 1;
  547. }
  548. spte = rmap_next(kvm, rmapp, spte);
  549. }
  550. if (write_protected)
  551. kvm_flush_remote_tlbs(kvm);
  552. account_shadowed(kvm, gfn);
  553. }
  554. #ifdef MMU_DEBUG
  555. static int is_empty_shadow_page(u64 *spt)
  556. {
  557. u64 *pos;
  558. u64 *end;
  559. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  560. if (*pos != shadow_trap_nonpresent_pte) {
  561. printk(KERN_ERR "%s: %p %llx\n", __func__,
  562. pos, *pos);
  563. return 0;
  564. }
  565. return 1;
  566. }
  567. #endif
  568. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  569. {
  570. ASSERT(is_empty_shadow_page(sp->spt));
  571. list_del(&sp->link);
  572. __free_page(virt_to_page(sp->spt));
  573. __free_page(virt_to_page(sp->gfns));
  574. kfree(sp);
  575. ++kvm->arch.n_free_mmu_pages;
  576. }
  577. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  578. {
  579. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  580. }
  581. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  582. u64 *parent_pte)
  583. {
  584. struct kvm_mmu_page *sp;
  585. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  586. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  587. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  588. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  589. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  590. ASSERT(is_empty_shadow_page(sp->spt));
  591. sp->slot_bitmap = 0;
  592. sp->multimapped = 0;
  593. sp->parent_pte = parent_pte;
  594. --vcpu->kvm->arch.n_free_mmu_pages;
  595. return sp;
  596. }
  597. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  598. struct kvm_mmu_page *sp, u64 *parent_pte)
  599. {
  600. struct kvm_pte_chain *pte_chain;
  601. struct hlist_node *node;
  602. int i;
  603. if (!parent_pte)
  604. return;
  605. if (!sp->multimapped) {
  606. u64 *old = sp->parent_pte;
  607. if (!old) {
  608. sp->parent_pte = parent_pte;
  609. return;
  610. }
  611. sp->multimapped = 1;
  612. pte_chain = mmu_alloc_pte_chain(vcpu);
  613. INIT_HLIST_HEAD(&sp->parent_ptes);
  614. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  615. pte_chain->parent_ptes[0] = old;
  616. }
  617. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  618. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  619. continue;
  620. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  621. if (!pte_chain->parent_ptes[i]) {
  622. pte_chain->parent_ptes[i] = parent_pte;
  623. return;
  624. }
  625. }
  626. pte_chain = mmu_alloc_pte_chain(vcpu);
  627. BUG_ON(!pte_chain);
  628. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  629. pte_chain->parent_ptes[0] = parent_pte;
  630. }
  631. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  632. u64 *parent_pte)
  633. {
  634. struct kvm_pte_chain *pte_chain;
  635. struct hlist_node *node;
  636. int i;
  637. if (!sp->multimapped) {
  638. BUG_ON(sp->parent_pte != parent_pte);
  639. sp->parent_pte = NULL;
  640. return;
  641. }
  642. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  643. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  644. if (!pte_chain->parent_ptes[i])
  645. break;
  646. if (pte_chain->parent_ptes[i] != parent_pte)
  647. continue;
  648. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  649. && pte_chain->parent_ptes[i + 1]) {
  650. pte_chain->parent_ptes[i]
  651. = pte_chain->parent_ptes[i + 1];
  652. ++i;
  653. }
  654. pte_chain->parent_ptes[i] = NULL;
  655. if (i == 0) {
  656. hlist_del(&pte_chain->link);
  657. mmu_free_pte_chain(pte_chain);
  658. if (hlist_empty(&sp->parent_ptes)) {
  659. sp->multimapped = 0;
  660. sp->parent_pte = NULL;
  661. }
  662. }
  663. return;
  664. }
  665. BUG();
  666. }
  667. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  668. {
  669. unsigned index;
  670. struct hlist_head *bucket;
  671. struct kvm_mmu_page *sp;
  672. struct hlist_node *node;
  673. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  674. index = kvm_page_table_hashfn(gfn);
  675. bucket = &kvm->arch.mmu_page_hash[index];
  676. hlist_for_each_entry(sp, node, bucket, hash_link)
  677. if (sp->gfn == gfn && !sp->role.metaphysical
  678. && !sp->role.invalid) {
  679. pgprintk("%s: found role %x\n",
  680. __func__, sp->role.word);
  681. return sp;
  682. }
  683. return NULL;
  684. }
  685. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  686. gfn_t gfn,
  687. gva_t gaddr,
  688. unsigned level,
  689. int metaphysical,
  690. unsigned access,
  691. u64 *parent_pte)
  692. {
  693. union kvm_mmu_page_role role;
  694. unsigned index;
  695. unsigned quadrant;
  696. struct hlist_head *bucket;
  697. struct kvm_mmu_page *sp;
  698. struct hlist_node *node;
  699. role.word = 0;
  700. role.glevels = vcpu->arch.mmu.root_level;
  701. role.level = level;
  702. role.metaphysical = metaphysical;
  703. role.access = access;
  704. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  705. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  706. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  707. role.quadrant = quadrant;
  708. }
  709. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  710. gfn, role.word);
  711. index = kvm_page_table_hashfn(gfn);
  712. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  713. hlist_for_each_entry(sp, node, bucket, hash_link)
  714. if (sp->gfn == gfn && sp->role.word == role.word) {
  715. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  716. pgprintk("%s: found\n", __func__);
  717. return sp;
  718. }
  719. ++vcpu->kvm->stat.mmu_cache_miss;
  720. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  721. if (!sp)
  722. return sp;
  723. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  724. sp->gfn = gfn;
  725. sp->role = role;
  726. hlist_add_head(&sp->hash_link, bucket);
  727. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  728. if (!metaphysical)
  729. rmap_write_protect(vcpu->kvm, gfn);
  730. return sp;
  731. }
  732. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  733. struct kvm_mmu_page *sp)
  734. {
  735. unsigned i;
  736. u64 *pt;
  737. u64 ent;
  738. pt = sp->spt;
  739. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  740. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  741. if (is_shadow_present_pte(pt[i]))
  742. rmap_remove(kvm, &pt[i]);
  743. pt[i] = shadow_trap_nonpresent_pte;
  744. }
  745. kvm_flush_remote_tlbs(kvm);
  746. return;
  747. }
  748. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  749. ent = pt[i];
  750. if (is_shadow_present_pte(ent)) {
  751. if (!is_large_pte(ent)) {
  752. ent &= PT64_BASE_ADDR_MASK;
  753. mmu_page_remove_parent_pte(page_header(ent),
  754. &pt[i]);
  755. } else {
  756. --kvm->stat.lpages;
  757. rmap_remove(kvm, &pt[i]);
  758. }
  759. }
  760. pt[i] = shadow_trap_nonpresent_pte;
  761. }
  762. kvm_flush_remote_tlbs(kvm);
  763. }
  764. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  765. {
  766. mmu_page_remove_parent_pte(sp, parent_pte);
  767. }
  768. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  769. {
  770. int i;
  771. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  772. if (kvm->vcpus[i])
  773. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  774. }
  775. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  776. {
  777. u64 *parent_pte;
  778. ++kvm->stat.mmu_shadow_zapped;
  779. while (sp->multimapped || sp->parent_pte) {
  780. if (!sp->multimapped)
  781. parent_pte = sp->parent_pte;
  782. else {
  783. struct kvm_pte_chain *chain;
  784. chain = container_of(sp->parent_ptes.first,
  785. struct kvm_pte_chain, link);
  786. parent_pte = chain->parent_ptes[0];
  787. }
  788. BUG_ON(!parent_pte);
  789. kvm_mmu_put_page(sp, parent_pte);
  790. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  791. }
  792. kvm_mmu_page_unlink_children(kvm, sp);
  793. if (!sp->root_count) {
  794. if (!sp->role.metaphysical)
  795. unaccount_shadowed(kvm, sp->gfn);
  796. hlist_del(&sp->hash_link);
  797. kvm_mmu_free_page(kvm, sp);
  798. } else {
  799. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  800. sp->role.invalid = 1;
  801. kvm_reload_remote_mmus(kvm);
  802. }
  803. kvm_mmu_reset_last_pte_updated(kvm);
  804. }
  805. /*
  806. * Changing the number of mmu pages allocated to the vm
  807. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  808. */
  809. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  810. {
  811. /*
  812. * If we set the number of mmu pages to be smaller be than the
  813. * number of actived pages , we must to free some mmu pages before we
  814. * change the value
  815. */
  816. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  817. kvm_nr_mmu_pages) {
  818. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  819. - kvm->arch.n_free_mmu_pages;
  820. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  821. struct kvm_mmu_page *page;
  822. page = container_of(kvm->arch.active_mmu_pages.prev,
  823. struct kvm_mmu_page, link);
  824. kvm_mmu_zap_page(kvm, page);
  825. n_used_mmu_pages--;
  826. }
  827. kvm->arch.n_free_mmu_pages = 0;
  828. }
  829. else
  830. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  831. - kvm->arch.n_alloc_mmu_pages;
  832. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  833. }
  834. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  835. {
  836. unsigned index;
  837. struct hlist_head *bucket;
  838. struct kvm_mmu_page *sp;
  839. struct hlist_node *node, *n;
  840. int r;
  841. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  842. r = 0;
  843. index = kvm_page_table_hashfn(gfn);
  844. bucket = &kvm->arch.mmu_page_hash[index];
  845. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  846. if (sp->gfn == gfn && !sp->role.metaphysical) {
  847. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  848. sp->role.word);
  849. kvm_mmu_zap_page(kvm, sp);
  850. r = 1;
  851. }
  852. return r;
  853. }
  854. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  855. {
  856. struct kvm_mmu_page *sp;
  857. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  858. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  859. kvm_mmu_zap_page(kvm, sp);
  860. }
  861. }
  862. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  863. {
  864. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  865. struct kvm_mmu_page *sp = page_header(__pa(pte));
  866. __set_bit(slot, &sp->slot_bitmap);
  867. }
  868. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  869. {
  870. struct page *page;
  871. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  872. if (gpa == UNMAPPED_GVA)
  873. return NULL;
  874. down_read(&current->mm->mmap_sem);
  875. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  876. up_read(&current->mm->mmap_sem);
  877. return page;
  878. }
  879. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  880. unsigned pt_access, unsigned pte_access,
  881. int user_fault, int write_fault, int dirty,
  882. int *ptwrite, int largepage, gfn_t gfn,
  883. struct page *page, bool speculative)
  884. {
  885. u64 spte;
  886. int was_rmapped = 0;
  887. int was_writeble = is_writeble_pte(*shadow_pte);
  888. pgprintk("%s: spte %llx access %x write_fault %d"
  889. " user_fault %d gfn %lx\n",
  890. __func__, *shadow_pte, pt_access,
  891. write_fault, user_fault, gfn);
  892. if (is_rmap_pte(*shadow_pte)) {
  893. /*
  894. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  895. * the parent of the now unreachable PTE.
  896. */
  897. if (largepage && !is_large_pte(*shadow_pte)) {
  898. struct kvm_mmu_page *child;
  899. u64 pte = *shadow_pte;
  900. child = page_header(pte & PT64_BASE_ADDR_MASK);
  901. mmu_page_remove_parent_pte(child, shadow_pte);
  902. } else if (page != spte_to_page(*shadow_pte)) {
  903. pgprintk("hfn old %lx new %lx\n",
  904. page_to_pfn(spte_to_page(*shadow_pte)),
  905. page_to_pfn(page));
  906. rmap_remove(vcpu->kvm, shadow_pte);
  907. } else {
  908. if (largepage)
  909. was_rmapped = is_large_pte(*shadow_pte);
  910. else
  911. was_rmapped = 1;
  912. }
  913. }
  914. /*
  915. * We don't set the accessed bit, since we sometimes want to see
  916. * whether the guest actually used the pte (in order to detect
  917. * demand paging).
  918. */
  919. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  920. if (!speculative)
  921. pte_access |= PT_ACCESSED_MASK;
  922. if (!dirty)
  923. pte_access &= ~ACC_WRITE_MASK;
  924. if (!(pte_access & ACC_EXEC_MASK))
  925. spte |= PT64_NX_MASK;
  926. spte |= PT_PRESENT_MASK;
  927. if (pte_access & ACC_USER_MASK)
  928. spte |= PT_USER_MASK;
  929. if (largepage)
  930. spte |= PT_PAGE_SIZE_MASK;
  931. spte |= page_to_phys(page);
  932. if ((pte_access & ACC_WRITE_MASK)
  933. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  934. struct kvm_mmu_page *shadow;
  935. spte |= PT_WRITABLE_MASK;
  936. if (user_fault) {
  937. mmu_unshadow(vcpu->kvm, gfn);
  938. goto unshadowed;
  939. }
  940. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  941. if (shadow ||
  942. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  943. pgprintk("%s: found shadow page for %lx, marking ro\n",
  944. __func__, gfn);
  945. pte_access &= ~ACC_WRITE_MASK;
  946. if (is_writeble_pte(spte)) {
  947. spte &= ~PT_WRITABLE_MASK;
  948. kvm_x86_ops->tlb_flush(vcpu);
  949. }
  950. if (write_fault)
  951. *ptwrite = 1;
  952. }
  953. }
  954. unshadowed:
  955. if (pte_access & ACC_WRITE_MASK)
  956. mark_page_dirty(vcpu->kvm, gfn);
  957. pgprintk("%s: setting spte %llx\n", __func__, spte);
  958. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  959. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  960. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  961. set_shadow_pte(shadow_pte, spte);
  962. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  963. && (spte & PT_PRESENT_MASK))
  964. ++vcpu->kvm->stat.lpages;
  965. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  966. if (!was_rmapped) {
  967. rmap_add(vcpu, shadow_pte, gfn, largepage);
  968. if (!is_rmap_pte(*shadow_pte))
  969. kvm_release_page_clean(page);
  970. } else {
  971. if (was_writeble)
  972. kvm_release_page_dirty(page);
  973. else
  974. kvm_release_page_clean(page);
  975. }
  976. if (!ptwrite || !*ptwrite)
  977. vcpu->arch.last_pte_updated = shadow_pte;
  978. }
  979. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  980. {
  981. }
  982. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  983. int largepage, gfn_t gfn, struct page *page,
  984. int level)
  985. {
  986. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  987. int pt_write = 0;
  988. for (; ; level--) {
  989. u32 index = PT64_INDEX(v, level);
  990. u64 *table;
  991. ASSERT(VALID_PAGE(table_addr));
  992. table = __va(table_addr);
  993. if (level == 1) {
  994. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  995. 0, write, 1, &pt_write, 0, gfn, page, false);
  996. return pt_write;
  997. }
  998. if (largepage && level == 2) {
  999. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  1000. 0, write, 1, &pt_write, 1, gfn, page, false);
  1001. return pt_write;
  1002. }
  1003. if (table[index] == shadow_trap_nonpresent_pte) {
  1004. struct kvm_mmu_page *new_table;
  1005. gfn_t pseudo_gfn;
  1006. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  1007. >> PAGE_SHIFT;
  1008. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  1009. v, level - 1,
  1010. 1, ACC_ALL, &table[index]);
  1011. if (!new_table) {
  1012. pgprintk("nonpaging_map: ENOMEM\n");
  1013. kvm_release_page_clean(page);
  1014. return -ENOMEM;
  1015. }
  1016. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  1017. | PT_WRITABLE_MASK | PT_USER_MASK;
  1018. }
  1019. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1020. }
  1021. }
  1022. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1023. {
  1024. int r;
  1025. int largepage = 0;
  1026. struct page *page;
  1027. down_read(&vcpu->kvm->slots_lock);
  1028. down_read(&current->mm->mmap_sem);
  1029. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1030. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1031. largepage = 1;
  1032. }
  1033. page = gfn_to_page(vcpu->kvm, gfn);
  1034. up_read(&current->mm->mmap_sem);
  1035. /* mmio */
  1036. if (is_error_page(page)) {
  1037. kvm_release_page_clean(page);
  1038. up_read(&vcpu->kvm->slots_lock);
  1039. return 1;
  1040. }
  1041. spin_lock(&vcpu->kvm->mmu_lock);
  1042. kvm_mmu_free_some_pages(vcpu);
  1043. r = __direct_map(vcpu, v, write, largepage, gfn, page,
  1044. PT32E_ROOT_LEVEL);
  1045. spin_unlock(&vcpu->kvm->mmu_lock);
  1046. up_read(&vcpu->kvm->slots_lock);
  1047. return r;
  1048. }
  1049. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1050. struct kvm_mmu_page *sp)
  1051. {
  1052. int i;
  1053. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1054. sp->spt[i] = shadow_trap_nonpresent_pte;
  1055. }
  1056. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1057. {
  1058. int i;
  1059. struct kvm_mmu_page *sp;
  1060. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1061. return;
  1062. spin_lock(&vcpu->kvm->mmu_lock);
  1063. #ifdef CONFIG_X86_64
  1064. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1065. hpa_t root = vcpu->arch.mmu.root_hpa;
  1066. sp = page_header(root);
  1067. --sp->root_count;
  1068. if (!sp->root_count && sp->role.invalid)
  1069. kvm_mmu_zap_page(vcpu->kvm, sp);
  1070. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1071. spin_unlock(&vcpu->kvm->mmu_lock);
  1072. return;
  1073. }
  1074. #endif
  1075. for (i = 0; i < 4; ++i) {
  1076. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1077. if (root) {
  1078. root &= PT64_BASE_ADDR_MASK;
  1079. sp = page_header(root);
  1080. --sp->root_count;
  1081. if (!sp->root_count && sp->role.invalid)
  1082. kvm_mmu_zap_page(vcpu->kvm, sp);
  1083. }
  1084. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1085. }
  1086. spin_unlock(&vcpu->kvm->mmu_lock);
  1087. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1088. }
  1089. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1090. {
  1091. int i;
  1092. gfn_t root_gfn;
  1093. struct kvm_mmu_page *sp;
  1094. int metaphysical = 0;
  1095. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1096. #ifdef CONFIG_X86_64
  1097. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1098. hpa_t root = vcpu->arch.mmu.root_hpa;
  1099. ASSERT(!VALID_PAGE(root));
  1100. if (tdp_enabled)
  1101. metaphysical = 1;
  1102. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1103. PT64_ROOT_LEVEL, metaphysical,
  1104. ACC_ALL, NULL);
  1105. root = __pa(sp->spt);
  1106. ++sp->root_count;
  1107. vcpu->arch.mmu.root_hpa = root;
  1108. return;
  1109. }
  1110. #endif
  1111. metaphysical = !is_paging(vcpu);
  1112. if (tdp_enabled)
  1113. metaphysical = 1;
  1114. for (i = 0; i < 4; ++i) {
  1115. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1116. ASSERT(!VALID_PAGE(root));
  1117. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1118. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1119. vcpu->arch.mmu.pae_root[i] = 0;
  1120. continue;
  1121. }
  1122. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1123. } else if (vcpu->arch.mmu.root_level == 0)
  1124. root_gfn = 0;
  1125. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1126. PT32_ROOT_LEVEL, metaphysical,
  1127. ACC_ALL, NULL);
  1128. root = __pa(sp->spt);
  1129. ++sp->root_count;
  1130. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1131. }
  1132. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1133. }
  1134. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1135. {
  1136. return vaddr;
  1137. }
  1138. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1139. u32 error_code)
  1140. {
  1141. gfn_t gfn;
  1142. int r;
  1143. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1144. r = mmu_topup_memory_caches(vcpu);
  1145. if (r)
  1146. return r;
  1147. ASSERT(vcpu);
  1148. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1149. gfn = gva >> PAGE_SHIFT;
  1150. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1151. error_code & PFERR_WRITE_MASK, gfn);
  1152. }
  1153. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1154. u32 error_code)
  1155. {
  1156. struct page *page;
  1157. int r;
  1158. int largepage = 0;
  1159. gfn_t gfn = gpa >> PAGE_SHIFT;
  1160. ASSERT(vcpu);
  1161. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1162. r = mmu_topup_memory_caches(vcpu);
  1163. if (r)
  1164. return r;
  1165. down_read(&current->mm->mmap_sem);
  1166. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1167. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1168. largepage = 1;
  1169. }
  1170. page = gfn_to_page(vcpu->kvm, gfn);
  1171. if (is_error_page(page)) {
  1172. kvm_release_page_clean(page);
  1173. up_read(&current->mm->mmap_sem);
  1174. return 1;
  1175. }
  1176. spin_lock(&vcpu->kvm->mmu_lock);
  1177. kvm_mmu_free_some_pages(vcpu);
  1178. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1179. largepage, gfn, page, TDP_ROOT_LEVEL);
  1180. spin_unlock(&vcpu->kvm->mmu_lock);
  1181. up_read(&current->mm->mmap_sem);
  1182. return r;
  1183. }
  1184. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1185. {
  1186. mmu_free_roots(vcpu);
  1187. }
  1188. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1189. {
  1190. struct kvm_mmu *context = &vcpu->arch.mmu;
  1191. context->new_cr3 = nonpaging_new_cr3;
  1192. context->page_fault = nonpaging_page_fault;
  1193. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1194. context->free = nonpaging_free;
  1195. context->prefetch_page = nonpaging_prefetch_page;
  1196. context->root_level = 0;
  1197. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1198. context->root_hpa = INVALID_PAGE;
  1199. return 0;
  1200. }
  1201. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1202. {
  1203. ++vcpu->stat.tlb_flush;
  1204. kvm_x86_ops->tlb_flush(vcpu);
  1205. }
  1206. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1207. {
  1208. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1209. mmu_free_roots(vcpu);
  1210. }
  1211. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1212. u64 addr,
  1213. u32 err_code)
  1214. {
  1215. kvm_inject_page_fault(vcpu, addr, err_code);
  1216. }
  1217. static void paging_free(struct kvm_vcpu *vcpu)
  1218. {
  1219. nonpaging_free(vcpu);
  1220. }
  1221. #define PTTYPE 64
  1222. #include "paging_tmpl.h"
  1223. #undef PTTYPE
  1224. #define PTTYPE 32
  1225. #include "paging_tmpl.h"
  1226. #undef PTTYPE
  1227. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1228. {
  1229. struct kvm_mmu *context = &vcpu->arch.mmu;
  1230. ASSERT(is_pae(vcpu));
  1231. context->new_cr3 = paging_new_cr3;
  1232. context->page_fault = paging64_page_fault;
  1233. context->gva_to_gpa = paging64_gva_to_gpa;
  1234. context->prefetch_page = paging64_prefetch_page;
  1235. context->free = paging_free;
  1236. context->root_level = level;
  1237. context->shadow_root_level = level;
  1238. context->root_hpa = INVALID_PAGE;
  1239. return 0;
  1240. }
  1241. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1242. {
  1243. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1244. }
  1245. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1246. {
  1247. struct kvm_mmu *context = &vcpu->arch.mmu;
  1248. context->new_cr3 = paging_new_cr3;
  1249. context->page_fault = paging32_page_fault;
  1250. context->gva_to_gpa = paging32_gva_to_gpa;
  1251. context->free = paging_free;
  1252. context->prefetch_page = paging32_prefetch_page;
  1253. context->root_level = PT32_ROOT_LEVEL;
  1254. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1255. context->root_hpa = INVALID_PAGE;
  1256. return 0;
  1257. }
  1258. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1259. {
  1260. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1261. }
  1262. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1263. {
  1264. struct kvm_mmu *context = &vcpu->arch.mmu;
  1265. context->new_cr3 = nonpaging_new_cr3;
  1266. context->page_fault = tdp_page_fault;
  1267. context->free = nonpaging_free;
  1268. context->prefetch_page = nonpaging_prefetch_page;
  1269. context->shadow_root_level = TDP_ROOT_LEVEL;
  1270. context->root_hpa = INVALID_PAGE;
  1271. if (!is_paging(vcpu)) {
  1272. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1273. context->root_level = 0;
  1274. } else if (is_long_mode(vcpu)) {
  1275. context->gva_to_gpa = paging64_gva_to_gpa;
  1276. context->root_level = PT64_ROOT_LEVEL;
  1277. } else if (is_pae(vcpu)) {
  1278. context->gva_to_gpa = paging64_gva_to_gpa;
  1279. context->root_level = PT32E_ROOT_LEVEL;
  1280. } else {
  1281. context->gva_to_gpa = paging32_gva_to_gpa;
  1282. context->root_level = PT32_ROOT_LEVEL;
  1283. }
  1284. return 0;
  1285. }
  1286. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1287. {
  1288. ASSERT(vcpu);
  1289. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1290. if (!is_paging(vcpu))
  1291. return nonpaging_init_context(vcpu);
  1292. else if (is_long_mode(vcpu))
  1293. return paging64_init_context(vcpu);
  1294. else if (is_pae(vcpu))
  1295. return paging32E_init_context(vcpu);
  1296. else
  1297. return paging32_init_context(vcpu);
  1298. }
  1299. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1300. {
  1301. if (tdp_enabled)
  1302. return init_kvm_tdp_mmu(vcpu);
  1303. else
  1304. return init_kvm_softmmu(vcpu);
  1305. }
  1306. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1307. {
  1308. ASSERT(vcpu);
  1309. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1310. vcpu->arch.mmu.free(vcpu);
  1311. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1312. }
  1313. }
  1314. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1315. {
  1316. destroy_kvm_mmu(vcpu);
  1317. return init_kvm_mmu(vcpu);
  1318. }
  1319. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1320. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1321. {
  1322. int r;
  1323. r = mmu_topup_memory_caches(vcpu);
  1324. if (r)
  1325. goto out;
  1326. spin_lock(&vcpu->kvm->mmu_lock);
  1327. kvm_mmu_free_some_pages(vcpu);
  1328. mmu_alloc_roots(vcpu);
  1329. spin_unlock(&vcpu->kvm->mmu_lock);
  1330. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1331. kvm_mmu_flush_tlb(vcpu);
  1332. out:
  1333. return r;
  1334. }
  1335. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1336. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1337. {
  1338. mmu_free_roots(vcpu);
  1339. }
  1340. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1341. struct kvm_mmu_page *sp,
  1342. u64 *spte)
  1343. {
  1344. u64 pte;
  1345. struct kvm_mmu_page *child;
  1346. pte = *spte;
  1347. if (is_shadow_present_pte(pte)) {
  1348. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1349. is_large_pte(pte))
  1350. rmap_remove(vcpu->kvm, spte);
  1351. else {
  1352. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1353. mmu_page_remove_parent_pte(child, spte);
  1354. }
  1355. }
  1356. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1357. if (is_large_pte(pte))
  1358. --vcpu->kvm->stat.lpages;
  1359. }
  1360. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1361. struct kvm_mmu_page *sp,
  1362. u64 *spte,
  1363. const void *new)
  1364. {
  1365. if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
  1366. && !vcpu->arch.update_pte.largepage) {
  1367. ++vcpu->kvm->stat.mmu_pde_zapped;
  1368. return;
  1369. }
  1370. ++vcpu->kvm->stat.mmu_pte_updated;
  1371. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1372. paging32_update_pte(vcpu, sp, spte, new);
  1373. else
  1374. paging64_update_pte(vcpu, sp, spte, new);
  1375. }
  1376. static bool need_remote_flush(u64 old, u64 new)
  1377. {
  1378. if (!is_shadow_present_pte(old))
  1379. return false;
  1380. if (!is_shadow_present_pte(new))
  1381. return true;
  1382. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1383. return true;
  1384. old ^= PT64_NX_MASK;
  1385. new ^= PT64_NX_MASK;
  1386. return (old & ~new & PT64_PERM_MASK) != 0;
  1387. }
  1388. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1389. {
  1390. if (need_remote_flush(old, new))
  1391. kvm_flush_remote_tlbs(vcpu->kvm);
  1392. else
  1393. kvm_mmu_flush_tlb(vcpu);
  1394. }
  1395. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1396. {
  1397. u64 *spte = vcpu->arch.last_pte_updated;
  1398. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1399. }
  1400. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1401. const u8 *new, int bytes)
  1402. {
  1403. gfn_t gfn;
  1404. int r;
  1405. u64 gpte = 0;
  1406. struct page *page;
  1407. vcpu->arch.update_pte.largepage = 0;
  1408. if (bytes != 4 && bytes != 8)
  1409. return;
  1410. /*
  1411. * Assume that the pte write on a page table of the same type
  1412. * as the current vcpu paging mode. This is nearly always true
  1413. * (might be false while changing modes). Note it is verified later
  1414. * by update_pte().
  1415. */
  1416. if (is_pae(vcpu)) {
  1417. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1418. if ((bytes == 4) && (gpa % 4 == 0)) {
  1419. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1420. if (r)
  1421. return;
  1422. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1423. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1424. memcpy((void *)&gpte, new, 8);
  1425. }
  1426. } else {
  1427. if ((bytes == 4) && (gpa % 4 == 0))
  1428. memcpy((void *)&gpte, new, 4);
  1429. }
  1430. if (!is_present_pte(gpte))
  1431. return;
  1432. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1433. down_read(&current->mm->mmap_sem);
  1434. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1435. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1436. vcpu->arch.update_pte.largepage = 1;
  1437. }
  1438. page = gfn_to_page(vcpu->kvm, gfn);
  1439. up_read(&current->mm->mmap_sem);
  1440. if (is_error_page(page)) {
  1441. kvm_release_page_clean(page);
  1442. return;
  1443. }
  1444. vcpu->arch.update_pte.gfn = gfn;
  1445. vcpu->arch.update_pte.page = page;
  1446. }
  1447. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1448. const u8 *new, int bytes)
  1449. {
  1450. gfn_t gfn = gpa >> PAGE_SHIFT;
  1451. struct kvm_mmu_page *sp;
  1452. struct hlist_node *node, *n;
  1453. struct hlist_head *bucket;
  1454. unsigned index;
  1455. u64 entry, gentry;
  1456. u64 *spte;
  1457. unsigned offset = offset_in_page(gpa);
  1458. unsigned pte_size;
  1459. unsigned page_offset;
  1460. unsigned misaligned;
  1461. unsigned quadrant;
  1462. int level;
  1463. int flooded = 0;
  1464. int npte;
  1465. int r;
  1466. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1467. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1468. spin_lock(&vcpu->kvm->mmu_lock);
  1469. kvm_mmu_free_some_pages(vcpu);
  1470. ++vcpu->kvm->stat.mmu_pte_write;
  1471. kvm_mmu_audit(vcpu, "pre pte write");
  1472. if (gfn == vcpu->arch.last_pt_write_gfn
  1473. && !last_updated_pte_accessed(vcpu)) {
  1474. ++vcpu->arch.last_pt_write_count;
  1475. if (vcpu->arch.last_pt_write_count >= 3)
  1476. flooded = 1;
  1477. } else {
  1478. vcpu->arch.last_pt_write_gfn = gfn;
  1479. vcpu->arch.last_pt_write_count = 1;
  1480. vcpu->arch.last_pte_updated = NULL;
  1481. }
  1482. index = kvm_page_table_hashfn(gfn);
  1483. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1484. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1485. if (sp->gfn != gfn || sp->role.metaphysical)
  1486. continue;
  1487. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1488. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1489. misaligned |= bytes < 4;
  1490. if (misaligned || flooded) {
  1491. /*
  1492. * Misaligned accesses are too much trouble to fix
  1493. * up; also, they usually indicate a page is not used
  1494. * as a page table.
  1495. *
  1496. * If we're seeing too many writes to a page,
  1497. * it may no longer be a page table, or we may be
  1498. * forking, in which case it is better to unmap the
  1499. * page.
  1500. */
  1501. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1502. gpa, bytes, sp->role.word);
  1503. kvm_mmu_zap_page(vcpu->kvm, sp);
  1504. ++vcpu->kvm->stat.mmu_flooded;
  1505. continue;
  1506. }
  1507. page_offset = offset;
  1508. level = sp->role.level;
  1509. npte = 1;
  1510. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1511. page_offset <<= 1; /* 32->64 */
  1512. /*
  1513. * A 32-bit pde maps 4MB while the shadow pdes map
  1514. * only 2MB. So we need to double the offset again
  1515. * and zap two pdes instead of one.
  1516. */
  1517. if (level == PT32_ROOT_LEVEL) {
  1518. page_offset &= ~7; /* kill rounding error */
  1519. page_offset <<= 1;
  1520. npte = 2;
  1521. }
  1522. quadrant = page_offset >> PAGE_SHIFT;
  1523. page_offset &= ~PAGE_MASK;
  1524. if (quadrant != sp->role.quadrant)
  1525. continue;
  1526. }
  1527. spte = &sp->spt[page_offset / sizeof(*spte)];
  1528. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1529. gentry = 0;
  1530. r = kvm_read_guest_atomic(vcpu->kvm,
  1531. gpa & ~(u64)(pte_size - 1),
  1532. &gentry, pte_size);
  1533. new = (const void *)&gentry;
  1534. if (r < 0)
  1535. new = NULL;
  1536. }
  1537. while (npte--) {
  1538. entry = *spte;
  1539. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1540. if (new)
  1541. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1542. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1543. ++spte;
  1544. }
  1545. }
  1546. kvm_mmu_audit(vcpu, "post pte write");
  1547. spin_unlock(&vcpu->kvm->mmu_lock);
  1548. if (vcpu->arch.update_pte.page) {
  1549. kvm_release_page_clean(vcpu->arch.update_pte.page);
  1550. vcpu->arch.update_pte.page = NULL;
  1551. }
  1552. }
  1553. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1554. {
  1555. gpa_t gpa;
  1556. int r;
  1557. down_read(&vcpu->kvm->slots_lock);
  1558. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1559. up_read(&vcpu->kvm->slots_lock);
  1560. spin_lock(&vcpu->kvm->mmu_lock);
  1561. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1562. spin_unlock(&vcpu->kvm->mmu_lock);
  1563. return r;
  1564. }
  1565. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1566. {
  1567. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1568. struct kvm_mmu_page *sp;
  1569. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1570. struct kvm_mmu_page, link);
  1571. kvm_mmu_zap_page(vcpu->kvm, sp);
  1572. ++vcpu->kvm->stat.mmu_recycled;
  1573. }
  1574. }
  1575. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1576. {
  1577. int r;
  1578. enum emulation_result er;
  1579. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1580. if (r < 0)
  1581. goto out;
  1582. if (!r) {
  1583. r = 1;
  1584. goto out;
  1585. }
  1586. r = mmu_topup_memory_caches(vcpu);
  1587. if (r)
  1588. goto out;
  1589. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1590. switch (er) {
  1591. case EMULATE_DONE:
  1592. return 1;
  1593. case EMULATE_DO_MMIO:
  1594. ++vcpu->stat.mmio_exits;
  1595. return 0;
  1596. case EMULATE_FAIL:
  1597. kvm_report_emulation_failure(vcpu, "pagetable");
  1598. return 1;
  1599. default:
  1600. BUG();
  1601. }
  1602. out:
  1603. return r;
  1604. }
  1605. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1606. void kvm_enable_tdp(void)
  1607. {
  1608. tdp_enabled = true;
  1609. }
  1610. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1611. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1612. {
  1613. struct kvm_mmu_page *sp;
  1614. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1615. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1616. struct kvm_mmu_page, link);
  1617. kvm_mmu_zap_page(vcpu->kvm, sp);
  1618. }
  1619. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1620. }
  1621. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1622. {
  1623. struct page *page;
  1624. int i;
  1625. ASSERT(vcpu);
  1626. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1627. vcpu->kvm->arch.n_free_mmu_pages =
  1628. vcpu->kvm->arch.n_requested_mmu_pages;
  1629. else
  1630. vcpu->kvm->arch.n_free_mmu_pages =
  1631. vcpu->kvm->arch.n_alloc_mmu_pages;
  1632. /*
  1633. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1634. * Therefore we need to allocate shadow page tables in the first
  1635. * 4GB of memory, which happens to fit the DMA32 zone.
  1636. */
  1637. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1638. if (!page)
  1639. goto error_1;
  1640. vcpu->arch.mmu.pae_root = page_address(page);
  1641. for (i = 0; i < 4; ++i)
  1642. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1643. return 0;
  1644. error_1:
  1645. free_mmu_pages(vcpu);
  1646. return -ENOMEM;
  1647. }
  1648. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1649. {
  1650. ASSERT(vcpu);
  1651. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1652. return alloc_mmu_pages(vcpu);
  1653. }
  1654. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1655. {
  1656. ASSERT(vcpu);
  1657. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1658. return init_kvm_mmu(vcpu);
  1659. }
  1660. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1661. {
  1662. ASSERT(vcpu);
  1663. destroy_kvm_mmu(vcpu);
  1664. free_mmu_pages(vcpu);
  1665. mmu_free_memory_caches(vcpu);
  1666. }
  1667. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1668. {
  1669. struct kvm_mmu_page *sp;
  1670. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1671. int i;
  1672. u64 *pt;
  1673. if (!test_bit(slot, &sp->slot_bitmap))
  1674. continue;
  1675. pt = sp->spt;
  1676. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1677. /* avoid RMW */
  1678. if (pt[i] & PT_WRITABLE_MASK)
  1679. pt[i] &= ~PT_WRITABLE_MASK;
  1680. }
  1681. }
  1682. void kvm_mmu_zap_all(struct kvm *kvm)
  1683. {
  1684. struct kvm_mmu_page *sp, *node;
  1685. spin_lock(&kvm->mmu_lock);
  1686. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1687. kvm_mmu_zap_page(kvm, sp);
  1688. spin_unlock(&kvm->mmu_lock);
  1689. kvm_flush_remote_tlbs(kvm);
  1690. }
  1691. void kvm_mmu_module_exit(void)
  1692. {
  1693. if (pte_chain_cache)
  1694. kmem_cache_destroy(pte_chain_cache);
  1695. if (rmap_desc_cache)
  1696. kmem_cache_destroy(rmap_desc_cache);
  1697. if (mmu_page_header_cache)
  1698. kmem_cache_destroy(mmu_page_header_cache);
  1699. }
  1700. int kvm_mmu_module_init(void)
  1701. {
  1702. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1703. sizeof(struct kvm_pte_chain),
  1704. 0, 0, NULL);
  1705. if (!pte_chain_cache)
  1706. goto nomem;
  1707. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1708. sizeof(struct kvm_rmap_desc),
  1709. 0, 0, NULL);
  1710. if (!rmap_desc_cache)
  1711. goto nomem;
  1712. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1713. sizeof(struct kvm_mmu_page),
  1714. 0, 0, NULL);
  1715. if (!mmu_page_header_cache)
  1716. goto nomem;
  1717. return 0;
  1718. nomem:
  1719. kvm_mmu_module_exit();
  1720. return -ENOMEM;
  1721. }
  1722. /*
  1723. * Caculate mmu pages needed for kvm.
  1724. */
  1725. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1726. {
  1727. int i;
  1728. unsigned int nr_mmu_pages;
  1729. unsigned int nr_pages = 0;
  1730. for (i = 0; i < kvm->nmemslots; i++)
  1731. nr_pages += kvm->memslots[i].npages;
  1732. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1733. nr_mmu_pages = max(nr_mmu_pages,
  1734. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1735. return nr_mmu_pages;
  1736. }
  1737. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1738. unsigned len)
  1739. {
  1740. if (len > buffer->len)
  1741. return NULL;
  1742. return buffer->ptr;
  1743. }
  1744. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1745. unsigned len)
  1746. {
  1747. void *ret;
  1748. ret = pv_mmu_peek_buffer(buffer, len);
  1749. if (!ret)
  1750. return ret;
  1751. buffer->ptr += len;
  1752. buffer->len -= len;
  1753. buffer->processed += len;
  1754. return ret;
  1755. }
  1756. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1757. gpa_t addr, gpa_t value)
  1758. {
  1759. int bytes = 8;
  1760. int r;
  1761. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1762. bytes = 4;
  1763. r = mmu_topup_memory_caches(vcpu);
  1764. if (r)
  1765. return r;
  1766. if (!__emulator_write_phys(vcpu, addr, &value, bytes))
  1767. return -EFAULT;
  1768. return 1;
  1769. }
  1770. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1771. {
  1772. kvm_x86_ops->tlb_flush(vcpu);
  1773. return 1;
  1774. }
  1775. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1776. {
  1777. spin_lock(&vcpu->kvm->mmu_lock);
  1778. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1779. spin_unlock(&vcpu->kvm->mmu_lock);
  1780. return 1;
  1781. }
  1782. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1783. struct kvm_pv_mmu_op_buffer *buffer)
  1784. {
  1785. struct kvm_mmu_op_header *header;
  1786. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1787. if (!header)
  1788. return 0;
  1789. switch (header->op) {
  1790. case KVM_MMU_OP_WRITE_PTE: {
  1791. struct kvm_mmu_op_write_pte *wpte;
  1792. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1793. if (!wpte)
  1794. return 0;
  1795. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1796. wpte->pte_val);
  1797. }
  1798. case KVM_MMU_OP_FLUSH_TLB: {
  1799. struct kvm_mmu_op_flush_tlb *ftlb;
  1800. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1801. if (!ftlb)
  1802. return 0;
  1803. return kvm_pv_mmu_flush_tlb(vcpu);
  1804. }
  1805. case KVM_MMU_OP_RELEASE_PT: {
  1806. struct kvm_mmu_op_release_pt *rpt;
  1807. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1808. if (!rpt)
  1809. return 0;
  1810. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1811. }
  1812. default: return 0;
  1813. }
  1814. }
  1815. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1816. gpa_t addr, unsigned long *ret)
  1817. {
  1818. int r;
  1819. struct kvm_pv_mmu_op_buffer buffer;
  1820. down_read(&vcpu->kvm->slots_lock);
  1821. down_read(&current->mm->mmap_sem);
  1822. buffer.ptr = buffer.buf;
  1823. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1824. buffer.processed = 0;
  1825. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1826. if (r)
  1827. goto out;
  1828. while (buffer.len) {
  1829. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1830. if (r < 0)
  1831. goto out;
  1832. if (r == 0)
  1833. break;
  1834. }
  1835. r = 1;
  1836. out:
  1837. *ret = buffer.processed;
  1838. up_read(&current->mm->mmap_sem);
  1839. up_read(&vcpu->kvm->slots_lock);
  1840. return r;
  1841. }
  1842. #ifdef AUDIT
  1843. static const char *audit_msg;
  1844. static gva_t canonicalize(gva_t gva)
  1845. {
  1846. #ifdef CONFIG_X86_64
  1847. gva = (long long)(gva << 16) >> 16;
  1848. #endif
  1849. return gva;
  1850. }
  1851. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1852. gva_t va, int level)
  1853. {
  1854. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1855. int i;
  1856. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1857. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1858. u64 ent = pt[i];
  1859. if (ent == shadow_trap_nonpresent_pte)
  1860. continue;
  1861. va = canonicalize(va);
  1862. if (level > 1) {
  1863. if (ent == shadow_notrap_nonpresent_pte)
  1864. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1865. " in nonleaf level: levels %d gva %lx"
  1866. " level %d pte %llx\n", audit_msg,
  1867. vcpu->arch.mmu.root_level, va, level, ent);
  1868. audit_mappings_page(vcpu, ent, va, level - 1);
  1869. } else {
  1870. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1871. struct page *page = gpa_to_page(vcpu, gpa);
  1872. hpa_t hpa = page_to_phys(page);
  1873. if (is_shadow_present_pte(ent)
  1874. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1875. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1876. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1877. audit_msg, vcpu->arch.mmu.root_level,
  1878. va, gpa, hpa, ent,
  1879. is_shadow_present_pte(ent));
  1880. else if (ent == shadow_notrap_nonpresent_pte
  1881. && !is_error_hpa(hpa))
  1882. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1883. " valid guest gva %lx\n", audit_msg, va);
  1884. kvm_release_page_clean(page);
  1885. }
  1886. }
  1887. }
  1888. static void audit_mappings(struct kvm_vcpu *vcpu)
  1889. {
  1890. unsigned i;
  1891. if (vcpu->arch.mmu.root_level == 4)
  1892. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1893. else
  1894. for (i = 0; i < 4; ++i)
  1895. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1896. audit_mappings_page(vcpu,
  1897. vcpu->arch.mmu.pae_root[i],
  1898. i << 30,
  1899. 2);
  1900. }
  1901. static int count_rmaps(struct kvm_vcpu *vcpu)
  1902. {
  1903. int nmaps = 0;
  1904. int i, j, k;
  1905. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1906. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1907. struct kvm_rmap_desc *d;
  1908. for (j = 0; j < m->npages; ++j) {
  1909. unsigned long *rmapp = &m->rmap[j];
  1910. if (!*rmapp)
  1911. continue;
  1912. if (!(*rmapp & 1)) {
  1913. ++nmaps;
  1914. continue;
  1915. }
  1916. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1917. while (d) {
  1918. for (k = 0; k < RMAP_EXT; ++k)
  1919. if (d->shadow_ptes[k])
  1920. ++nmaps;
  1921. else
  1922. break;
  1923. d = d->more;
  1924. }
  1925. }
  1926. }
  1927. return nmaps;
  1928. }
  1929. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1930. {
  1931. int nmaps = 0;
  1932. struct kvm_mmu_page *sp;
  1933. int i;
  1934. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1935. u64 *pt = sp->spt;
  1936. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1937. continue;
  1938. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1939. u64 ent = pt[i];
  1940. if (!(ent & PT_PRESENT_MASK))
  1941. continue;
  1942. if (!(ent & PT_WRITABLE_MASK))
  1943. continue;
  1944. ++nmaps;
  1945. }
  1946. }
  1947. return nmaps;
  1948. }
  1949. static void audit_rmap(struct kvm_vcpu *vcpu)
  1950. {
  1951. int n_rmap = count_rmaps(vcpu);
  1952. int n_actual = count_writable_mappings(vcpu);
  1953. if (n_rmap != n_actual)
  1954. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1955. __func__, audit_msg, n_rmap, n_actual);
  1956. }
  1957. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1958. {
  1959. struct kvm_mmu_page *sp;
  1960. struct kvm_memory_slot *slot;
  1961. unsigned long *rmapp;
  1962. gfn_t gfn;
  1963. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1964. if (sp->role.metaphysical)
  1965. continue;
  1966. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1967. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1968. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1969. if (*rmapp)
  1970. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1971. " mappings: gfn %lx role %x\n",
  1972. __func__, audit_msg, sp->gfn,
  1973. sp->role.word);
  1974. }
  1975. }
  1976. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1977. {
  1978. int olddbg = dbg;
  1979. dbg = 0;
  1980. audit_msg = msg;
  1981. audit_rmap(vcpu);
  1982. audit_write_protection(vcpu);
  1983. audit_mappings(vcpu);
  1984. dbg = olddbg;
  1985. }
  1986. #endif